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Introduction

We have investigated and tested the applicability and limitations of a recently developed multi-sensor capacitive
resistivity imaging (CRI) device for monitoring permafrost affected bedrock. CRI is a low-frequency EM
measurement operating in a quasi-static mode, which emulates conventional electrical resistivity tomography
(ERT) measurements without the need for galvanic coupling of the electrodes (Kuras et al. 2006). Temperature-
calibrated ERT was shown to be capable of assessing the thermal state of permafrost and thus providing
quantitative volumetric temperature information of permafrost (Krautblatter and Hauck 2007, Krautblatter et al.
2010). However, the high resistivities of frozen ground limit the applicability of galvanic sensors due to the
resultant large range of contact resistances between sensors and the host material. A capacitively coupled system
is expected to overcome these limitations, providing more robust data and higher-quality resistivity
measurements within a temporal monitoring approach.

Numerical Simulations of Capacitive Resistivity Measurements

Finite-element forward modelling of CRI measurements was employed to validate the measurement concept of
the prototype CRI system, and also to obtain an improved understanding of the physical processes taking place
during the measurements. For this reason, we simulated CRI measurements for two situations: a homogeneous
halfspace and a finite rock sample as used in laboratory experiments.

Within the homogeneous halfspace models we made a parameter study to investigate the effects of the
geometric configuration of a capacitively coupled quadrupole. Accordingly, we changed sensor separation,
sensor size, sensor elevation and halfspace resistivity. Figure 1 shows the key observations we obtained in this
parameter study. For decreasing sensor separation and increasing sensor size, the discrepancy increases between
the numerical simulation and an analytic model solution employing point poles. This reference solution justifies
the use of conventional ERT methods to interpret the measured data (Kuras et al. 2006); hence, a large
discrepancy implies limitations for the experimental array design. Therefore, dipole combinations with a
separation smaller than twice the sensor size have to be avoided to stay below an anticipated measurement error
of 5%. Sensor elevation and halfspace resistivity showed only minor effects on the transfer impedance.

We simulated the experimental array design to compare it with data measured on a rock sample in laboratory
studies. 128 capacitive sensors were employed and 2408 dipole combinations simulated. By solving the model
for different sample resistivities, it was shown that the simulated complex transfer impedances correlated with
the sample resistivity, indicating the possibility to image changes in sample resistivity with the chosen
configuration. Figure 2 shows the key observation for the simulation of CRI measurements on a finite rock
sample. The complex signal was found to lie predominantly in the 4™ quadrant of the complex plane, i.e. in the
experiments we had to expect positive real and negative imaginary parts. In accordance with theoretical
estimations, the phase angle was very small (about 1°). An investigation of the potential distribution and current
flow in the sample showed the broad and smooth coverage as would be expected for a galvanic DC
measurement. Comparison with experimentally measured data showed reasonable agreement.

Laboratory Experiments on Tuffeau Chalk Sample

In order to examine the performance of the CRI method under different resistivity regimes, measurements were
conducted during the course of a freeze-thaw cycle. A sample of Tuffeau chalk (0.3 m x 0.3 m x 0.45 m) was
equipped with 128 capacitive and 32 galvanic resistivity sensors to measure apparent resistivities, 4 high-
accuracy temperature sensors, and 2 TDR probes to assess the moisture content of the sample. The equipped
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sample was placed in a thermally insulated, temperature regulated incubator to control its thermal state. The
experimental configuration can be seen in Figure 3.

The sample temperature was gradually reduced from ~ 20°C to -5°C. CRI and ERT data were measured
throughout this temperature range at certain steps, trying to ensure fairly constant temperature conditions of the
sample within the measurement time (about 2 hours). Figure 4 shows the obtained average resistivity-
temperature relationship during the freezing period. The behaviour of the resistivities with decreasing
temperatures was as expected. Above the freezing point a linear increase with decreasing temperature was
observed, whereas as soon as the temperatures decreased below the freezing point, resistivities increased very
strongly following a quadratic shape. In this regime the resistivities followed the inverse of the volumetric
water content, i.e. the ice content. Using the acquired data, a calibration curve was obtained to translate
resistivities into temperatures. This curve was divided into two parts, a linear function above the freezing point
and a quadratic function below. The offset between the CRI and ERT results in Figure 4 was found to be
resistivity dependent and was thought to be an effect of certain experimental problems in the laboratory studies

Imaging Permafrost Processes with CRI

Permafrost processes are usually multi-scale and time variant, hence a technique trying to image these processes
must be capable of resolving small changes in rock properties over multiple spatial scales and long time scales.
To test the capabilities of the prototype CRI system, the measured data were not only interpreted in terms of
their average values, but also resistivity inversion was applied to obtain 3D resistivity models of the sample at
different temperatures. Figure 5 shows inverted data sets acquired at different sample temperatures. It shows that
the CRI system is capable of imaging temperature-introduced changes in resistivity, while preserving sample
specific properties. Changes in resistivity of about 400 Qm could be imaged, resulting from temperature
changes from 20°C to -5°C.

The calibration curve obtained previously was applied to these resistivity models and volumetric temperature
models of the sample were obtained. Examples are shown in Figure 6. Above the freezing point temperature is
not the dominating factor determining the resistivity; hence, the resistivity-based temperature estimate is not
accurate. However, below the freezing point temperature dominates the resistivity response and the resistivity-
based temperature models show very good agreement with the point estimates of the temperature probes.
Therefore, assessing the thermal state of permafrost using measured resistivities is deemed reasonable.

Conclusions

We showed that multi-sensor CRI is suitable for investigating rock resistivities during the course of freezing
experiments. The newly developed system was proven to be capable of resolving changes in resistivity due to
changes in temperature. Assessing the thermal state of permafrost by measured resistivities showed good
agreement with measured point data. Numerical simulations validated the measurement principle and revealed
limitations on the experimental array design.
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Figure 1 Differences between simulated and analytically derived complex transfer impedances for different
sensor separations (left) and sensor sizes (right). Large errors imply violation of the point-pole approximation
of the analytic solution and hence show effects of the finite size of the capacitive sensors.

Figure 2 Simulated complex transfer impedance for
2408 different dipole combinations. The majority of
data points lie in 4" quadrant of the complex plane
(i.e. positive real and negative imaginary part). Note
the different scales of the axes.
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Figure 3 Experimental setup of different sensors and
probes employed in the laboratory studies. CRI
sensors are made of copper foil arranged in a regular
grid over the sample faces. ERT electrodes are
distributed in 2 lines with 8 electrodes each on two
opposite faces of the sample. Moreover, the sample
was equipped with 2 TDR and 4 temperature probes
to monitor the moisture content and thermal state.
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Figure 4 Resistivity-
temperature relationship.
Resistivity data are mean
values of corresponding data
sets. CRI and ERT show a
very similar behaviour. The
offset between them s
expected to result from certain
experimental problems.
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Figure 5 Inverted resistivity models from CRI data sets acquired at different temperatures. Lower
temperature is clearly related to higher resistivity. The two results show the dependency of the sample
resistivity on temperature, but also show that sample specific structures are preserved.

Figure 6 Resistivity-based volumetric temperature models, derived from applying calibration curve on the
resistivity models shown in Figure 5. The different temperatures can be distinguished and are in good
accordance with the point measurements (indicated above the models).



