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The prediction of risks posed by pharmaceuticals and personal care products in the aquatic environment 15 

now and in the future is one of the top 20 research questions regarding these contaminants following 16 

growing concern for their biological effects on fish and other animals.  To this end it is important that 17 

areas experiencing the greatest risk are identified, particularly in countries experiencing water stress, 18 

where dilution of pollutants entering river networks is more limited.  This study is the first to use 19 
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 2

hydrological models to estimate concentrations of pharmaceutical and natural steroid estrogens in a 20 

water stressed catchment in South Australia alongside a UK catchment and to forecast their 21 

concentrations in 2050 based on demographic and climate change predictions.  The results show that 22 

despite their differing climates and demographics, modeled concentrations of steroid estrogens in 23 

effluents from Australian sewage treatment works and a receiving river were predicted (simulated) to be 24 

similar to those observed in the UK and Europe, exceeding the combined estradiol equivalent’s 25 

predicted no effect concentration for feminization in wild fish.  Furthermore, by 2050 a moderate 26 

increase in estrogenic contamination and the potential risk to wildlife was predicted with up to a two-27 

fold rise in concentrations. 28 

KEYWORDS: 29 

Modeling; Steroid Estrogens; Climate Change; Population Growth; Endocrine Disruption; Wastewater 30 

Dilution 31 

 32 

INTRODUCTION 33 

In the last two decades the steroid estrogens, estrone (E1), 17β-estradiol (E2) and the pharmaceutical 34 

17α-ethinylestradiol (EE2) have been identified as aquatic pollutants globally
1-4

.  Originating from 35 

human excretion
5
 as natural steroids and from pharmaceutical use, they are continuously discharged into 36 

rivers via sewage treatment works’ (STW) effluents, which can constitute up to 100% of river flow 37 

during dry periods
6-8

.  As a result, contamination of river networks with steroid estrogens is widespread 38 

and there are extensive data to suggest they are the primary endocrine disruptors responsible for 39 

feminization of male fish
9-11

, particularly downstream of STW effluent discharges.  Indeed, 40 

environmental concentrations of steroid estrogens can cause feminization effects in fish species 41 

maintained under laboratory conditions
10,12-14

, including the abnormal development of both ovarian and 42 

testicular tissue in the gonads.  This intersex condition has been well characterized in the UK where it is 43 
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 3

widespread in the normally dioecious roach (Rutilus rutilus)
15

 inhabiting freshwater rivers
6,7,11,16,17

.  44 

Since reproductive performance of wild male fish has been negatively correlated with intersex severity, 45 

there has been cause for concern for wild fish populations
18

.  In fact, during a whole lake experiment 46 

with regular dosing of EE2 at concentrations consistent with untreated effluent (mean 4.8-6.1 ng/L), an 47 

entire fish population collapsed
19

.  This has led to the recent addition of E2 and EE2 to the list of 48 

“priority substances” by the European Commission in December 2012 as the first pharmaceuticals to be 49 

considered for regulation under the European Water Framework Directive
20

.   50 

 51 

In order to map the distribution of steroid estrogen contamination, pioneering hydrological modeling 52 

methods have been used to predict concentrations of these chemicals in effluents and river networks, 53 

detecting “hot spots” of potentially at risk areas
4,21-23

.  The results correlate well with measured effluent 54 

concentrations as well as the intersex incidence and severity in wild roach that inhabit the modeled river 55 

stretches
11

.  Hydrological modeling with Low Flows 2000-WQX has been subsequently used in a risk 56 

assessment of the entire UK river network, predicting that around 39% of the river stretches were at risk 57 

of inducing intersex in wild fish due to steroid estrogen contamination
4
.  These modeling techniques 58 

have since been applied to investigate a range of mitigation options at STWs
24

 as well as the mixture 59 

effects of estrogens and xenoestrogens in a UK river catchment
25

.  They have also been exported 60 

internationally for use in national risk assessments in the USA
26

 and Japan
27

, as well as for effluent 61 

modeling in Chile
28

. 62 

 63 

Although the identification of at risk areas in the present day and the future is one of the top 20 64 

research questions for pharmaceuticals and personal care products
29

, in many countries these types of 65 

risk assessments for steroid estrogens have not been completed since the hydrological models to enable 66 

this process have not been developed.  In water stressed areas of the world, such models could be highly 67 

informative as lower water availability in these areas potentially reduces the dilution of these 68 

contaminants in the aquatic environment relative to other areas, increasing their concentrations and their 69 
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 4

risks to aquatic organisms.  Moreover, the anticipated global population growth during this century 70 

alone
30

, coupled with climate induced changes in precipitation
31

, provides an additional need to assess 71 

the consequences of changing water availability on future estrogen concentrations and their potential 72 

impacts such that any mitigation options proposed are of an appropriate scale to be effective in the 73 

longer term.  To this end, this study uses predictive modeling techniques to predict effluent and river 74 

concentrations of steroid estrogens in moderately water stressed catchments in the UK and South 75 

Australia.  In addition, the models were modified to reflect population growth and climate-change 76 

scenarios, producing the first future projections of steroid estrogen contamination and its potential 77 

impacts in UK and South Australian rivers by 2050 in an approach which can be used as a tool for risk 78 

management strategies involving large investments in improvements in waste water treatment. 79 

 80 

MATERIALS AND METHODS 81 

 Sites 82 

Four UK STWs (UK1-4) located in the Severn-Trent catchment, typical of the UK’s urbanized 83 

environment, were compared with 12 STWs in South Australia (Table S1), representing a variety of 84 

rural and urban scenarios.  Both catchments are considered to be moderately water stressed, since the 85 

demand and allocation of water is a high proportion of the total availability
32-35

.  The river hydrology of 86 

the two catchments contrast with cooler, permanently flowing waters in the UK and warmer more 87 

ephemeral hydrology dominated by winter flow in South Australia.   88 

 89 

Modeling Natural Estrogens: Estrone (E1) and 17β-Estradiol (E2) 90 

The model was based on an approach provided by Johnson and Williams, which has been applied to 91 

predict environmental concentrations of steroid estrogens in effluents in Europe
23

, as well as in  92 

hydrological models used for national risk assessments of endocrine disruption in rivers in the UK, 93 

Japan and the USA
4,26,27

.  Our modified model provides a per capita load for E1 and E2 in µg/day 94 
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 5

arriving at a STW, based on the proportions of different estrogen-excreting cohorts within a population.  95 

This was calculated as follows: 96 

   97 

 98 

Where S is the per capita load arriving at a STW (µg/d), n is the number of cohorts and U is the total 99 

estrogen excreted in urine (in free, glucuronide and sulfate forms) and feces for each cohort percentage 100 

(fi) of the population.  For E2, a factor of 0.5 is incorporated assuming that 50% will be degraded to E1 101 

in transit through the sewerage system to a STW.  The mean estrogen excretion of each cohort 102 

percentage is shown in Table 1 and is based on a literature review for the original model that focused on 103 

Caucasian omnivorous women
23

.  Upper and lower excretion values were also used to provide a range 104 

in the load arriving at a STW.  A worked example can be found in the Supplementary Information. 105 

 106 

Cohort 

  

Criteria 

  

Mean (range) excretion 

(µg/d) 

% of population 

E2 E1 UK Australia 

Menstrual females Age 15-50  

(minus pregnant women) 

3.2 

(1.7-4.6) 

11.7 

(7.5-15.4) 

23.5% 

 

24.2% 

Menopausal females Age >51  

(minus menopausal women on 

HRT) 

1 

(0-3.5) 

1.8 

(0-5.7) 

16.1% 
 

13.7% 

Menopausal females on 

HRT 

7.6% UK and 11.8% Australian 

menopausal females (>51)  

56.1 

(51.5-61.5) 

28.4 

(24-33) 

1.3% 
 

1.8% 

Pregnant Females 1/22 UK and 1/19 Australian 

menstrual females 

393 

(340-445) 

550 

(432-668) 

1.1% 1.3% 

Males Age 15-50 1.8 

(1.3-2.4) 

2.6 

(1.4-2.9) 

39.0% 39.2% 

Table 1. The population breakdown with the estrogen excreting cohorts by criteria and the composition 107 

of each census population: UK 2001 and Australia 2006. 108 
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 6

 109 

Cohort Criteria: The percentages of the populations made up by each cohort were based on age and 110 

determined from national census data, which was assumed to be relevant to local demographics.  This 111 

utilized the national report for England and Wales (age by sex and resident type) from the 2001 census 112 

by the Office for National Statistics (ONS) and the Australian 2006 census (age by sex based on place 113 

of usual residence) from the Australian Bureau of Statistics (ABS).  Pre-pubescent males and females 114 

were not incorporated since sex steroid production is low until puberty and their inclusion would have 115 

little effect on the final prediction
23

.  As a result, the male cohort included those from age 15 onwards 116 

and menstrual females were assumed to be between 15 and 50 with menopausal females taken from the 117 

age of 51 onwards.  The number of females on hormone replacement therapy (HRT) using E2 based 118 

pharmaceuticals was updated for our model where 11.8% of women over 50 were estimated to use HRT 119 

in Australia
36

 compared to 7.6% of women in the UK.  This was calculated by combining population 120 

data from the 2001 census with data on HRT use in the UK in 2004
37

.  These percentages were applied 121 

to the menopausal female cohort do determine the number of women on HRT, although it should be 122 

taken into account that HRT use has fluctuated in the last decade in both countries
36,37

.  The number of 123 

pregnant females was estimated using the census data assuming that the number of live births (people 124 

aged 0) was representative of the number of pregnant females.  Using this model, per capita loads of 3.4 125 

(2.7-4.1) and 3.9 (3.2-4.7) µg/d were produced for E2 in the UK and Australia respectively, as well as 126 

14 (10-18) and 16 (12-20) µg/d for E1. 127 

 128 

Modeling Pharmaceuticals: 17α-Ethinylestradiol (EE2) 129 

The per capita load of EE2 was calculated based on the number of prescriptions in the UK and 130 

Australia, which were determined from the National Health Service’s Prescriptions Cost Analysis 131 

(2009) for England
38

 and Wales
39

 and the Australian Statistics on Medicines (2008)
40

, using a method 132 

from Runnalls et al
41

.  About 17.4kg of EE2 were prescribed in England and Wales in 2009 in 133 

comparison to 5.55kg in Australia in 2008.  With populations of 54,809,100 (mid 2009 estimate for 134 
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 7

England and Wales, ONS) and 22,000,000 (ABS estimation) for Australia and an excretion rate of 40% 135 

of the dose
23

, the per capita loads were estimated at 0.35 and 0.28 µg/d for the UK and Australia, 136 

respectively.  The higher per capita load in the UK due to the higher prescription level of EE2 137 

contrasted with that of E1 and E2, where the differences in population demographics resulted in a higher 138 

per capita load in Australia.  139 

 140 

Predicting Concentrations of Steroid Estrogens in STW Effluent  141 

The linear emission model was used to predict effluent concentrations (µg/L) reflecting a 24-hour 142 

composite sample of effluent.  The total load arriving at a STW (the per capita load (pc) (µg/d) of each 143 

estrogen multiplied by the population (pop) serviced) was divided by the total flow (Q) (L/day) through 144 

the STW (domestic plus non-domestic flow).  Removal rates (R) of 69% and 83% were incorporated for 145 

E1 and E2 respectively, based on a review of removal during the activated sludge process (ASP)
42

.  146 

However, it should be recognized that in reality removal rates vary, even in a single STW, based on the 147 

treatment process and environmental conditions
43

.  Flow and population data for the STWs were 148 

provided by Severn Trent Water, UK and SA Water Corporation, Australia (Table S1).   149 

��������� �	

�	 ∙ 



����
∙ �1 � �� 

Average, upper and lower effluent concentrations for E1 and E2 were produced by varying the per 150 

capita loads with the upper and lower excretion values (Table 1), whilst for EE2 different removal rates 151 

during the activated sludge process (83%, 71.2% and 94.8%) were assumed.   152 

 153 

The Relevance to Real World Effluents 154 

To determine the relevance of modeled data to real world steroid estrogen concentrations in effluent, 155 

modeled concentrations were compared with measured data from UK2, where data from 19 24-hour 156 

composite samples of its activated sludge treated effluent were available from a previous study
44

.  These 157 

were collected between July and December 2009 and analyzed by liquid chromatography-tandem mass 158 
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 8

spectroscopy (LC-MS/MS) as described previously
45

.  These data were compared with daily average 159 

modeled concentrations based on flow data from UK2 provided by Severn Trent Water from the day of 160 

sampling (Table S2).  Up to 96 flow measurements were taken daily so concentrations were produced 161 

for each flow rate based on the average per capita loads.   162 

 163 

Predicting River Concentrations  164 

UK, Low Flows 2000-WQX: The Low Flows 2000 (LF2000) WQX (Water Quality eXtension) 165 

model (Wallingford Hydrosolutions) was used to predict concentrations of steroid estrogens in the River 166 

Erewash as described in William’s et al
4
.  LF2000-WQX provided a map of interconnected river 167 

reaches, with artificial influences (e.g. abstractions and discharges) incorporated, where the magnitude 168 

and variability of flows at ungauged sites were estimated from runoff and generalized against gauged 169 

catchments.  Steroid estrogens were assumed to enter the system continuously via the eight STWs on 170 

the Erewash including UK2 and 4.  The per capita load arriving at these STWs was based on the effluent 171 

model with serviced populations updated with new estimates from Severn Trent Water.  The dry 172 

weather flows (DWF) through the STWs in the LF-2000 WQX model were updated in line with the 173 

population to maintain the per capita flow, whilst removal at each STW was based on the ASP review 174 

used in the effluent model
42

.  The average concentrations of steroid estrogens on a given stretch were 175 

then determined based on an exponential decay model incorporating in-stream temperature dependent 176 

degradation (Table S3)
46

 and dilution based on the spatial variability in flow.  Loss through absorption 177 

to sediment was not included since it is not a cause of significant removal
47

.  Degradation of E2 to E1 178 

was also incorporated based on 1 mol E2 degrading to 1 mol of E1.  179 

 180 

South Australia, Source Catchments:   181 

A point source hydrological model of the Onkaparinga River in South Australia was implemented and 182 

run in Source Catchments version 2.0.4 (eWater CRC)
48,49

 to predict steroid estrogen concentrations on 183 

a 16 km stretch downstream of the STW SA2.  The river itself is vital to the water supply of the city of 184 
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 9

Adelaide, supplying the Mount Bold and Happy Valley Reservoirs.  The model provided a node-link 185 

system representing a series of interconnected river stretches with artificial influences incorporated, 186 

where flow through the stretches (links) was calculated based on the SIMHYD rainfall-runoff model 187 

with laurenson flow routing
49

.  Steroid estrogen input was simulated with an inflow function at the node 188 

representing SA2 based on a time series of daily concentrations modeled using the daily flow rates from 189 

the STW in 2008 to simulate a continuous influx.  Another inflow function was incorporated at a node 190 

downstream representing the inter-basin transfer of raw River Murray water from the Murray Bridge-191 

Onkaparinga pipeline by adding flow only as no STWs discharge within 500 km from this additional 192 

water source.  The steroid estrogens were transported through the interconnected stretches from their 193 

source with their concentrations calculated on each stretch based on the available  dilution from 194 

simulated flows and a simple exponential decay model using half-lives based on their typical 195 

degradation rates in UK rivers at 20
o
C water temperature

46
 (Table S3).  However, this was not 196 

temperature dependent and it should be recognized that their degradation could differ in Australian 197 

rivers due to different environmental conditions.  However, no data are available to support this 198 

possibility.  Again, no loss to sediment was assumed and in contrast to LF2000-WQX, the conversion of 199 

E2 to E1 was not included, which could result in a small underestimation in concentrations of E1.  In 200 

addition, the model does not incorporate the farm dam directly downstream of the STW which abstracts 201 

some water for irrigation, potentially affecting the concentrations of estrogens entering the main river 202 

stretch, below this point particularly during the summer months.  However this could not be quantified.  203 

 204 

Risk Assessment of the Equivalent Estrogenic Activity 205 

Since estrogens exist in the environment in combination and act additively to induce similar 206 

biological effects, it is appropriate that a combined “toxic equivalent” is incorporated into any risk 207 

assessment
50

.  This is presented as the estradiol equivalent (EEQ) in ng/L, calculated based on their 208 

comparative estrogenic activity as ([EE2]/0.1 + [E2]/1 + [E1]/3) with a PNEC of 1 ng/L
50

.  To 209 

determine the risk to wild fish populations, the hydrological models of the rivers were used to map 210 
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 10

potential “hot spots” for estrogen concentrations:   categorizing stretches as “no risk”, “at risk” or “high 211 

risk”, based on the EEQ (<1, 1-10 and >10 ng/L EEQ respectively)
4
.  This method of predicting the 212 

presence of “risk” stretches from the effluent model and LF2000-WQX has recently been compared 213 

with LC-MS/MS analysis on the Erewash, where modeled and measured concentrations both produced 214 

the same risk categories for the river stretches based on the EEQ
51

. 215 

 216 

Predicting Estrogen Concentrations in 2050:  The Effects of Population and Climate Change 217 

To determine how levels of steroid estrogens in effluents and rivers could change in the future, 218 

concentrations were modeled based on data relevant to 2050.  These were then compared back to the 219 

predictions detailed above, produced from sources dating from 2001-2011, which are henceforth 220 

referred to as predictions for the present day.  Data on population change was gathered from the 221 

“National Population Projections, 2010-based Projections” publication released in 2011 by the ONS, 222 

UK
52

 and “Population Projections Australia, 2006-2101” released in 2008 by the ABS
53

.  Since 223 

projections were available for 2051 for both countries, these were assumed to be representative of 2050 224 

and relevant to the local catchment areas.  Three main projections were used for each country based on 225 

demographic assumptions of future fertility, mortality and migration to produce different scenarios for 226 

population change.  These included a principal projection (B) which assumed that current trends in these 227 

demographic assumptions would prevail in the future and high (A) and low (C) population projections 228 

to provide a range. 229 

 230 

  Since the data were available on an age by sex basis, new per capita loads for E1 and E2 were 231 

produced based on new estrogen excreting cohorts relevant to 2050 to incorporate the change in 232 

population composition (Table S4).  Additionally, the per capita load of EE2 was changed in line with 233 

the proportion of menstrual females: the users of the contraceptive pill.  The effluent concentrations at 234 

the STWs under each population projection relevant to 2050 were then calculated using the new per 235 

capita loads and assuming that the populations serviced changed in line with the population change from 236 
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 11

2011-2051 (Tables S5 and 6).  No changes were made to the DWF at the STWs, which remained at 237 

present day levels to provide a worst case scenario which assumed that no additional water was 238 

available for dilution. 239 

 240 

The river models used the data above at the STW inflows and were modified to incorporate predicted 241 

climate-induced changes to flow.  In the UK, the flow on the Erewash in LF2000-WQX was modified 242 

with flow data from the UK Climate Projections (UKCP09) simulation afgcx, which is one of 11 243 

physically plausible simulations relevant to a medium emissions scenario in the UK
54

.  As a result the 244 

flows were on average 5.2% lower than the 2009 model on each stretch.  Estrogen concentrations along 245 

the river were again calculated with inflow from the STWs based on the updated population data 246 

relevant to each projection.  Again, no changes were made to the DWF.  Due to the lack of available 247 

data for South Australia, the Source Catchments model was modified by reducing flow on each stretch 248 

by 17.5% from its 2008 level to provide a medium range climate model.  This was based on a 15-25% 249 

reduction in annual stream flow for the Murray River projected for 2050 using two medium sensitivity 250 

climate scenarios, A1 and B1, from the Special Report on Emissions Scenarios
55

.  251 

 252 

RESULTS AND DISCUSSION 253 

Predicted Concentrations of Estrogens in STW Effluents 254 

 255 

 256 

 257 
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 12

 258 

Figure 1.  The predicted EEQs of effluents from UK and South Australia STWs.  Boxes represent the 259 

predictions based on the average per capita loads (squares) with error bars extending to predictions 260 

based on the upper and lower per capita loads for E1 and E2 and excretion rates for EE2. 261 

 262 

With lower populations served on average, the predicted total estrogen load arriving at South 263 

Australian STWs in the present day was lower than the UK.  However, the lower flow through South 264 

Australian STWs produced a similar dilution factor (the per capita flow) to those in the UK (Table S1).  265 

As a result, the predicted concentrations of E1, E2, EE2 (Figures S1) and the EEQ were similar in both 266 

the UK and South Australian effluents (Figure 1), corresponding with the measured data range from the 267 

two countries and a review of effluents globally
56

.  The deviations in concentrations between STWs 268 

resulted from their differing per capita flows, demonstrating the importance of dilution in predicting 269 

estrogen concentrations at a given STW.   270 

 271 

The Relevance to Real World Effluents 272 

In previous studies predictive modeling has been shown to produce environmentally relevant 273 

estimations for STWs
43

.  On a national scale the range of concentrations predicted by this study for both 274 

the UK and South Australia were within the range of measured concentrations from 43 UK STWs
57

 and 275 

over 70 STWs in Australia
3,56,58-64

 (Table S7).  The exception to this was SA1, which exceeded the 54 276 

ng/L reported maximum observed concentration of E1 in Australia
63

.  Although the range provided by 277 
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the assessment of 70 effluents is relatively extensive, it only represents a small proportion of Australian 278 

STWs and it is plausible that higher concentrations could occasionally occur in some of the older STWs. 279 

 280 

 281 

Figure 2. The daily average modeled (squares) and measured (dots) estrogen concentrations with the 282 

EEQ (ng/L) in effluent from UK2 over 19 sampling points from July to December 2009.  A data gap 283 

exists between 27.8.09 and 21.9.09 due to the lack of available flow data to produce modeled 284 

concentrations.   285 

 286 

In a review of comparisons between modeled and measured data, predicted concentrations of 287 

pollutants in effluent were routinely predicted within a factor of 5 of the measured values
43

.  At UK2, 288 

when modeled concentrations were compared with measured concentrations from effluent samples 289 
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collected between July and December 2009, clear temporal variation was observed in both datasets 290 

(Figure 2).  The differences between measured and modeled concentrations at each sampling point also 291 

varied where predictions for E1 and E2 both tended to overestimate the measured by a factor of 0.9-54 292 

(median 3.1) and 0.8-33 (median 4.7) respectively.  However, modeled concentrations of EE2 tended to 293 

underestimate the measured by a factor of 0.2-1.5 (median 0.4).  These deviations in opposing directions 294 

produced a smaller deviation in the modeled EEQ, which generally overestimated the measured by a 295 

factor of 0.5-3.0 (median 1.0).  However, it is important to note that every STW is unique and that the 296 

deviations in the datasets observed at UK2 may be very different in another STW.   297 

 298 

Based on the linear emission model these deviations cannot be explained by varying flow alone.  299 

Indeed, a lower actual per capita load and/or a higher removal rate could explain the overestimation of 300 

E1 and E2 and vice versa for EE2.  At UK2, removal rates are reported to be higher than those assumed 301 

in the model for E1 and E2 (95 and 98% respectively) and lower for EE2 (32%)
66

.  When these 302 

measured removal values were input into the model, the deviation factor lowered to 0.2-9.4 (median 303 

0.53) for E1, 0.1-3.8 (median 0.55) for E2, 0.7-6.1 (median 1.53) for EE2 and 0.5-3.0 (median 1.1) for 304 

the EEQ.  This switched the original overestimation of E1, E2 and the EEQ and the underestimation of 305 

EE2, which suggests that the real removal rates are likely to be somewhere between the modeled and 306 

measured.  The deviations between the modeled and the measured data continued to vary across 307 

sampling points and are likely to be caused by variation in removal rates, which can cause 10 fold 308 

differences in day to day effluent concentrations
65

.  Nonetheless, with these removal rates incorporated, 309 

all modeled data was within the measured range, demonstrating that a simple calibration of model 310 

parameters with data specific to an STW can improve the model performance.  In particular, this could 311 

impact risk assessment, since different removal rates will change the proportions of each estrogen in 312 

effluent and potentially impact the EEQ.  This also implies that river models will be more accurate with 313 

up to date removal data, although due to the impact of dilution, modeled estrogen concentrations from a 314 
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previous study that overestimated concentrations by up to 10 fold still predicted concentrations within 315 

the same risk category as measured data
51

.  316 

 317 

Predicted River Concentrations in the Present Day and Risk Assessment for Endocrine Disruption 318 

in Fish 319 

LF2000-WQX and Source Catchments were used in the UK and South Australia to identify potential 320 

hot spots of “at risk” areas for endocrine disruption in fish based on predicted concentrations of steroid 321 

estrogens in the present day.  On the River Erewash, UK, in agreement with data from the Johnson and 322 

Williams model
51

 almost the entire river was categorized as “at risk” of endocrine disruption in wild fish 323 

(Figure 3, Figure S2), with an average EEQ of 2 (0-7) ng/L along the entire river.  This resulted from 324 

the assumption of constant influx of steroid estrogens from the eight STWs along the river which 325 

maintained the EEQ above 1 ng/L.  On the Onkaparinga River in South Australia, concentrations were 326 

also predicted to exceed the 1 ng/L EEQ PNEC (Figure 3, Figure S2) downstream of SA2.  Around 9 327 

km of the river was categorized as “at risk,” with concentrations decreasing with the distance 328 

downstream due to degradation and dilution from tributaries, eventually dropping below the PNEC 329 

upstream of the Mount Bold reservoir.  An average EEQ of 3 (0.4-9) ng/L was predicted over these river 330 

stretches and individual steroid estrogen concentrations were comparable with those measured at five 331 

river sites in Queensland at effluent outfalls and 1 km downstream of STWs
60

.  They also compared 332 

with concentrations measured globally
67

.   333 

 334 
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 335 

Figure 3. The average predicted EEQs (ng/L) for the present day compared with the three future 336 

population projections, high (2050A), principal (2050B) and low (2050C), with river flows reduced for 337 

medium range climate change scenarios.  Risk levels are indicated. 338 

 339 

Scenarios for Concentrations of Steroid Estrogens in 2050 340 

Effluent concentrations: In both countries three population projections representative of 2050, 341 

including high (A), principal/medium (B) and low (C) projections, were used to determine how the 342 

change in human population size (Figure S3, Table S6) and composition (Table S4) affected modeled 343 

estrogen concentrations.  Interestingly the population composition had a small impact on the per capita 344 

load.  A small increase occurred under the high projection and a small decrease occurred under the 345 

principle and low projections (Figure S4, Table S5) as a result of changes in the proportions of high 346 

estrogen producing menstrual females and pregnant females relative to low estrogen producing 347 

menopausal females.  Population growth had a much greater impact, resulting in an increase in the total 348 

estrogen load arriving at the STW (Figure S5) and an increase in their subsequent concentrations in 349 

effluents to be discharged into the environment (Figure 4).  The exception to this was the UK projection 350 

C, where effluent concentrations reduced since the increase in population was not sufficient to 351 

compensate for the lower per capita load.  The worst case scenario was observed with the high 352 
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population projections, where effluent concentrations almost doubled by 2050 under the Australian 353 

projection A. 354 

  355 

Figure 4.  The predicted EEQs of effluents in the UK and South Australia under present day and future 356 

projections assuming no change in DWF at the STWs.  Boxes represent the mean (squares) with error 357 

bars extending to the minimum and maximum concentrations from the four UK STWs and 12 358 

Australian STWs. 359 

 360 

River Concentrations: The river models were modified for medium range climate scenarios with 361 

reduced flow and used in conjunction with population projections and future estrogen loads to determine 362 

how river concentrations may change by 2050 (Figure 3).  On the River Erewash, decreased dilution and 363 

increased estrogen input in effluent under projections A and B caused increases in the average EEQ on 364 

impacted stretches from 3.7 (2.3-7.4) ng/L to 5.9 (3.6-11.6) and 4.9 (3-9.7) ng/L respectively.  In 365 

addition, two stretches became “high risk” areas in projection A (Table S8).  However, in projection C 366 

the increase was smaller with an average EEQ on impacted stretches of 3.8 (2.3-7.5) ng/L due to the 367 

reduced input of steroid estrogens from the STWs.  An increase in average EEQ was also predicted 368 

between the SA2 discharge and the Mount Bold reservoir on the Onkaparinga River under all 369 

population projections, from 2.9 (0.4-8.9) ng/L to 6.6 (1.8-18), 5.5 (1.5-15) and 4.6 (1.2-12) ng/L EEQ 370 
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for projections A, B and C respectively. Importantly, the length of river downstream of the STW 371 

considered “at risk” increased under all three projections to include the entire 16 km modeled stretch 372 

upstream of the reservoir, whilst in projections A and B the stretch immediately downstream of SA2 373 

became “high risk”.  However, it is important to note that additional variables exist in the prediction of 374 

estrogen concentrations in the future.  For example, measures to conserve water may further reduce 375 

dilution of estrogens arriving at STWs, whilst increasing anthropogenic control of river flow and the use 376 

of recycled wastewater could result in additional changes to their dilution in rivers.  Furthermore, an 377 

increasing occurrence of extreme weather events could cause greater changes in flow which could have 378 

more dramatic implications for estrogen concentrations than our model suggests.  Indeed, variation in 379 

flow and dilution may be a much greater driver than population change alone, causing increases or 380 

decreases in concentrations that may differ from our model, depending on water availability.  Since a 381 

better understanding of the drivers that cause at risk areas has been called for
29

, these scenarios may 382 

provide interesting subjects for more detailed assessment in the future. 383 

 384 

Mitigation to combat rising estrogen concentrations may be achieved with increased removal 385 

efficiency at STWs with improved uptake of modern treatment technologies, many of which are already 386 

used for treating drinking water and recycled wastewater.  This has already been demonstrated in the 387 

UK
24,44,66

 and similar results have been found in Australia
68,69

.  Indeed, in Western Australia the 388 

induction of the estrogenic biomarker vitellogenin was found in male fish downstream of a secondary 389 

treated rural effluent but not downstream of tertiary treatment
68

.  However, a number of studies have 390 

also detected steroid estrogen concentrations which exceed the PNECs upstream of STWs, 391 

demonstrating the importance of considering multiple origins of environmental steroid estrogens
3,60,68

, 392 

such as agricultural runoff
70

 as well as sewage effluent.  In addition, other chemicals with the potential 393 

to cause feminizing effects in wildlife, such as the nonylphenol ethoxylates, which have been restricted 394 

under EU legislation, are still in use in Australia and have been detected in surface water
60

.  395 

 396 
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This study demonstrates the first use of predictive effluent and river modeling of steroid estrogens in 397 

South Australia as a tool for estimating concentrations and predicting the presence of “at risk” areas.  398 

The results suggest that effluents discharged in South Australia could cause concentrations of steroid 399 

estrogens in rivers to exceed the 1 ng/L EEQ PNEC, implying that there is a risk of endocrine disruptive 400 

effects occurring in wild fish.  Evidence of feminization of non-native fish has already been observed in 401 

effluent contaminated areas
68,71,72

, whilst native species have been shown to be susceptible to steroid 402 

estrogens under laboratory exposure
73,74

.  As a result, further investigation is warranted to determine 403 

how susceptible Australian species are to estrogens from all sources, particularly from effluents derived 404 

from different levels of sewage treatment, which will allow Australian PNECs to be derived that 405 

accurately reflect the risks and mitigation required to protect Australian biota.  In the absence mitigation 406 

strategies we could anticipate an increase in estrogen concentrations in rivers in both the UK and 407 

Australia by 2050 as a result of the growing populations coupled with reductions in river flow through 408 

changing climate.  Moreover the magnitude of this change may increase further with continued 409 

reduction in flow and population rise by 2100 and beyond.  This suggests that endocrine disruption in 410 

wild fish may be a long-term management issue for which effective investment in preemptive mitigation 411 

today may pay off in the future. 412 

 413 
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the predicted effluent concentrations of the steroid estrogens in UK and Australian effluents; Location 422 
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