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Abstract 1 

The Antarctic Peninsula is one of the fastest-warming regions on Earth, but its 2 

palaeoenvironmental history south of 63 latitude is relatively poorly documented, 3 

relying principally on the marine geological record and short ice cores. In this paper, 4 

we present evidence of late-Quaternary environmental change from the Marguerite 5 

Bay region combining data from lake sediment records on Horseshoe Island and 6 

Pourquoi-Pas Island, and raised beaches at Horseshoe Island, Pourquoi-Pas Island and 7 

Calmette Bay. Lake sediments were radiocarbon dated and analysed using a 8 

combination of sedimentological, geochemical and microfossil methods. Raised 9 

beaches were surveyed and analysed for changes in clast composition, size and 10 

roundness. Results suggest a non-erosive glacial regime existed on Horseshoe Island 11 

from 35780 (38650-33380) or 32910 (34630-31370) cal yr BP onwards. There is 12 

radiocarbon and macrofossil evidence for possible local deglaciation events at 28830 13 

(29370-28320) cal yr BP, immediately postdating Antarctic Isotopic Maximum 4, and 14 

21110 (21510-20730 interpolated) cal yr BP coinciding with, or immediately 15 

postdating, Antarctic Isotopic Maximum 2. The Holocene deglaciation of Horseshoe 16 

Island commenced from 10610 (11000-10300) cal yr BP at the same time as the early 17 

Holocene temperature maximum recorded in Antarctic ice cores. This was followed 18 

by the onset of marine sedimentation in The Narrows, Pourquoi-Pas Island, before 19 

8850 (8480-9260) cal yr BP. Relative sea level high stands of 40.79 m above present 20 

at Pourquoi-Pas Island and 40.55 m above present at Calmette Bay occurred 21 

sometime after 9000 cal yr BP and suggest that a thicker ice sheet, including 22 

grounded ice streams, was present in this region of the Antarctic Peninsula than that 23 

recorded at sites further north. Isolation of the Narrows Lake basin on Pourquoi-Pas 24 

Island shows relative sea level in this region had fallen rapidly to 19.41 m by 7270 25 

(7385-7155) cal yr BP. Chaetoceros resting spores suggest high productivity and 26 

stratified surface waters in The Narrows after 8850 (9260-8480) cal yr BP and beach 27 

clasts provide evidence of a period of increased wave energy at approximately 8000 28 

yr BP. Lake sediment and beach data suggest an extended period of regional warming 29 

sometime between 6200-2030 cal yr BP followed by the onset of Neoglacial 30 

conditions from 2630 and 2030 cal yr BP in Narrows Lake and Col Lake 1, 31 

respectively. Diatom and 
13

C vs C/N and macrofossil evidence suggest a potential 32 

increase in the number of birds and seals visiting the Narrows Lake catchment 33 
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sometime after 2100 (2250-2000) cal yr BP, with enhanced nutrient enrichment 1 

evident after 1150 (1230-1080) cal yr BP, and particularly from c. 460 (540-380) cal 2 

yr BP. A very recent increase in Gomphonema species and organic carbon in the top 3 

centimetre of the Narrows Lake sediment core after c. 410 (490-320) cal yr BP, and 4 

increased sedimentation rates in the Col Lake 1 sediment core, after c. 400 (490-310) 5 

cal yr BP may be a response to the regional late-Holocene warming of the Antarctic 6 

Peninsula. 7 

 8 

 9 

1) Introduction 10 

 11 

The Antarctic Peninsula is one of the fastest-warming regions on Earth. With a rate of 12 

temperature increase of 3.7±1.6°C century
−1

, it is warming at several times the global 13 

mean of 0.6±0.2°C century
−1

 (Vaughan et al., 2003). This has resulted in shifts in 14 

species distributions, changes in lake ecology (Quayle et al., 2002), catastrophic 15 

disintegration of seven ice shelves (Hodgson et al., 2006; Cook and Vaughan, 2010; 16 

Hodgson 2011) and accelerated discharge of 87 % of continental glaciers (Cook et al., 17 

2005). These processes look set to accelerate given IPCC predictions that future 18 

anthropogenic increases in greenhouse gas emissions will lead to a 1.4-5.8°C rise in 19 

global temperatures by 2100 (IPCC, 2007), and climate modeling studies that show 20 

anthropogenic forcing of the Southern Hemisphere Annular Mode has played a key 21 

role in driving the local summer warming (Marshall et al., 2006). Warming is set to 22 

accelerate further once the buffering effect of the „ozone hole‟ declines (Turner et al., 23 

2009; Marshall et al., 2010). 24 

 25 

Palaeoenvironmental records from this region are therefore urgently required to 26 

understand (1) the degree to which these recent changes fall outside of the range of 27 

natural variability, (2) how the ice sheets, relative sea level and ecosystems in the 28 

region have developed to their present status, and (3) how they might respond to the 29 

effects of continued increases in temperature. The key palaeoenvironmental datasets 30 

from the southern Antarctic Peninsula (South of 63° latitude) are those from ice cores, 31 

marine and lake sediments coupled with cosmogenic isotope exposure age dating of 32 

glacially-emplaced boulders and scoured bedrock, which, combined, constrain the 33 
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retreat of the last glacial ice sheet (Bentley et al., 2006; Bentley et al., 2009; Bentley 1 

et al., 2011). 2 

 3 

Ice cores from the Antarctic Peninsula have been limited in length due to the 4 

relatively rapid flow of ice from its mountainous spine (see Mosley-Thompson and 5 

Thompson, 2003, and references therein). New ice cores collected from more stable 6 

ice accumulation sites on the north-eastern Peninsula, for example at James Ross 7 

Island (64.21°S, 57.63°W) (Mulvaney et al., 2012), partially address this issue, but 8 

most ice cores from central and southern parts of the Peninsula typically span periods 9 

of only 1-2000 years. Some of these contain evidence of the rapid temperature 10 

changes seen in instrumental data over the last two decades (Thomas et al., 2009). 11 

 12 

There is a reasonable distribution of marine sediment records from the region which 13 

document the deglaciation of the continental shelf (Ó Cofaigh et al., 2005; Kilfeather 14 

et al., 2011; Graham and Smith, 2012), bays and fjords (Taylor et al., 2001) and, in 15 

some cases changes in sea ice extent, ocean circulation, biological production and 16 

ecology (Domack, 2002; Allen et al., 2010). Some of these are reliably dated using 17 

radiocarbon ages from discrete calcareous macrofossils whose marine reservoir 18 

effects are well-constrained by modern specimens (e.g., Domack et al., 2001; Allen et 19 

al., 2010). 20 

 21 

On land, cosmogenic isotope exposure dating is beginning to constrain the onset of 22 

deglaciation (Bentley et al., 2006; Bentley et al., 2011) (Fig. 1e). Epishelf lake 23 

sediments have provided records of ice shelf retreat (Bentley et al., 2005b; Hodgson 24 

et al., 2006; Smith et al., 2007a; Roberts et al., 2008), and geomorphological and 25 

palaeolimnological studies, evidence of the deglaciation and emergence of a former 26 

subglacial lake (Hodgson et al., 2009a; Hodgson et al., 2009b). However, to date, lake 27 

sediment records documenting environmental changes in the region between 63-70º 28 

South are limited (e.g., Wasell and Håkansson, 1992), and lake sediment proxies that 29 

reveal important information about changes in temperature (as a result of its influence 30 

on lake ice cover and within lake production), deglaciation, and sea level change 31 

(Hodgson et al., 2004; Hodgson and Smol, 2008) have been under exploited. 32 

 33 



 5 

To address this, we present detailed multi-proxy analyses of two lake sediment cores 1 

from islands within a small archipelago in northern Marguerite Bay on the southern 2 

Antarctic Peninsula; one from a freshwater lake on Horseshoe Island and one from a 3 

coastal isolation basin on Pourquoi-Pas Island. This is supplemented by information 4 

on relative sea level change and marine conditions from surveys of raised beaches at 5 

three different locations within Marguerite Bay.  6 

 7 

 8 

2) Site descriptions 9 

 10 

All field sites are located in Marguerite Bay (68°30′ S, 068°30′ W), which is the most 11 

extensive embayment on the west side of the Antarctic Peninsula, bounded to the 12 

north by Adelaide Island and the Arrowsmith Peninsula and to the south by Alexander 13 

Island and George VI Sound (Fig. 1). From north to south it measures approximately 14 

270 km and from east to west, 150 km. Outlet glaciers from the Antarctic Peninsula 15 

and Alexander Island drain into the northern, eastern and south-western parts of the 16 

bay. In the southern part of Marguerite Bay, George VI Ice Shelf, which occupies 17 

George VI Sound, discharges north into Marguerite Bay and south into the 18 

Bellingshausen Sea. The submarine Marguerite Trough, formed by the earlier 19 

grounded ice stream in this location, extends from the George VI Sound, to the edge 20 

of the continental shelf. This trough is between 50-80 km in width and roughly 370 21 

km in length (Fig. 1c). It is over-deepened from approximately 500 m at the shelf 22 

edge to 1500 m in inner Marguerite Bay (Ó Cofaigh et al., 2005; Graham et al., 2011).  23 

 24 

2.1 Horseshoe Island 25 

Horseshoe Island (67
o
51‟ S, 67

o
12‟ W), one of the larger islands in northern 26 

Marguerite Bay, is situated at the entrance to Bourgeois Fjord (Figs. 1c, 1d). The 27 

underlying bedrock consists of foliated granitic gneisses of the Antarctic Peninsula 28 

Metamorphic Complex and undifferentiated volcanic rocks of the Antarctic Peninsula 29 

Volcanic Group (Matthews, 1983b). There are marked topographic differences 30 

between the northern part of the island which consists of low lying topography 31 

dominated by Mount Searle (537 m) and the more mountainous southern part 32 

dominated by Mt Breaker (879 m) and the Shoesmith Glacier that discharges into 33 

Gaul Cove. Between these is a narrow, largely ice-free elevated central col (Figs. 1d, 34 
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2a, 2b), the remnant of a major shear zone of uncertain age (Matthews, 1983b). There 1 

are four small lakes located on this central col at altitudes of between c. 80-140 m 2 

a.s.l. The lake studied, „Col Lake 1‟ (unofficial name), (67
o
49.870‟ S, 67

o
13.937‟ W; 3 

Fig. 2b), is an elongate, shallow clear water lake, 162 m long, 64 m wide and 3.2 m 4 

deep situated at an altitude of c. 80 m above sea level 5 

 6 

2.2 Pourquoi-Pas Island 7 

Pourquoi-Pas Island (67
o
41‟ S, 67

o
30‟ W) is a mountainous and heavily glaciated 8 

island situated to the north of Horseshoe Island (Fig 1c). Its topography is dominated 9 

by Mt Verne 1635 m and Mt. Arronax 1540 m (Fig. 1e). The underlying bedrock 10 

consists of undifferentiated volcanic rocks of the Antarctic Peninsula Volcanic Group 11 

(Matthews, 1983a). Lower altitude ice-free areas are covered in a thick silty diamict 12 

with frost-sorted polygons, whilst bedrock is exposed on the higher ridges. Glacial 13 

striations run south-east to north-west, sub-parallel with the topographic axis of The 14 

Narrows. The study lake „Narrows Lake‟ (unofficial name) is located on the north-15 

eastern ice free coast adjacent to The Narrows (67
o
 36.054‟ S, 67

o
 12.449‟W) (Figs. 16 

1e, 2c, 2d). The lake is 125 m long, and 6.2 m deep with a sill height of at 19.41 m 17 

above the present high water mark in The Narrows. 18 

 19 

2.3 Raised beaches  20 

Raised beaches were first identified by aerial reconnaissance by the author and in 21 

Field Reports from early surveying expeditions, stored in the British Antarctic Survey 22 

Archives. The main raised beach sections surveyed were at Gaul Cove on Horseshoe 23 

Island (Fig. 2e; 67
0
 49.563‟ S, 67

0
 12.869‟ W to 67

0
 49.613‟ S, 67

0
 13.166‟W); 24 

Pourquoi-Pas Island (Fig 2d; c. 67
0
 35.52‟ S to 67

0
 11.51‟ W to c. 67

0
 36.02‟ S); and 25 

at Calmette Bay (Fig. 2f; 6803.848‟ S, 6710.419 W to 6804.040‟S, 06710.532‟ 26 

W).  27 

 28 

 29 

3) Methods 30 

 31 

3.1 Limnology and sediment coring 32 
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The limnology of the study sites was described following Hodgson et al. (2009b). 1 

Surface sediment cores were collected from the deepest part of the lakes using a 2 

UWITEC (1.2 m) gravity corer fitted with a steel „orange-peel‟ core catcher and 3 

deeper sediments were collected with a 1 m Livingstone corer with overlaps of c. 10-4 

15 cm between core drives. The sediment cores were unconsolidated and were 5 

therefore sectioned at 0.5 (top 20 cm) or 1 cm intervals (20 cm onwards) in the field 6 

and transported frozen in Whirlpak bags. 7 

 8 

3.2 Lithology and chronology 9 

The sediment cores were analysed for sediment colour (Troels-Smith, 1955), wet 10 

density, dry mass, and organic matter (by % weight loss on ignition (LOI), following 11 

standard methods (Dean, 1974)), and divided into stratigraphic zones.  12 

 13 

Chronologies for the sediment cores were established by AMS radiocarbon (
14

C) 14 

dating of macrofossils including microbial mats, fragments of the moss Warnstofia 15 

foutinaliopsis sp. and preserved eggs of the fairy shrimp Branchinecta gaini. Bulk 16 

glaciolacustrine and marine sediments were dated in samples where macrofossils were 17 

absent. Paired and/or triplicate macrofossil and bulk samples were measured at 18 

selected depths in both cores to check for any systematic offsets between the age of 19 

the carbon incorporated in different macrofossil and bulk sediment fractions. 20 

 21 

Macrofossils were hand-picked from frozen bulk material, after overnight defrosting 22 

at 5
o
C, immersed in ultra-pure (18.2 m.Ohm ) water, sealed and placed an ultrasonic 23 

bath for an hour and refrozen. Samples were sent frozen to the Scottish Universities 24 

Environmental Research Centre (SUERC) and Beta Analytic (Miami, Florida) for 25 

accelerator mass spectrometry (AMS) radiocarbon dating. Moss samples analysed by 26 

SUERC were soaked overnight in cold 0.5M HCl, filtered and rinsed free of mineral 27 

acid with deionised water. As samples were small, they were placed directly into 28 

quartz tubes inserts containing quartz wool and dried by freeze drying. Microbial mat 29 

samples were digested in 2 M HCl (80
o
C for 8 hours), washed free from mineral acid 30 

with distilled water then dried and homogenised. All other SUERC-samples were 31 

heated in 2M HCl (80ºC for 8 hours), rinsed in deionised water, until all traces of acid 32 

had been removed, and dried in a vacuum oven. The total carbon in a known weight 33 

of all pre-treated samples was recovered as CO2 by heating with CuO in a sealed 34 
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quartz tube. The CO2 was converted to graphite by Fe/Zn reduction. Samples dated by 1 

Beta Analytic were leached with a 0.5M to 1.0M HCl bath to remove carbonates, 2 

heated to 70
o
C for 4 hours. Leaching was repeated until no carbonate remained, 3 

followed by rinsing to neutral 20 times with deionised water, then placed in 0.5% to 4 

2% solution of NaOH for 4 hrs at 70
o
C and rinsed to neutral 20 times with deionised 5 

water. The process was repeated until no additional reaction (typically indicated by a 6 

colour change in the NaOH liquid) was observed. Samples were then leached again in 7 

a 0.5M to 1.0M HCl bath to remove any CO2 absorbed from the atmosphere by the 8 

NaOH soakings and to ensure initial carbonate removal was complete, and then dried 9 

at 70
o
C in a gravity oven for 8-12 hours.  10 

 11 

Calibration of 
14

C ages was carried out in OXCAL v. 4.1 (Bronk Ramsey, 2009) using 12 

the SHCal04.
14

C Southern Hemisphere atmosphere dataset (McCormac et al., 2004; 13 

Reimer et al., 2004) for freshwater samples. Freshwater ages older than 11,500 cal yrs 14 

BP were calibrated using the INTCAL09 Northern Hemisphere atmosphere dataset 15 

(Reimer et al., 2009). Absolute percentage of modern carbon (pMC) data were 16 

corrected according to 
13

C/
12

C isotopic ratios from measured pMC, where a “modern” 17 

pMC value is defined as 100 % (AD 1950), and the „present day‟ pMC value is 18 

defined as 107.5 % (AD 2010). In the marine-influenced sections of the Pourquoi-Pas 19 

sediment core, a mixed MARINE09/SHCal04.
14

C (50% marine) (Reimer et al., 2009) 20 

calibration curve was used, and the Antarctic marine reservoir effect for this locality 21 

constrained by using a ΔR value of 664±10 years (1064 ±10 years minus the global 22 

marine reservoir of 400 years). This marine reservoir effect is based on the ages of 23 

contemporary water samples reported by Milliken et al. (2009) from Maxwell Bay (cf. 24 

Watcham et al., 2011), which has a similar coastal setting in the west Antarctic 25 

Peninsula region and is also subject to seasonal meltwater from tidewater glaciers.  26 

 27 

Radiocarbon age data are reported as conventional radiocarbon years BP (
14

C yr BP) 28 

±1σ, and as as two-sigma (95.4%) calibrated age ranges, mean±1σ, and median 29 

calibrated ages (cal yr BP relative to AD 1950) (Tables 2, 3). Calibrated ages are 30 

rounded to the nearest 5 years where measured radiocarbon age errors were less than 31 

±50 
14

C years and to the nearest 10 years where measured radiocarbon age errors were 32 

greater than ±50 
14

C years. Classical age-depth modelling was undertaken using 33 

CLAM v2 software (Blaauw, 2010). Interpolated ages in the text were rounded to the 34 
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nearest 10 years and derived from the „best-fit‟ age of the CLAM age-depth model, 1 

with interpolated 2-σ (95%) calibrated age ranges shown in brackets, also rounded to 2 

the nearest 10 years. 3 

 4 

3.3 Siliceous microfossils and macrofossils 5 

Diatoms and stomatocysts were analysed in the Narrows Lake core, but were absent 6 

from Col Lake 1 on Horseshoe Island; a likely result of silica limitation (Table 1). 7 

Diatom preparation followed a slightly modified version of Renberg (1990). 8 

Naphrax® was used as the slide moutant. At least 400 valves and stomatocysts were 9 

counted in each sample. Taxonomy was mainly based on Sabbe et al. (2003), Van de 10 

Vijver et al. (2002) and Cremer et al. (2003). The diatom stratigraphy was divided 11 

into zones using stratigraphically constrained cluster analysis of the diatom data 12 

following squared root transformation (CONISS, Grimm, 1987). The significance of 13 

the zones was assessed using the broken stick model (Bennett, 1996) in the Rioja 14 

package for R (Juggins, 2009). Changes in the diatom communities were interpreted 15 

following previously published ecological preferences of indicator taxa. 16 

 17 

Sediment samples for macrofossil analysis were prepared by washing bulk sediment 18 

samples (2 cm
3
) through a 125 μm sieve using deionised water to remove fine 19 

inorganic particles. The remaining material was placed in a perspex counting chamber 20 

and macrofossils were systematically enumerated using a low-powered dissection 21 

microscope. Macrofossils included Anostracan eggs (Fairy Shrimp, Branchinecta 22 

gaini) and moss fragments (Warnstofia foutinaliopsis sp.).  23 

 24 

3.4 Geochemical analyses 25 

Geochemical analyses included measurements of carbon (TC) and nitrogen (TN) 26 

concentrations (%) from which C/N is derived, and bulk organic carbon isotopic 27 

ratios (
13

Corg)
 
by combustion on a Carlo Erba 1500 on-line to a VG Triple Trap and 28 

Optima dual-inlet mass spectrometer. 
13

Corg values were calculated to the VPDB 29 

scale using a within-run laboratory standard calibrated against NBS-19 and NBS-22. 30 

Total organic carbon (TOC) and total organic nitrogen (TON) values were determined 31 

simultaneously when measuring the isotope ratio. Replicate analyses of sample 32 

material gave a precision of  0.1% (1 sigma).  33 
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 1 

3.5 Raised beach surveys 2 

Raised beaches at Pourquoi-Pas Island, Horseshoe Island and at Calmette Bay (Figs. 3 

2d, 2e, 2f, respectively) were surveyed up to their marine limits. Surveys were carried 4 

out using a Leica NA720 autoset level. Periods of changing coastal conditions were 5 

determined from changes in clast size and roundness (which provides an indication of 6 

past wave energy and/or sea ice cover) of raised beach material, the latter using the 7 

standard ordered scale of Powers (1953). Measurements of the a-axis (the longest axis 8 

of the rock) and b-axis (the intermediate axis, perpendicular to the a-axis) were also 9 

undertaken where time permitted. The beach survey and age constraint data were 10 

compared with previously published data from Ginger Islands, Lagoon Island, 11 

Anchorage Island and Rothera Point in the north and west of Marguerite Bay (Bentley 12 

et al., 2005a). 13 

 14 

 15 

4) Results 16 

 17 

4.1 Horseshoe Island, Col Lake 1 18 

Being only 3.2 m deep, light penetrates to the bottom of Col Lake 1, resulting in well-19 

developed benthic and epilithic mats of cyanobacteria, and a grazing zooplankton 20 

community including Branchinecta gaini and Boeckella poppei. Patchy moss beds are 21 

present, particularly towards the edges of the lake. The water chemistry is typical of a 22 

polar freshwater oligotrophic lake (Table 1). Profiles of the water column (measured 23 

on 17 Jan 2003) show a marginally warmer surface layer to 1.6 m followed by steady 24 

cooling through the lower water column. The water column is otherwise well mixed 25 

with little change in conductivity, and no evidence of oxygen depletion with depth 26 

(Fig. 3).  27 

 28 

The 111 cm sediment core consisted of three lithological units (Fig. 4). The lowest 29 

unit (Lithological Unit 1, 111-72 cm) consisted of glaciolacustrine greenish grey silt 30 

with clay and  sand overlain by a transition zone (Lithology Unit 2, 72-64 cm) and 31 

laminated microbial mats (Lithological Unit 3, 64-0 cm). Zone 3 was divided into 3 32 

sub-zones based on changes in the colour and texture of the microbial mats from dark-33 



 11 

olive grey (Lithological Unit 3.1, 64-30 cm) to black (Lithological Unit 3.2, 30-2.5 1 

cm) to grey-brown mats with small „flake-mats‟ (Lithological Unit 3.3, 2.5 – 0 cm).  2 

 3 

Radiocarbon dating of the core shows that, with one exception at 94-95 cm, the ages 4 

were in stratigraphic order (Table 2, Fig. 5). The living surface of the benthic 5 

microbial mat had a measured radiocarbon age of 693±26 
14

C yr BP. This was 6 

interpreted as a local carbon reservoir effect and was subtracted (prior to calibration) 7 

from the radiocarbon ages obtained from the top 61 cm (Lithological Unit 3) of the 8 

core; above  the transition from glaciolacustrine sediments to laminated microbial 9 

mats to . In preliminary age-depth modelling experiments undertaken in Oxcal and 10 

CLAM, retention of the reservoir correction into glaciolacustrine sediments below 61 11 

cm resulted in an age reversal. A simple interpolated age-depth model undertaken in 12 

CLAM was chosen as best representing the most probable sequence of calibrated 13 

ages, with the fewest age-depth reversals, and the lowest log fit values (indicating a 14 

better fit to data). More complex models produced similar age-depth profiles.  15 

 16 

Paired dates on microbial mats and the >125 µm microbial mat fraction at 2-3 cm 17 

yielded calibrated ages within error (Table 2). Triplicate dates on moss macrofossils, 18 

Branchinecta gaini and bulk sediments in the 65-66 cm sample also yielded calibrated 19 

ages within error. The oldest date from the bulk glaciolacustrine material at 94-95 cm 20 

in Lithology Unit 1 was 30964±1115 
14

C yr BP; 35780 (38650-33380) cal yr BP. The 21 

age range of 34630-31370 cal yr BP at 110-111 cm is overlapping, suggesting an 22 

elevated sedimentation rate and/or reworking of sediments near the base on the core 23 

(Fig. 5).  24 

 25 

The oldest macrofossil dated was a moss fragment at 73-74 cm deposited at 10610 26 

(11000-10300) cal yr BP. The Lithological Unit 1 to 2 transition was complete just 27 

after 10490 (10660-10270) cal yr BP, and the Lithological Unit 2 to Unit 3 transition 28 

after 9090 (9270-8990) cal yr BP. Sediment accumulation rates were relatively rapid 29 

between 111-86 cm (mean 0.06 mm yr
-1

), low between 86-73 cm (mean 0.013 mm yr
-

30 

1
) and then increased from 73-46 cm (mean 0.057 mm yr

-1
) reaching maximum levels 31 

between 46-8.5cm
 
(mean 0.186 mm yr

-1
) then declining between 8.5-2 cm (mean 32 

0.063 mm yr
-1

), with a further decline between 2-1 cm (0.006 mm yr
-1

) before 33 

increasing again in the top 1 cm (0.025 mm yr
-1

) (Fig. 5). 34 
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 1 

In Lithological Unit 1, the sediment dry mass was between 88 and 48 %, and the 2 

organic content, measured as TC and LOI550, was below 0.4 % and 1.7 % respectively 3 

(Fig. 4). At c. 85 cm, 28830 (29370-28320) cal yr BP) there is a small increase in 4 

carbonate content, and the first appearance of aquatic mosses which peak at 73 cm. At 5 

81 cm, 21110 (21500-20730 interpolated) cal yr BP Branchinecta eggs were present 6 

for the first time. In Lithological Unit 2 a lithological transition from glaciolacustrine 7 

to lacustrine sediments occured and was marked, in particular, by increased relative 8 

abundances of aquatic mosses, and Branchinecta eggs, reaching their peak 9 

abundances at 73 cm, 10550 (10690-10400) cal yr BP and 65 cm, 9100 (9200-9000 10 

interpolated) cal yr BP respectively. The transition could be seen in most parameters 11 

including decreases in dry mass, increases in organic content, and continuing positive 12 

shifts in δ
13

C and C/N. Through Lithological Unit 3.1 there were continued decreases 13 

in dry mass, increases in TC, LOI550, carbonate, δ
13

C and C/N. Organic carbon 14 

generally exceeded 7.5% between 45-30 cm (5700-4970 interpolated best fit ages), 15 

19-18 cm (4310, 4400-4220 interpolated) and 14-2 cm (4070-2030 interpolated best 16 

fit ages). Most of these proxies were relatively stable in Lithological Unit 3.2 17 

although there were 2 samples at 7 and 11 cm which had lower δ
13

C and higher C/N. 18 

The uppermost samples (Zone 3.3) showed a decline in organic content.  19 

  20 

Through the core the trajectory of δ
13

C and C/N (Fig. 6) shows a shift from values of 21 

around -20 to -25 ‰; associated elsewhere on the Antarctic Peninsula with 22 

glaciolacustrine material including gravels and fine grained sediments (Hodgson et 23 

al., 2009b, Fig . 6) to values more typical of a cyanobacteria-dominated environment 24 

(-10 to -17 ‰ δ
13

; 7-12 C/N) (e.g. Smith et al., 2006).  25 

 26 

4.2 Pourquoi-Pas Island, Narrows Lake 27 

The Narrows Lake occupies a classic isolation basin setting below the Holocene 28 

marine limit at 40.79 m above the present high water mark in The Narrows. The 29 

altitude of the sill is 19.41 m above the present high water mark (BAS survey point 30 

31, Hodgson et al., 2003)). The lake is seasonally ice free, 125 m long, and 6.2 m 31 

deep with benthic and epilithic mats of cyanobacteria and zooplankton including 32 

Branchinecta gainii and and Daphniopsis sp. Small moss beds are present in the 33 

littoral zone. The water chemistry is typical of a polar freshwater oligotrophic lake 34 
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with little chemical influence from the nearby marine water (Table 1). Profiles of the 1 

water column (measured on 21 Jan 2003) showed near stable temperature and 2 

conductivity profiles, and increasing oxygen saturation with depth (Fig. 3). At the 3 

time of sampling inflow streams were supplying the lake with fresh snow-melt and 4 

the lake was discharging over the sill into The Narrows.  5 

 6 

The 1.3 m sediment core from the Narrows Lake was divided into five lithological 7 

units (Fig. 7), and four significant diatom zones based on a stratigraphically 8 

constrained clustering and broken stick analysis (Fig. 8). Lithological Unit 1 (130-98 9 

cm) consisted of dark olive grey fine marine mud coarse sands and fine gravel 10 

phasing upwards into black sediments with a coarse sands-silt-clay matrix and 11 

sporadic clasts in Lithological Unit 2, (98-91 cm) and olive grey fine marine muds 12 

and coarse sand in Zone 3 (91-81 cm). This was overlain by a marked transition to 13 

olive grey mud, fine sands and the decayed remains of microbial mats (Lithological 14 

Unit 4, 81-61 cm). Above the transition the core consisted of partially layered 15 

microbial mats (Lithological Unit 5, 61-0 cm) with a number of sub-zones based on 16 

minor changes in lithology.  17 

 18 

Radiocarbon dates were in stratigraphic order with the exception of minor reversals at 19 

20-21 cm and 102-103 cm, the latter of which is within calibrated error (Fig. 9, Table 20 

3). As with Col1 Lake, due to a general lack of age-reversals, a simple interpolated 21 

age-depth model was chosen as best representing the most probable sequence of 22 

calibrated ages. 23 

 24 

The living surface of the benthic microbial mat had a radiocarbon age of 270±40 
14

C 25 

yr BP. This was interpreted as a small local carbon reservoir effect and was 26 

subtracted, prior to calibration, from the radiocarbon ages in the top 65 cm of the core 27 

which consisted of similarly laminated freshwater sediments. Paired moss 28 

macrofossils and Branchinecta gaini eggs at 56-57 cm yielded calibrated ages within 29 

error. Paired microbial mat and Branchinecta gaini eggs at 64-65 cm also yielded 30 

calibrated ages within error. The oldest dated material in Lithological Unit 1 was 31 

8489±51 
14

C yr BP or 8850 (9260-8480) cal yr BP. The transition to microbial mats 32 

(Lithology Units 4-5) was complete by 64 cm or 7165 (7280-7030) cal yr BP.  33 

 34 



 14 

Sediment accumulation rates in the Narrows Lake record were relatively high for 1 

most of Lithological Units 1-4, with a stepped decreases from a mean of 0.67 mm yr
-1

 2 

in Units 1 and 2 (130-91 cm), to 0.37 mm yr
-1

 in Unit 3 (91-81 cm), to 0.12 mm yr
-1

 in 3 

the top half (70-65 cm) of Unit 4. Values decline slightly further in between 65-38 cm 4 

(mean 0.07 mm yr
-1

),
 
before increasing between 38-21 cm (mean 0.16 mm yr

-1
), 5 

decreasing between 20-10 cm (0.08 mm yr
-1

) then increasing again in the top 10 cm 6 

(0.17 mm yr
-1

) (Fig. 9).  7 

 8 

In Lithological Units 1-3 (130-81 cm) the mean dry mass was 41 %, organic content, 9 

measured as TC and LOI550 remained below 3% and 5% respectively and carbonate 10 

(LOI950) was relatively stable around 2.5% (Fig. 7). δ
13

C values were generally below 11 

-18 ‰ and C/N ratios remained between 6-10 (Fig. 6). In the early phases of the 12 

transition to microbial mats in Lithological Unit 4 (81-61 cm) most parameters 13 

showed marked shifts including peaks in organic carbon (17 %), carbonate content (4 14 

%), positive shifts in C/N, and the first appearance of aquatic mosses and 15 

Branchinecta eggs. During the transition there was a brief decline in organic carbon, 16 

carbonate and nitrogen. Above the transition, in Lithological Unit 5.1 (60-57 cm; 17 

6450-6100 cal yr BP interpolated best fit age), organic content again increased to 18 

above 10 %. In Lithological Units 5.2-5.3, and part of Lithological Unit 5.4 (57-27 19 

cm; 6200-2630 interpolated best-fit age) organic content continued to exceed 5%. 20 

Lithological Unit 5.2 also had a number of thick moss layers, and related high C/N 21 

ratios, a peak in the concentration of Branchinecta gaini eggs, and a positive shift in 22 

δ
13

C. Through Lithological Units 5.4-5.5 (33-0 cm; 3010-14 cal yr BP interpolated 23 

best fit age) TOC values declined to a mean of 3.5%, there was a steady decrease in 24 

the concentration of Branchinecta eggs, a near absence of mosses above 20 cm (2100, 25 

2250-2000 cal yr BP interpolated) and a slight negative shift in δ
13

C. The trajectory of 26 

δ
13

C and C/N (Fig. 6) showed a separation of the carbon sources in Lithology Units 1-27 

3 from those in Lithological Unit 4 and in Lithological Unit 5. 28 

 29 

Diatoms recorded a transition from marine to brackish, then lacustrine taxa (Fig. 8). 30 

Diatom Zone 1 (127-68 cm) was dominated by Chaetoceros resting spores, 31 

Nanofrustulum shiloi, and a Pseudostaurosira species. Within Diatom Zone 2 (68-54 32 

cm) the transition from marine sea ice sub-surface communities to freshwater taxa 33 

was complete by 65-64 cm, 7165 (7280-7030) cal yr BP. Navicula phyllepta was 34 
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relatively abundant in this transition zone and has been recorded in similar isolation 1 

basin transitions in east Antarctica (Verleyen et al., 2004; Verleyen et al., 2005). The 2 

freshwater diatom community was highly variable between 65 and 54 cm with a 3 

succession from communities dominated by Pinnularia microstauron, to assemblages 4 

dominated by Navicula veneta and Planothidium quadripunctatum, culminating in a 5 

flora in which Gomphonema cf. Parvulum and P. microstauron are abundant. Diatom 6 

Zone 3 (54-22 cm) was dominated by an unknown Naviculoid species, as yet not 7 

reported from other Antarctic lakes (Van de Vijver et al., 2002; Verleyen et al., 2003; 8 

Sterken et al., subm). From 42 cm upwards (3890, 4000-3790 interpolated) the 9 

relative abundance of Psammothidium subatomoides gradually increased. 10 

Gomphonema spp. decreased in Diatom Zone 4 (22-0 cm). Somatocysts reached a 11 

maximum relative abundance at 18 cm and Naviculadicta elorantana appeared for the 12 

first time in the core. Diadesmis langebertalotii, which was also present in the 13 

transition zone, became subdominant in the most recent sediments. Gomphonema spp. 14 

increased in the top 1 cm of the core.  15 

  16 

4.3 Raised beaches  17 

Raised beach surveys at Horseshoe Island, Pourquoi-Pas Island and Calmette Bay 18 

(Fig. 10) showed remarkably similar profiles (Fig. 10), but with an offset at Pourquoi-19 

Pas Island where the survey incorporated the Narrows Lake isolation basin. The 20 

surveys identified the highest marine limits at Pourquoi-Pas Island (40.79 m above the 21 

present high water mark) and Calmette Bay (40.55 m). The beach surveyed at Gaul 22 

Cove on Horseshoe Island was present up to a height of 22.11 m, above which there 23 

was an indistinct rock shoreline which was not surveyed. 24 

 25 

At Pourquoi-Pas Island, the raised shoreline included a number of steps or terraces, 26 

presumably built up by wave action, and outcrops of local bedrock which have 27 

undergone significant coastal erosion. The first prominent step occurs between 32.68 28 

m and 39.28 m, and is present in some areas as a smoothed rock platform at 32.68 m 29 

and in others as the vertical limit of large (c. 150 mm) rounded boulders. The second 30 

is a platform at 21.49 m which extends around the immediate lake catchment, at ca. 31 

2.69 m above the maximum lake water level. Both can be traced as continuous 32 

features around the immediate coastline. In contrast, the raised beaches at Calmette 33 

Bay consisted of a vertical sequence of beaches with much larger (45-65 cm diameter) 34 
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and more rounded large beach clasts. Although survey time was limited, the largest 1 

clasts were observed between 30.6 and 32.6 m above the high water mark. At 2 

Horseshoe Island beach clast composition and roundness were measured up to 22.11 3 

m above the high water mark. Both clast size and roundness were at maxima between 4 

c.4-10 m above the present high water mark (Fig. 11). 5 

 6 

 7 

5) Discussion 8 

 9 

The data presented provide a number of new constraints on the glacial and 10 

environmental history of the Marguerite Bay region.  11 

 12 

First, the radiocarbon dates suggest that glacial sediments in the Col Lake1 sediment 13 

core from Horseshoe Island were mostly deposited in stratigraphic order through the 14 

Last Glacial Maximum (with one exception). If no natural „contamination‟ by an old 15 

carbon reservoir, such as glacial melt water or geological sources (e.g., Roberts et al., 16 

2008), was present at this site when the glacial sediments were deposited, this would 17 

suggest that the Col area was subject to a non-erosive glacial regime from 35780 18 

(38650-33380) or 32910 (34630-31370) cal yr BP onwards. Analysis of aerial 19 

photographs shows that in its current configuration local glaciers are diverted away 20 

from the Col 1 site via the deep glacial trough occupied by the Shoesmith Glacier 21 

(Fig. 1d; 2a), and the archipelago is positioned between major ice stream outlets in 22 

northern Marguerite Bay (Fig. 1c); so this conclusion is not unreasonable from a 23 

glaciological perspective. 24 

 25 

Second, the earliest onset of deglaciation, or a deglaciation event, on the raised central 26 

area on Horseshoe Island is suggested by the presence of moss fragments embedded 27 

within the sediment matrix at 28830 (29370-28320) cal yr BP. These radiocarbon 28 

dates are amongst the earliest reported for the region; hence, we cannot completely 29 

rule out that the bulk sediment dates in this zone are influenced by a carbon reservoir 30 

from glacial melt water or geological sources (e.g., Roberts et al., 2008). However, 31 

the consistent stratigraphic order of the ages, at least after 28830 (29370-28320) cal yr 32 

BP (Table 2) and the lack of old carbon in the predominately volcanic bedrock 33 

possibly argues against this. The dates are also of terrestrial origin and therefore 34 
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presumably not influenced by marine radiocarbon reservoir effects. Because a cluster 1 

of similar bulk glacial sediment radiocarbon ages have been reported elsewhere in the 2 

region the spatial and temporal pattern of their occurrence requires further 3 

examination. For example, in the Bellingshausen Sea (Fig.1) there are a series of 4 

radiocarbon dates that suggest that initial ice retreat from the shelf edge may have 5 

started as early as c. 30000 cal yr BP, (Hillenbrand et al., 2010), which is in broad 6 

agreement with cosmogenic isotope evidence from Moutonnée Valley (340 km to the 7 

south) which suggests ice thinning commenced there after c. 30000 years BP (Bentley 8 

et al., 2006). These events immediately post-date Antarctic Isotopic Maximum 4 seen 9 

in the EPICA Dronning Maud Land and EPICA Dome C and other Antarctic ice cores 10 

at c. 35000-30000 yr BP (EPICA, 2006). 11 

 12 

The next potential evidence of onset of deglaciation, or a deglaciation event is the 13 

colonisation of the Col 1 site by Branchinecta gaini which is present (as eggs) in the 14 

sediment matrix from 81 cm, 21110 (21510-20730 interpolated) cal yr BP. The latter 15 

indicate the existence of a perennial water body. If correct, this would require at least 16 

one part of the ice sheet in inner Marguerite Bay to be less than 140 m thick (relative 17 

to present sea level) at this time. This event coincides with continued ice thinning at 18 

Moutonnée Valley (Bentley et al., 2006), and occurs shortly after the retreat of ice in 19 

the Bellingshausen Sea which reached the mid shelf by 23600 cal yr BP (Hillenbrand 20 

et al., 2010). On land, cosmogenic isotope exposure ages from NW Alexander Island 21 

and Rothschild Island shows progressive ice thinning since at least 22000 yr BP, 22 

reaching an elevation of c. 440 m by 10200-11700 yr BP (Johnson et al., in press).  23 

 24 

Further evidence of warming and deglaciation at this time comes from further north in 25 

the Scotia Sea (Collins et al., 2012) which shows that both the winter sea ice and 26 

summer sea ice edges experienced a rapid melt back event between 23500 and 22900 27 

cal yr BP. South, in the western Amundsen Sea Embayment deglaciation was 28 

probably underway as early as 22351 cal yr BP (Smith et al., 2011). These events 29 

coincide with, or immediately postdate Antarctic Isotopic Maximum 2 (~23500 cal yr 30 

BP) seen in Antarctic ice cores (EPICA, 2006) and Southern Ocean SST records 31 

(Kaiser et al., 2005). A radiocarbon age of 24943 ± 180 recalibrated  here as 25260 32 

(24960-25560) cal yr BP has been reported from marine sediment core GC514 33 

(SUERC-31778) in outer Marguerite Bay, but despite being in stratigraphic order, is 34 
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currently discounted from the regional deglacial chronology (Graham and Smith, 1 

2012) because it was considered to be contaminated with an old carbon reservoir. 2 

 3 

All of these radiocarbon dates pre-date ice core evidence which show the onset of post 4 

Last Glacial Maximum deglaciation from c. 18000 yr BP (Masson-Delmotte et al., 5 

2011) and marine geological evidence which show the onset of ice retreat in the 6 

northern Antarctic Peninsula ~18000 cal yr BP (e.g. 17340 cal yr BP in Bransfield 7 

Basin (Heroy and Anderson, 2005)). Further south in outer Marguerite Bay the 8 

earliest deglaciation of Rothschild Trough (site GC514) was at 14430 cal yr BP 9 

(16537 
14

C yr BP) and Charcot Trough (site GC471) occurred at 13490 cal yr BP 10 

(15564 
14

C yr BP) (Graham and Smith, 2012). In the Bellingshausen Sea, the ice had 11 

reached the inner shelf by 14300 cal yr BP (Hillenbrand et al., 2010). Studies of 12 

marine sediment cores within Marguerite Trough document a two-stage retreat of the 13 

Last Glacial Maximum Ice Stream across the continental shelf (Ó Cofaigh et al., 14 

2005; Kilfeather et al., 2011). The first stage of retreat began shortly before 14210 cal 15 

yr BP and 13090 cal yr BP (Heroy and Anderson, 2007; Bentley et al., 2011) at the 16 

outer shelf with the ice retreating approximately 200 km before stabilising. This 17 

retreat event has been linked to the rapidly rising sea levels of Meltwater Pulse 1A 18 

destabilising the grounding line.  19 

 20 

Unequivocal evidence of the onset of Holocene deglaciation on land is provided by 21 

the presence of an aquatic moss fragment with sufficient carbon for AMS radiocarbon 22 

dating at 73-74 cm which grew in the Col Lake 1 at 10610 (11000-10300) cal yr BP. 23 

The establishment of moss is followed by a peak abundance of Branchinecta eggs 24 

from 69 cm, 9830 (9940-9720 cal yr BP interpolated). This is accompanied by an 25 

increase in sediment water content (i.e. decrease in dry mass) and positive shift in 26 

δ
13

C suggesting a freshwater biota was well established at this time. These latter 27 

deglaciation ages are reasonably consistent with the Narrows Lake core, situated at a 28 

lower altitude and closer to the Antarctic Peninsula Ice Sheet, where the onset of 29 

marine sedimentation was at or before 8850 (9260-8480) cal yr BP (Table 2).  30 

 31 

The onset of marine sedimentation at the Narrows Lake site date provides a lower ice 32 

thickness constraint at 19.41 m a.s.l. for the rapid deglaciation of the nearby ridge at 33 

Parvenu Point which, based on cosmogenic isotope dating (Bentley et al., 2011) had 34 
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been exposed down to 75 m above present sea level at 9600 yr BP. Collectively, these 1 

data support the inference of a rapid thinning of the Marguerite Trough Ice Stream 2 

within the Marguerite Bay archipelago (Bentley et al., 2011) at this time. 3 

Furthermore, the transition from glaciolacustrine to full lacustrine conditions at Col 4 

Lake 1 on Horseshoe Island between 10490 (10660-10270) to 9090 (9270-8990) cal 5 

yr BP provides further evidence that the same rapid ice thinning and deglaciation 6 

occurred throughout the northern Marguerite Bay archipelago supporting the 7 

interpretation that this ice thinning at the margins of Marguerite Bay records the 8 

regional thinning and retreat of the Marguerite Trough Ice Stream (Bentley et al., 9 

2011). This interpretation is also consistent with marine geological evidence for the 10 

deglaciation of Neny Fjord in inner Marguerite Bay at, or prior to, 9040 cal yr BP 11 

(Allen et al., 2010). These events have been collectively linked to the influx of warm 12 

circumpolar deep water onto the continental shelf (Allen et al., 2010; Kilfeather et al., 13 

2011) and possibly the end of the early Holocene temperature maximum in ice cores 14 

triggering the second stage of deglaciation (Bentley et al., 2011) and the early 15 

Holocene retreat of the George VI Ice Shelf southwards past Ablation Point after c. 16 

9600 cal yr BP (Bentley et al., 2005b; Smith et al., 2007b; Roberts et al., 2008).  17 

 18 

Third, because deglaciation was accompanied by relative sea level change we can 19 

indirectly infer the relative thickness of the Antarctic Peninsula Ice Sheet from the 20 

altitude of the early Holocene relative sea level maximum. In the northern Antarctic 21 

Peninsula at Beak Island the relative sea level maximum was 14.91 m above present 22 

at c. 8000 cal yr BP (Roberts et al., 2011), in the South Shetland Islands (adjacent to 23 

the Antarctic Peninsula Ice Sheet) the relative sea level was c. 20 m above present at 24 

7360-7000 cal yr BP (Fretwell et al., 2010; Watcham et al., 2011), whilst in 25 

Marguerite Bay it was between 40.79 m (Pourquoi-Pas Island) and 40.55m (Calmette 26 

Bay) sometime after 9000 cal yr BP. This is significant for two reasons: first, it 27 

implies that the late glacial ice mass was thicker along the margins of Marguerite Bay 28 

compared with the more northerly sites (above); second, that the rapid thinning of this 29 

ice mass resulted in a relatively fast isostatic recovery, outpacing eustatic sea level 30 

rise sometime after 9000 cal yr BP. Recent optically simulated luminescence data on 31 

beach cobbles in Calmette Bay (Simkins pers. comm.) suggest that the upper terraces 32 

may pre-date the Last Glacial Maximum which would be consistent with the pre- Last 33 
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Glacial Maximum thinning events that our data suggest during Antarctic Isotopic 1 

Maxima 1 and 2.  2 

 3 

The transition from marine sediments to freshwater lake sediments, identified by 4 

diatom analysis was complete by 65-64 cm, in the Narrows Lake provides a relative 5 

sea level constraint of 19.41 m at 7270 (7385-7155) cal yr BP (based on 6705±42 
14

C 6 

yr BP with Local Reservoir Correction (LRC) of 270±40 
14

C yr BP included, Table 7 

3). This is a minor revision to the provisional radiocarbon age (Beta-180801; Table 3) 8 

of the most prominent moss layer at a stratigraphic depth of 59-60 cm in the 9 

Livingston core, first published in Bentley et al. (2005a), which produced minimum 10 

isolation age of 7000 (7150-6840) cal yr BP (6420±50 
14

C yr BP calibrated using 11 

calibration model „D‟, Table 3, with a LRC of 270±40 
14

C yr BP included). We have 12 

subsequently revised the stratigraphic depth of this sample to 62-63 cm based on more 13 

precise allignment of proxy data, rather than preliminary field depths and 14 

identification of the transition, which was based on changes in sediment lithology 15 

alone (Bentley et al., 2005a). The revised age results in a slightly faster mean early 16 

Holocene/pre-isolation uplift rate of 12.5 mm yr
-1

 (assuming the 9000 cal yr BP 17 

extrapolated age of the 41 m relative sea level maximum on Pourquoi-Pas Island in 18 

Bentley et al (2005a) is correct), and a mean post isolation rate of 2.7 mm yr
-1

. A 19 

nearby relative sea level constraint showing an uplift rate of 3.1 mm yr
-1

 (14.4 m fall 20 

in RSL in the last c. 4.6±0.4 ka) on Alexander Island (Roberts et al., 2009) is also 21 

broadly consistent with these data, as are some glacial isostatic adjustment models 22 

(e.g. Peltier, 2004; Bassett et al., 2007; Whitehouse et al., 2012). 23 

 24 

Fourth, collectively the raised beach data and the lake sediment core data give 25 

information on Holocene climate change. Observations of increased clast sizes and 26 

clast roundness on the surveyed beaches provide evidence of periods of increased 27 

wave energy, likely related to reductions in summer sea-ice extent (e.g. Bentley et al., 28 

2005a). At Calmette Bay the marked occurrence of the largest (c. <130 cm, long axis) 29 

and most rounded clasts between 30.6 and 32.6 m above the high water mark can be 30 

dated (via cross reference to the regional relative sea level curve (Bentley et al., 31 

2005a) to approximately 8000 corrected 
14

C yr BP (c. 8250 – 8742 cal yr BP). This 32 

coincides with early Holocene evidence from Neny Fjord (c. 45 km distant from Col 33 



 21 

Lake 1) which shows a maximum in the abundance of warm open-ocean and 1 

meltwater-related diatoms between c. 9000 to 7000 cal yr BP (Allen et al., 2010).  2 

 3 

Because of the widespread ecological changes in the Narrows Lake sediment core 4 

following isolation from the sea (Lithological Zones 4-5.1), and the likely utilisation 5 

of the marine nutrient pool by the newly established freshwater flora following 6 

isolation (Tavernier et al., 0000), its sensitivity to Holocene temperature-related 7 

changes is only considered in Lithological Zones 5.2-5.5 and Diatom Zones 3-4. It is 8 

likely that the increase in organic carbon, which exceeds 5% between 6200-2630 cal 9 

yr BP is a response to climate warming. This encompasses three periods in the Col 10 

Lake1 sediment core where organic carbon is generally > 7.5% (5700-4970, 4370-11 

4310 and 4070-2030 interpolated best fit ages). These are likely related to periods of 12 

reduced summer lake ice cover stimulating production in the lake, and collectively 13 

suggest regional warming occurred sometime between 6200-2030 cal yr BP (Narrows 14 

Lake and Col Lake 1 age constraints respectively). The onset of this warming predates 15 

the onset of mid-Holocene warming in some other terrestrial records in the northern 16 

Antarctic Peninsula (Hodgson et al., 2004; Bentley et al., 2009; Sterken et al., 2012), 17 

but ends at a similar time. In the marine geological record from nearby Neny Fjord 18 

less pervasive sea-ice cover and long diatom growing seasons are inferred from c. 19 

7000-4000 cal yr BP and increased meltwater discharge from c. 4000-2800 cal yr BP; 20 

both consistent with climate warming at this time. However, there is a mismatch in 21 

Col Lake1 between the Branchinecta concentrations (which elsewhere in the region 22 

have matched other production indicators (Jones et al., 2000)) and the TOC content. 23 

Instead, in these lakes the presence of Branchinecta seems to have been most closely 24 

associated with the presence of mosses during the transition from glaciolacustrine to 25 

lacustrine conditions.  26 

 27 

Further evidence of mid- to late-Holocene warming is provided by a period of 28 

increased clast sizes (2.5 – 8.5 cm) and roundness at Horseshoe Island between c.4-10 29 

m asl which can be approximately dated via cross reference to the regional relative 30 

sea level curve (see Bentley et al., 2005a) to a period between 5500-2500 
14

C yr BP 31 

(c. 6010-5720 to 2300-2010 cal yr BP). This is likely the same event that is recorded 32 

in beaches on Rothera Point and Anchorage Island which show more rounded beach 33 

material between c. 4.5–8 m asl (Bentley et al., 2005a), estimated from the RSL curve 34 



 22 

as between c. 3500 and c. 2400 
14

C yr BP (c. 3530-3250 to 2190-1870 cal yr BP), 1 

suggesting that there was a period of greater wave activity in the mid Holocene during 2 

the formation of these intermediate beaches. The increased wave activity is likely 3 

related to reduced summer sea-ice cover. Evidence from Neny Fjord suggests that 4 

between c. 4000–2800 cal yr BP there was a period of more intense or more proximal 5 

glacier discharge events (Allen et al., 2010). Both events are broadly synchronous 6 

with the warm, humid mid to late Holocene conditions inferred from records 7 

elsewhere in the Antarctic Peninsula region (Ingólfsson and Hjort, 2002; Hodgson et 8 

al., 2004; Bentley et al., 2009), for example at Beak Island between c. 3169-2120 cal 9 

yr BP (Sterken et al., 2012) and in the maritime Antarctic at Signy Island between c. 10 

3800–1400 cal yr BP (Hodgson and Convey, 2005). 11 

 12 

The decline in organic carbon from 2630 and 2030 cal yr BP (Narrows Lake and Col 13 

Lake 1 age constraints respectively) is interpreted as evidence of the onset of 14 

Neoglacial conditions. This corresponds to a return to smaller sub-angular clasts on 15 

the Horseshoe Island raised beach after c. 2190-1870 cal yr BP (2400 
14

C yr BP; 16 

estimated from the RSL curve (see above)), and is consistent with cooler conditions 17 

reported in Neny Fjord after c. 2800 cal yr BP (Allen et al., 2010), based on a shorter 18 

growing season indicated by diatoms and reduction in the overall biogenic content of 19 

the sediment. In the Col Lake1 record from Horseshoe Island, there is a marked 20 

decline in organic carbon and in sediment accumulation rates, or absence of 21 

sedimentation, sometime after 2030 (2110-1970) cal yr BP. This may be a result of 22 

the nearby snow bank expanding across the lake during the Neoglacial.  23 

 24 

The diatoms in the Narrows Lake core provide further information on 25 

palaeoenvironmental conditions, in addition to identifying the marine to freshwater 26 

transition. The dominance of Chaetoceros resting spores, which are amongst the most 27 

abundant siliceous microfossils in coastal Antarctica (Armand et al., 2005), in Diatom 28 

Zone 1 is considered an indicator of high productivity and stratified surface waters 29 

resulting from sea ice melt (Leventer et al., 1996). The other dominant species in this 30 

zone are Nanofrustulum shiloi, a cosmopolitan euryhaline taxon and found in coastal 31 

and littoral environments (Round et al., 1999), including saline and brackish lakes in 32 

the Prydz Bay region of east Antarctica (Sabbe et al., 2003) and a Pseudostaurosira 33 

species for which there is little autoecological information in Antarctica. Following 34 
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isolation in Diatom Zone 2, freshwater taxa dominate. However, Diadesmis 1 

langebertalotii, which was also present in Diatom Zone 2, as well as Naviculadicta 2 

elorantana, increase from 12 cm, 1150 (1230-1080) interpolated cal yr BP, and 3 

become subdominant in the most recent sediments from c. 460 (540-380) interpolated 4 

cal yr BP. D. langebertalotii is currently found in slightly acidic soils which are often 5 

influenced by marine animal input (Van de Vijver et al., 2002), which leads to higher 6 

nutrient concentrations. N. elorantana appears slightly earlier in the core (from 20 cm 7 

onwards, after 2100, 2250-2000 interpolated cal yr BP) and is a dominant diatom in 8 

seal wallows in the Prince Edward Islands (Van de Vijver et al., 2008).This might 9 

suggest an increase in the number of birds and seals visiting the catchment, which is 10 

consistent with a marked deviation back towards marine sediment values in the 
13

C 11 

C/N biplot (Fig 6).  12 

 13 

This evidence is consistent with the occurrence of a radiocarbon dated seal hair 14 

embedded in the beach at the Narrows Lake which has a conventional radiocarbon 15 

age of 2970±40 
14

C yrs BP (Beta-178164, Bentley et al., 2005a) (calibrated median 16 

age 1640 cal yr BP, 95.4% range 1890-1380 cal yr BP using Oxcal v. 4.1, 17 

MARINE09 (100% marine) and a ΔR value of 900±100, which is equivalent to the 18 

1300±100 yr correction applied in Bentley et al., 2005a), a radiocarbon dated penguin 19 

feather embedded in the raised beach at Horseshoe Island with a conventional 20 

radiocarbon age of 2310±40 
14

C yrs BP (Beta-178162, Bentley et al., 2005a) 21 

(calibrated median age 1130 cal yr BP, 95.4% range 1400-830 cal yr BP using Oxcal 22 

v. 4.1, MARINE09 (100% marine) and a ΔR value of 730±130, equivalent to the 23 

1130±134 yr correction applied in Bentley et al., 2005a; note: calibrating these two 24 

ages using the ΔR smaller value of 664±10 used in this paper produces a maximum 25 

likely calibrated median age and 95.4% age range for the seal hair (Beta-178164) of 26 

1920 and 2040-1810 cal yrs BP, and, for the penguin feather (Beta-178164), 1205 and 27 

1290-1100 cal yr BP), and macrofossil evidence that nearby Ginger Island (60 km 28 

distant) and Rothera Point (40 km distant) were colonised by Adélie penguins from 29 

2430 and 3170 cal yr BP respectively; although the earliest colonies had been 30 

established in Marguerite Bay (Lagoon Island, 42 km distant) from 5380 cal yr BP 31 

(Emslie, 2001).  32 

 33 



 24 

Another finding of note is that a Gomphonema species complex becomes abundant in 1 

the top centimetre of the Narrows Lake sediment core, sometime after 410 (490-320) 2 

interpolated cal yr BP. This  may be, together with the increase in LOI and TOC, 3 

related to a response to the earliest onset of late Holocene warming of the Antarctic 4 

Peninsula, documented as starting at c. 500-600 cal yr BP by Sterken et al., (2012) 5 

and later confirmed by Mulvaney et al., (2012); superimposed on this is the recent 6 

rapid instrumental warming. This is consistent with the renewed onset of 7 

sedimentation in the Col Lake1 sediment core at or after c. 400 (490-310) interpolated 8 

cal yr BP, and evidence of an increase in sea-ice, open ocean and autumn bloom 9 

diatom species (similar to that experienced during the early-Holocene climate 10 

optimum) in the Neny Fjord marine sediment record sometime after 200 cal yr BP 11 

(Allen et al., 2010). 12 

 13 

 14 

6) Conclusions 15 

 16 

This paper provides a new terrestrial perspective on the glacial, sea level, climate and 17 

environmental history of Marguerite Bay. The key findings are:  18 

 19 

1. The occurrence of a non-erosive glacial regime on Horseshoe Island from 35780 20 

(38650-33380) or 32910 (34630-31370) cal yr BP onwards.  21 

 22 

2. The presence of moss fragments embedded within the sediment matrix at 28830 23 

(29370-28320) cal yr BP suggests the earliest onset of deglaciation, or a deglaciation 24 

event, on the raised central area on Horseshoe Island immediately post-dating 25 

Antarctic Isotopic Maximum 4. 26 

 27 

3. The colonisation of the Col 1 site by the fairy shrimp Branchinecta gaini from 28 

21110 (21510-20730) interpolated cal yr BP. This required the existence of a 29 

perennial water body and implies that at least one part of the ice sheet in inner 30 

Marguerite Bay was less than 140 m thick (relative to present sea level) at this time. 31 

This coincides with, or immediately postdates Antarctic Isotopic Maximum 2.  32 

 33 



 25 

4. Robust radiocarbon dated moss macrofossil evidence of Holocene deglaciation at 1 

Horseshoe Island from 10610 (11000-10300) cal yr BP during the early Holocene 2 

temperature maximum seen in Antarctic ice cores. This was followed by the onset of 3 

marine sedimentation in The Narrows, Pourquoi-Pas Island, before 8850 (9260-8480) 4 

cal yr BP. 5 

 6 

5. A detailed survey of marine relative sea level high stands at 40.79m (Pourquoi-Pas 7 

Island) and 40.55m (Calmette Bay) sometime after 9000 cal yr BP, suggesting a 8 

thicker ice sheet in this region of the Antarctic Peninsula than that recorded 9 

elsewhere.  10 

 11 

6. The transition from marine sediments to freshwater lake sediments in the Narrows 12 

Lake provides a relative sea level constraint of 19.41 m at 7270 (7385-7155) cal yr 13 

BP, a mean early Holocene/ pre-isolation uplift rate of 12.5 mm yr
-1

, and a mean post 14 

isolation rate of 2.7 mm yr
-1

. 15 

 16 

7. Beach clast survey evidence of a period of increased wave energy, likely related to 17 

reductions in summer sea-ice extent at Calmette Bay from approximately 8000 yr BP 18 

and a dominance of Chaetoceros resting spores in The Narrows after 8850 (9260-19 

8480) cal yr BP. This indicates high productivity and stratified surface waters 20 

resulting from sea ice melt and coincides with marine geological evidence of a 21 

maximum in warm open-ocean and meltwater-related diatoms between c. 9000 to 22 

7000 cal yr BP. 23 

 24 

8. Lake sediment evidence of regional warming sometime between 6200-2030 cal yr 25 

BP which predates the onset of mid- to late-Holocene warming in terrestrial records in 26 

the northern Antarctic Peninsula but ends at a similar time. This is supported by raised 27 

beach evidence of open water and increased wave energy in the marine environment 28 

c. 6010-5720 to 2300-2010 cal yr BP (Horseshoe Island), and local marine geological 29 

evidence (Neny Fjord) of reduced sea ice and productive ocean conditions from c. 30 

7000-4000 cal yr BP and increased meltwater discharge from c. 4000-2800 cal yr BP. 31 

 32 

9. A decline in organic carbon from 2630 and 2030 (Narrows Lake and Col Lake 1 33 

respectively) is interpreted as evidence of the onset of Neoglacial conditions. This 34 



 26 

corresponds to a return to smaller sub-angular clasts on the Horseshoe Island raised 1 

beach after c. 2190-1870 cal yr BP, and is broadly consistent with cooler conditions 2 

reported in Neny Fjord from c. 2800 cal yr BP. 3 

  4 

10. Diatom and 
13

C vs C/N evidence of a possible increase in the number of birds 5 

and seals visiting the catchment of the Narrows Lake after 2100 (2250-2000) cal yr 6 

BP, with enhanced nutrient enrichment evident after 1150 (1230-1080) cal yr BP, and 7 

particularly from c. 460 (540-380) cal yr BP, the timing of which postdates the known 8 

occupation of the region by penguins, and is broadly consistent with macrofossil 9 

evidence of seals (hairs) and penguins (feathers) embedded in local raised beaches. 10 

 11 

11. A very recent increase in a diatom from the Gomphonema species complex and 12 

organic carbon in the top centimetre of the Narrows Lake sediment core after 410 13 

(490-320) cal yr BP, and the renewed onset of sedimentation in the Col Lake 1 14 

sediment core, after c. 400 (490-310) cal yr BP interpreted as a response to the 15 

regional late Holocene warming of the Antarctic Peninsula. This is perhaps 16 

marginally later than, but still consistent with, the initial onset of late Holocene 17 

warming recorded in lake and ice core records from other areas of the Peninsula c. 18 

600-500 years ago, as well as a renewed phase of warming in the local marine 19 

geological record sometime after 200 cal yr BP. 20 

21 
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Tables 1 

 2 

Table 1. Water chemistry of the study lakes, Col Lake 1 on Horseshoe Island and the 3 

Narrows Lake on Pourquoi-Pas Island. Additional data from nearby lakes (Col Lake 2 4 

and a pond at Parvenu Point), and a marine sample from The Narrows are provided 5 

for comparison. Analyses followed the protocols described in Hodgson et al (2009b).  6 

 7 

Table 2. Radiocarbon dates for the Col Lake 1 sediment core from Horseshoe Island, 8 

including conventional 
14

C ages, local reservoir corrected ages, and 2-sigma 9 

calibrated age data. L-Unit is lithological unit. Calibration of 
14

C ages was carried out 10 

in OXCAL v. 4.1 (Bronk Ramsey, 2009) using the SHCal04.
14

C atmosphere dataset 11 

(McCormac et al., 2004; Reimer et al., 2004). A Local Reservoir Correction (LRC) of 12 

693 ±26 
1
4C years was applied before calibration to sediments in Unit 3 (Model A). 13 

This LRC is based on the youngest age obtained from active microbial mats that 14 

constitute the surface sediment in this core and which should return a zero age if no 15 

in-lake reservoir effect existed. No LRC and SHCal04.14C was applied before 16 

calibration for Model B. Radiocarbon ages that extended beyond the SHCal04.14C 17 

dataset were calibrated using INTCAL09 (Model C). Absolute percentage of modern 18 

carbon (pMC) data were corrected according to 
13

C/
12

C isotopic ratios; * indicates an 19 

estimated isotopic values where samples were too small to be measured directly; 20 

samples marked with an „x‟ were considered to be reworked or outliers and not 21 

included in the age-depth modelling runs. pMC = percentage modern carbon. 22 

 23 

 24 

Table 3. Radiocarbon dates for the Narrows Lake sediment core from Pourquoi-Pas 25 

Island, including conventional 
14

C ages, marine reservoir corrected ages and 2-sigma 26 

calibrated age data. All symbols/abbreviations are as described in Table 2. 27 

Additionally, D-Zone is diatom zone (see Fig. 8); L or M indicates Lake (L) or 28 

Marine (M) sediment. Calibration Model D is as described in Table 2, but with a 29 

Local Reservoir Correction (LRC) of 270 ±40 
14

C yrs applied prior to calibration. In 30 

the marine-influenced sections of this core, a mixed MARINE09-SHCal04.
14

C (50% 31 

marine) (Reimer et al., 2009) calibration curve was used, with a ΔR value of 664±10 32 

years (1064±10 years minus the global marine reservoir of 400 years) (Model E) (see 33 

text for further explanation).  34 
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 1 

Figures 2 

 3 

Figure 1. Location maps of the Antarctic (a) Antarctic Peninsula; (b) Marguerite Bay; 4 

(c) Location of Pourquoi-Pas Island in Marguerite Bay (red boxes) and SO GLOBEC 5 

bathymetry of Marguerite Bay (from The Lamont-Doherty Earth Observatory 6 

Antarctic Multibeam Bathymetric Synthesis Database 7 

(http://data.ldeo.columbia.edu/antarctic/); (Bolmer, 2008); arrowed white lines are 8 

approximate positions of flow lines of major palaeo-ice streams which grounded on 9 

the shelf at the LGM (after, Bentley et al., 2011; Kilfeather et al., 2011; Graham and 10 

Smith, 2012; Livingstone et al., 2012); land profile is from the LIMA dataset 11 

(Bindschadler et al., 2008); (d) Horseshoe Island showing the position of Col Lake 1 12 

(e) and Pourquoi-Pas Island showing the position of the Narrows Lake, and the 13 

transect of cosmogenic samples taken from Parvenu Point (Bentley et al., 2011). 14 

 15 

Figure 2. (a) Oblique aerial view of the northern part of Horseshoe Island looking 16 

approx. east towards Mount Searle and the raised ice free central area; (b) Aerial view 17 

of the ice free central area of Horseshoe Island and Col Lake 1 looking east; (c) Aerial 18 

view of Pourquoi-Pas Island looking approx. south east along The Narrows; (d) Aerial 19 

view of the Narrows Lake showing the raised beach platform and the marine limit; (e) 20 

Raised beaches in Gaul Cove Horseshoe Island; (f) Raised beaches in Calmette Bay.  21 

 22 

Figure 3. Water column profiles of temperature, oxygen saturation and conductivity in 23 

the study lakes. Measurements collected with a SOLOMAT water quality meter using 24 

the methods described in Smith et al. (2006). The oxygen measurements should be 25 

interpreted with caution due to freezing of the probe membrane during the field 26 

campaign. 27 

 28 

Figure 4. Stratigraphic analyses of the 1.11 m lake sediment core from Col Lake 1, 29 

Horseshoe Island including sedimentary logs, physical properties and the presence of 30 

moss macrofossils and eggs of the fairy shrimp Branchinecta gaini. 31 

 32 

Figure 5. Radiocarbon age depth models and sediment accumulation rates for the Col 33 

Lake 1 sediment core from Horseshoe Island. One outlier is excluded from age depth 34 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=09670645&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fdata.ldeo.columbia.edu%252Fantarctic%252F
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Model 1. The radiocarbon dates at 94-95 cm and 110-111 cm are both in a poorly 1 

defined area of the radiocarbon calibration curve and their two age ranges overlap - 2 

this means that although their mean ages create an age reversal, they could still be in 3 

sequence. Model 2 shows this alternative scenario. 4 

 5 

Figure 6. 13C, C/N biplot, Col Lake 1, Horseshoe Island and the Narrows Lake, 6 

Pourquoi-Pas Island (reference data fields from Hodgson et al., 2009a, and references 7 

therein). 8 

 9 

Figure 7. Stratigraphic analyses of the 1.3 m lake sediment core from the Narrows 10 

Lake , Pourquoi-Pas Island including sedimentary logs, physical properties and the 11 

presence of moss macrofossils and eggs of the fairy shrimp Branchinecta gaini. 12 

 13 

Figure 8. Diatom stratigraphy of the Narrows Lake sediment core including 14 

statistically significant diatom zones. Marine diatom taxa are grouped to the right of 15 

the diagram, and freshwater to the left. Only species with a relative abundance 16 

exceeding 2% are shown. 17 

 18 

Figure 9. Radiocarbon age depth model for the Narrows Lake sediment core from 19 

Pourquoi-Pas Island, with sediment accumulation rates for Narrows Lake and Col1 20 

Lake. 21 

 22 

Figure 10. Raised beach profiles from (a) Horseshoe Island, showing raised beaches 23 

in Gaul Cove which were surveyed form 67
0
 49.563‟ S, 67

0
 12.869‟ W to 67

0
 49.613‟ 24 

S, 67
0
 13.166‟W (b) Pourquoi-Pas Island, where raised beaches and terraces were 25 

surveyed from c. 67
0
 35.52‟ S to 67

0
 11.51‟ W to c. 67

0
 36.02‟ S to 67

0
 12.36‟ W at a 26 

bearing of 194, from the coast to the Holocene marine limit across the long axis of 27 

the Narrows Lake and (c) Calmette Bay, which was surveyed from 6803.848‟ S, 28 

6710.419 W to 6804.040‟S, 06710.532‟ W.  29 

 30 

Figure 11. (a) Clast size and (b) clast roundness data from the surveyed raised beaches 31 

in Gaul Cove, Horseshoe Island.  32 

 33 



Horseshoe Island Pourquoi Pas Island Marine 

Col Lake 1 Col Lake 2
Narrows 

Lake

Parvenu 
Point 
Pond The Narrows

Temperature ˚C 3.7 5.6 6.4 4.8
Oxygen sat. % 96.2 122 69 157.8

Conductivity μS cm-1 131.2 166.8 113.2 40872
Anions

Cl mg/l 28 41.4 34 29.7 14700

SO4-S mg/l 13.1 20.1 11.8 1.3 664

Cations inc. Si

Al mg/l <0.002 <0.002 <0.002 0.021 0.309

Fe mg/l 0.016 0.003 <0.001 0.002 0.143

Mg mg/l 2 3.03 2.26 2.08 1050

Ca mg/l 1.43 2.08 1.63 2.07 240

K mg/l 0.72 0.894 0.758 0.768 330

Na mg/l 14.6 21.8 17.2 16.9 8760

Si mg/l 0.054 0.054 0.136 0.246 1.22

Nutrients

NO3-N mg/l <0.100 <0.100 <0.100 <0.100 <0.100

NH4-N mg/l 0.036 0.015 0.018 0.023 1.05

PO4-P mg/l <0.005 <0.005 <0.005 <0.005 0.008

Total N, TOC & DOC

DOC mg/l 1.06 0.91 0.58 0.96 1.51

TN mg/l 0.14 0.07 0.04 0.14 0.14

TOC mg/l 1.1 0.78 0.43 0.8 0.95

Table 1



Lab ID -Publication 
code Core IDa

Strat Depth 
(cm) L-

U
ni

t

Material dated & C source

Carbon 
content (wt 

%)

Col1 Lake, Horeshoe Island Median Curve

SUERC-6259 COL1-0/1U-B 0-1 3.3 Microbial mat (TOC) 18.2 -15.1 91.73 ± 0.29 91.14 ± 0.29 693 ± 26 55 - modern 15 ± 20 10 A
BETA-297498 COL1: 0-1 0-1 3.3 >125 m microbial mat - -14.2 87.50 ± 0.50 86.89 ± 0.89 1070 ± 40 405 - 225 310 ± 45 310 A
SUERC-5041 COL1-2U-B 2-3 3.3 Microbial mat (TOC) 5.9 -12.4 62.90 ± 0.19 62.49 ± 0.19 3724 ± 25 3430 - 3220 3325 ± 50 3325 A-x
BETA-297499 COL1: 2-3 2-3 3.3 >125 m microbial mat - -12.6 64.70 ± 0.30 64.21 ± 0.24 3500 ± 30 3165 - 2930 3050 ± 60 3050 A
SUERC-5042 COL1-8.5U-B 8.5-9 3.2 Microbial mat (TOC) 6.2 -12.5 59.10 ± 0.20 58.71 ± 0.20 4225 ± 27 4100 - 3860 3985 ± 60 3985 A
BETA-297500 COL1: 8.5-9 8.5-9 3.2 >125 m microbial mat - -11.0 59.10 ± 0.30 58.63 ± 0.29 4230 ± 40 4130 - 3845 3990 ± 70 3990 A
SUERC-5043 COL1-24U-B 24-25 3.2 Microbial mat (TOC) 7.2 -11.1 54.19 ± 0.20 53.83 ± 0.20 4922 ± 30 4995 - 4765 4875 ± 55 4875 A
SUERC-5044 COL1-1L-B 46-47 3.1 Microbial mat (TOC) 4.7 -13.7 48.74 ± 0.21 48.43 ± 0.21 5772 ± 35 5945 - 5715 5830 ± 55 5830 A
SUERC-5047 COL1-20L-B 65-66 2 Moss (single sp.) 1.0 -15.7 36.04 ± 0.22 35.80 ± 0.22 8199 ± 50 9270 - 8990 9110 ± 80 9090 B
SUERC-5587 COL1-20L-E 65-66 2 Branchinecta sp. eggs 12.0 -15.3 35.30 ± 0.23 35.07 ± 0.23 8364 ± 51 9460 - 9130 9310 ± 90 9320 B
SUERC-5585 COL1-20L-M 65-66 2 Bulk sediment - sandy silt (TOC) 18.8 -15.3 * 35.85 ± 0.23 35.61 ± 0.23 8242 ± 51 9310 - 9000 9150 ± 90 9140 B
SUERC-6257 COL1-27L-B 72-73 1 Bulk sediment - silty clay (TOC) 0.3 -18.0 * 31.22 ± 0.23 31.01 ± 0.23 9352 ± 59 10660 - 10270 10480 ± 100 10490 B
SUERC-5588 COL1-28L-M 73-74 1 Warnstofia foutinaliopsis  sp. moss 24.3 -17.0 * 30.88 ± 0.26 30.67 ± 0.26 9441 ± 66 11000 - 10300 10610 ± 100 10610 B
SUERC-20899 COL1-30L-B 75-76 1 Bulk sediment - silty clay (TOC) 0.2 -22.3 20.44 ± 0.13 20.29 ± 0.13 12756 ± 53 15600 - 14760 15170 ± 200 15140 C
SUERC-20900 COL1-32L-B 77-78 1 Bulk sediment - silty clay (TOC) 0.2 -22.5 20.36 ± 0.13 20.22 ± 0.13 12786 ± 53 15660 - 14880 15230 ± 210 15190 C
SUERC-20901 COL1-34L-B 79-80 1 Bulk sediment - silty clay (TOC) 0.1 -21.9 12.79 ± 0.12 12.71 ± 0.12 16518 ± 77 20010 - 19420 19670 ± 150 19690 C
SUERC-5048 COL1-37L-B 82-83 1 Bulk sediment - silty clay (TOC) 0.1 -20.7 9.59 ± 0.28 9.53 ± 0.28 18833 ± 231 23330 - 21850 22540 ± 370 22490 C
SUERC-20902 COL1-40L-B 85-86 1 Bulk sediment - silty clay (TOC) 0.2 -24.9 * 5.06 ± 0.12 5.02 ± 0.12 23970 ± 193 29370 - 28320 28830 ± 280 28830 C

- COL1-40L-F 85-86 1 Organic-residue Insufficient for 14C measurement
SUERC-5049 COL1-49L-B 94-95 1 Bulk sediment - silty clay (TOC) 0.1 -21.2 2.12 ± 0.29 2.10 ± 0.29 30964 ± 1115 38650 - 33380 35890 ± 1300 35780 C-x
SUERC-5050 COL1-65L-B 110-111 1 Bulk sediment - silty clay (TOC) 0.1 -21.5 * 2.91 ± 0.29 2.89 ± 0.29 28422 ± 807 34630 - 31370 32970 ± 930 32910 C

Table 2

Max-Min Mean±1

13CVPDB 

(‰)
Measured pMC  

(%±1)
Absolute       pMC 

(%±1)

Conventional   14C 
age (CRA)        

(yr BP ± 1)

OXCAL 95.4% calibration data                       
Curve A: LRC=693±26 14C yrs;                       

(cal yr BP)

Table 2



Lab ID -Publication 
code Core IDa

Strat 
Depth 
(cm) L-

U
ni

t

D
-Z

on
e

Material dated & C source

Carbon 
content (wt 

%)

Narrows Lake, Pourquoi-pas Island Median Model

BETA-297501 PQP 0-1 0-1 5.5 4 L >125 m microbial mat - -15.7 96.70 ± 0.50 95.98 ± 0.48 270 ± 40 120 - modern 40 ± 40 35 D
SUERC-5052 PQP-0/1U-B 0-2 5.5 4 L Microbial mat (TOC) 1.0 -18.3 92.07 ± 0.28 91.47 ± 0.28 663 ± 25 440 - 265 350 ± 45 355 D
SUERC-5053 PQP-9U-B 9-10 5.5 4 L Microbial mat (TOC) 1.2 -18.5 85.38 ± 0.24 84.83 ± 0.24 1270 ± 22 955 - 765 865 ± 50 865 D
SUERC-5720 PQP-20U-M* 20-21 5.4 4 L Warnstofia foutinaliopsis  sp. moss 9.0 -17.5 * 68.79 ± 0.33 68.35 ± 0.18 3005 ± 38 2980 - 2710 2840 ± 70 2840 D-x
SUERC-5054 PQP-21U-B 21-22 5.4 4 L Microbial mat (TOC) 2.2 -14.7 72.15 ± 0.21 71.68 ± 0.21 2622 ± 24 2525 - 2270 2390 ± 65 2385 D
SUERC-5589 PQP-38U-M 38-39 5.3 3 L Warnstofia foutinaliopsis  sp. moss 30.0 -19.9 64.95 ± 0.22 64.53 ± 0.22 3467 ± 27 3530 - 3295 3410 ± 60 3405 D
SUERC-8331 PQP-39U-B 39-40 5.3 3 L Microbial mat (TOC) 6.9* -14.1 64.02 ± 0.26 63.60 ± 0.26 3583 ± 32 3680 - 3420 3550 ± 65 3550 D
SUERC-5590 PQP-56U-M 56-57 5.2 2 L Warnstofia foutinaliopsis  sp. moss 37.7 -20.3 48.79 ± 0.22 48.47 ± 0.22 5765 ± 37 6375 - 6130 6250 ± 60 6250 D
SUERC-5593 PQP-56U-E 56-57 5.2 2 L Branchinecta sp. eggs 20.0 -12.4 49.24 ± 0.22 48.92 ± 0.22 5690 ± 37 6290 - 6045 6170 ± 60 6175 D
SUERC-8332 PQP-57U-B 57-58 5.2 2 L Microbial mat (TOC) 5.5* -14.1 48.79 ± 0.23 48.47 ± 0.23 5765 ± 37 6375 - 6130 6250 ± 60 6250 D
BETA-180801 PQP-11L-B 62-63 5.1 2 L Warnstofia foutinaliopsis  sp. moss - -17.4 44.95 ± 0.30 44.68 ± 0.28 6420 ± 50 7150 - 6840 7000 ± 80 7000 D
SUERC-5059 PQP-64U-B 64-65 5.1 2 L Microbial mat (TOC) 6.4 -13.8 44.07 ± 0.21 43.78 ± 0.21 6582 ± 39 7280 - 7030 7160 ± 60 7165 D
SUERC-5594 PQP-64U-E 64-65 5.1 2 L Branchinecta sp. eggs 25.2 -13.8 43.40 ± 0.23 43.12 ± 0.23 6705 ± 42 7385 - 7155 7270 ± 60 7270 D

SUERC-5060 PQP-70U-B 70-71 4 1 M Olive/black organic mud (TOC) 7.0 -20.7 39.74 ± 0.22 39.48 ± 0.22 7413 ± 44 7970 - 7495 7740 ± 120 7730 E
SUERC-5061 PQP-30L-B 81-82 3 1 M Olive grey fine silty mud (TOC) 0.8 -19.7 38.30 ± 0.22 38.05 ± 0.22 7709 ± 46 8310 - 7740 8020 ± 140 8010 E
SUERC-5063 PQP-41L-B 92-93 2 1 M Olive/black organic mud (TOC) 0.9 -19.6 36.31 ± 0.25 36.07 ± 0.25 8138 ± 56 8890 - 8070 8450 ± 180 8440 E
SUERC-5064 PQP-51L-B 102-103 1 1 M Olive grey fine silty mud (TOC) 1.3 -20.7 36.50 ± 0.22 36.26 ± 0.22 8097 ± 48 8700 - 8050 8390 ± 160 8390 E
SUERC-5067 PQP-78L-B 129-130 1 1 M Olive grey fine silty mud (TOC) 1.4 -19.7 34.76 ± 0.22 34.53 ± 0.22 8489 ± 51 9260 - 8480 8860 ± 190 8850 E

Table 3

Max. - Min. Mean±1

13CVPDB 

(‰)

Measured 
modern carbon 

(%±1)

Absolute       
modern carbon    

(%±1)

Conventional      
14C age           

(yr BP ± 1)

OXCAL 95.4% calibration data                     
Curve D: LRC=270±40 14C yrs;                     

Curve E: R=664±10 14C yrs                       
50% marine (cal yr BP)

Table 3
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