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Abstract 26 

A key challenge in ecology is to find ways to obtain complete and accurate information about 27 

the diets of animals. To respond to this challenge in seabirds, traditional methods (usually 28 

stomach content analysis or observations of prey at nests) have been supplemented with 29 

indirect methods or molecular trophic markers. These techniques have the potential to extend 30 

the period of investigation outside the few short months of breeding and avoid biases. Here, 31 

we use an analysis of fatty acids (FA) and fatty alcohols (FAL) from blood, adipose tissue 32 

and stomach oil to investigate how the diets of male and female common guillemots (Uria 33 

aalge), black-legged kittiwakes (Rissa tridactyla), and northern fulmars (Fulmarus glacialis) 34 

differed through the sampling period (prelaying and breeding season) and by sex.  Diets of 35 

both sexes of all three species generally varied across the season, but sex differences were 36 

apparent only in fulmars during prelaying.  Our study shows that FA analysis can provide 37 

significant insights into diets of seabirds, in particular periods of the annual cycle which are 38 

not readily studied using traditional methods.   39 

 40 

Keywords: Northern fulmar, Black-legged kittiwake, Common guillemot, North Sea, diet, 41 

fatty acid, fatty alcohol  42 
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 50 

Introduction 51 

 52 

Reductions in prey quality or availability can negatively impact seabird breeding success, 53 

adult survival and recruitment (Lewis et al. 2001; Rindorf et al. 2000; Frederiksen et al. 2004; 54 

Cury et al. 2011).  Recent declines in many seabird populations (Croxall et al. 2002; Mitchell 55 

et al. 2004) are widely believed to have been driven by changes in prey availability that have 56 

resulted from broader scale ecosystem change (Edwards and Richardson 2004; Frederiksen et 57 

al., 2006; Croxall et al. 2012) and/or commercial fisheries (Arnott et al. 2002; Frederiksen et 58 

al. 2008). However, assessments of these interactions are constrained by limited 59 

understanding of variation in diet composition.  In particular, most information on seabird 60 

diets is based on samples of prey brought back to the colony, either by collecting 61 

regurgitations or observing prey carried in the bill. Whilst these approaches have greatly 62 

improved our understanding of the prey that adults capture to feed chicks, the diet of all other 63 

age classes remains poorly documented, particularly outside the breeding season (Wilson et 64 

al. 2004; Ronconi et al. 2010). A broader characterization of diet is therefore required to 65 

assess how intrinsic and extrinsic factors interact to determine diet, and to develop dietary 66 

indicators to monitor change in marine ecosystems (Cairns 1987; Furness and Camphuysen 67 

1997; Einoder 2009). 68 

 69 

Studies have shown that the diets of many seabird species change over the course of the 70 

breeding season (Annett and Pierotti 1989; Lewis et al. 2001; Suryan et al. 2002; Phillips et 71 

al. 2004a). This can be broadly attributed to environmental factors such as weather and the 72 

timing of prey availability ( Lack 1968; Ainley et al. 1996; Wanless et al. 1998; Lewis et al. 73 

2001; Suryan et al. 2002) or to intrinsic factors associated with breeding stage such as the 74 
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need to feed prey of specific size or quality to chicks compared to self-feeding outside these 75 

times (e.g. Ito et al. 2010). Disentangling environmental and intrinsic effects is challenging 76 

because external conditions and parental duties change simultaneously.  77 

 78 

Seasonal changes in diet may also differ between the sexes, since sex is known to influence 79 

seabird foraging behaviour as a result of differing reproductive roles, body size or nutritional 80 

requirements (Lewis et al. 2002; Phillips et al. 2004a; Forero et al. 2005; Weimerskirch et al. 81 

2006). During the prelaying period, males are typically responsible for nest acquisition and 82 

courtship duties (Mawhinney et al. 1999) whereas females have the demands of egg 83 

production (Hatch 1990a; Brenninkmeijer et al. 1997). In many species the roles of the two 84 

sexes become more similar after laying, with both parents sharing incubation and chick-85 

rearing.   Whilst these different constraints on foraging behavior could result in sex specific 86 

variation in diet over the season, this has rarely been investigated (Navarro et al. 2009). 87 

 88 

One reason for the limited number of studies on seasonal variation in diet is that traditional 89 

analysis of prey items provides only a snapshot of diet, often over a narrow time-window 90 

during chick-rearing.  These techniques are also subject to biases because analysis of 91 

regurgitates can overestimate prey items that are slow to pass through the digestive tract, 92 

while easily digested prey may be underestimated or missed altogether (Mehlum and 93 

Gabrielsen 1993; Votier et al. 2003; Barrett et al., 2007; Polito et al. 2011). Another 94 

challenge is that a high proportion of birds can have empty stomachs at the time of capture 95 

(Ouwehand et al. 2004; Barrett et al., 2007) and sample composition can be highly variable 96 

requiring large sample sizes to determine differences among groups statistically (Polito et al. 97 

2011). Indirect techniques have been developed that aim to bypass these disadvantages and 98 

provide a longer term assessment of diet including outside the breeding season.  Of these, 99 
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stable isotope analysis of carbon and nitrogen in consumer tissues and lipid molecules, such 100 

as fatty acids (FAs) or Fatty alcohol (FALs) as trophic markers, have been most widely 101 

utilized (reviewed by Barrett 2007; Williams and Buck 2010; Karnovsky et al., 2012). Stable 102 

isotopes provide important data on trophic position (e.g. Hobson 1994), but recent work has 103 

highlighted that analysis of lipid samples are particularly valuable for describing variation in 104 

diet composition for a broad suite of marine predators (Iverson 2009). 105 

 106 

Lipids have been used as dietary markers in two main ways. The first is where the 107 

composition of FA/FALs is used to show differences in diet between groups; this is 108 

sometimes referred to as qualitative FA analysis. The second, generally referred to as 109 

quantitative fatty acid signature analysis (QFASA, Iverson et al. 2004) is used to estimate the 110 

probable proportions of specific prey types in the diet. QFASA requires a FA prey library of 111 

potential prey within the predator's foraging range (e.g. Piche et al. 2010). This means that 112 

QFASA is beyond the scope of some studies, particularly for species consuming a wide 113 

variety of prey of where foraging ranges are extremely large or poorly defined. However, 114 

using FA analysis to identify differences in the diet of groups of animals does not require a 115 

prey library. Furthermore, significant steps have been made towards identifying particular 116 

lipid markers that can be used to characterize certain prey groups (e.g. Connan et al. 2007; 117 

Springer et al. 2007) or identify pelagic or demersal influences (Käkelä et al. 2005).  This use 118 

of FA/FAL analysis has four advantages. First, it is not biased by differential digestion rates 119 

(see Iverson et al. 2004). Second, because lipids are representative of the diet consumed 120 

during the formation of a particular tissue (Klasing 1998; Wang et al. 2010), FA/FAL 121 

analysis can provide a long-term assessment of diet over periods of days, from analysis of 122 

blood (Käkelä et al. 2005), to weeks or months, from analysis of procellarid stomach oil 123 

(Wang et al. 2007) or adipose tissue (Wang et al. 2010). This longer term picture is likely to 124 
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be more representative of  typical diet than the snapshot usually obtained from traditional 125 

methods. Third, FA/FAL analysis can be used to investigate diet outside the breeding season 126 

and, finally, information can be gained non-lethally from the majority of birds caught. For 127 

example, Owen et al. (2010) attempt adipose tissue sampling in 283 birds of two species, of 128 

which only two (0.7%) were found to have insufficient fat deposits for sampling. Similarly, 129 

in species where it is possible to safely take ~0.5ml blood sample it is possible, with care, in 130 

almost all birds (e.g. Owen 2008). However, not all procellariforms will regurgitate stomach 131 

oil upon capture.  132 

 133 

There are limitations to using FA/FAL to qualitatively compare seabird diets. Currently there 134 

is an incomplete understanding of the turnover rates in free-living seabirds leading to 135 

imprecision in the estimates of the timescales over which FA/FAL samples indicate diet 136 

(Williams and Buck 2010).  Some FA/FALs are known to be altered in vivo before being laid 137 

down and it is not yet known how these processes are affected by nutritional state 138 

(Karnovsky et al. 2012). Finally, unlike traditional stomach contents analysis qualitative 139 

FA/FAL analysis does not necessarily elucidate the differences in prey species composition 140 

that give rise to observed differences in FA/FAL signatures. We seek to better understand the 141 

use of FA analysis in its qualitative form as a useful addition to methods for sampling diet. 142 

 143 

The objectives of this study were to use FA/FALs to 1) examine seasonal differences in diets, 144 

and 2) determine if there were differences in diet between the sexes over the sampling period 145 

in black-legged kittiwake (Rissa tridactyla), common guillemot (Uria aalge), and northern 146 

fulmar (Fulmarus glacialis) in the North Atlantic. Breeding pairs in these species all share 147 

incubation and chick rearing duties, but differ in a number of life history characteristics that 148 
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might be expected to influence the extent to which seasonal or sex-related changes in 149 

foraging behaviour may constrain prey choice (Table 1).   150 

 151 

Methods and materials 152 

 153 

Study sites and sample collection.   154 

Tissue samples were collected at the Isle of May, southeast Scotland (56°11’N, 02°33’W) 155 

from adult guillemots (blood and adipose tissue) and kittiwakes (blood) during the prelaying 156 

and chick-rearing periods of the 2005 and 2006 breeding seasons (Table 2). Fulmar samples 157 

(stomach oil and blood) were collected at Eynhallow, Orkney, northern Scotland (59°08’N, 158 

03°07’W), during three time periods: prelaying, incubation and early chick-rearing. Stomach 159 

oil is produced in the proventriculus of most procellariiform seabirds and originates from the 160 

diet (Roby et al. 1989). Prelaying guillemots were caught using wooden box traps with tip 161 

lids while chick-rearing birds were caught with a crook mounted on a 6m pole.  Kittiwakes 162 

were caught on nests using a nylon noose mounted on an 8m telescopic pole. Fulmars were 163 

caught in the air by fleyg net or occasionally from nests using a hand net.   164 

 165 

Blood samples were collected using a 25 gauge needle into a 2 ml plain syringe from the 166 

brachial vein.  Between 0.5 and 2 ml was taken.  The blood was immediately transferred to a 167 

heparinised cryovial and stored below -70°C in a liquid nitrogen dry shipper within 4 hours 168 

of collection to minimise oxidation of lipids.  Adipose tissue was sampled from guillemots 169 

using the previously described biopsy method which has been shown to be comparable in 170 

terms of invasiveness to taking blood samples by syringe (Owen et al. 2010) and involves 171 

making a small (0.5cm long and 1-2mm deep) incision just through the skin to sample the 172 

adipose tissue that lies just beneath it.  Adipose samples were folded into clean sections of 173 
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aluminium foil to make a small packet which was itself put inside a cryovial and stored below 174 

-70°C. In 2006, paired samples of adipose and blood were collected from individual 175 

guillemots to compare two tissue types with different formation times, namely blood (days) 176 

and adipose tissue (weeks). Stomach oil was collected from fulmars upon voluntary 177 

regurgitation onto clean polythene and transferred to cryovials for storage below -70°C.  178 

DNA sexing was carried out on either blood or feathers that were plucked from around the 179 

brood patch and stored dry prior to analysis using two CHDll genes (Griffiths et al. 1996). 180 

 181 

Lipid Analysis  182 

Lipid extraction was carried out using a variation of the Bligh and Dyer (1959) method as 183 

modified by Hanson and Olley (1963).  Lipids were extracted from homogenised samples in 184 

a methanol, chloroform, water mixture (2:3:1.8 v/v/v; HPLC grade, Rathburn Chemicals Ltd, 185 

Scotland, UK). This extraction method has been formally validated by the United Kingdom 186 

Accreditation Services (Webster et al. 2006). Following extraction, transesterification was 187 

carried out by heating samples at 50ºC overnight (min 12 hours, max 18 hours) in the 188 

presence of sulphuric acid and methanol. The resultant fatty acid methyl esters and fatty 189 

alcohols were analysed by gas chromatography with flame ionisation detection (GC-FID) in a 190 

single run, following the method developed and validated by Webster et al. (2006). An 191 

HP6890 GC, incorporating an autosampler, was fitted with a DB23 capillary column (length: 192 

30 m; internal diameter: 0.25 mm; film thickness 0.25 µm, J&W Scientific, Folsom, U.S.A.). 193 

Chromatographic peaks were identified manually using standard reference materials to give 194 

peak retention times. Peak identity was confirmed in a subset of representative samples using 195 

gas chromatography-mass spectroscopy (GC-MS). Peak areas for both FAs and FALs were 196 

derived from chromatograms using TotalChrom 6.3.1 (PerkinElmer, Inc.) software. All 197 

batches were verified using quality control procedures. 198 
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 199 

A normalised area percent was calculated for a defined set of 37 peaks which were identified 200 

from four standard reference materials which have been used for over 20 years and have been 201 

found to include all the major FA/FAL peaks commonly occurring in samples from across 202 

different taxonomic groups in the Northeast Atlantic and North Sea region. These were the 203 

saturated FAs 14:0, 16:0, 18:0, 20:0, 22:0, the monounsaturated FAs 14:1n-5, 16:1n-7, 18:1n-204 

7, 18:1n-9, 20:1n-11/9, 22:1n-11/9, 24:1n-9, the polyunsaturated FAs 16:2, 18:2n-6, 20:2n-6, 205 

16:3, 18:3n-3, 18:3n-6, 20:3n-3, 16:4, 18:4n-3, 20:4n-3, 20:4n-6, 21:5, 20:5n-3, 22:5n-3, 206 

22:6n-3 and the FALs 14:0, 16:0, 18:0, 22:0, 16:1n-7, 18:1n-9, 20:1n-9, 22:1n-9 and 24:1n-9. 207 

Abbreviations used to denote FAs use the format X:Yn-z, where X refers to the chain length 208 

and Y the number of carbon-carbon double bonds. The exact position of the double bond is 209 

presented using the nomenclature n-z. This gives the position of the first carbon to carbon 210 

double bond in the molecule relative to the methyl carbon. Where two components cannot be 211 

separated they are referred to with the ‘/’ e.g. 20:1n-11/9. Some very minor and infrequently 212 

occurring peaks were not included in the final 37 peaks of interest.  One peak was identified 213 

on the basis of retention time as corresponding to FA 26:0 and was included in the analysis. 214 

Subsequent recent analytical work has indicated that the peak is not 26:0. To date, an exact 215 

identity for the peak has not been determined as full interpretation of the mass spectrum 216 

fragmentation pattern has not provided an unequivocal outcome.  As such, the peak has been 217 

labeled as Unidentified peak 1, U1. 218 

 219 

Käkelä et al. (2005) used captive herring gulls (Larus argentatus)  fed on controlled diets to 220 

demonstrate that a high value in the ratio 20:4n-6 to the sum of 18:3n-3,18:4n-3 and 20:5n-3 221 

could be used as an index of a diet with a demersal influence, a finding that has since been 222 

applied to free-living seabirds in areas across the North Sea (Käkelä et al. 2007). We 223 



E. Owen et al.  

10 

 

employed this ratio to provide an indication of the relative proportions of demersal and 224 

pelagic prey sources in blood FA profiles of each species. Only blood samples were used as 225 

this index has not been validated for other tissue types.  226 

 227 

 228 

Statistical analysis of FA/FAL data 229 

 230 

Data analysis was performed on those 37 FA/FALs routinely identified across samples. These 231 

measurements were rarely normally distributed and so were assessed for log transformation 232 

using box plots and tests of skewness and kurtosis before analysis. Canonical variates 233 

analysis (CVA) was used to test for differences between groups using the software package 234 

GenStat (version 9, VSN International) . CVA forms linear combinations of variables that 235 

maximise the ratio of the between-groups and the within-group sum of squares. In effect, a 236 

CVA is similar to performing a principal components analysis between the means of groups, 237 

after standardising for the covariance structure of observations within the groups. 238 

Relationships between groups were plotted using the first and second canonical variates (CV1 239 

and CV2) which define the largest and the second largest variances among groups after 240 

standardisation. Plots are useful for visualising relationships but show only two dimensions 241 

of a multidimensional analysis. Therefore, intergroup distances in multivariate space, 242 

measured in Euclidean units, were also calculated. Intergroup distances show the relative 243 

similarity or otherwise of lipid compositions between groups after standardisation. 244 

 245 

To assess the significance of differences between groups, as determined by CVA, a 246 

subsequent randomization test (Aebischer et al. 1993; Edgington 1995) was developed. Here, 247 

original data were redefined by randomising the group allocation of each sample during 1000 248 
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simulations. The randomization was performed using all individuals within a species and year 249 

with groups defined by breeding stage and sex. This generated a distribution of distances that 250 

could be used to assess the probability that a distance as large as the observed one would 251 

occur merely by chance, a result which is similar to a p value and considered significant 252 

when below 0.05. This test is also a safeguard to increase the certainty with which group 253 

separation scores can be assessed when sample sizes were small, as there is no dependence on 254 

distributional assumptions for the data. FA/FAL signatures from two tissue types (blood and 255 

adipose) collected from guillemots were tested for differences in the mean normalized area 256 

percent of each FA component in blood and adipose signatures using t-tests.  257 

 258 

Results 259 

 260 

Seasonal and sex differences in diet 261 

  262 

Guillemot 263 

We found seasonal changes (prelay vs chick-rearing) in guillemot blood FA/FAL 264 

compositions in both 2005 and 2006 for both males and females (Table 3; Figure 1a,b; 265 

Supplementary material available) but there was no evidence of sex differences at any point 266 

during our study (Table 4; Figure 1). In 2005, only a small number of birds were sampled.  267 

Nevertheless, there was a clear distinction between guillemot blood FA/FAL profiles 268 

collected during prelaying and those collected during chick-rearing (Table 3; Figure 1a). The 269 

first CV explained 82.8% of the total variation and the second explained 13.3%. FAs 20:4n-6, 270 

20:1n-11/9 and 18:1n-7 had the highest CVA loadings which shows that the groups varied 271 

most in their composition of these three FAs.  The same seasonal changes were observed in 272 

guillemot blood in 2006 (Table 3; Figure 1b), when the first CV explained 92.9% and the 273 
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second CV explained 3.0% of the variance between groups. The highest loadings were on 274 

FAs 18:0, 18:1n-9 and 22:6n-3.  275 

 276 

In 2006, when paired samples were collected from the same individual, the separation 277 

between prelaying and chick-rearing birds which was seen in blood samples was also seen in 278 

and paired adipose profiles for both males and females (Table 3; Figure 1c). No evidence was 279 

found for sex differences in adipose samples collected during the prelaying or chick-rearing 280 

stages (Table 4; Figure 1c).  First and second CV axes explained 91.6% and 5.8% 281 

respectively of the variation in adipose lipid profiles and FAs 18:1n-9, 20:4n-6 and U1 had 282 

the highest loading scores.  283 

 284 

Comparing tissue types showed that FAs 18:0, 20:5 n-3 and 20:4n-6 were enriched by 285 

between 2 and 6 times in blood compared to adipose whereas FAs 14:0, 16:1n-7, 16:2, 20:1n-286 

11/9 and 22:1n-11/9 were enriched by between 2 and 5 times in adipose. 13 FAs/FALs were 287 

similar both tissues including FA16:0, 18:1n-9 and 22:6n-3 (Figure 2).  288 

 289 

Kittiwake 290 

Seasonal differences were detected in kittiwake FA/FAL profiles of both sexes during 2005 291 

(Table 3; Figure 3a). In 2006, seasonal differences were also evident from the FA/FAL 292 

profiles of females but not for males (Table 3; Figure 3b). There was no indication of sex 293 

differences in diet at any point in the season in either year of the study (Table 4; Figure 3). In 294 

2005, the first two canonical variates explained 81.3% and 14.6% respectively of the variance 295 

between the groups. FAs 18:2n-6, 20:4n-3 and 22:6n-3 had the greatest loadings in the 296 

analysis.  In 2006, the first two CV’s explained 82.5% and 10.2% respectively and FAs 297 

18:1n-9, 20:4n-3 and 22:6n-3 had the highest loadings.   298 



E. Owen et al.  

13 

 

 299 

Fulmar 300 

During 2005, the FA/FAL profiles of stomach oil from male fulmars were significantly 301 

different between prelaying, incubation and chick-rearing (Table 3; Figure 4a). The greatest 302 

difference was between prelaying and chick-rearing birds. FA/FAL profiles of the stomach 303 

oil from female fulmars also varied between breeding stages, but only the difference between 304 

prelaying and chick-rearing was significant in 2005 (Table 3).  Male and female fulmars were 305 

found to be consuming different diets during the prelaying period in 2005 (Table 4; Figure 306 

4a).  This sex difference diminished during incubation and FA/FAL profiles during chick-307 

rearing were closely matched between the sexes. In this analysis CV1 explained 55.2% and 308 

CV2, 16.0% of variation. FAs 22:1n-11/9 and FALs 18:0 and 22:1n-9 had the highest 309 

loadings on CV1.  310 

 311 

In contrast to 2005, FA/FAL profiles of males from 2006 were not significantly different 312 

during any stage of the season (Table 3; Figure 4b) though the largest distance was between 313 

prelaying and chick-rearing birds. Also in contrast to 2005, female FA/FAL profiles did vary 314 

significantly between all stages of breeding. The sex difference in diet that was seen in 315 

prelaying birds during 2005 was repeated in 2006 (Table 4; Figure 4b). As in 2005, male and 316 

female FA/FAL profiles were similar in incubating and chick-rearing birds. CV 1 explained 317 

52.2% of the variance between groups and CV 2 explained 14.7%. FAs 18:0, 18:1n-9 and 318 

20:5n-3 had the highest loadings. The sex difference during the prelaying period was also 319 

apparent in the blood samples that were available from this period in both years of the study 320 

(Table 4).  321 

 322 

Demersal/pelagic ratio 323 
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Based upon the ratio of 20:4n-6 to the sum of 18:3n-3,18:4n-3 and 20:5n-3,  the influence of 324 

pelagic or demersal prey in the diet did not differ between male and female guillemots (mean 325 

ratio male: 1.35±0.21 female: 1.25 ±0.61; Mann-Whitney U: Z=12.0, p=0.142, n=6,8), nor 326 

between male and female kittiwakes (mean ratio male: 0.40±0.28 female: 0.37 ±0.12; Mann-327 

Whitney U: Z=61.0, p=0.786, n=12,11). By contrast, the ratio for female fulmars was 328 

significantly higher than males (mean ratio male: 0.73±0.34 female: 1.70 ±0.63; Mann-329 

Whitney U: Z=7.0, p=0.004, n=8,9) suggesting that there was a greater influence of demersal 330 

prey species in FA/FAL profiles of female fulmars during the prelaying period. 331 

 332 

Discussion 333 

 334 

The analysis of FA/FALs from various tissues substantially improved our knowledge of the 335 

dietary patterns of three common species in the North Atlantic seabird community, provided 336 

evidence of seasonal changes in prey taken for all the species and highlighted sex differences 337 

that accorded well with our expectations based on life history traits.  338 

 339 

Seasonal changes in diet 340 

Previous studies of guillemot diet throughout the breeding range have been dominated by 341 

observations of fish brought to the chick (Hatchwell et al. 1992; Barrett et al. 2002). On the 342 

Isle of May, these have shown consistent shifts in diet over the 4 – 5 week period chicks are 343 

present in the colony, with clupeids, probably sprats (Sprattus sprattus) typically replacing 344 

1+ group sandeels (Harris and Wanless 1985; Wilson et al. 2004). The limited data for adult 345 

diet obtained by stomach flushing indicate a similar seasonal shift but also highlight that 0 346 

group sandeels contribute substantially to self-feeding (Wilson et al. 2004). Information on 347 

diet during incubation and prior to laying is even more fragmentary both on the Isle of May 348 
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and to the best of our knowledge, elsewhere. Adults occasionally bring in fish for display 349 

(Harris and Wanless 1985) and some of these are eaten. However, it is likely that such items 350 

are larger than the typical diet and thus provide a biased sample. We used FA/FALs in 351 

guillemot adipose tissue and blood collected from prelaying and chick rearing birds to 352 

investigate diet during recent days and also retrospectively to investigate periods when 353 

attendance at the colony is sporadic and/or birds are very sensitive to disturbance. The exact 354 

periods these samples provide information on are uncertain because rates of lipid turnover in 355 

free-living seabirds are poorly understood (Williams et al. 2009; Owen et al. 2010; Wang et 356 

al. 2010). However, captive feeding trials in a range of species including guillemots indicate 357 

that adipose tissue samples are likely to reflect diet during the month prior to sampling 358 

(Foglia et al. 1994; Iverson et al. 2007) and blood samples reflect diet during the previous 359 

week to ten days (changes in FA composition detected in 5 days; Käkelä et al. 2005 and 360 

within 11 days Käkelä et al., 2009). Assuming this was also the case in our study then 361 

adipose samples correspond to guillemot diet about a month before laying and approximately 362 

mid-way through incubation. In 2006, both blood and adipose samples collected in the 363 

prelaying and chick rearing period showed seasonal differences. Prelaying FA/FAL 364 

signatures from both sets of samples were distinct from those during chick rearing suggesting 365 

that prelaying diets may not have been dominated by prey types such as sandeel or sprat that 366 

guillemots are known to use at this colony whilst raising chicks (Wilson et al. 2004).  These 367 

findings provide the strongest evidence to date that prelaying diet differs significantly from 368 

diet during the breeding season, although what species the birds were taking at that time 369 

remains unknown.  370 

 371 

Lipid signatures extracted from blood and adipose differed both overall and within individual 372 

guillemots. However, despite these differences, the two sets of tissue types provided a similar 373 
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ability to determine whether or not there were differences between samples collected at 374 

different points in the breeding season. This has also been demonstrated by Käkelä et al. 375 

(2010) through captive feeding of yellow legged gulls (Larus michahellis).  Differences can 376 

be due to both metabolic processing and the timescales over which each tissue integrates 377 

dietary fatty acids and this study was not designed to separate these effects. Nevertheless, the 378 

relative enrichment of individual fatty acids between tissues accorded well with related 379 

studies. For example, our finding that mean levels of 18:0, 20:4n-6 and 20:5n-3 were elevated 380 

in blood plasma compared to adipose is in line with Käkelä et al. (2010) who found these 381 

same components to be enriched in plasma samples compared to diet (18:0 and 20:4n-6) or 382 

adipose (20:5n-3). Raclot et al. (1995) also found that 20:5n-3 was used in preference to other 383 

fatty acids in penguins whereas 20:1n-9 was preferentially stored in adipose tissue. These 384 

findings may explain why 20:5n-3 was enriched in blood compared to adipose tissue in 385 

guillemot samples and also why 20:1n-9/11 along with 22:1n-11/9 were found in more than 386 

three times the concentration in guillemot adipose tissue than blood.     387 

 388 

The standard method for obtaining diet information from kittiwakes has been from 389 

regurgitates, providing extensive data on changes in diet during incubation and chick rearing, 390 

but only limited data from the prebreeding period (Lewis et al. 2001). On the Isle of May 391 

there is typically a sequential change in diet from planktonic crustaceans early in the season 392 

to 1+ group sandeels in April and most of May, that are then replaced by 0 group sandeels in 393 

late May/early June. Other species such as sprat, rockling or other small gadoids are also 394 

recorded, usually towards the end of the season (e.g. Newell et al., 2006). The seasonal 395 

changes in diet apparent in the FA/FAL signatures are therefore in line with expectations 396 

based on regurgitations. During the years of this study there were unusually high numbers of 397 

snake pipefish (Entelurus aequoreus) bought to the colony by kittiwakes (Harris et al. 2007). 398 
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The occurrence of this species was much higher in 2006 when it occurred in 43.4% of 53 399 

samples compared to 2005 when it was found in only 1.7% of 116 prey samples (Newell et 400 

al. 2006). Only traces were recorded in the diet rather than whole fish, which are boney and 401 

difficult to swallow, and therefore it is likely this species made only a small proportion of the 402 

biomass of prey consumed, and that which was consumed was of little nutritional value and 403 

low lipid content (Harris et al. 2008).  Adipose tissue samples were not taken from kittiwakes 404 

caught early in the season but such an approach would be feasible. With the proviso of 405 

uncertainty about lipid turnover rates, this would extend information about diet further back 406 

into the early prelaying period. Such data would be particularly interesting given the recent 407 

finding that a high proportion of male kittiwakes on the Isle of May make a major excursion 408 

into the mid Atlantic at this time, presumably to exploit a rich feeding area (Bogdanova et al. 409 

2011).  410 

 411 

Previous studies of the northern fulmar diet have generally been based upon regurgitates 412 

collected from chicks, and have identified a broad range of prey items that include pelagic 413 

crustaceans, squid, and fish that may be captured either directly or scavenged from fishery 414 

discards (Furness and Todd 1984; Phillips et al. 1999; Ojowski et al. 2001). The relative 415 

importance of these different prey types varies spatially (Phillips et al. 1999) and, whilst there 416 

is some evidence of seasonal variation (Ojowski et al. 2001), no previous study of 417 

regurgitates  has extended the sampling period outside chick-rearing. Our results 418 

demonstrated that seasonal differences in diet extended beyond this period in both males and 419 

females (Table 3). Whilst the strength of this pattern differed slightly between years, this is 420 

likely to be at least partly due to low sample sizes for females in 2005 and males in 2006. In 421 

both years and sexes, the strongest differences occurred between prelaying and chick-rearing. 422 

Prior to the breeding season, both male and female northern fulmars are absent from breeding 423 
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colonies for long periods (Hatch 1990b), allowing them to forage over extensive areas and 424 

access varied prey resources. Even during incubation, foraging bouts typically last 5-10 days 425 

(Mallory et al. 2008). In contrast, foraging trips during early chick rearing last only ~1 – 2 426 

days (Furness and Todd 1984; Hamer et al. 1997; Ojowski et al. 2001; Weimerskirch et al. 427 

2001). Our findings highlight how the demands of chick rearing constrain this species to 428 

relatively local foraging areas around breeding colonies, leading to seasonal changes in diet.  429 

 430 

 431 

Sex differences 432 

 433 

We found no evidence of sex differences in the diet of guillemots, a finding that was 434 

consistent with the absence of sexual dimorphism and major sex differences in parental duties 435 

during the sampling periods (Table 1). Male and female kittiwakes also show relatively little 436 

difference in size and parental behaviour (Table 1). None of the diet comparisons between the 437 

sexes were statistically significant for kittiwakes, although seasonal variation in diet for 438 

males was much less pronounced than females in 2006. Sample sizes were smaller in 2006 439 

than 2005 and thus statistical power was reduced. Diet data from regurgitations could not be 440 

analysed by sex as this was not determined for all birds which regurgitated, so there was no 441 

way of checking this result independently. Thus further work is needed to check whether 442 

males consistently show less seasonal variation.  443 

 444 

In contrast to guillemots and kittiwakes, there were marked sex differences in fulmar 445 

FA/FAL signatures during the prelaying period, and this effect did not extend into incubation 446 

or chick-rearing in either year.  Sex differences in diet might be expected in this species given 447 

that females are absent from the colony for much longer than males during the prelaying 448 
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exodus (Macdonald 1977; Hatch 1990b), and males also attend the colony more frequently 449 

than females during the winter (Macdonald 1980). Mallory et al. (2009) identified sex-450 

specific changes in the body composition of fulmars following the prelaying exodus, 451 

suggesting that females were selecting calcium rich prey to support egg production, whilst 452 

males accumulated fat and protein to support incubation. These physiological changes 453 

highlight that we cannot rule out the possibility that observed differences in FA signature 454 

during the prelaying period could be partly influenced by differences in lipid absorption and 455 

allocation as well as dietary intake. At the same time, comparison of the different FA ratios in 456 

blood samples collected from prelaying fulmars indicated that females were consuming a 457 

higher proportion of demersal prey species than males during this period. The most likely 458 

source of demersal prey are discards from demersal fisheries, since fulmars cannot dive 459 

beyond the first few metres of the water column (Cramp 1985) and are known to feed on 460 

discards (Phillips et al. 1999; Thompson 2006). It is unclear why females would be feeding 461 

more upon discards than males. Given that females are smaller and feeding on discards 462 

appears to be highly competitive (Hudson and Furness 1989), one might expect females to be 463 

excluded by males, as in the giant petrel (Gonzalez-Solis et al. 2000). It is therefore perhaps 464 

more likely that males and females are spatially segregated during prelaying. Size related 465 

differences in flight energetics could affect the ability of males and females to exploit 466 

different foraging areas (Schaffer et al. 2001). Further work using geolocation (Phillips et al. 467 

2004b) and GPS devices (Guilford et al. 2008) is now being conducted to test whether these 468 

differences in FA/FAL signatures do reflect sex-specific differences in foraging areas.  469 

 470 

Wang et al. (2009) found no sex difference in fulmar adipose tissue samples collected during 471 

the pre laying period on Chowiat Island, Alaska. These samples of adipose are representative 472 

of diet in the weeks to month previous to sampling whereas the findings of the present study 473 
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are from stomach oil and therefore representative of the diet over the previous days. By 474 

analysing the FA/FAL profiles of adipose samples at an Atlantic colony the longevity of the 475 

observed sex difference could be determined.  If a sex difference was not found in adipose 476 

tissue then our result in stomach oil is likely to be a short term phenomenon linked to 477 

specifics of the pre-lay exodus being different for males and females. However, if the 478 

opposite result is found then this would suggest that males and females have differences in 479 

foraging through a greater part of the year. This would be a result that was indicative of 480 

different habits of fulmars in different parts of their global range. 481 

 482 

 483 

Conclusions 484 

 485 

Analysis of tissue samples are increasingly being used to complement traditional analysis of 486 

seabird diet. Stable isotope analyses have successfully compared different groups of seabirds, 487 

revealing seasonal, colony and sex-specific variation in the trophic level at which these 488 

groups feed (Hedd and Montevecchi 2006; Phillips et al. 2011). Within certain ecosystems, 489 

extensive studies of the FA/FAL profiles of both predators and their potential prey have used 490 

QFASA to quantify diet composition using these indirect approaches (Iverson et al. 2007; 491 

Tucker et al. 2009; Piche et al. 2010). Our results illustrate how FA/FAL analysis can also be 492 

used to explore variability in seabird diet in the absence of detailed information on the prey 493 

base. Compared with traditional approaches, these indirect methods have the advantage that 494 

sampling is not biased by differential digestion rates of prey in the stomach (Votier et al. 495 

2003), information is gathered on typical diet rather than a snapshot of the most recent meal 496 

and a sample can be collected non-lethally from the majority of birds caught. Thus, FA/FAL 497 

analyses provide an important additional tool for elucidating dietary trends over time, both at 498 
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a population level and potentially through multiple sampling of tissues from known 499 

individuals. The deployment of these techniques alongside novel devices for tracking 500 

individual birds now provides the potential to study the foraging movements and diet of 501 

breeding and non-breeding birds, thereby providing opportunities to better understand the 502 

factors that have driven recent changes in North Sea seabird populations (Mitchell et al. 503 

2004).  504 

 505 

 506 

Acknowledgements 507 

 508 

We thank Mark Newell, Mike Harris, Barbara Cheney, Laura Thompson and colleagues who 509 

assisted with fieldwork, Kate Griffiths and Stuart Piertney for carrying out DNA sexing, 510 

Pamela Walsham for additional laboratory support and three anonymous reviewers for 511 

improvements to the manuscript Permission to work on the Isle of May NNR and Eynhallow 512 

was kindly provided by Scottish Natural Heritage and Orkney Islands Council respectively. 513 

Capture and handling of birds was carried out under licence from the British Trust for 514 

Ornithology, and blood, feathers and adipose sampling was carried out under licence from 515 

The Home Office. Funding for the project was provided by the Natural Environment 516 

Research Council and Talisman Energy (UK) Ltd.   517 

 518 

 519 

 520 

 521 

 522 

 523 



E. Owen et al.  

22 

 

Figure legends 524 

 525 

Figure 1 Two-dimensional plot of the first two variates from a canonical variate analysis of 526 

FA/FAL profiles in guillemot blood taken from males and females during prelaying and 527 

chick-rearing in (a) 2005 and (b) 2006, and (c) from adipose tissue in 2006. Prelaying males 528 

(), prelaying females (), chick-rearing males (), chick-rearing females ()  529 

 530 

Figure 2 Mean area percent ±SD for FA/FAL components in Common guillemot blood and 531 

adipose tissue cosampled from 19 birds. Asterisks indicate significant differences between  532 

sample types (p < 0.05, t-test).   533 

 534 

Figure 3 Two-dimensional plot of the first two variates from a canonical variate analysis of 535 

FA/FAL profiles in kittiwake blood taken from males and females during prelaying and 536 

chick-rearing in (a) 2005 and (b) 2006. Prelaying males (), prelaying females (), chick-537 

rearing males (), chick-rearing females () 538 

 539 

Figure 4 Two-dimensional plot of the first two variates from a canonical variate analysis of 540 

FA/FAL profiles in fulmar stomach oil taken from males and females during prelaying, 541 

incubation and chick-rearing during (a) 2005 (b) and 2006. Prelaying males (), prelaying 542 

females (), incubating males (), incubating females (), chick-rearing males (), chick-543 

rearing females () 544 

 545 

 546 

 547 

 548 

 549 
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Table 1 Foraging strategy, body size and prelaying behaviour in the common guillemot, 784 

black-legged kittiwake and northern fulmar. Sources: Mitchell et al. 2004; Bogdanova et al. 785 

2011; Wanless and Harris 1986. 786 

 787 

 Common guillemot Black-legged kittiwake Northern fulmar 

Foraging Strategy Pursuit diver Surface feeder Surface feeder 

Dietary breadth during 

the breeding season 

Predominantly 

Piscivorous 

Predominantly 

Piscivorous 

Generalist  

Degree of sexual 

dimorphism 

Monomorphic Monomorphic Sexually dimorphic 

(males 11% heavier) 

Prelaying behaviour Females have 1-3 day 

absence  prior to 

laying 

Some males may 

undertake prelaying 

exodus 

Both sexes make 

prelaying exodus 

(Males < 10 days, 

Females > 14 days) 

  788 
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Table 2 Breeding stage, species, sampling dates and type of samples used in this study. BK, 789 

Black-legged kittiwake; CG, Common guillemot; NF, Northern fulmar.  790 

  791 

         

Breeding 

stage  
Species Sample Types 

Sampling period 

2005 2006 

     

Prelaying BK Blood 9 May -21 May 3 Apr - 7 June 

 CG 

 
Blood + 

Adipose 4 April (blood only) 31March - 3 April 

 
 

NF 

 
Blood + 

Stomach oil 24 April - 26 April 19 April - 20 April 

     

Incubation NF Stomach oil 29 May - 31 May 28 May - 31 May 

     

Chick-rearing BK Blood 28 July - 2 August 3 July - 1 August 

 

 

 
CG 

Blood + 

Adipose 28 June-3 July 27 June - 5 July 

 
 

NF 

 
Blood + 

Stomach oil 10 July - 22 July 18 July - 20 July 
          

 792 
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Table 3 Seasonal differences in FA/FAL profiles of males and females. Intergroup distances (dist) and significance values (p) are derived from 793 

canonical variates analysis and subsequent randomisation test on the FA/FAL profiles extracted from kittiwake, guillemot and fulmar blood, 794 

adipose tissue or stomach oil during 2005 and 2006. The number of individuals sampled (n) correspond to the order in the seasonal comparison 795 

column. 796 

  797 

 

* Denotes significance at the 5% level 

Species Year Sample Type Seasonal Comparison 

Male  Female 

n dist p  n dist p 

           

Guillemot 2005 Blood Prelay vs chick-rearing 2,4 10.2   0.002 *  2,6 7.8   0.006 * 

 2006 Blood Prelay vs chick-rearing 6,6 15.8 <0.001 *  4,2 16.2   0.002 * 

 2006 Adipose Prelay vs chick-rearing 6,7 13.1 <0.001 *  4,2 11.9   0.043 * 

Kittiwake 2005 Blood Prelay vs chick-rearing 7,3 13.2   0.003 *  8,5 11.1   0.004 * 

 2006 Blood Prelay vs chick-rearing 4,4 5.5 0.117  4,4 10.4 <0.001 * 

Fulmar 2005 Oil Prelay vs chick-rearing 10,5 11.6 <0.001 *  13,14 6.3 <0.001 * 

   Prelay vs Incubation 10,13 7.4 <0.001 *  13,3 7.2   0.290 

   Incubation vs chick-rearing 11,5 7.5   0.039 *  3,14 8.3   0.157 

 2006 Oil Prelay vs chick-rearing 10,3 9.5 0.069  13,5 12.0 <0.001 * 

   Prelay vs Incubation 10,8 5.3 0.315  13,14 5.9   0.022 * 

   Incubation vs chick-rearing 8,3 7.8 0.276  14,5 7.6   0.048 * 
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Table 4 Sex differences in FA/FAL profiles during prelaying, incubation and chick-rearing. Intergroup distances (dist) and significance values 798 

(p) are derived from canonical variates analysis and subsequent randomisation test on the FA profiles extracted from guillemot, kittiwake and 799 

fulmar blood, adipose tissue or stomach oil during 2005 and 2006, with n equaling the number of individuals sampled.  –, no samples. 800 

 801 

* Denotes significance at the 5% level802 

Species Year 
Sample 

Type 
Comparison 

Prelay  Incubation  Chick-rearing 

n dist p  n dist p  n dist p 

               

Guillemot 2005 Blood Male vs Female 2,2 6.1 0.130  - - -  4,6 2.2 0.751  

 2006 Blood Male vs Female 6,4 4.0 0.656  - - -  6,2 3.1 0.963  

 2006 Adipose Male vs Female 6,4 5.1 0.372   - - -  7,2 3.9 0.863  

Kittiwake 2005 Blood Male vs Female 7,8 3.0 0.927  - - -  3,5 8.0 0.180  

 2006 Blood Male vs Female 4,4 5.9 0.091   - - -  4,4 4.0 0.468  

Fulmar 2005 Oil Male vs Female 10,13 7.4 <0.001 *  11,3 7.8 0.169   5,14 1.9 0.868  

 2006 Oil Male vs Female 10,12 6.4 0.022 *  8,14 4.0 <0.566   3,5 9.1 0.126 

 2005 Blood Male vs Female 5,5 15.6 0.033 *  - - -  - - - 

 2006 Blood Male vs Female 4,3 38.3 0.030 *   - - -  - - - 
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Figure 1 803 
  804 

(a) Blood 2005

(c) Adipose 2006

(b) Blood 2006
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Figure 2805 
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Figure 3 807 
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Figure 4 811 
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