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Abstract.    Decision makers charged with implementing Ecosystem Based Management (EBM) rely on scientists to predict the consequences of decisions for multiple, potentially conflicting, objectives. The inherent uncertainty in such predictions can be a barrier to decision making. The Convention on the Conservation of Antarctic Marine Living Resources requires managers of Southern Ocean fisheries to sustain the productivity of target stocks, the health and resilience of the ecosystem, and the performance of the fisheries themselves.  The managers of the Antarctic krill fishery in the Scotia Sea and southern Drake Passage have requested advice on candidate management measures consisting of a regional catch limit and options for subdividing this amongst smaller areas.  We developed a spatially resolved model that simulates krill-predator-fishery interactions and reproduces a plausible representation of past dynamics.  We worked with experts and stakeholders to identify (1) key uncertainties affecting our ability to predict ecosystem state; (2) illustrative reference points that represent the management objectives; and (3) a clear and simple way of conveying our results to decision makers. We developed four scenarios that bracket the key uncertainties and evaluated candidate management measures in each of these scenarios using multiple stochastic simulations. The model emphasises uncertainty and simulates multiple ecosystem components relating to diverse objectives. Nonetheless, we summarise the potentially complex results as estimates of the risk that each illustrative objective will not be achieved (i.e., of the state being outside the range specified by the reference point). This approach allows direct comparisons between objectives. It also demonstrates that a candid appraisal of uncertainty, in the form of risk estimates, can be an aid, rather than a barrier, to understanding and using ecosystem model predictions. Management measures that reduce coastal fishing, relative to oceanic fishing, apparently reduce risks to both the fishery and the ecosystem. However, alternative reference points could alter the perceived risks, so further stakeholder involvement is necessary to identify risk metrics that appropriately represent their objectives. 
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Introduction

Ecosystem based management (EBM) aims to maintain productive, healthy, and resilient ecosystems and thereby secure the services that humans want and need (McLeod and Leslie 2009, Link 2010).  Decision makers must meet multiple and potentially conflicting objectives despite substantial uncertainties about how ecosystems function.  Although there is widespread support for developing ecosystem models to facilitate EBM of marine resources (e.g., Hill et al. 2007a, Plagányi 2007, Rose et al. 2010, Link et al. 2012, Plagányi et al. 2012), there are few examples of the practical application of ecosystem models to address everyday management issues (Plagányi et al. 2012). Predictions based on ecosystem models are highly uncertain and this is one of the main perceived barriers to their use (Link 2010, Link et al. 2012). 

Management of the fishery for Antarctic krill (Euphausia superba Dana) in the Scotia Sea and southern Drake Passage (which, following Plagányi and Butterworth 2012, we subsequently refer to as the Scotia Sea) illustrates the challenges associated with EBM.  The Convention on the Conservation of Antarctic Marine Living Resources specifies the management principles for this fishery. Although the Convention predates modern definitions of EBM it stipulates three principles of conservation that map directly onto the concepts of ecosystem productivity, health, and resilience (Miller and Agnew 2000, McLeod and Leslie 2009).  The Convention also articulates a commitment to “rational use,” and although this is generally interpreted as “sustainable fishing” (Miller 2011, Hill in press), it does not explicitly exclude non-fisheries uses.

Predator-prey interactions are a central issue in the management of the krill fishery, and EBM in general (Miller and Agnew 2000; Link 2010).  Antarctic krill is the main prey of various whales, seals, penguins, and fishes (Hill et al. 2012, Everson 2000).  The Scotia Sea krill fishery takes most of its catch from areas overlapping the restricted foraging ranges of seals and penguins that breed and rear their offspring on land; and the ranges of demersal fishes that inhabit the continental shelf (Everson 2000).  The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), which manages the fishery, has set a regional catch limit (known within the CCAMLR as the precautionary catch limit) for Antarctic krill of 5.61 million metric tons.  This catch limit is based on a synoptic estimate of krill biomass (60.3 million metric tons during January 2000) within an area of approximately 3.7 million km2 and is intended to reserve a significant proportion of krill production for predators (Constable 2011, Hill in press).  There are concerns that a regional limit is not sufficient to prevent spatially localized, indirect impacts on krill predators (Constable 2011, Miller and Agnew 2000). The CCAMLR has therefore imposed a lower, interim catch limit of 620,000 tons (known as the trigger level) until the regional limit is subdivided among smaller management areas (Miller and Agnew 2000).

Hewitt et al. (2004a) proposed five Catch Allocation Options for dividing the regional catch limit among 15 small scale management units (SSMUs) that cover the part of the Scotia Sea where most krill fishing has occurred. Twelve coastal SSMUs delineate areas of potentially high summer land-based predator foraging activity while the remaining sea area is divided into three much larger oceanic SSMUs on the basis of existing FAO subareas. The CCAMLR requested a scientific evaluation of these Catch Allocation Options (SC-CAMLR 2004).  Subsequently, the CCAMLR’s Scientific Working Groups identified several key uncertainties about the processes that affect the ecosystem response to fishing (WG-EMM 2005, 2006, WG-SAM 2007).  These uncertainties include the movement of krill between areas (Miller and Agnew 2000, Hill et al. 2007b) and the sensitivities of predator reproduction to variations in krill abundance (WG-EMM 2005, 2006).  Various authors (e.g., Ludwig et al. 1993) have recommended that, in the face of such uncertainty, decision makers and scientists should identify robust strategies to achieve management objectives over the range of plausible and likely conditions that define an ecosystem’s dynamics.  Model simulations over this plausible range of conditions can help to evaluate management measures and identify those that are appropriate to use (Punt and Donovan 2007, Hill et al. 2007a, Rademeyer et al. 2007).  Hill et al. (2007a) recommended parameterizing simulation models to represent plausible limits to key uncertainties about processes that govern ecosystem structure and function.

We use a novel, spatially-resolved, stochastic prey-predator-fishery model to simulate ecosystem dynamics in the Scotia Sea and evaluate management measures that each consist of an allowable catch for Antarctic krill and a Catch Allocation Option.  We present a reference set of four scenarios (sensu Rademeyer et al. 2007) that brackets key uncertainties. Each scenario includes best estimate parameters obtained from the literature, parameters specifying the particular limits on key uncertainties represented by that scenario, parameters that were estimated to set initial conditions (for 1970), and parameters that were estimated through conditioning the model (sensu Rademeyer et al. 2007) on a plausible representation of recent (1970-2007) dynamics in the Scotia Sea that was developed by an expert group (WG-SAM 2007, Hill et al. 2008).  We present our results as estimates of the risk that the CCAMLR will fail to meet representative management objectives if it implements a given management measure.  Our aim is to demonstrate that ecosystem models can be used to provide decision makers with intelligible and useful advice on multiple objectives, and that a candid appraisal of uncertainty can be an aid, rather than a barrier, to progress. Our modelling approach is particularly relevant to the management of fisheries that target forage species, such as herring and anchovy, which occupy middle trophic levels and are a major food source for diverse predators (Pikitch et al. 2012).
Methods
The model


Appendix A provides a detailed description of the model, which was developed in R 2.5.0 (R Development Core Team 2006) and is freely available online as an R package
. It is a minimum realistic model (sensu Punt and Butterworth 1995, Plagányi et al. 2012) that characterizes a limited set of processes and interactions of direct relevance to a focal question about  how do the dynamics of a forage species and its predators respond to spatial and temporal patterns of fishing.  The model can represent multiple hypotheses about predator-prey-fishery interactions as its spatial and temporal structure, and its representation of the prey, predators, and fishery can be controlled through parameterisation. It can also be used to perform multiple stochastic simulations.   


The model uses delay-difference equations to describe the abundance dynamics of one prey group and up to four predator groups in each of its spatial areas. All modelled predators feed on the prey in competition with each other and the fishery.  Prey abundance within each area is determined by recruitment; predation, fishing and residual mortality; and net prey movement between areas.  Potential prey consumption by each predator group in each area depends on its abundance, maximum per-capita demand for prey, and the proportion of its foraging effort spent in the area. Potential fishery catches in each area are determined by a management measure consisting of an allowable catch for all areas combined (itself the product of a harvest rate and a synoptic estimate of biomass) and a Catch Allocation Option that subdivides the allowable catch among areas.  If potential consumption and catch together exceed prey abundance, their realised values are less than their potentials.  The area-specific ratios of realized consumption to potential consumption and of realized catch to potential catch are determined by the per-capita functional responses of predators to changes in prey density, and the relative competitive abilities of the predators and the fishery.  The ratios of realized consumption to potential consumption determine the subsequent recruitment and survival of predators. 

The model can also include multiple boundary areas in which predators may forage.  It is possible to specify time-series of prey abundance in these boundary areas, primarily to control prey import into other model areas.

Implementation


We implemented the model to represent Antarctic krill, its predators and fishery in the Scotia Sea. This implementation was developed within the CCAMLR’s scientific working groups in consultation with the fishing industry, conservation NGOs, the Scientific Committee and the Commission itself. The interactions between these groups are illustrated in Hill (in press). This community identified key uncertainties about ecosystem operation, which concerned krill movement between areas and the response of krill predators to variations in prey availability (WG-EMM 2005, 2006, WG-SAM 2007). The community also developed a plausible representation of past dynamics for the period 1970 to 2006 and requested that the model should be capable of reproducing these dynamics (WG-SAM 2007, SC-CAMLR 2007, Hill et al. 2008).

The spatial structure of the implemented model included the 15 SSMUs defined by Hewitt et al (2004a), and three boundary areas that roughly correspond to the Bellingshausen Sea, Weddell Sea, and northern Drake Passage (Fig. 1).  We used these boundary areas to model a source for krill that was imported into the SSMUs in our movement scenarios, and on which mobile predators could forage. We did not include any information about boundary areas in our calculations of Catch Allocation Options or risk metrics. We modelled krill and fish in all 15 SSMUs, penguins in 12, seals in five, and whales in two (Hill et al 2007b). We used two time steps per year to represent the six-month periods starting on 1 October (summer) and 1 April (winter).


We simulated the potential ecosystem responses to a range of management measures, specifically to compare Catch Allocation Options. These simulations nominally represented a 20 year period of fishing beginning in 2007, followed by 20 years without fishing. The overall process for generating the results, which is detailed in the rest of this section, was:

(1) Develop four input parameterizations representing the ecosystem state in 1970, where the differences between parameterisations bracket the key uncertainties.

(2) Select an input parameterization.

(3) Adjust krill recruitment parameters so that krill gains balance krill losses in each SSMU to achieve equilibrium conditions in the initial year (1970).

(4) Condition the model on the plausible past dynamics (1970 to 2006): Adjust selected predator parameters to minimize deviations between modelled predator abundance and the plausible estimates. This produces a reference set of four alternative scenarios.

(5) Select a scenario from the reference set.

(6) Simulate the period 1970-2006 without fishing and predict the initial abundances of krill and predators in 2007.

(7) Select a management measure.
(8) Multiply the state variables that determine SSMU-specific catch limits by random errors.

(9) Simulate the period 2007-2026 with the management measure selected in Step 7 and the period 2027-2046 with no fishing, and save the results.

(10) Repeat Steps 8 and 9 for 1001 trials that include random variations in krill recruitment and boundary area krill abundance. Use the same random number sequence at each iteration of this step.

(11) Restart from Step 5 or 7 as necessary to simulate all required combinations of scenario and management measure (four scenarios × four Catch Allocation Options × up to 23 allowable catches, and no fishing) (see Table C1). 

(12) Compute risk metrics from the simulation results. Risk metrics are based on comparisons with reference points which, in the case of krill predators, are derived from no-fishing simulations, while those for krill and the fishery are derived from the same simulation.

Input parameters

Appendix B gives full details of the input parameterizations and the final reference set of alternative scenarios. We derived the majority of the parameters from published data (summarized in Hill et al. 2007b) and our approach of bracketing key uncertainties evaluates the consequences of some of the main assumptions made in the absence of suitable data. We developed this approach and all assumptions in consultation with a community of stakeholders and experts, which gives us some confidence that it brackets the major uncertainties. We make clear our additional assumptions to facilitate further investigation of their implications.
Natural mortality estimates for Antarctic krill are notoriously variable and difficult to separate into component processes (Siegel and Nicol 2000). We made the parsimonious assumption that krill mortality is entirely due to the explicitly modelled processes of predation and fishing. Krill density estimates were based on the results of a synoptic biomass survey conducted in 2000 (Hewitt et al. 2004b, updated by Fielding et al. 2011). The plausible past dynamics (Hill et al. 2008) imply that the values for 1970 were double those for 2000. Krill density and catches are usually reported in terms of wet mass, which we converted to abundance, the modelled state variable, using the mean mass of an individual krill, 0.46 g (Hill et al. 2007b).
We used parameterizations representing maximum movement and no movement to model the plausible limits on uncertainty about krill movement between areas.  We derived movement parameters for the (maximum) movement case from particle transport rates implied by the Ocean Circulation Climate Advanced Modelling project global circulation model (Coward and de Cuevas 2005) and reported by Hill et al. (2007b).  In the contrasting no-movement case we set all movement parameters to zero.

The limited, localised information that is available suggests that krill recruitment is largely independent of stock size (Siegel 2005). We parameterised the asymptotic stock-recruit relationship in each SSMU to reach the asymptote at a very low fraction (<1%) of mean stock size. The final stock-recruit parameters were established in step 3 to ensure that krill gains (through recruitment and import) balanced krill losses (through predation and export) in 1970. In the movement case, krill recruitment in each SSMU and the mean abundance of krill in each boundary area were set jointly to achieve balance in each SSMU. In the no movement case, it was only necessary to adjust krill recruitment. These adjustments also achieved equilibrium across the whole suite of SSMUs. Local recruitment of krill is thought to be near zero in SSMUs 13-15 (Atkinson et al. 2001). In the movement case, we balanced the losses from these SSMUs with imports from other areas. However, in the no movement case local recruitment was necessary to balance predation losses. 

 
Each modelled predator group other than seals represented a multi-species taxon, and the species composition within each varied between SSMUs (Appendix B, Hill et al. 2007b).  For convenience we refer to these taxon-SSMU combinations as subpopulations.  Predator abundances for 1970 were taken from Hill et al. (2008). Following advice from CCAMLR’s working groups (WG-EMM 2005, 2006), which was based on evidence in Reid et al. (2005), all predators were assigned a Type II functional response. We assumed that central place foragers (penguins and seals) were most sensitive to changes in krill density, and assigned them the highest half-saturation constants. Whales have fewer spatial constraints on foraging. Fish were assigned the lowest constants because this taxon has the broadest diet and the lowest consumption to biomass ratio.  

Although whales occur in all 15 SSMUs, we grouped them into two subpopulations corresponding to 1) all whales that Hill et al. (2007b) placed in SSMUs 1-8 and 2) all whales that they placed in SSMUs 9-15.  Although we modelled these two subpopulations as “resident” in SSMUs 1 and 9 for convenience, they foraged in all SSMUs in proportion to estimates of whale abundance within each SSMU (Hill et al. 2007b).  

We parameterized the spatial distribution of seal and penguin foraging effort to represent current understanding of predator distributions in the Scotia Sea (Hill et al. 2006a).  For example, we assigned all demand for krill by penguins and seals during the summer to the natal SSMU for each subpopulation.  For the winter, we distributed demand for krill by penguins and seals among several SSMUs and boundary areas according to known migration routes or over-wintering areas (e.g., Trivelpiece et al. 2007).  

Some predator subpopulations may be sensitive to changes in krill availability (e.g., Reid et al. 2005) while others may not manifest a detectable response (e.g., WG-EMM 2003).  We modelled plausible limits on this key source of uncertainty using a shape parameter that determines the functional relationship between foraging success and the proportion of adult predators that participate in breeding.  In one case (the stable case), we set this shape parameter so that breeding participation decreases more slowly than foraging success and  50% of adults breed when per-capita krill consumption is 15% of its maximum.  We contrasted the stable case with a linear case in which decreases in breeding participation are directly proportional to decreases in average foraging success. 

In the absence of information on relative competitive abilities, we assumed that the fishery and all predator groups were equal competitors. Therefore, when krill was limiting in an SSMU, the amount obtained by any predator group or the fishery was proportionate to its demand.
Past dynamics, stochastic recruitment and observation error

The plausible representation of past dynamics was developed because there were insufficient time-series data (e.g., from regional predator censuses) to characterize system dynamics at the appropriate spatial scale. Hill et al. (2008) translated the statements in Table 1 into a set of SSMU-specific estimates of predator abundance using population growth models and further information from the literature. We forced a linear 50% decline in the recruitment of all subpopulations of krill over the period 1984-1988 in SSMUs 1-12 and 1981-2000 in SSMUs 13-15. For the movement case, we also halved the mean abundance of krill in the boundary areas over this period.  These changes were consistent with the abundance changes in Hill et al. (2008). No direct estimates of predator recruitment parameters were available and we estimated these parameters for subpopulations of penguins, whales, and seals by conditioning the model on the abundance estimates in Hill et al. (2008). We used an objective function that minimised the sum (over predator groups, SSMUs, and years) of the absolute differences between time-and-SSMU-specific abundances from the model and those in Hill et al (2008) as a proportion of the latter (Appendix B).  We estimated the following predator parameters: the peak recruitment when all adults breed (for subpopulations of whales, seals, and penguins), the breeder abundance that produces peak recruitment (for subpopulations of seals), and a shape parameter that determines the effect of over-winter foraging success on juvenile survival (for subpopulations of penguins). The plausible past dynamics did not include information on changes in the abundance of fish, and we adjusted recruitment parameters for this group so that the fish subpopulations were stable under the initial model conditions. 


We included two additional sources of uncertainty in our simulations.  First, we set the standard deviation of the logarithm of krill recruitment in each SSMU to 0.7, implying that annual recruitment will be greater than twice the median recruitment about 16% of the time.  This level corresponds with observations of krill recruitment at Elephant Island (Reiss et al. 2008).  Second, we introduced random error into SSMU-specific “observations” of the state variables that are used to implement Catch Allocation Options. These errors were drawn from a log-normal distribution with a CV of 0.20, which is within the range (0.16 to 0.55) of CVs for the stratum-specific krill density estimates in Fielding et al. (2011).
Simulations


We simulated fishing in SSMUs 1-12 in the summer only and in SSMUs 13-15 in the winter only, to represent observed fishing patterns (Everson and Goss 1991).  The modelled fishery operated in a given SSMU only when the krill density there exceeded 15 g.m-2, which is approximately equivalent to fishable densities of krill occurring in 3% of the SSMU (Hill et al. 2009). We assumed that, at most, 95% of the krill stock in each SSMU was vulnerable to fishing or predation so that these two sources of mortality could not cause local extinctions of krill.


We calculated the allowable catch as the product of an initial estimate of krill biomass in 2007; 0.093, the harvest rate used by the CCAMLR to set the regional catch limit for krill in the Scotia Sea (SC-CAMLR 2010); a random error drawn from a log-normal distribution with a CV of 20% to represent the influence of observation error; and a scale factor in the interval [0, 1.2], defining the allowable catch as a proportion of the corresponding regional catch limit. We used a scale factor of 0.11 (0.62 m ton interim limit/5.61 m ton regional limit) to represent the interim catch limit, and a scale factor of zero for no-fishing trials.


We adapted three Catch Allocation Options from Hewitt et al. (2004a) with allocations based on 1) the spatial distribution of historical catches during the 2002/03-2006/07 fishing seasons (hoereafter referred to as Catch); 2) the simulated spatial distribution of predator demand for krill at the beginning of 2007 (Demand); and 3) the simulated spatial distribution of krill standing stock biomass at the beginning of 2007 (Stock).  A fourth Catch Allocation Option  (Current) is based on current management (CM 51-07 in CCAMLR 2011) which limits the spatial distribution of krill catches and caps the maximum catch at the interim catch limit (scale factor ≤ 0.11).

Risk metrics


Our results indicate the probability of failing to meet illustrative management objectives (risks) relating to ecosystem productivity, health, and resilience, and the provision of ecosystem services (fishery performance). The risk metric for each scenario-management measure combination was computed across the 1001 relevant trials. We also calculated scenario-averaged risks, which are the main outputs for presenting to decision makers. Each scenario-averaged value is the mean of four relevant scenario-specific results, except in the case of the services metric where the scenario-averaged value is the median of all relevant simulations.


Krill production supports both predator populations and the fishery.  We assessed risks to ecosystem productivity by computing the probability that, during the fishing period, krill abundance would fall below 20% of the abundance at the beginning of 2007. The 20% threshold is specified in the CCAMLR’s decision rules for setting the regional catch limit (Miller and Agnew 2000).  These rules specify, inter alia, a maximum acceptable probability (10%) of the spawning stock biomass falling below 20% of its pre-exploitation level, although in practice estimates of abundance during the 2000 survey have been used to represent this pre-exploitation level (Hewitt et al. 2004b).  Maintaining the regional krill population above this 20% threshold is nominally associated with the Convention’s requirement to prevent a “decrease in the size of any harvested population to levels below those which ensure its stable recruitment”.  To be consistent with this decision rule, we computed our risk metric across SSMUs.


We assessed risks to ecosystem health by computing the ratio of predator abundance, for each subpopulation, at the end of the fishing period to that for the same year in the equivalent no-fishing trial and calculating the probability that this ratio was < 0.75.  This comparison with no-fishing trials is intended to indicate the marginal risks attributable to fishing. The Convention’s requirement to maintain “ecological relationships between harvested, dependent and related populations” is a broad commitment to maintaining ecosystem integrity or “health,” which has generally been interpreted as a requirement to prevent excessive depletion of predators (Miller and Agnew 2000). 

We assessed risks to ecosystem resilience by computing the probability that predator subpopulations from simulations were < 75% of their respective abundances from no-fishing trials at the end of the recovery period (2046). This relates to the Convention’s requirement to minimize “the risk of changes in the marine ecosystem which are not potentially reversible over two or three decades.” As the model produces complex dynamics, the relationship between the risk of depletion and the risk of failing to recover is nonlinear and varies between predators and management measures. It is therefore appropriate to assess these risks separately.


We calculated the proportion of the allowable catch that was not caught in each trial, and assessed risks to the provision of ecosystem services as the median of this value across relevant trails.  
Results
Conditioning and dynamics

The conditioning process produced a viable set of recruitment parameters for each subpopulation of whales, penguins and seals in each of the four reference scenarios (Appendix B). These recruitment parameters arise from the combination of model structure, input parameters and plausible past dynamics. The parameters, in turn, give rise to the specific dynamics of each reference scenario. Although we began the simulations from steady state in 1970, each scenario had active dynamics by 2007 due to the earlier halving of krill recruitment and the complex interactions between predators. 

In every case the estimated parameters suggested a tendency towards depensatory dynamics (i.e., a strong correlation between the number of adults and the number of recruits at low abundances; e.g., Liermann and Hilborn 2001). Specifically, the implied γ of the γ stock-recruit function (Quinn and Deriso 1999) was consistently > 1 (range 1.11 to 1.93).  Additional influences on penguin recruitment were very sensitive to fluctuations in krill availability when this was limiting. Specifically, the shape parameter determining the relationship between penguin foraging performance and pre-recruit mortality was >1 in the majority of cases. This sensitivity was greater in movement scenarios than no-movement scenarios, but the contrast between subpopulations within scenarios was stronger than the contrast between scenarios. Penguins in SSMU 11 were most sensitive and those in SSMU 15 were least sensitive. The conditioning results therefore suggest that, irrespective of the degree of krill movement through the system and the direct effect of krill availability on breeding participation, predator abundance becomes increasingly sensitive to fluctuations in krill availability at lower predator and krill abundances.  

We modelled 544 combinations of predator subpopulation, scenario and Catch Allocation Option, each with a range of allowable catches and each with its own unique dynamics. The dynamics can be aggregated and averaged in various ways, as shown in Figure 2. Results for a single management measure aggregated across SSMUs and averaged across scenarios (Figs a-c) show that fishing at a harvest rate of 9.3% reduced krill abundance by < 4% on average but had a more pronounced, indirect effect on krill predators. The low fishery impact on krill is explained by the fact that predator abundance and demand falls as a consequence of reduced in-season krill availability, but the capacity for replenishing the krill stock (through recruitment and imports) is relatively unaffected. This suggests that, in the real world, snapshot assessments of forage species abundance could underestimate reductions in their availability to predators. 

In the no-fishing case (Figs. 2a-c), seal abundance was relatively stable whereas penguin abundance declined over the simulation period.  Fishing reduced the abundance of seals and accelerated the decline in penguin abundance.  Following the cessation of fishing, krill abundance initially increased to just above levels predicted for the no-fishing case then returned to no-fishing levels within two decades. Seal and penguin abundances converged towards but did not return to no-fishing levels within two decades. The initial over-compensation in prey is typical of models where predators and prey respond at different rates (in this case due to different recruitment delays and maximum population growth rates). The slow response in seals and penguins is due to over-compensation in a faster responding competitor (fish).


Figs. 2d-i show some of these dynamics at different scales of aggregation.  The results for SSMU 3 illustrate greater post-fishing over-compensation in krill abundance and a more pronounced fishery effect on predators. Penguin abundance declined even in the absence of fishing. In the fishing trials, penguin abundance fell to levels where recovery was significantly impeded by the depensatory recruitment parameters estimated during conditioning. Results from the movement-stable scenario showed almost no fishery impact on the krill stock and correspondingly lower impacts on seals and penguins, followed by post-fishing recovery of these predators to near no-fishing levels within 20 years. The low impact on krill was due mainly to replenishment from the boundary areas.
Catch allocations


Two Catch Allocation Options (Demand and Stock) increased the proportion of allowable catch allocated to the three oceanic SSMUs (1, 9, 13 in Fig. 1) compared to the Catch and Current options (Table 2).  The Catch option allocated about 99% of the total catch to the twelve coastal SSMUs, but the Stock and Demand options reduced this allocation to about 53% and 31% respectively. The Demand option had the lowest allocation of catch to coastal SSMUs because our parameterizations suggest substantial consumption of krill by fishes in oceanic SSMUs (Hill et al. 2007b).

Risks


The predicted risks that krill fishing might negatively impact ecosystem productivity were generally low (Fig. 3).  The Demand option had the lowest risks, while the Catch and Stock options were the most risky.  Increasing the allowable catch increased the risks of impacting ecosystem productivity, but the rates at which these risks increased were small compared to the rates at which other risks increased (see below).  The results suggest that, under Current management, the risk of negative impacts on ecosystem productivity might approach the threshold stipulated in the CCAMLR’s decision rules for the krill fishery as the catch approaches the interim catch limit.


The predicted average risks of negative impacts on ecosystem health varied substantially between candidate management measures for the krill fishery (Fig. 4).  The Demand option was the least risky. Within the range of allowable catches considered here, all of the predator subpopulations had a less than 50% chance of being depleted under the Demand option.  The Catch option was the most risky, and there several predator subpopulations had a more than 50% chance of depletion as catches increased between the interim and regional catch limits. The levels of risk under the Stock option were between those of the Catch and Demand options, and six predator subpopulations had a more than 50% chance of depletion at catches less than or near to the regional catch limit.  The option based on Current management had low risks of negatively impacting ecosystem health. 


The predicted risks of negative impacts on ecosystem resilience also varied substantially between candidate management measures (Fig. 5).  In general, the Catch option was most risky; the Stock option presented an intermediate amount of risk; and the Demand option was the least risky.  Strikingly, we predicted that the risks of negative impacts on resilience, particularly for penguins under the Demand and Current management options, were often higher than the corresponding risks to ecosystem health (compare to results in Fig. 4).  This difference was likely due to the previously noted effect where depletion due to fishing accelerates ongoing declines in predator groups with depensatory dynamics.


Scenario-specific results for ecosystem health show that the broad distinction between Catch Allocation Options was apparent within each scenario (Fig. 6). This distinction was also apparent in results for the other risk metrics (Appendix C).  Nonetheless, there were differences between scenarios, including the higher risk to some penguin subpopulations in no-movement scenarios, which was apparent with the Current option. This is due to a combination of the localised krill depletion that occurs when the modelled fishery is concentrated in SSMUs that are not replenished by imports, and depensatory penguin dynamics. This also explains why seals were more vulnerable under no-movement scenarios, especially when they had a linear response to krill availability. 

Risk was not always a monotonic function of allowable catch. The humped pattern in the no-movement linear scenario, which also appears in the scenario-averaged results, represents a subpopulation of short-lived mesopelagic fishes that recovers slowly when their competitors are relatively abundant and more quickly when these competitors are depleted. 


Results characterizing risks to the provision of ecosystems services were broadly consistent with results characterizing other risks. The Catch option presented the greatest risk that krill availability and competition would cause the fishery to catch less than the allowable catch; the Stock option presented an intermediate, albeit low, level of risk; and the Demand option was the least risky (Fig. 7).  The Current management option apparently presents a very low risk of impacting ecosystem services, mainly because allowable catches must be below the interim catch limit.


The majority of the input parameters were fixed across the four scenarios. These

parameters together with the model structure represent a best estimate of the processes determining the ecological response to fishing. The conditioned scenarios serve the twin purpose of representing uncertainty about this best estimate, and aligning the state of the modelled system with that of the real ecosystem. The multiple stochastic trials represent uncertainty about the future state of the system due to unpredictable natural variability. The unique dynamics of each simulation arise from the combined influence of the management measure, the model structure, the fixed and estimated parameters, the forcing of krill recruitment over the conditioning period, and the simulated variability. The distinctions between Catch Allocation Options are apparent in the scenario-averaged results despite these other influences, and are relatively consistent between scenarios. This suggests that there are significant, real differences in risk between the Catch Allocation Options.


The differences between results for different risk metrics imply that decisions makers selecting a management measure must make trade-offs between risks to the various objectives. The Demand option is apparently the best Catch Allocation Option for achieving each objective so the main trade-offs implied by these results affect the choice of allowable catch.

Discussion
Decision makers charged with implementing Ecosystem Based Management need to satisfy a broad range of objectives and to consider the influence of multiple interactions on the potential consequences of their decisions. Scientists must articulate these potential consequences, and their inherent uncertainties, for each of the relevant objectives, in ways that can be readily understood by decision makers and other stakeholders. These challenges are exemplified in the need to assess management options before the expanding Scotia Sea krill fishery (Nicol et al. 2011) reaches the interim catch limit. This assessment must be developed with limited resources and despite considerable uncertainties about the state of the ecosystem and its response to fishing. It is not currently practicable to fully resolve or explore all of the uncertainties that could affect this assessment.  One pragmatic solution, which we have demonstrated here, formulates models that bracket key uncertainties; presents results that summarize uncertainty in the more familiar form of risk; and focuses on trade-offs rather than absolute predictions. 

We addressed uncertainty by simulating extreme scenarios intended to define plausible limits on the key uncertainties, and by including stochastic krill recruitment and observation error.  The key uncertainties identified by a community of experts and stakeholders are believed to be some of the main drivers of trends in the abundance of krill and its predators. The combination of multiple parameterisations and conditioning on plausible past dynamics produced a reference set of alternative scenarios that includes emergent characteristics such as depensation in most predator subpopulations. These diverse alternative scenarios are also hypotheses that are characterised by the dynamics they produce. Formal testing of these hypotheses might help to reduce uncertainty. Indeed there is evidence of ongoing declines in various penguin populations throughout the Scotia Sea (Trivelpiece et al. 2011, Lynch et al. 2012, Trathan et al. 2012) which provides some support for the depensation hypothesis. 

Communicating technical results to decision makers and other stakeholders is challenging because ecosystems are complex and uncertainties abound.  Nonetheless, most stakeholders are familiar with the concept of risk. The approach that we developed in consultation with a community of stakeholders, decision makers and experts is a suitable strategy for conveying uncertainty. This approach represents objectives in terms of reference points that specify targets (e.g. to catch the full allowable catch) or the boundaries on undesirable conditions (e.g. to avoid depletion below 75% of the comparable no-fishing abundance). It then provides decision makers with scenario-averaged risks of failing to meet these objectives. Scenario-specific results should also be available for review.  A further advantage of communicating the probabilities of Boolean outcomes is that estimated risk should be relatively insensitive to occasional predictions of extreme outcomes (see, e.g., Halley and Inchausti 2003).  Link (2010) observes that risk assessment is particularly useful in data poor situations and for comparing diverse analytical outputs across ecological entities. Our work demonstrates that risk assessment remains a useful way of communicating these comparisons when the analytical approach is consistent across entities and produces an abundance of model-generated data.
Our reference points for predators were defined in terms of comparable no-fishing trials. The risk metrics therefore indicate the impacts of fishing independent of other influences (see also Sibert et al. 2006). This approach reduces sensitivity to the initial conditions, since the same conditions produce the no-fishing cases. It is particularly helpful where an ecosystem is strongly influenced by drivers beyond the control of fisheries managers. This applies to most marine ecosystems, where the drivers include climate and perturbation caused by past harvesting. The limitations of this approach are that it does not indicate total risk, which could include the effects of multiplicative, rather than simply additive, combinations of fisheries and environmental effects (Breitburg and Riedel 2005, Halpern et al. 2008).  

Hill et al. (2007a) recommended using more than one basic model structure to evaluate management measures.  Plagányi and Butterworth’s (2012) parallel and complementary approach used an alternative model and a reference set of scenarios that included contrasting hypotheses about predator survival, but not prey movement.  Plagányi and Butterworth (2012) used fixed Catch Allocation Options whereas we estimated the catch allocation for each SSMU, with observation error, within the model itself.  The two models together explore more uncertainty than one model alone. However, our assumption that predators and the fishery are equal competitors and Plagányi and Butterworth’s (2012) assumption that predators are superior competitors to the fishery will both underestimate impacts on predators compared to the assumption that the fishery is competitively superior. Further investigation of the sensitivity to competitive hierarchies may be necessary. With this caveat, it is noteworthy that the two approaches indentify broadly convergent results.

Our simulations suggest that, in the case of the Scotia Sea krill fishery, there may be appreciable increases in risk, particularly to ecosystem health and resilience, as catches increase from the interim catch limit up to the regional catch limit. However, the interim limit apparently caps these risks at roughly half of the corresponding risks at the regional limit. The levels of risk at comparable catches were sensitive to the Catch Allocation Option as was the relationship between risk and catch.  The Catch option posed the greatest risks to each objective; the Stock option posed intermediate risks; and the Demand option was simultaneously “best” for both the fishery and the ecosystem.
The implied best strategy for minimising the risk of ecological impact as the fishery expands is to relocate a greater proportion of the catch into the open ocean and away from island shelves. The model predicts that the effect on the average krill density in the oceanic areas will have limited impact on both catch and predator abundance. However, fishable aggregations of krill occur less frequently in oceanic than in coastal areas (Hill et al. 2009), and a risk metric that includes an increased search cost in oceanic areas might not identify the Demand option as best for the fishery. In this case there would be a more significant trade-off between risk to the fishery and risk to the ecosystem. 
Policy makers should consider the validity of risk metrics before implementing management measures.  The metrics that we developed for predators and the fishery illustrate the sorts of performance measures that might be established after input from stakeholders to help define appropriate metrics, limit reference points, and weighting schemes to represent the relative “value” of different ecosystem components. Our focus on key predator populations corresponds with the extension of single-species performance measures favoured by Hall and Mainprize (2004) over ecosystem level indicators (e.g. Cury and Christensen 2005).  However, our reliance on illustrative examples indicates the need for faster progress towards identifying performance measures that truly represent management objectives for fishery performance and ecosystem components other than target species. Link et al. (2012) identify unclear management objectives as a distinct and important source of uncertainty affecting the use of ecosystem models. Based on our experience with developing the risk figures, it might be necessary to devise a range of contrasting risk metrics and demonstrate their influence on the results in order to elicit the opinions of stakeholders. Nonetheless, it is possible use results like ours for decision making without prior specification of operational objectives or decision rules. In fact, if decisions are made on the basis of such results, unstated operational objectives and decision rules might be inferred from them. 

Plagányi and Butterworth (2012) discuss some of the general caveats associated with our approach. These include issues associated with the aggregation of species within predator groups and with conditioning models on plausible past dynamics in the absence of direct observations. There are many valid alternative representations of the ecosystem, including, for example, sigmoidal functional responses (Waluda et al. 2012), different predator foraging distributions, and contrasting representations of past dynamics. We support the scrutiny and exploration of assumptions in ecosystem models, leading to the structured refinement of advice to decision makers. We note, however, that this process will never remove all caveats and, that there is an urgent need for initial advice. Our approach uses a model that was developed within a wider community that also provided rigorous evaluation. We have also exposed it to peer review with publications describing critical processes (Hill et al 2006b), input parameters (Hill et al. 2007b), and our approach to uncertainty (Hill et al 2007a). The approach, which combines rigor with a candid assessment of uncertainty, is appropriate for providing timely advice. 

Concluding Remarks


Models are imperfect representations of reality. It is therefore understandable that scientists can be reluctant to provide advice derived from ecosystem models, and decision makers can be reluctant to act such advice. However it is possible to make progress by delivering advice specifically in terms of uncertainty, i.e. the risk of failing to meet management objectives. Engagement with a community of stakeholders and experts can help to identify sources of uncertainty that are important to objectives. Explicit presentation of risks also reminds decision makers that they should not rely on models alone, and that monitoring and contingency plans are also important.
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Table 1. Statements about the past dynamics of modelled groups developed by an expert group (WG-SAM 2007), the published evidence that supports these statements, and the population growth rates used to translate these statements into the SSMU-specific estimates predator abundance (Hill et al. 2008) that we used to condition model scenarios.

	Statement
	SSMUs
	Annual growth rates.
	Evidence

	Krill biomass: rapid reduction in average and increase interannual variability around 1986
	1-12
	
	Documented large-scale decline in krill abundance from 1976, including high recent variability (Atkinson et al. 2004).



	Krill biomass: smooth transition to lower biomass and higher variability between about 1980 and 2000.
	13-15
	
	

	Penguin abundance: annual increase of 5–10% from 1970 to about 1977; overall decline of 60–70% from about 1977 to 2000; continued, possibly steeper, decline after 2000.
	1-12
	0.075; -0.045
	Complex patterns reported including declines in several species

(Forcada and Trathan 2009,

Trivelpiece et al. 2011, Lynch et al. 2012, and Trathan et al 2012)

	Penguin abundance: no significant trend from 1970 to about 1980; overall decline of 40–50% from about 1980 to the present.
	13-15
	0; -0.022
	

	Seal abundance: annual increase of 10–15% from 1970 to about 1995; no significant trend after about 1995.
	1-12
	0.145; 0
	

	Seal abundance: increase in of about 10–15% per year from 1970 to about 1988; followed by a possibly slower rate of increase.


	13-15
	0.117; 0.061
	Estimates of growth rate available from 1950s to 1991 (Boyd 1993)

	Whale abundance:  annual increase of 4–5% since about 1980.
	1-8
	0.056
	Reported increases in some species (Branch 2007)

	Whale abundance:  annual increase of 4–5% since about 1980.
	9-15
	0.57
	


Table 2.  Proportional allocations of the regional catch limit to individual SSMUs (see Figure 1) under each Catch Allocation Option.  Values for the Demand and Stock options are averages computed across scenarios.  Values for the Catch and Current options (the latter of which are shown only for scale factor = 0.11) were fixed for all scenarios. 
	SSMU
	Catch
	Demand
	Stock
	Current

	1
	0.00
	0.17
	0.09
	0.01

	2
	0.00
	0.04
	0.04
	0.00

	3
	0.17
	0.01
	0.02
	0.13

	4
	0.03
	0.02
	0.02
	0.04

	5
	0.03
	0.02
	0.03
	0.01

	6
	0.04
	0.02
	0.03
	0.01

	7
	0.02
	0.02
	0.03
	0.04

	8
	0.00
	0.07
	0.07
	0.00

	9
	0.01
	0.26
	0.17
	0.01

	10
	0.34
	0.01
	0.14
	0.32

	11
	0.01
	0.01
	0.04
	0.02

	12
	0.00
	0.03
	0.05
	0.02

	13
	0.00
	0.27
	0.22
	0.01

	14
	0.10
	0.05
	0.02
	0.08

	15
	0.25
	0.02
	0.01
	0.30

	Coastal SSMUs
	0.99
	0.31
	0.53
	0.97

	Oceanic SSMUs
	0.01
	0.69
	0.47
	0.03


FIGURE CAPTIONS

Fig. 1. Spatial structure of our model, which represents numbered SSMUs in detail and uses boundary areas to define boundary conditions. We did not model the part of SSMU 1 South of 66°S (thick dashed line). Circles indicate summer movement of krill between neighbouring areas in our movement scenarios: Black sectors indicate the areas receiving the dominant flow, grey sectors indicate areas receiving the minor flow, white sectors and absent circles indicate no inflow. 

Fig. 2. Example dynamics for krill, seals and penguins. Solid lines and grey envelopes are from simulations with a mangement measure consisting of the Catch option and the full regional catch limit, and dashed lines are from  simulations with no fishing (mean and 95% probability envelope, i.e. 2.5th and 97.5th percentiles). The grey bar indicates the fishing period and the white bar the recovery period. Year 0 on the horizontal axis is nominally equivalent to 2007. Panel headers state the relevant ecosystem component (e.g. krill) and subset of simulations or SSMUs. Panels a-c show scenario-averaged results aggregated across all SSMUs; d-f (SSMU = 3) show scenario-averaged results for SSMU 3, and g-i (ms) show single model results (from the movement stable scenario) aggregated across all SSMUs
Fig. 3. Risk to ecosystem productivity. Scenario-averaged, Catch Allocation Option specific probabilities that during the simulated fishing period krill abundance (summed across all SSMUs) fell below 20% of its level at the beginning of 2007. Vertical dashed lines indicate allowable catches corresponding to the interim and regional catch limits. The horizontal line at 10% probability represents the threshold in the relevant CCAMLR decision rule. Note the different horizontal scale on the “current management” panels. 

Fig. 4. Risk to ecosystem health. Scenario-averaged, Catch Allocation Option-specific probabilities that that, at the end of the fishing period, predator subpopulations were <75% of the abundance in comparable no-fishing trials. There are 34 lines per panel representing up to four predator subpopulations per SSMU. Other details as Fig. 3.

Fig. 5. Risk to ecosystem reilience. Scenario-averaged, Catch Allocation Option-specific probabilities that, at the end of the recovery period, predator subpopulations were <75% of the  abundance predicted in equivalent no-fishing trials. Other details as Figs. 3, 4.


Fig. 6. Risk to ecosystem health. Scenario- and Catch Allocation Option-specific probabilities that that, at the end of the fishing period, predator subpopulations were <75% of the abundance in comparable no-fishing trials. The first header row for each panel states the relevant scenario, where ns is no-movement stable; nl is no-movement linear; ms is movement stable; and ml is no-movement linear. Other details as Fig. 3.
Fig. 7. Risk to ecosystem services. Scenario-averaged, Catch Allocation Option-specific proportion of allowable catch that was not caught (median and 95% probability envelope).
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Fig. 4.
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Fig. 7.
� Corresponding author email: sih@bas.ac.uk





� Current address: CCAMLR Secretariat,   PO Box 213, Hobart 7000, Tasmania, Australia.


� � HYPERLINK "http://swfsc.noaa.gov/textblock.aspx?id=551&ParentMenuId=42" �http://swfsc.noaa.gov/textblock.aspx?id=551&ParentMenuId=42� This study used the version ‘Foosa 1.0’
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