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Abstract 18 

National-scale plant species richness data for Great Britain in 1998 were related to modelled 19 

contemporary N deposition (Ndep) using a broken stick median regression, to estimate thresholds 20 

above which Ndep definitely has had an effect.  The thresholds (kgN ha-1 a-1) are 7.9 for acid grassland 21 

14.9 for bogs, 23.6 for calcareous grassland, 7.8 for deciduous woodland and 8.8 for heath.  The 22 

woodland and heath thresholds are not significantly greater than the lowest Ndep, which implies that 23 

species loss may occur over the whole range of contemporary Ndep.  This also applies to acid 24 

grassland if it is assumed that Ndep has substituted for previous N fixation.  The thresholds for bog and 25 

calcareous grassland are both significantly above the lowest Ndep.  The thresholds are lower than the 26 

mid-range empirical Critical Loads for acid grassland, deciduous woodland and heath, higher for bogs, 27 

and approximately equal for calcareous grassland. 28 

 29 

Keywords: Countryside Survey, diversity, nitrogen deposition, plants, species richness 30 

 31 

Capsule:  Analysis of extensive field data provides estimates of nitrogen deposition rates above which 32 

plant species richness is reduced.  33 

34 

35 

36 
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INTRODUCTION 37 

The acidification and eutrophication of terrestrial ecosystems by atmospherically deposited nitrogen 38 

(Ndep), and resulting biodiversity loss, are of wide concern because of habitat degradation and the 39 

possibility that ecosystem impacts are hard to reverse (Bobbink et al., 2010; Strengbom et al. 2001). 40 

In Europe, international conventions designed to reduce or reverse unwanted effects of N, notably the 41 

Gothenburg Protocol, make use of Critical Loads, i.e. values of Ndep above which the effects of 42 

atmospherically-deposited N are deemed unacceptable (Bobbink et al., 2010, 2011).  Critical Loads of 43 

nitrogen are set for different habitats; examples are 3-5 kgN ha-1 a-1 for tundra,  5-10 kgN ha-1 a-1 for 44 

raised and blanket bogs, and 10-20 kgN ha-1 a-1 for dry heaths (Bobbink et al., 2011).  Their values are 45 

derived mainly from the results of experimental studies, usually small-scale field manipulations, in 46 

which known added N inputs have been related to observable short-term changes in plant species and 47 

growth, and biogeochemical effects.  Expert judgement is also applied.   48 

The indirect link to long-term biodiversity loss per se is seen as a drawback of this approach (van 49 

Hinsberg et al, 2008).  However, although evidence from field surveys has been used as contextual 50 

information to set Critical Loads, its application has proved problematic because low signal-to-noise 51 

ratios weaken the ability of the data to identify quantitative thresholds (Bobbink et al., 2010).  The 52 

importance of other factors in conditioning ecosystem responses to nitrogen deposition has also been 53 

emphasised. For example, historical acidification, starting soil pH, land-use intensity and climatic 54 

gradients also exert partial unique effects on enrichment indicators such as species richness (Maskell 55 

et al., 2010).  The contributions of factors other than N deposition on differences in plant species 56 

diversity make it difficult to determine effects from conventional (multiple) regression analysis.  Some 57 

of these factors might be known and quantifiable by survey data but others may not.  For example, 58 

abiotic factors such as low levels of trace elements, or ecological filters such as species pool effects, 59 

are hard to quantify as explanatory variables.   60 

Nonetheless, there is mounting field evidence from British and European ecosystems to show that 61 

plant diversity decreases with Ndep (Stevens et al. 2004; Duprè et al. 2010; Maskell et al. 2010; van 62 

den Berg et al. 2011), with Ndep assumed to be a proxy for ecosystem N enrichment.  Weak but highly 63 

significant correlations have been found in cases where plant sampling has been randomised (Maskell 64 

et al., 2010), and stronger signals where surveys were optimised by well-replicated sampling along the 65 

deposition gradient and controlling for other sources of variation (Stevens et al., 2004).   66 

Here we report a new analysis of plant species richness data from nearly 2000 sites in the UK, in 67 

which we test for possible thresholds of Ndep above which plant species richness can be said to 68 

decline.  We used data obtained during the Countryside Survey of Great Britain, carried out in 1998 69 

(Smart et al., 2003), by the randomised sampling of a large number of spatially representative sites. 70 

These data are especially useful for our purposes since they are geographically comprehensive, 71 

derived from stratified, random sampling, and recorded at fine resolution. The data are therefore 72 

unbiased and also minimise the confounding between alpha and beta diversity (i.e. ‘within habitat’ 73 

versus ‘among habitat’ diversity) associated with species richness from large grid cells (Huston, 1999).  74 
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We analysed the plant species richness data for five broad habitats (acid grassland, bog, calcareous 75 

grassland, deciduous woodland and heath), in terms of N deposition estimated from national-scale 76 

measurement and spatial interpolation (Smith et al., 2000; NEGTAP, 2001).  Rather than analyse the 77 

data by conventional regression, as done in previous work (Stevens et al., 2004, 2010; Maskell et al., 78 

2010), we applied a “broken stick” model, the break in which corresponds to the threshold in Ndep.  The 79 

results were assessed for statistical significance in order to estimate the deposition rate above which 80 

reductions in species diversity can confidently be said to occur, and to estimate species loss per 81 

additional unit of Ndep above the threshold.  Comparisons of the thresholds with empirical Critical 82 

Loads were made. 83 

84 
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METHODS 85 

The Countryside Survey (CS) samples a large number of  1 km x 1 km squares randomly located 86 

within defined environmental strata across Great Britain to provide statistically representative 87 

coverage of the wider countryside and its habitat composition. Each square contains smaller subplots 88 

where detailed information on vegetation composition (both vascular plants and bryophytes) is 89 

recorded.  Surveys have been carried out in 1978, 1984, 1990, 1998 and 2007. In this analysis, we 90 

used CS data collected in 1998 that had previously been assembled and analysed by Maskell et al. 91 

(2010).   Further information is available from the Countryside Survey website 92 

(http://www.countrysidesurvey.org.uk/).  93 

Vegetation plots were classified to the phyto-sociological units of the British National Vegetation 94 

Classification (NVC) (Rodwell, 1992).  We used a new assignment of CS plots to the NVC based on 95 

the pseudo-quadrat approach (Critchley et al., 2002 and Supplementary Material). Plots were selected 96 

that were classified with a Jaccard similarity coefficient of >0.5 into one of five NVC habitat types; acid 97 

grassland (U1–9), calcareous grassland (CG2, 3, 4, 6, 8, 10, 11), heathland (H1–19 except H5, 6 and 98 

17), bogs (M1-M4, M6, M15-M21, M25, H9, H12 (bog on deep peat)), and deciduous woodlands 99 

(included W4-W25 with no plots from W20 or W21).  Plots were also assigned to the UK Biodiversity 100 

Action Plan Broad Habitat classification (Jackson, 2000) by referencing the habitat assignment of the 101 

mapped unit of land area within which each plot was located.  102 

The data employed in this study are summarised in Table 1.  Figure 1 shows the coverage of each of 103 

the habitats across Great Britain using data from Land Cover Map 2000 and also the distribution of the 104 

Countryside survey 1km sample squares. This highlights the comprehensive spatial coverage 105 

provided by Countryside Survey.  The number of CS plots available for each of the five habitats were 106 

873 (acid grassland), 92 (calcareous grassland), 457 (heathland), 203 (bog) and 361 (deciduous 107 

woodland). The numbers of sites are roughly proportional to the areal distribution of each habitat. 108 

For N deposition we used estimates at the 5 x 5 km scale provided by CEH Edinburgh (Smith et al., 109 

2000; NEGTAP, 2001;), calculated as the mean of the estimates for 1996-1998 from the CBED model 110 

for deposition to  the appropriate habitat type.  The ranges of N deposition covered by each of the 111 

habitats are given in Table 1 (see also Figure 2).  The distribution of Ndep is approximately normally 112 

distributed for all habitats except bog, where there is a clear peak at low Ndep.  The analysis is helped 113 

by the wide ranges of Ndep across GB.  114 

We used non-parametric quantile regression to estimate the relationship, including a threshold, 115 

between Ndep and species richness.  Using this method, one would estimate the parameters of a 116 

standard multivariate linear model by minimising the following function: 117 

 118 

 119 
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where ρτ(z) = z(τ - I(z<0)) with I(·) representing the indicator function and τ the quantile estimate.  The 120 

main analysis was performed with τ set to 0.5, i.e. a median regression.  The median is less sensitive 121 

to extreme values than the mean and provides a robust estimate of the underlying relationship.  We 122 

also carried out comparative analyses with τ set to 0.25 and 0.75. 123 

As we are seeking to estimate a threshold from the field data, rather than fitting a standard linear 124 

slope, we fit a model that includes a breakpoint, which defines the point at which a constant 125 

relationship changes into a declining linear trend. We therefore seek to minimise the quantile error 126 

(defined in above) between the observed data and a function expressed by three variables that control 127 

the constant value up to the breakpoint (nmax), the breakpoint location (Ndep,T) and the slope of decline 128 

after the breakpoint, known as species loss rate (rsl).  As this function is a three parameter equation, it 129 

is minimised using a numerical based technique, in this case we used the Nelder-Mead algorithm 130 

(Nelder and Mead, 1965).  131 

Because we estimate the regression coefficients non-parametrically by minimising the quantile error, 132 

with no distributional assumptions placed on the data or the parameters, we are unable to directly 133 

obtain estimates of upper and lower limits for the estimated threshold values.  Therefore, in order to 134 

estimate a confidence interval on the estimated threshold load, we use a bootstrap based procedure 135 

(Efron and Tibshirani, 1993).  This involves randomly sampling n observations from the data with 136 

replacement, where n is the total sample number. The quantile regression function as described 137 

above is then fitted to this new pseudo data set to obtain estimates for each of the three parameters. 138 

Estimated parameters are stored and then the whole process is repeated 999 times, producing 139 

(including the original data) 1000 sets of breakpoints. Confidence intervals for the breakpoint 140 

parameter are then obtained simply by taking the 2.5th and 97.5th percentile from these estimates.  141 

142 
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RESULTS AND DISCUSSION 143 

Median regression analysis was carried out on each of the five habitats separately, firstly including all 144 

species and secondly only vascular species.  There were only minor differences in the derived 145 

thresholds with or without the bryophytes, and we report only the results for the combined data (Table 146 

1). Figure 2 shows the fitted relationships using the mean parameters.  Confidence intervals around 147 

the threshold value are also plotted with the upper and lower 95% interval values.  For acid grassland, 148 

bog and calcareous grassland, the lower 95% limit of the threshold is greater than the lowest Ndep, 149 

indicating that a significant threshold value is identified.  But this does not apply to deciduous 150 

woodland and heath, for which the lower 95% confidence limits are less than the lowest Ndep; therefore 151 

for these two habitats it appears that species richness is reduced at all current values of Ndep.   152 

The other information that comes from the fitting is the decrease in species number per additional 153 

Ndep, rsl.  This varies among the habitats, ranging in absolute terms from 0.19 species per kg N ha-1 yr-1 154 

in deciduous woodland to 0.85 species per kg N ha-1 yr-1 in calcareous grassland.  When expressed as 155 

a relative percentage to the maximum species number (nmax), the range is from 1.3 – 3.0 % per kg N 156 

ha-1 yr-1 again from deciduous woodland to bog.   157 

The high scatter in the data (Figure 2) reflects the numerous factors that influence species richness 158 

(Grace 1999; Dodd et al 1994). As well as variables that may be affected by Ndep, principally soil 159 

fertility and acidity, other factors include seed bank availability, species-area and species pool effects, 160 

grazing and other disturbances, climate, land-use legacies and the acidifying effect of (non-marine) 161 

sulphur deposition (which is likely to have different effects than Ndep because the two are not strongly 162 

correlated; r2 = 0.33).   163 

The use of median (0.5 quantile) regression implies that combinations of these other factors both 164 

increase and decrease diversity, on average equally.  But bias in one or other direction may exist, 165 

which would mean that other quantiles might be more suitable for data fitting (cf. Cade and Noon, 166 

2003).  Fitting the data to the 0.75 quantile produced thresholds and confidence ranges similar to the 167 

median regression values (Table 2).  The same is true for the 0.25 quantile for acid and calcareous 168 

grasslands and heath, but for bog and deciduous woodland the thresholds are higher.  Of course the 169 

absolute slopes of the diversity-Ndep relationship differ, but the relative slopes do not. 170 

Although Ndep is an obvious choice for the independent variable, being the driving variable of interest 171 

and subject to emission control, it presents some problems with respect to interpretation.  Firstly, the 172 

effects on diversity are mediated through biogeochemical processing of additional N inputs due to 173 

deposition.  In the case of acidification, this is by the generation of excess nitrate, when the soil cannot 174 

immobilise nitrogen (Emmett, 2007), so that soil pH is decreased which reduces diversity (Grime, 175 

2001).  Eutrophication depends upon the rate of cycling of N, and control of net primary productivity, 176 

potentially producing both increases in diversity at low levels of input and decreases at high levels 177 

(Grime, 2001).  While both of these effects will depend upon Ndep they will be separate. 178 
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Secondly, although Ndep may be a guide to N enrichment, the relationship must be time dependent, 179 

due to the accumulation of N in the ecosystem.   Therefore, a plot like those in Figure 2 for earlier 180 

years would be expected to show a higher threshold and perhaps a lower slope, while a future plot 181 

might have a lower threshold and steeper slope.  The use of cumulative Ndep as employed by Dupre et 182 

al. (2009) resolves this to some extent, although not completely if the evolution of the soil N status is 183 

nonlinear with respect to Ndep. The thresholds of Figure 2 are therefore time-dependent, determined 184 

more by historical N build-up than contemporary Ndep.  A more precise statement of their meaning is 185 

that, for Ndep values below the current threshold, there is no evidence for diversity loss due to N 186 

enrichment brought about by cumulative Ndep.   187 

A third confounding issue is the relationship between Ndep and inputs from N fixation, which will have 188 

been the main supply prior to the recent decades and centuries of elevated Ndep.  According to DeLuca 189 

et al. (2008) N fixation is down-regulated by N deposition, so that at Ndep below or equal to the 190 

“pristine” N fixation rate, the total N input is approximately unchanged.  A representative “pristine” N 191 

fixation rate of 3 kg ha-1 a-1 has been estimated for NW Europe (Tipping et al., 2012).  Therefore  192 

“excess Ndep” thresholds might be derived by subtracting this value from the thresholds of Table 1, i.e. 193 

only this excess Ndep will have enriched the soils.  This suggests that for acid grassland, deciduous 194 

woodland and heath, effects are seen at all Ndep values above the N fixation rate, whereas for bog and 195 

calcareous grassland there is evidence only at higher thresholds. 196 

Empirical Critical Loads are derived from short term treatments, usually focused on measurable single 197 

processes or effects (Bobbink et al., 2010, 2011).  Such experiments in themselves will not have 198 

added as much N to the systems as long-term accumulation over decades or centuries, although the 199 

systems under study will often have experienced loads higher than our thresholds, i.e. the applied 200 

loads will operate to increase the rate of enrichment.  By the same arguments as above, empirical 201 

loads must be time-dependent, but with a different time constant; thus Hornung et al (1995) suggested 202 

that empirical Critical Loads might be applicable on a time scale of only 20-30 years.  Therefore one 203 

perhaps should not expect agreement in absolute values, although Table 1 and Figure 3 show that the 204 

thresholds and empirical Critical Loads are of similar magnitude.  However, it might be expected that 205 

the order of habitats should be the same in the two systems, and this is the case for deciduous 206 

woodland, heath and calcareous grassland, with acid grassland quite close.  The one habitat that does 207 

not fit well into the pattern is bog, for which the threshold deposition is considerably higher than the 208 

empirical Critical Load, and is significantly greater than the lowest Ndep.  Differences between the 209 

thresholds and Critical Loads must arise because the latter are set on the basis of changes in species 210 

composition, physiology and bigeochemical variables, as well as in diversity, the exact combination 211 

varying amongst habitats.  It may therefore be significant that the two habitats for which the threshold 212 

and Critical Load agree best (acid and calcareous grasslands) are the only two of the five habitats for 213 

which changes in plant species richness were used to set the Critical Load, whereas for bogs 214 

changesin plant species composition was the principal criterion (Bobbink et al., 2011). 215 

Interpretation of the large-scale spatial results presented here would likely be enhanced by the use of 216 

dynamic biogeochemical modelling (see De Vries et al., 2010) to translate the primary driving variable 217 
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Ndep to more direct predictors of species diversity, for example the N cycling flux through the soil, net 218 

primary production and soil pH.  By taking into account differences in climatic and soil properties, as 219 

well as habitat type and deposition, this could distinguish the acidifying and eutrophying effects of N, 220 

and, through space-for-time substitution, provide insights into the temporal evolution of effects on 221 

biodiversity.  Such modelling could further draw together the different kinds of information about 222 

ecosystem N enrichment to provide a more comprehensive and robust assessment of the relationship 223 

between N deposition and species richness decline. 224 

225 
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CONCLUSIONS 226 

 Threshold Ndep values above which plant species diversity is reduced have been derived from field 227 

observations for five terrestrial British habitats. 228 

 In two cases, deciduous woodland and heath, the thresholds (7.8 and 8.8 kgN ha-1 a-1 respectively) 229 

are not significantly greater than the lowest Ndep, which implies that species loss has occured over 230 

the whole range of contemporary Ndep.  This also applies to acid grassland (threshold 7.8 kgN ha-1 a-231 
1) if it is assumed that Ndep has substituted for previous N fixation.  For bog and calcareous232 

grassland, the thresholds of 14 kgN ha-1 a-1 and 24 kgN ha-1 a-1 respectively are both significantly 233 

above the lowest Ndep. 234 

 Median species numbers at Ndep below the thresholds are; acid grassland 18, bog 18, calcareous 235 

grassland 28, deciduous woodland 14, and heath 13.   236 

 The average relative loss of species with increasing Ndep is 2% per (kgN ha-1 a-1).  The values range 237 

from 1.3% for deciduous woodland to 3.0% for calcareous grassland.  Absolute losses range from 238 

0.19 species per (kgN ha-1 a-1) for deciduous woodland to 0.85 species per (kgN ha-1 a-1) for 239 

calcareous grassland. 240 

 The derived thresholds are broadly similar in magnitude to empirical Critical Loads, assigned from 241 

collated manipulation studies.  The thresholds are lower than the mid-range Critical Loads for acid 242 

grassland, deciduous woodland and heath, higher for bogs, and approximately equal for calcareous 243 

grassland. 244 

245 
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Table 1.  Summary of data and fitting results.  Key: nmax maximum species number;  Ndep,T threshold N 347 

deposition; rsl no. of species lost per unit Ndep; %rsl % species lost per unit Ndep.  The 95% confidence 348 

limits of Ndep,T are given. 349 

unit acid 
grassland 

bog calcareous 
grassland 

deciduous 
woodland 

heath 

EUNIS code - E1.7 D1 E1.26 G1 F4.2, F4.11 

no. of sites - 883 203 92 361 457 

range of Ndep kg ha-1 a-1 4.9-40 5.3-40 4.9-36.5 6.9-56.7 4.9-40 

range of critical load* kg ha-1 a-1 10-15 5-10 15-25 10-20 10-20 

nmax - 18.0 18.0 28.0 14.0 13.0

Ndep,T kg ha-1 a-1 7.8
6.3-8.1 

14.3 
13.2-15.9 

23.6 
15.5-29.3 

7.8 
6.8-15.0 

8.8 
4.7-10.1 

rsl (kg ha-1 a-1)-1 0.28 0.31 0.85 0.19 0.30 

%rsl (kg ha-1 a-1)-1 1.6 1.7 3.0 1.3 2.3 

* values employed for national mapping of Critical Loads in the UK (Hall et al., 2011) 350 

351 

352 
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Table 2.  Threshold values and 95% confidence limits for different quantiles. 353 

quantile acid 
grassland 

bog calcareous 
grassland 

deciduous 
woodland 

heath 

0.25 
7.8 

6.7-8.8 
20.0 

5.7-22.8 
23.7 

11.1-25.8 
19.3 

14.9-20.2 
7.8 

4.7-24.8 

0.50 
7.8 

6.3-8.1 
14.3 

13.2-15.9 
23.6 

15.5-29.3 
7.8 

6.8-15.0 
8.8 

4.7-10.1 

0.75 
8.0 

4.7-9.1 
14.1 

11.1-16.9 
25.8 

18.9-26.6 
8.0 

6.7-29.9 
7.8 

6.0-10.4 

354 
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Figure captions 355 

Figure 1.  Map of sites 356 

Figure 2.  Variation of species richness with Ndep and broken-stick model fits.  The vertical dashed 357 

lines are the 95% limits. 358 

Figure 3. Plots of contemporary (1998) thresholds against empirical Critical Loads.  Key: AG acid 359 

grassland, B bog, CG calcareous grassland, DW deciduous woodland, H heath.  The points 360 

for AG and DW lie very close and so appear as a single point.  The ranges for the threshold 361 

values are 95% confidence limits.  The Critical Load ranges are from Table 1, and the 362 

centre-range values are plotted as points. 363 

364 
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