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Abstract 

Concentration ratios (CRs) are used to derive activity concentrations in wild plants and 

animals. Usually, compilations of CR values encompass a wide range of element-organism 

combinations, extracted from different studies with statistical information reported at varying 

degrees of detail. To produce a more robust estimation of distribution parameters, data from 

different studies are normally pooled using classical statistical methods. However, there is 

inherent subjectivity involved in pooling CR data in the sense that there is a tacit assumption 

that the CRs under any arbitrarily defined biota category belong to the same population. Here, 

Bayesian inference has been introduced as an alternative way of making estimates of 

distribution parameters of CRs. This approach, in contrast to classical methods, is more 

flexible and also allows us to define the various assumptions required, when combining data, 

in a more explicit manner. Taking selected data from the recently compiled wildlife transfer 

database (http://www.wildlifetransferdatabase.org/) as a working example, attempts are made 

to refine the pooling approaches previously used and to consider situations when empirical 

data are limited.  
 

1. Introduction 
 
Quantification of risk to wildlife as a consequence of releases of radioactivity to the environment 

requires the determination of activity concentrations in various environmental media, e.g. soil and 

water, and selected plants and animals. A simple and widely used method to model radionuclide 

transfer from soil and water to biota is through the application of concentration ratios: CRwo-media’s 

(Beresford et al., 2008; Hosseini et al., 2008), defined as concentration of a radionuclide in the whole 

organism divided by the concentration of the same radionuclide in  the relevant environmental 
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media, i.e. soil or water. The whole body concentration ratio, CRwo-media , will be abbreviated in the 

following text as CR. As there are many data gaps associated with CRs, a variety of extrapolation 

approaches have been developed to provide missing values (e.g. Brown et al. this issue). In this 

respect, comprehensive compilations of CRs in databases such as those provided in the ERICA Tool 

(Beresford et al., 2008; Hosseini et al., 2008) and the more recent wildlife transfer database as 

described by Copplestone et al. (this issue) (which has been used to derive an IAEA handbook 

(Howard et al. (in-press)) and ICRP (2009) report) provide a valuable resource. 

 

In the course of analysing data for the development of such transfer databases, some consideration 

has been given to how data will be used in a more robust risk characterization where not only the 

severity, but also the probability of occurrence of the exposure needs to be considered (Brown et al., 

2008). The requirement relates not only to detailed, site specific risk characterisation but also to 

screening assessments where high percentile CRs, that can only be derived from parameters with 

characterised probability density functions (PDFs), are often utilised in the derivation of screening 

criteria, such as limiting media concentrations (e.g. see Brown et al., this issue). Furthermore, by 

providing statistical information, the uncertainty associated with the calculation of exposure can be 

propagated through the assessment using approaches such as Monte Carlo simulation (e.g. see Vose, 

1996). Hence, there are clear drivers to acquire statistical information, particularly in relation to the 

assignment of PDFs to CRs within the datasets underpinning the assessment. 

 

While initial work in generating CR values for environmental exposure assessments, as exemplified 

by the ERICA Tool (Brown et al., 2008),  EA R&D128 (Copplestone et al., 2001) and the USDoE’s 

Graded Approach (USDoE, 2002) provided transfer information at generic levels, more recent efforts 

have aimed at providing a greater level of detail. For example, the IAEAs wildlife transfer handbook 

(Howard et al., in-press) provides data tables which allow for more specific information to be 



accessed for some animal groups, e.g. CR values for fish by feeding group as described by Yankovich 

et al. (this issue). The ICRP (2009) have attempted to present CR data at the taxonomic family level. A 

common step for all these data collations efforts is pooling or combining data to produce more 

precise estimates for the parameters of interest. However, the combined data are usually extracted 

from different studies with variable sample sizes, different measures of central tendency and 

dispersion. Another common issue is the application of different extrapolation approaches to derive 

missing transfer parameter values. 

 

Sheppard (2005) advised against basing assessments solely on site-specific data and argued that 

given the inherent large variability of transfer parameters using a few on-site data to the exclusion of 

many generic data may decrease accuracy due to the potential error resulting from too few 

measurements. However, guidance was not provided on how to combine both site-specific and 

generic data such that all available information could be taken into consideration without imposing 

unnecessary bias into any subsequent calculations.  

 

The main objective of this paper is to provide an alternative approach on how to utilise the various 

related datasets/information that are often available in addition to sets of values that are specific to 

an organism grouping, site or element, using the wildlife transfer database of Copplestone et al. (this 

issue) for illustrative examples. In this way, we hope to progress beyond the tendency to select either 

generic or specific values that has characterised earlier discussions on radionuclide transfer and to 

provide refined methods to combine transfer data. This goal will be achieved by application of 

Bayesian statistics which allows both prior knowledge and site or study specific empirical data to be 

used in estimating PDF parameters Linacre et al. (2004). Given that the prior knowledge is valid, this 

approach provides more robust parameter estimates as compared to when only limited site or study 

specific empirical data are used.  



 

In the following sections, first different approaches that can be applied for deriving PDFs of CRs for a 

case of interest are discussed. Thereafter, the Bayes Theorem is introduced along with a brief 

description of situations where it can be applied in the context of derivation of PDFs for CRs. Finally, 

three Bayesian techniques for derivation of PDFs are illustrated with relevant examples. More details 

related to these techniques along with a guidance on how to apply them and interpret outputs are 

provided in an appendix. 

 

2. Derivation of a PDF of CR that is representative for a case of interest 
 
The approach that can be applied for the derivation of a PDF characterising a CR that is 

representative for a case of interest will depend on the availability of representative data. By case of 

interest we mean the CR for a given species, family, radionuclide or site. Four typical situations with 

regards to the availability of representative data can be envisaged: 

 

 Sufficient representative data are available. In this case ordinary fitting techniques, 

like maximum likelihood estimation (Keeping, 1995) can be directly applied to derive 

the distribution and obtain estimates of the distribution parameters.  

 

We are aware that it is difficult to define a priori the number of data required to obtain 

a reasonably good approximation of the location and scale parameters of a 

distribution. The number of data which are needed to derive a sound estimate of the 

central value of a distribution is much smaller than the number of data needed to 

obtain a reasonable estimate of the variability of that distribution. The number of 

required data points depends on the variability of the measured parameter. The higher 

the variability, the larger the number of data points required. Hence, there will always 



be an element of judgement involved in deciding what constitute a ‘sufficient number 

of data’ as this depends on our knowledge base and the purpose of the study. 

 

 Neither representative nor literature data are available. In this case suggested 

approaches exist for deriving the distributions, such as those based on extrapolation 

methods. Typical examples include using the CR distribution for an analogue such as 

a similar reference organism or biogeochemical element to the case of interest (Brown 

et al., this issue). 

 

 Limited representative data are available for the case of interest, but no supporting 

data which have some relationship with the case of interest can be found. In this case 

all required distribution parameters are derived solely from the available data, with 

large associated uncertainties. It is, however, rarely the case that no other relevant data 

and information can be found.  

 

 Limited data for the case of interest are available, but other relevant data can be found 

from the literature or as a result of using extrapolation approaches (e.g. data for the 

given radionuclide may be available for a similar organism). In previous studies this 

case has been handled by using an ordinary (classical) data pooling approach; as used 

in development of the ERICA (Beresford et al., 2008; Hosseini et al., 2008) and TRS 

CR databases (Howard et al., in press). This case can also be addressed by combining 

situation specific data with other relevant data using Bayesian statistics, which 

provides the focus for this paper. The choice of one or other Bayesian methods will 

depend on assumptions made which encompass our knowledge/ belief about the 

relevancy of the data under consideration. 



 

 

3. Estimation of distribution parameters using Bayesian inference 
 

Based on different concepts of probability, statistics may be divided into two main schools (Suter, 

2007): Frequentist and Bayesian. Probability from a Frequentist (or relative-frequency) point of view 

is understood as an expression of frequency. Whereas, Bayesian statistics: 1) defines probability as a 

conditional measure of uncertainty and 2) provides a method for modification of probability in the 

light of new evidence. In the Bayesian approach parameters are treated as random variables. This is 

not a description of their variability alone, but a description of the uncertainty about their true values 

(Bernardo, 2003). And quantifying this uncertainty by making use of probability is the essential 

characteristic of all Bayesian methods (Gelman et al., 2004).  

 

Suppose that inferences are to be drawn on the unknown parameter (or parameter vector)  in light 

of vector of independent and identically distributed empirical data values   and a prior 

probability distribution . Bayes’ theorem (Bayes, 1763) provides the means for combining 

information from the prior and the likelihood to produce the posterior density of the parameter 

conditioned on the data:  
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Here, the posterior distribution describes our state of knowledge about the parameter θ after 

considering the data. The likelihood function describes how probable the current data are given the 

parameter θ.  The prior represents the present state of our knowledge based on an initial 

consideration of the parameter θ. The denominator is the probability of the data, a normalising 



constant. Hence, the combined (posterior) probability distribution of the parameter given the 

empirical data is proportional to the prior probability distribution times the likelihood function of the 

empirical data values: 
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The power of Bayes’ Theorem lies in the fact that it relates the quantity of interest (the probability of 

each specific value of the distribution parameter given the measured data, i.e. p(θ |y)) to a term that 

we have a better chance of quantifying (the probability of the measured data given a specific value of 

the parameter; p(y |θ)). Note that in this way we are implicitly recognising that the value of the 

distribution parameter is an uncertain quantity, meaning that different possible values have different 

probabilities.  

 

 

The procedure for assigning a probability distribution to a model parameter, such as CR, can be 

divided into two main steps: i) selection of a probability model or distribution type and ii) estimation 

of the distribution parameters. We will assume that the CRs are log-normally distributed. This 

assumption is based on arguments of the log normality of concentrations of elements in the 

environment (Ott 1990, 1995), empirical observations of element concentrations in the environment 

that are used for calculation of CR values (Nordén et al., 2010) and the fact that the quotient of two 

log normal random variables is log normally distributed.  

 

Assuming  , representing a log-normally distributed dataset then we have  

 



   

 

where . That is, the original measurements transformed by the natural logarithm are 

normally distributed where  and  are true mean and variance of the transformed data values. 

Log-normal data are often described using geometric mean and variance and are calculated from the 

estimates of  and  as  and . 

 

Now what remains is to discuss how to estimate the distribution parameters, i.e. the geometric 

mean (GM) and geometric standard deviation (GSD). For this purpose, we here discuss three 

methods of Bayesian inference.  

 
3.1  A joint prior distribution for the mean and variance  

 

The first Bayesian inference method considered here for estimation of the distribution parameters is 

based on the assumption that the available historical (literature) data used for deriving the prior 

distribution, and the available empirical data for the case of interest are exchangeable and can be 

considered as being from the same population. The method is attractive in cases where the prior 

information takes the form of a fixed number of samples with the same population variance as the 

case of interest (Gelman et al, 2004). In this case, the historical data carries information on both the 

mean and variance of the distribution and can be used to define a joint conjugate prior distribution 

(Gelman et al., 2004). A prior distribution is said to be ‘conjugate’ to the measurement model if the 

resulting posterior distribution is of the same functional form as the prior. The set of prior 

distributions that are jointly conjugate to the normal measurement model are expressed using a 

normal distribution of the prior mean and a Inverse-Chi-Square distribution for the variance: 

 and , where the parameters with subscript 

zero are set to the mean, variance and size of the prior sample. The two prior distributions are 

dependent in that the prior uncertainty of the mean is conditioned the unknown variance , 



reflecting the fact that the prior and data both provide information about the same population 

variance.  

 

When combined with new data using Bayes’ theorem, the prior distributions are updated and the 

posteriors have the same form as the two priors, but with new parameters (see Appendix, Equations 

A4-A5). The posterior mean is then a weighted combination of the sample mean and the prior mean, 

with the weights being the samples sizes. The posterior variance is expressed as sum of the: i) 

variation within prior, ii) variation within the data and iii) the weighted squared difference between 

the two. The posterior variance is thus adjusted for the uncertainty provided by the difference of the 

prior and data means.   

 

Bayesian inferences from the joint posterior distribution are obtained by repeatedly drawing samples 

from the posterior distributions  The obtained samples can then be summarized with statistics of 

interest, such as the mean, median or percentiles which allows the assessor to express the posterior 

probabilities of a distribution parameter 

3.2. Independent prior distributions for the mean and variance  

 

The second Bayesian updating technique considered here can be applied in situations where, in 

addition to data for the case of interest, there is available relevant historical data, but this data does 

not take the form of a fixed number of observations with the same variance  (Gelman et al., 2004). 

This would be the case if the historical data does not carry information about the variance of the case 

of interest or if other information than historical data is available for the variance. In such a situation, 

the prior distributions of  and  are specified independently, using a prior distribution of the mean 

as  and the prior  for the variance. If no prior information is available for 



the variance, a so called non-informative prior for the variance can be used by setting . With 

these prior distributions the conditional posterior distributions  and  attain 

the same functional form as the prior, but the joint conjugate posterior does not. 

Therefore, these prior distributions are often referred to as semi-conjugate prior distributions. 

 

When combined with new data using Bayes’ theorem, the posterior distributions take the same form 

as the priors but with updated parameters (see Appendix, Equations A9-A10). The posterior 

distribution of the mean reflects the combined amount of information available both from the data 

and the prior (historical data). Means from studies with larger sample sizes n carry more information, 

and hence the corresponding posterior will be pulled much less towards the mean of the historical 

data. At the limit where n approaches “infinity” or when the prior variance is very large, the posterior 

mean is simply the sample mean of the data.  

 

The posterior distribution of the variance is expressed in terms of a weighted combination of the 

sample variance, an estimate of the prior variance and the squared distance between the data and 

posterior mean. The weights are the number of measurements  and the prior degrees of freedom 

 for the variance.  

 

3.3 Hierarchical model: Prior implicitly derived from data of several similar units 

 

 

Consider a number of related units (such as species or elements which share some common traits) or 

groups of measurements that are believed to be similar with regards to the parameter of interest. 

When making estimates of similar quantities, an approach called hierarchical updating can be used to 



obtain estimates for all quantities simultaneously, letting the units borrow strength from the 

ensemble (Morris, 1983). The method offers an alternative to using either separate estimates or a 

complete pooled estimate and the estimates from hierarchical models are therefore sometimes 

called partially pooled estimates (Gelman et al., 2004; Gelman and Hill, 2007). This is accomplished 

by assigning a common prior distribution  for the mean  of the J individual 

units. The two parameters of the prior distribution (often denoted hyper-parameters) are now 

considered unknown. When fitting the hierarchical model, posterior distributions are therefore 

obtained for individual units and for the two hyper-parameters (interpreted as the population mean 

and population variance respectively). Because the variance  is the variance of the units’ means, it 

is also often referred to as the between-units variance. Further prior information could be included 

for the two hyper-parameters, but we are here assigning them non-informative prior distributions to 

let them be estimated hierarchically with the included data. 

 

After fitting the hierarchical model the posterior estimates of the mean for individual cases are 

partially pooled towards the population mean, but only so much as allowed by the individual sample 

sizes and variation between cases’ mean values. That is, if the estimated similarity of the means is 

large (indicated by a small estimated ) the prior will have a strong impact and the amount of 

pooling of individual means will be large. If the estimated similarity of the means is small (the 

estimated  is large), the amount of pooling will be smaller.  

 

The within unit variance can be assumed as equal or different for all units. However, we consider 

the assumption of equal variance to be more reasonable in cases where species/elements of interest 

are believed to be similar. If this assumption holds, data for all units are used to estimate the 

variance, which is desirable when there are few data points for individual cases. Under a non-



informative prior, the full conditional posterior for the common variance is expressed as the pooled 

variance of all units with an additional component of uncertainty provided by the discrepancy of the 

updated mean and observed mean. 

 

The posterior distribution of the unit-level parameters and the two hyper-parameters are described 

in terms of the full conditional posterior distributions (see Appendix, Equations A13-A17). To draw 

samples from the joint posterior distribution a Gibbs sampling algorithm can be implemented to 

iteratively draw samples from the one-dimensional full conditional posterior distributions. The 

posterior distributions can then be summarized with median, means and percentiles of the obtained 

samples. Probable values of the mean of new case (e.g a species not yet observed but assumed to 

belong to the same population as those included in the hierarchical model) can be predicted by 

drawing values from the posterior distribution of means  where  are a set of 

samples from the joint posterior distribution of the hyper-parameters.  

 

 

 

4. Illustrative examples 

 

In the following examples CR data for 8 species of bat (Table 1) are used to illustrate the Bayesian 

methods described in Section 3. The underlying data for species with N>2 was assessed to be 

approximately log normally distributed by visual inspection of quantile-quantile plots. Based on these 

observations and also the theoretical consideration such as those addressed by Ott (1990, 1995) the 

log normal assumption was also used for the two species with N=2.  All statistical analyses for this 

example have been conducted using the BABAR software package which can be downloaded at no 

charge from the website: http://facilia.se/projects/babar.asp. BABAR is a software package for 

http://facilia.se/projects/babar.asp


constructing and updating probability density functions of parameters for use in risk assessment 

models. It makes use of Bayesian statistics to derive distributions of parameters. For all calculations, 

inferences were based on 10 000 samples from the posterior distributions in three independently 

simulated chains (using different and dispersed start values) and discarding the first 500 samples in 

each chain (resulting in a total of 28 500 samples). Convergence was checked by inspecting graphs of 

the obtained simulated samples. 

 

 

Let us assume that our aim is to derive a PDF for the CR of the Daubenton species of bat (Code X in 

Table 1). We have assumed that the CRs follow a lognormal distribution and the goal is then reduced 

to obtain estimates of the GM and GSD of the distribution. Since only 2 data points are available for 

this species, maximum likelihood estimates (e.g. sample mean and variance) will not work well. 

However, there are data available for other 7 bat species that can be considered more or less 

representative (analogues) for the species of interest (case of interest). One possibility would be to 

consider that one particular species is a closer analogue to species X than the others. For example, 

one assessor may have reasons to believe that E is a closer analogue to X than all other species in 

Table 1. They could then go further and assume that the CR data for E and X are exchangeable and 

belong to the same population. They will then use the CR data for E to specify a joint conjugate prior 

distribution and obtain a posterior distribution for the distribution parameters of CR representing the 

combined data of X and E  using the method described in Section 3.1. Other assessors may have 

different believes about which species is the best analogue for X and will therefore obtain different 

posterior distributions (See Table 2). The estimates of GM, GSD were derived from the medians of 

the posterior distributions of  ,as described in the appendix. In Figure 1 such posterior medians 

have been used to plot the distribution of ln(CR) for three different cases where Daubenton’s bat 

data (X) is combined with data of various analogue. 



  

The seven posterior distributions have GSD ranging from 2.3 to 11 with the extreme GSD obtained 

when X is combined with the other small data set for species G (Soprano Pipistrelle bat also with only 

two data points). An extreme upper GSD posterior percentile reflects the large uncertainty 

associated with this combination. None of the 95% probability intervals of the GMs contains the 

observed GM=0.01 except the one derived for species G. This reflects the fact that apart from the 

case of species G, the prior is allowed to dominate the data in all other cases. This is a consequence 

of assuming both data sets being equally representative for the case of interest. To facilitate a 

comparison of probable CR values under the posterior distributions, the arithmetic mean and 95% 

upper percentile are calculated using the formulas below. The large variation of the arithmetic 

means and 95% percentiles (by up to a factor of about 20) indicates that there is a large sensitivity to 

the choice of analogue (and hence the prior).  

 

 
 

 

   

 

 

 

Assume now that among all the considered species in Table 1 we cannot select any of the species as 

being a better analogue for the species of interest (X). However, we can still consider that the CR 

values for all species are exchangeable with each other. In this case, we can apply a hierarchical 

model as described in Section 3.3 to obtain posteriori distributions for the distribution parameter GM 

for each of the eight species (shown in Table 3) and the common GSD.  

 



The posterior distribution of  Daubenton species (with median 0.04) is partially pooled towards the 

population mean in a degree depending on the statistical similarity of the species (estimated with the 

population mean  and between unit variance , shown in table 4). The posterior distribution of  

Daubenton species takes into account information from both the Daubentons data and the data of 

related species without weighting them equally (in contrast to the conjugate approach where the 

prior is seen as equally representative). This is reflected in the 95% posterior probability interval of 

GM, which includes the observed Daubenton species GM of 0.01.  

 

Figure 2 shows the posterior distributions of  (medians and 95% probability intervals) together with 

data (Maximum Likelihood Estimates (MLE)  and 95% confidence intervals estimated 

). Making use of the hyper-parameters listed in Table 4, a new distribution has 

been constructed for an unobserved species belonging to the same population. The last row in Figure 

2 shows the predicted distribution of this new species, denoted as “predicted”, calculated by drawing 

samples from the posterior population distribution of unit means as described in 3.3.   

 

 

Finally, let us assume that the data in Table 1 for all species, except for X, has been pooled using the 

approach of combined mean and variances (see Appendix, Equations A2-A3) as used in development 

of the ERICA and Copplestone et al (this issue) CR databases. The pooled data does not carry 

information about the within species variance and therefore a joint conjugate prior cannot be 

specified to combine with the CR data for X using the method described in Section 3.1. Obviously, it is 

not possible to specify a hierarchical model either. We can, however, specify independent prior 

distributions for  µ and σ and apply the method described in Section 3.2. The pooled distribution is 



thus used as a prior for the mean with parameters GM=0.1, GSD=3.8. The prior for the variance is set 

as non-informative (by using ). The results are presented in Table 5. 

 

Because of the large variance of Daubenton species (compared to the pooled data of all other 

species) and the low sample size, the posterior mean is heavily affected by the prior (left graph in 

Figure 3). The GSD is estimated from sample variance of the species of interest and an additional 

variance component accounting for the difference between the updated mean and data. The large 

posterior GSD (median GSD=7.0 and an extreme upper percentile) is the result of the very large 

uncertainty associated with the two data points and because of the discrepancy between the 

observed data and the prior. We compare this with the pooled distribution of all 113 data points for 

all species with GM=0.10, GSD=4.0 (right graph in Figure 3) which is practically equal to the 

distribution of the pooled data when Daubenton data was excluded.  The result of the semi 

conjugate method represents the case of interest while accounting for prior probable values of the 

mean. The pooled distribution however, can be seen as representing the whole population.  

 

  

 

 

4. Discussion 
 

Bayesian approaches require elicitation of prior distributions for parameter values. In the context of 

the present work priors have been used to take into account the existing external information/data 

and also to describe our belief about the relevancy of these data for our case of interest. To 

individuals not familiar with Bayesian methods the inclusion of information based upon belief about 

the relevancy of data may seem overly subjective. However, this is exactly the process that is 

employed during pooling of datasets using classical statistical 



methods wherein, for instance, knowledge/belief about congruity of transfer factors between 

taxonomically similar organism groups is used to delineate the extent to which data are combined. 

For example, in the wildlife transfer database (Copplestone et al., this issue), there is a tacit 

assumption that there is some rationale in grouping (e.g.) mammals in terms of feeding strategy, this 

assumption being based upon prior knowledge/belief regarding the importance of the ingestion 

pathway in determining internal radionuclide body burdens and similarities in physiology dictating 

uptake. Hence, while the ‘classical’ approach implicitly uses judgment, the Bayesian approach 

explicitly acknowledges the role of judgments made.  

Furthermore, as priors represent external insight/information, that is not included in likelihood 

function, considering them is not only a necessary step in the process of learning and acquiring 

knowledge, but also a crucial element for coming to the right conclusion (Kruschke, 2010).  

 

In the context of the present work, three methods have been used to illustrate how Bayesian 

statistics is able to provide the assessor with extra flexibility to combine data and information in a 

desired way. In updating with a joint conjugate prior we want to update a PDF with new data and the 

resulting GM and GSD reflects the combined data sets. The method results in point estimates similar 

to the approach of combined mean and variances (see Appendix, Equations A2-A3), but it also 

produce estimates of the uncertainties of the posterior parameter estimates. With regards to the bat 

data, this approach was used to combine the data for species of interest with data from each of the 

other species, considering each as analogue. The seven resulting posteriors were sensitive to the 

choice of analogue and demonstrate well the effect of this method: The resulting posterior 

distribution reflects the total accumulated data for both species, considering both data sets as 

equally representative, i.e. exchangeable.  

 



 

 

However, when updating the mean and variance with independent (semi-conjugate) prior 

distributions we are interested in deriving a PDF for a given species itself by using the available 

empirical data and relevant information from other sources. The belief/knowledge we are expressing 

in using this method is that although the given species may share common traits with regards to 

radionuclide transfer with other species, there is a substantial likelihood that the species under 

consideration expresses its own unique CR values thus rendering mere pooling of data or conjugate 

updating inappropriate. The independent priors offers the means of placing emphasis on the species-

specific data whilst linking the data to what is known about related generic datasets in a 

mathematically structured way. In our example, the pooled distribution of all other bat species was 

used as prior for the mean and was updated with the Daubenton bat data. However, since the 

pooled distribution did not provide any good information of the within species variance, the GSD was 

estimated using only the two available data points and resulted in a large posterior GSD. 

Nonetheless, one might expect that as more data is obtained for the Daubenton species the GSD will 

decrease, converging to the GSD corresponding to the natural variability of the CR for this species.  

 

The Bayesian updating approaches demonstrated and discussed in this paper can be used to help 

design efficient sampling strategies (Ott, 1995). After computing the first posterior, this can be then 

used as a prior upon the arrival of new data. We can keep updating with new data until probabilities 

are adequately defined or we run out of resources. This approach has revolutionized clinical trials as 

it converges to desired result more quickly than conventional approaches and maximizes benefits to 

participants (Suter, 2007).  

 



 

The hierarchical method allows for a more flexible way of weighting the means compared to when 

we just apply the classical combined mean method (see Appendix, Equation A2). This is achieved by 

allowing the weights to be derived on the basis of how "similar" the data of the considered units are. 

Hierarchical estimation implicitly derive prior information from other data sets and could be seen as 

a compromise of two extremes: i) using the combined mean of all cases, but ignoring the differences 

between the individual cases and ii) using the estimates for the case of interest and ignoring other 

information.The necessary assumption for data to be included in a hierarchical model is that of 

exchangeability. The concept of exchangeability is closely related to the degree of ignorance we have 

about a problem. This means, the less we know about a problem the more confidently we can make 

claims of exchangeability (Gelman et al., 2004). Here for the hierarchical model under discussion we 

have assumed that we do not have any information available to distinguish between the CR values of 

the different bat species. But if we have any other measured factor or information that can be 

correlated with CR and these are considered to be of importance, the hierarchical model could be 

expanded to take into account these factors. For more detail on this subject the reader is referred to 

Gelman and Hill (2007).  

In cases where extrapolation approaches are used to provide missing model parameter values, 

sooner or later some empirical data for those cases will become available. For example, when 

underlying CR databases of the ERICA Tool were established for a few years ago about 60% of the CR 

values were derived using a variety of extrapolation approaches (Brown et al. this issue). However, 

now through collation of a new database (Copplestone et al., this issue) some new empirical data 

have become available. It is clear that application of extrapolation approaches is based on the 

assumption of some kind of similarity or commonality between the missing data and the data being 

extrapolated. This means we believe that the surrogate data contain some information about the 

missing value. However, this begs the question as to what status these surrogate data have once 



some new empirical data for the desired parameter become available? Do they become irrelevant or 

can they still play a role in our estimation of the unknown parameter? These questions are especially 

relevant in cases where the numbers of newly acquired empirical data are scarce. In such cases 

ignoring the surrogate data completely amounts to ignoring relevant information and at the same 

time using a few data points alone may lead to a high degree of uncertainty. A compromise in such 

situations is to use data from both sources, using the semi-conjugate updating approach introduced 

in Section 3.2. However, a crucial step here is to define a suitable prior such that it allows for the 

external information from the extrapolation approaches to be incorporated without overruling the 

importance of the empirical data which is the main source of information. 

 

For relatively simple problems such as evaluating CR values, employing non-informative priors will 

result in parameters estimate close to those coming from a classical analysis, but, this similarity fades 

away as we consider more and more complex models (Clark 2005). With complex models we mean 

models which are developed through the extension of the usual Bayesian structure to include more 

than two levels (i.e. more than just likelihood and prior). The hierarchical model introduced in 

Section 3.3 has three levels (likelihood, prior and hyper-parameters) and provides a simple example 

of such models. The flexibility and capacity of such hierarchical models in efficiently exploiting and 

combining information from multiple sources are demonstrated in various studies (Clark, 2005; 

Gelman and Hill, 2007; Kruschke et al., 2012). 

 

Given the computational power of today’s hardware and availability of modern software, Bayesian 

methods for data analysis are now easily accessible to everyone and getting more and more 

attention in different scientific disciplines (Kruschke et al., 2012; Lester et al., 2007). In this paper we 

hope that we have demonstrated their usefulness to radioecological studies. 
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(a)      (b)                           (c) 

Figure 1. The distribution of ln(CR) with parameters selected as the posterior medians of the posterior 

distribution of  and  when species Daubenton’s bat  (X) is combined with one other species seen as analogue. 

a) species G (N=2) as analogue leads to the largest posterior GSD among all tried analogues because of the total 

few observations, b) species E (N=11) as an analogue has a smaller GSD than data and leads to smaller posterior 

median GSD, c) species D with N=51 is used as analogue and almost completely dominates the data (N=2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2. The posterior logarithmic mean from the hierarchical model assuming a common variance for the 

species. The Maximum Likelihood Estimate (MLE) is shown with 95% confidence interval ( ), 

The last bar shows the median and 95% probability interval of the predicted mean of a new species belonging to 

the same population, calculated from the hyper-parameters . The vertical dotted lines show the posterior median 

and 95% probability interval of the population mean . The posterior mean of the species of interest, Daubenton 

bat, is heavily influenced by population, but the 95% probability interval still includes the observed mean. 

 

 

 

 

 

 

 

 

 

 



 

 

 

(a)  Semi conjugate method    (b) Conjugate method 

Figure 3. The pooled population distribution (excluding species X) updated with species X using independent 

(semi conjugate) priors (left). The pooled distribution is used as a prior of the mean, but it does not provide any 

prior information about the variance of X. The posterior variance becomes much larger than the data variance to 

adjust for the updated mean. The fully conjugate approach (right) leads to a posterior very similar to the pooled 

data (The solid line practically overlays the dotted line).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Data for eight bat species sampled in the Chernobyl exclusion zone (from Gaschak et al., 2010)  

Code Species N GM GSD 

A Brown long-eared  5 0.11 3.1 

B Common Noctule  20 0.10 2.7 

X Daubenton 2 0.01 3.9 

C Lesser Noctule  5 0.06 1.6 

D Nathusius' Pipistrelle 51 0.10 4.4 

E Parti-coloured  11 0.04 1.7 

F Serotine  17 0.26 4.3 

G Soprano Pipistrelle  2 0.23 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Parameter values (GM and GSD) of the predictive distribution (median values of the 

posteriori distributions of GM and GSD) obtained for the CR of X applying the Bayesian method 

described in Section 3.1 and using different analogue species to specify the joint conjugate prior.   

Selected 

Analogue 

 species 

N GM GM 

2.50% 

GM 

97.50% 

GSD GSD 

2.50% 

GSD 

97.50% 

Mean 95% 

A 5 5.6E-02 1.3E-02 2.4E-01 5.4E+00 2.8E+00 3.2E+01 2.3E-01 8.8E-01 

B 20 7.7E-02 4.6E-02 1.3E-01 3.3E+00 2.5E+00 5.5E+00 1.6E-01 5.6E-01 

C 5 3.4E-02 1.3E-02 9.3E-02 3.1E+00 2.0E+00 1.1E+01 6.5E-02 2.2E-01 

D 51 9.2E-02 6.0E-02 1.4E-01 4.7E+00 3.6E+00 6.7E+00 3.0E-01 1.2E+00 

E 11 3.5E-02 2.1E-02 5.7E-02 2.3E+00 1.8E+00 3.9E+00 4.9E-02 1.4E-01 

F 17 1.8E-01 7.9E-02 4.2E-01 5.9E+00 3.7E+00 1.3E+01 8.7E-01 3.3E+00 

G 2 4.9E-02 1.9E-03 1.3E+00 1.1E+01 3.3E+00 2.5E+03 8.7E-01 2.5E+00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Median and 95 % interval of the posteriori GM obtained for each species of bats after 

updating with the Hierarchical model. The posteriori GSD has the same values (Median of 3.7, lower 

2.5 percentile of 3.1 and upper 97.5 percentile of 4.5) for all species since it was assumed that they 

have the same variance. The Mean and 95-th percentile are calculated analytically from the median 

values of GM and GSD 

Species Posterior GM Mean 95% 

Median 2.5 % 97.5 % 

Brown long-eared  1.0E-01 4.0E-02 2.6E-01 2.4E-01 1.3E+00 

Common Noctule  9.4E-02 5.5E-02 1.6E-01 2.2E-01 1.2E+00 

Daubenton 4.0E-02 6.7E-03 1.3E-01 9.5E-02 5.2E-01 

Lesser Noctule  7.0E-02 2.5E-02 1.6E-01 1.6E-01 9.0E-01 

Nathusius' Pipistrelle 1.0E-01 7.0E-02 1.4E-01 2.3E-01 1.3E+00 

Parti-coloured  5.3E-02 2.5E-02 1.1E-01 1.2E-01 6.9E-01 

Serotine  2.1E-01 1.0E-01 3.9E-01 4.8E-01 2.7E+00 

Soprano Pipistrelle  1.2E-01 4.1E-02 5.2E-01 2.9E-01 1.6E+00 

Predicted species 9.0E-02 1.0E-02 6.7E-01 2.1E-01 1.2E-01 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. The hyper parameters and the within unit variance estimated from the hierarchical model. 

Median, mean and upper and lower percentile.  

Parameter Median 2.5% 97.5% Mean 

Population mean  -2.4 -3.27 -1.7 -2.4 

Population variance  0.55 0.031 3.8 0.89 

Within variance  1.7 1.31 2.3 1.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. Median and 95 % interval of the posteriori GM and GSD of the CR of X obtained after 

updating using a semi-conjugate prior (method in Section 3.2) specified using pooled data of all 

species, except for X, in Table 1.   

Distribution Statistics Value 

Posterior  GM Median 0.030 

 2.5 %   0.0051 

 97.5 % 0.47 

Posterior GSD Median 7.0 

 2.5 % 1.9 

 97.5 % 204493 

Posterior Mean  0.20 

Posterior 95 %  0.72 

Prior GM  0.10 

Prior GSD  3.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 

 

It is here assumed that the probability model of measurements  is log normal: 

 

 
 

A 1 

 

Where  denotes the normal distribution and  is the natural logarithm of the original log 

normal measurements,  with unknown mean  and variance . For estimates of  

and , the geometric mean and variance of the log normal variable are calculated as 

 and  

 

The sample mean and variance of the logarithmic values are: 

 

 

 

 

 

 

 

Other estimates of the mean and variance are the combined mean and variance which pool 

data from K multiple data sets (Hosseini et al., 2008): 

 

 

 

 

A 2  

 

 

       A 3              



 
 

 

 

1. Joint conjugate prior distribution for the mean and variance  

 

Prior distributions 

 

If the prior information consists of a fixed number of measurements from the normal 

measurement model with variance , a set of prior distributions for the mean and variance of 

the normal measurement model (A 1) can be defined as (Gelman et al., 2004): 

 

 

 

 

 

The prior distribution of the mean is expressed in terms of the unknown variance  and is 

therefore called prior conditioned on . The prior specification can also be written as a joint 

prior distribution of  and  using the relation  and is often 

denoted the Normal-Inverse Chi squared distribution, .   

 

Prior information about the mean is defined by setting  equal to the sample mean and  to 

the sample size. Prior information of the variance are included by setting  to the sample 

variance and prior degrees of freedom  to . 



 denotes the Scaled Inverse Chi Square distribution with  degrees of 

freedom and scale parameter . This distribution is derived from the standard  (Chi-

Square) distribution: A sample from   is obtained as  

  where is a sample from . Its probability density function is 

 

 

 

 

 

Posterior distributions 

 

The joint (two-dimensional) posterior distribution is obtained by applying Bayes’ theorem and 

multiplying the prior probability density functions with the joint likelihood of the observed 

data points: 

 

 

 

which can be shown (Gelman et al, 2004) to also be proportional to a  

probability density function. The Normal-Inverse Chi squared distribution is a joint conjugate 

prior distribution to the normal measurement model (A 1) for  and . A conjugate prior 

will, when combined with data using Bayes’ theorem, result in a joint posterior  

that is on the same functional form as joint prior. This means, that with the choice of prior 

distributions (Feil! Fant ikke referansekilden.) we expect the joint posterior to also attain the 

same form as  and  but with new parameters.  

 



The posterior distributions can be shown to be (Gelman et al., 2004): 

 

 

 

 

A 3 

 

 
 A 4 

 

where parameters with subscript n reflect the combined data: 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The posterior mean, µn, is a weighted combination of the sample mean and the prior mean, 

with the weights being the individual samples sizes. The posterior variance is expressed as 

sum of the i) variation within prior, ii) variation within the data and iii) the weighted squared 

difference between the data mean and prior mean. The posterior variance is thus adjusted for 

the uncertainty provided by the difference of the prior and data means. The prior degrees of 

freedom  could be set to  since the prior variance is estimated from a sample.  

 

Making inferences 



 

The expressions for the posterior mean  and variance  in A5 can be shown (Gelman et 

al., 2004) to be equal to the expressions for the combined mean and variance (A 2) of two 

data sets. Therefore, point estimates of the posterior mean and variance can be obtained from 

 and  directly.  

Full Bayesian inferences from the joint posterior distributions are obtained by repeatedly 

sampling from the posterior distributions, first by drawing a sample of  from (A 4) and then 

sample  from (A 3) using the previously drawn value of   The obtained posterior samples 

of the parameters can then be summarized with statistics of interest, such as the mean or 

median. The posterior uncertainty of each parameter can be reported with  

probability intervals, constructed from the  and  percentiles of posterior samples. 

A posterior probability interval calculated for an unknown quantity of interest can be directly 

regarded as having a high probability of containing the unknown quantity (Gelman et al., 

2004). 

 

2. Independent prior distributions for the mean and variance 

 

Prior distributions 

 

A set of independent prior distributions for the mean and variance are:  

 

 
 

A 5 

 
 

A 6 



The prior distribution of the mean is a normal distribution with specified mean and 

variance . The prior distribution of the variance is Scaled-Inverse-Chi-squared. Its 

parameters specify the prior estimate  of the variance and its degrees of freedom . A non-

informative prior of the variance is reflected by setting , which is equal to using the 

prior density function Gelman et al., 2004). 

 

Posterior distributions 

 

The joint posterior distribution is derived by multiplying the independent prior distributions 

with the data likelihood function: 

 

 

 

 

A 7 

 

 

Here the notations  and  refers to the probability density functions for the normal 

and Scaled-Inverse-Chi-Squared distribution. The joint posterior distribution does not take the 

form of any standard distribution function and cannot be sampled from directly. The 

conditional posterior distributions  and  however are still on the same 

form as the conditional prior distributions (A 5 and A 6). Under the normal measurement 

model (A 1) these prior distributions are therefore sometimes called semi-conjugate. The 

conditional posterior distributions can then be used to obtain samples from the joint posterior. 

 



The conditional posterior distribution for the mean  is derived by keeping only terms in the 

joint posterior (A 8) that depend on  (treating terms that do not depend on  as constants). 

The conditional posterior is then the normal prior distribution function of the mean multiplied 

by the likelihood function: 

 

 

The resulting expression can be recognized as being proportional to a normal distribution with 

new parameters (Gelman et al., 2004): 

 

 
 

 

A 8 

 

 

 

 

 

 

 

 

The updated parameter of the posterior mean  reflects the relative amount of information 

available for the case of interest with observed mean  and for the selected prior .  

 

The conditional posterior distribution of the variance is derived by multiplying the 

distribution function of the prior with the likelihood function as 

 



 

 

The resulting expressions can be recognized as being proportional to the  

distributions function with updated parameters (Gelman et al., 2004): 

 

  

 

 

A 9 

 

  

 

 

 
 

 

The parameter  is a weighted combination of the sample variance , the estimate of the 

prior variance  and the squared distance between the data and posterior mean. The weights 

are the number of measurements  and the prior degrees of freedom  for the variance.  

 

 

Making inferences 

 

A set of samples from the joint posterior distribution of the parameters ( ) can be obtained 

from the conditional posterior distributions (A 8) and (A 9), first by drawing a sample of  

from A 9 and then of  (from A 8) in using the previously drawn value of  When drawing 

the first sample of  , a crude starting value can be used for , such as the sample mean. The 

posterior distribution of each of the parameter is summarized with statistics of interest (such 



as mean or medians) and the posterior uncertainty is reported with posterior probability 

intervals, calculated from an lower and upper percentile of the obtained posterior samples. 

 To diminish the effect of the arbitrary start values, the first obtained sample must be 

discarded before drawing inferences from the posterior distributions. This procedure of 

sampling from a multidimensional distribution using the full conditional distributions is called 

a Gibbs Sampling algorithm (Gelman et al., 2004).  

 

 

3. Prior distribution implicitly derived from data of several similar units 

 

Prior distributions 

 

The prior distribution of the means of J units (e.g. J species or elements) is normal with mean 

 and variance :   

 

 ,   j=1,…,J A 10 

 

Here, the parameters of the prior distributions  (also called hyper-parameters), are also 

unknowns, to be estimated from the data of similar units. The mean  is often referred to as 

the population mean. The variance  is often referred to as the population variance or the 

variance between units. The hyper-parameters are here assigned the non-informative prior 

distributions  and  (Gelman et al., 2004), allowing them to be estimated 

from data of the J units without including any explicit prior knowledge about them. 

 



The within-unit variance is here assumed equal among units (denoted ) and assigned a non-

informative to let it be estimated from the available data, equal to using the prior 

  (Gelman et al., 2004).  

 

Posterior distributions 

 

The joint posterior distribution of all J+3 parameters (the J units’ means, the common 

variance within units and the two hyper-parameters) is expressed by multiplying the prior 

distributions of the hyper-parameters, the prior distribution of the within unit variance , the 

joint prior distribution of the unit means  and the joint likelihood function of all 

observations from the J units: 

 

 

 

 

A 11 

 

 

To obtain samples from the multidimensional joint posterior distributions (A 11), a Gibbs 

Sampler is implemented by sampling iteratively from the full conditional posterior 

distributions. The full conditional posterior distribution of a parameter  is one-dimensional 

and is the posterior distribution of  conditioned on all the other parameters in the model. The 

full conditional distributions are derived from the joint posterior (A 11) by treating terms not 

depending on  as constants.  

 



The full conditional posterior distributions of the mean of unit j is derived by keeping terms in 

the joint posterior distributions that depends on  (and treating functions not depending on 

 as constant): 

 

 

 

The expression can be shown (Gelman et al., 2004) to be proportional to a normal distribution 

function with parameters depending on both the data and the prior: 

 

 
 

 

A 12 

 

 

 

 

A 14 

 

 

 

 

The amount of partial pooling from the unit mean  to the population mean  is determined 

by population variance  and the within unit variance scaled by the number of measurements 

, with complete pooling as special case when the population variance is small compared to 

the within unit variation ( ).  The expression (A 13) is thus similar to the posterior mean 

(A 8) when using independent prior distributions, but with unspecified parameters of the 

prior. 



 

Under a non-informative prior, the full conditional posterior for the common variance  is 

obtained by treating factors not depending on  as constants in the joint posterior 

distribution. The conditional posterior is then obtained by multiplying the non-informative 

prior of the variance,  with the joint likelihood function of the observations of all units: 

 

 

 

The expression can be shown to be proportional to a  distribution (Gelman et al, 

2004): 

 

 
 

 

 

 

A 14 

The posterior variance is expressed as the pooled variance of all units adjusted for the 

discrepancy of the observed means  and updated means  (the squared difference in the 

last term of ).  

 



The full conditional posterior of the population mean  is obtained by treating factors not 

depending on  in the joint posterior as constants. It is the result of multiplying the prior of  

(which is proportional to 1) with the joint probability of the J unit means: 

 

 

 

The expression can be shown to be proportional to the normal distribution (Gelman et al., 

2004): 

 

 

 

 

 

A 15 

 

That is, the posterior population mean is expressed in terms of the average of the units’ 

posterior means and variance given by the variance of posterior means. 

 

The full conditional posterior distribution of the population variance  is obtained by treating 

factors in the joint posterior not depending on  as constants, resulting in the multiplication 

of the prior  with the joint probability of the J unit means: 

 

 

 



The expression is proportional to a  distribution (Gelman et al., 2004): 

 

 
 

 

 

A 16 

 

 

Making inferences 

 

Samples from the joint posterior distribution (A 11) of all parameters are obtained by 

iteratively sampling from each of the conditional posterior distributions (A 12 to A 16). In 

each iteration , the Gibbs Sampling procedure samples one value for each 

parameter of the model, conditioning on the latest values drawn from of the other parameters 

(either from the last iteration k-1 or the current iteration k). Each iteration in the Gibbs 

Sampler is here described as sampling from the parameters in four steps: 

 

1) Individual unit means (from A 12):  

2) The variance within units (from A 14):  

3) Population mean (from A 15):  

4) Population variance (from A 16):  

 

In the first iteration (k=1), parameters that have index k-1 must be assigned start values which 

can be derived as crude estimate of the sample means, the pooled sample variance and the 

population mean and variances. To diminish the impact of the somewhat arbitrary start values, 



the first simulated samples should be removed before inference (Gelman et al., 2004). The 

posterior distribution of each of the parameter is summarized with statistics of interest (such 

as mean or median) and the posterior uncertainty is reported with posterior probability 

intervals, calculated from an lower and upper percentile of the obtained posterior samples. 

 

A mean from a new case (e.g a species not yet observed but assumed to belong to the same 

population as those included in the hierarchical model) can be predicted by sampling from the 

posterior population distribution as , using a set of draws  from the 

posterior distribution of the hyper-parameters. The obtained samples are then used to draw 

inferences for the new case. 

 

Convergence of the Gibbs Sampler 

 

The arbitrary start values of the first iteration will influence the distribution of the collected 

samples and make the first samples not truly representative to the true posterior distributions. 

To check the convergence of the obtained samples, we have adopted the technique of 

(Gelman and Rubin, 1992) by running the sampler multiple times with different and dispersed 

start values. The Gelman-Rubin convergence statistic (Gelman and Rubin, 1992; Gelman et 

al., 2004) is then used to quantify the degree to which the posterior variance can be reduced 

by running the sampler for more iterations. For all simulations with the Gibbs Sampler, we 

run three independent simulations with different and randomly dispersed start values (adding 

a random component to the crude estimates) for 10 000 iterations each. We required the 

convergence statistic to be below 1.001 for all parameters which suggests that the probability 

interval of the parameters cannot be reduced with more than 0.1% if the simulations were to 

continue (Gelman and Rubin, 1992). The first five hundred samples of each chain were then 



discarded before drawing inferences from the posterior distributions to diminish the effect of 

the arbitrary start values.  
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