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Society is increasingly impacted by natural hazards which cause significant damage6

in economic and human terms. Many of these natural hazards are weather and7

climate related. Here we show that North Atlantic atmospheric circulation regimes8

affect the propensity of extreme wind speeds in Europe. We also show evidence9

that extreme wind speeds are long-range dependent, follow a Generalised Pareto10

distribution and are serially clustered. Serial clustering means that storms come11

in bunches and, hence, do not occur independently. We discuss the use of waiting12

time distributions for extreme event recurrence estimation in serially dependent13

time series.14
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1. Introduction16

An important part of European weather and climate are wind storms. European17

wind storms can cause economic damage and insurance losses on the order of more18

than one billion Euro per year and rank as the second highest cause of global natural19

catastrophe insurance loss (Malmquist 1999). Many of these hazard events are not20

independent; for instance, severe storms can occur in trains of storms. Examples21

of such recurring storms include January 2008 (Paula and Resi) and March 200822

(Emma, Johanna and Kirsten) which each caused damages on the order of 1bn Eu-23

ros (e.g. guycarp.com). Also the 2007 floods in the UK were caused by a succession24

of weather systems slowly moving across the UK which were likely caused by the jet25

stream located further south than normal (Blackburn et al. 2008). Another typical26

climate phenomenon in the North Atlantic region are nearly stationary blocking27

anticyclones which can cause heat waves, extreme cold spells (Cattiaux et al. 2010)28

and drought conditions.29

The Intergovernmental Panel on Climate Change (IPCC 2012) has stated that30

it is likely that anthropogenic climate change leads to changes in the frequency and31

intensity of weather and climatic extreme events (Trenberth et al. 2007, Rahmstorf32

and Coumou 2011). The first six months of 2011 incurred insurance losses of about33

US$60bn which is about five times the average for the first six months of the year34

in the period 2001-2010 (Press release by MunichRe 2011). However, it is not clear35

how much of this loss increase is due to increasing populations in vulnerable regions,36

a significant increase in natural extreme events or random fluctuations in the rate37

of natural hazards. This illustrates the challenge society is facing in mitigating the38

effects of natural hazards.39
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2 C. L. E. Franzke

It has long been recognised that low-frequency large-scale circulation patterns40

have a significant impact on surface weather and climate. These circulation patterns41

or regimes have been shown to affect extreme temperatures, cyclones, wind speeds42

and precipitation (Thompson and Wallace 2001, Yiou and Nogaj 2004, Raible 2007,43

Yiou et al. 2008, Yin and Branstator 2008). Since the regimes also affect cloud44

cover and the distribution of aerosols they may also influence the climate response45

to increasing greenhouse gas emissions and climate sensitivity. Since low-frequency46

waves are well represented in climate models this offers the potential to statistically47

extract information about extreme events (which might not be well represented48

in climate models) from simulations like the frequency of occurrence of extreme49

events. This might enable projections of how extreme events change in seasonal50

and decadal scale predictions and future climate projections. Many businesses and51

decision-makers need this kind of information.52

Traditional extreme value statistics are based on the premise that extreme events53

occur independently from each other. However, this is rarely the case for weather54

and climatic extremes where these extreme events tend to serially cluster as dis-55

cussed above. In the traditional framework no account is taken of the temporal56

dependency structure of weather and climate variables that are present in many57

natural time series. The temporal dependence can lead to the clustering of extremes58

and traditional extreme value statistics has to be adjusted to take account of this59

(Berman 1964, Leadbetter and Rootzen 1988, Bunde et al. 2005, Garrett and Müller60

2008). This temporal dependence impedes our ability to estimate return periods,61

which now also requires the prediction of the clusters of extreme events, which are62

important for many practical applications.63

The purpose of this contribution is to discuss the dependence structure and the64

empirical extreme value distribution of surface wind speeds and the occurrence of65

clustered wind speed extremes. We will also discuss how the regimes of the eddy-66

driven Atlantic jet stream (Franzke et al. 2011) affect the propensity of extreme67

events and the temporal dependence of wind speeds. We also provide evidence that68

surface wind speeds follow a Generalised Pareto extreme value distribution and that69

their amplitude is bounded; consistent with theoretical predictions. We will discuss70

the use of waiting time distributions as an alternative to return times inferred71

from extreme value statistics. Waiting time distributions are a natural measure for72

extremes of dependent data.73

In section 2 we will describe the data, including the Jet Latitude Index (JLI)74

which is used as a proxy of North Atlantic climate variability (Woollings et al.75

2010, Franzke and Woollings 2011, Franzke et al. 2011). Section 3 examines the76

persistence properties and extreme value characteristics of North Atlantic surface77

wind speeds while section 4 presents how persistent circulation regimes affect the78

propensity of extreme events. Here we focus on extreme wind speeds, deviations79

from Gaussianity in 500 hPa geopotential height as a first measure of extremes, and80

clustering of extremes. Previous studies mainly focused on the relationship between81

circulation regimes and temperature and precipitation extremes. A summary and82

discussion are given in section 5.83
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Persistent Regimes and Extreme Events 3

2. Data84

Data are used from the European Centre for Medium-Range Weather Forecasts85

(ECMWF) ERA-40 Re-Analysis (Uppala et al. 2005). We use daily mean fields for86

zonal u and meridional v wind fields and 500 hPa geopotential height. The wind87

speed is computed as
√
u2 + v2.88

As a North Atlantic climate variability proxy we use the jet latitude index89

(JLI) which is a measure of North Atlantic climate variability and in particular90

of the position of the lower tropospheric eddy-driven jet stream (Woollings et al.91

2010, Franzke and Woollings 2011). This index covers the period 1 December 195892

through 28 February 2001. The JLI is derived in the following way: (1) A mass-93

weighted average of the daily mean zonal wind is taken over the vertical levels 925,94

850, 775 and 700 hPa and over the Atlantic sector 0◦ − 60◦W. (2) Winds poleward95

of 75◦N and equatorwards of 15◦N are neglected. (3) The resulting wind field is low-96

pass filtered, only retaining periods greater than 10 days. (4) The JLI is defined as97

the latitude at which the maximum wind speed is found. (5) A smooth annual cycle98

is subtracted from the resulting time series. See Woollings et al. (2010) for more99

details, where it is also shown that this index describes jet stream variations which100

are associated with both the North Atlantic Oscillation (NAO) and the East At-101

lantic (EA) teleconnection pattern and, therefore, represents a good general proxy102

of North Atlantic climate variability. Based on the JLI we will compute composite103

fields of various quantities like skewness, kurtosis and extreme wind speeds. The104

composites of the wind speed data are computed from unfiltered data.105

3. Persistence and Extreme Events106

(a) Persistence of the Atmospheric Circulation107

Persistence is one of the most fascinating and important characteristics of the108

atmosphere. By persistence we mean the atmosphere’s tendency to maintain its cur-109

rent state. One of the simplest weather forecasting models is a persistence forecast110

where one predicts that tomorrow will be like today. This persistence forecast has a111

surprisingly good forecast skill. Such a forecasting model would be Markovian. The112

Markov property implies that the next state only depends on the current state but113

not on any past states. However, there is growing evidence that many climate vari-114

ables have a more complicated temporal dependence structure (Koscielny-Bunde et115

al. 1998, Vyushin et al. 2009, Franzke 2010, 2012a, Ghil et al. 2011). This temporal116

dependence structure also indicates knowledge of the past is needed to forecast the117

next state. This temporal dependence of climate variables leads to so-called stochas-118

tic trends (Franzke 2010, 2012a) and the serial clustering of extremes (Bunde et al.119

2005). Stochastic trends are trends which arise due to persistence and not due to120

external forcing like greenhouse gas emissions. Long-range dependent time series121

can exhibit stochastic trends over much longer periods of time than say a Marko-122

vian process and thus the detection of trends and attribution of drivers becomes123

much harder. The disentanglement of stochastic and deterministic trends is a field124

of active research (e.g. Barbosa 2011, Franzke 2010, 2012a).125

A measure of the temporal dependence and persistence of a time series is the126

long-range dependency parameter d (Beran 1994). A process is long-range depen-127

dent when the prediction of its next state depends on the entirety of its past. An128
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4 C. L. E. Franzke

imprint of this dependence structure is that the covariance r(k) = Cov(X(k), X(0))129

decays slowly, as k → ∞, so that130

∞
∑

k=0

|r(k)| → ∞. (3.1)

The parameter d can be defined by specifying long-range dependence as a power-131

law like decay of the autocorrelation function. Thus, we define that a stationary132

process is long-range dependent if it has autocorrelation function r such that133

r(k) ∼ k2d−1 as k → ∞ (3.2)

where 0 < d < 1
2 . This power law decay of the autocorrelation function is not134

integrable and will lead to a blow up as described by Eq. (3.1).135

This slow decay of the covariances means that the values of the process X are136

strongly dependent over long periods of time. This contrasts with the more familiar137

short-range dependent process where
∑

∞

k=0 |r(k)| = C < ∞ and the correlations138

typically decay exponentially. In a short-range dependent process the next state only139

depends on the current state and the recent past. The archetype of a short-range140

dependent process is a first order Markov process where the next state depends141

only on the present state. See Beran (1994) for more details.142

In order to estimate d we used the semi-parametric power spectral method of143

Geweke & Porter-Hudak (1983) and Hurvich and Deo (1999). Spectral methods144

find d by estimating the spectral slope of the low frequencies. The periodogram is145

used, which is an estimate of the spectral density of a finite-length time series and146

is given by:147

Ŝ(λj) =
1

N

∣

∣

∣

∣

∣

N
∑

t=1

X(t)e−i2πtλj

∣

∣

∣

∣

∣

2

, j = 1, ..., [N/2], (3.3)

where λj = j/N is the frequency and the square brackets denote rounding down.148

A series with LRD has a spectral density proportional to |λ|−2d close to the origin.149

Since Ŝ(λ) is an estimator of the spectral density, d is estimated by a regression150

of the logarithm of the periodogram versus the logarithm of the frequency λ. Thus151

having calculated the spectral density estimate Ŝ(λ), semi-parametric estimators152

fit a power law of the form f(λ, b, d) = b |λ|d, where b is a scaling factor. The153

number of frequencies for the log-periodogram regression is computed with the154

plug-in selector derived by Hurvich and Deo (1999). Confidence intervals and bias155

correction for this estimator have been derived by Hurvich and Deo (1999) and the156

confidence intervals are asymptotically Gaussian distributed. The reliability of this157

estimator has been validated by Franzke et al. (2012).158

The long-range dependence parameter d = 0 indicates that no temporal de-159

pendence is present in the data; thus the data are white noise. Positive d values160

indicate persistence and negative denote anti-persistence. Anti-persistence has a161

so-called blue noise power spectrum with the least power at low frequencies and162

with monotonically increasing variance towards high-frequencies. Furthermore, in163

a pure long-range dependent process for d → 0 a singularity is approached and the164

dependence structure goes directly from long-range dependent to independent. The165

reason for this can be illustrated with the power spectrum. When testing for long-166

range dependence one is interested in the long-term behaviour of the time series and167
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Persistent Regimes and Extreme Events 5

thus the low-frequencies. At these time scales the short-term dependent behaviour168

is negligible and is effectively white noise and independent at long time scales. If169

the time series exhibits long-range dependence then there will be a power-law like170

slope visible in the power spectrum for the lowest frequencies; otherwise the power171

spectrum is flat at low frequencies indicating white noise behaviour.172

Fig. 1 shows the geographical distribution of d values which are significantly173

different from 0 for the North Atlantic region. The figure reveals that surface wind174

speeds are significantly long-range dependent. Most d values are positive, only a175

small area in the western North Atlantic has negative values. The largest d values176

occur over western North Africa, also the UK and Scandinavia have enhanced d177

values. We repeated this analysis with linearly detrended wind speed data and get178

very similar results (not shown). This suggests that the impact of possible trends179

is negligible. This provides evidence that surface wind speeds in the North Atlantic180

region are long-range dependent. Below we will put forward the idea that this long-181

range dependency might be the imprint of non-stationarities due to the regime182

behaviour of the jet stream.183

(b) Extremes of the Atmospheric Circulation184

In order to examine the extreme value characteristics of surface wind speeds185

we use a threshold exceedance approach and fit a Generalised Pareto Distribution186

(GPD, Coles 2001) whose PDF is given by187

f(ξ,µ,σ)(x) =
1

σ

(

1 +
ξ(x− µ)

σ

)(− 1

ξ
−1)

(3.4)

where ξ denotes the shape parameter, µ the threshold (or location parameter) and188

σ the scale parameter. The shape and scale parameters are fitted with a standard189

maximum likelihood approach (Coles 2001). The GPD is generalised in the sense190

that it contains three special cases: (i) when ξ > 0 the GPD is equivalent to an191

ordinary Pareto distribution, (ii) when ξ = 0 the GPD becomes an exponential192

distribution and (iii) for ξ < 0 the GPD is a short-tailed Pareto type II distribution193

(Coles 2001). The standard asymptotic properties of the maximum likelihood esti-194

mator cannot be proven for shape parameters less than -0.5 and thus the confidence195

intervals cannot be reliably computed but this does not necessarily mean that the196

parameter estimates are not robust.197

We estimate the GPD parameters from unfiltered wind speed data. Fig. 2 shows198

the shape and scale parameters of a GPD distribution. As a threshold we selected199

the 90th percentile value of the wind speed at each grid point. The parameter es-200

timates are relatively stable for a range of different thresholds (see Fig. 2) and a201

visual inspection of quantile-quantile plots at some locations shows that the wind202

speed data follow a GPD (not shown). This provides confidence that surface wind203

speed extremes indeed can be described by a GPD. Furthermore, the shape param-204

eter is negative. This indicates that extreme surface wind speeds are bounded. The205

shape parameter reaches its maximum over the central North Atlantic but also the206

UK, Scandinavia and Central Europe exhibit a large scale parameter. Our results207

are consistent with the study by Fawcett and Walshaw (2006) which also find that208

extreme wind speeds follow a GPD with mostly negative shape parameters.209
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6 C. L. E. Franzke

That the unfiltered wind speed extremes are bounded is consistent with the210

theoretical findings of Majda et al. (2009). They show that while the normal form211

of stochastic climate models allows for a power-law like decay of the PDF tail over212

some range of values, the ultimate decay will be squared exponential (i.e. Gaus-213

sian; see their equation 11); thus very large values have a vanishing probability.214

This is in contrast to the results of Sardeshmukh and Sura (2009) and Sura (2011).215

They consider only a linear model with state-dependent noise and neglect the non-216

linearity. Majda et al. (2009) and Franzke (2012b) have shown that the nonlinear217

interaction between slow and fast modes is producing the state-dependent noise in218

the normal form of stochastic climate models and is causing the tail of the PDF219

to decay according to a squared exponential function. This suggests that nonlinear220

interactions cannot be neglected and are a possible cause of the deviations from221

Gaussianity.222

(c) Clustering of Atmospheric Circulation Extremes223

While long-range dependence and extreme value statistics seem at first sight224

fairly unrelated to each other, in fact the opposite is the case. Long-range depen-225

dence has a rather strong impact on extreme value statistics, especially the return226

periods of extreme values. Long-range dependence leads to the clustering of ex-227

tremes. Clustering of extremes means that there exist time periods where values228

are more likely to exceed the extreme value threshold than if they were to occur229

independent from each other. Likewise, there also exist periods where less extremes230

occur than one would expect if they were to occur independently. This means that231

extreme events are likely followed by other extreme events and that there are long232

periods when no extreme events occur. A prime example is the serial clustering of233

storms (Mailier et al. 2006) as alluded to in the introduction.234

Traditional extreme value theory assumes that the data under consideration are235

independent and identically distributed (iid). For many climate time series this is236

not the case because these time series are autocorrelated and extreme value theory237

has been extended for dependent time series (Coles 2001, Beirlant et al. 2004).238

Extreme value theory can be extended to the case of short-range dependent time239

series by introducing the extremal index which adjusts the parameters of the GPD240

(Coles 2001). The extremal index is a measure of the clustering of extremes which241

adjusts extreme value distributions for serially short-range dependent time series242

(Coles 2001). In the presence of long-range dependence the GPD can still describe243

the amplitude distribution and we have provided empirical evidence for this in244

the previous section; see also Franzke (2012c). However, the presence of long-range245

dependence and thus clustering might affect the return period estimates based on246

the GPD in ways which one cannot account for solely with the extremal index and247

is an active area of research.248

The extremal index θ is computed by using the method of Hamidieh et al.249

(2009). It characterises the extent of temporal dependency of extreme events and is250

inversely proportional to the average cluster size. The approach by Hamidieh et al.251

(2009) is based on the asymptotic scaling properties of block-maxima and resam-252

pling. The maxima of blocks of size m scale as m
1

α , where α is the tail exponent.253

Thus, by examining a sequence of dyadic block sizes m(j) = 2j and resampling one254

can estimate the extremal index θ(j) and the corresponding uncertainty bounds255
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Persistent Regimes and Extreme Events 7

(see Hamidieh et al. (2009) for more details). Evidence for clustering of extremes256

is given if θ turns out to be stable over a range of scales. An extremal index value257

close to 1 indicates almost independent extremes. In order to find θ values which are258

robust over a range of scales we use the non-parametric Kruskal-Wallis test (Hami-259

dieh et al. 2009). We use this test to assess whether the medians over a scale range260

are statistically indistinguishable at a level of 5%. Furthermore, the resampling ap-261

proach provides error intervals which provide a means to test whether the extremal262

index values are statistically significant different from 1. We also performed a field263

significance test (Livezey and Chen 1983) and found the results to be significant at264

the 5% level.265

Fig. 3 shows the extremal index of surface wind speeds (only significant values266

at the 5% level are displayed). While the distribution of the extremal index is267

noisy the figure nonetheless provides evidence that extreme surface wind speeds are268

clustered in the North Atlantic region. Especially the UK, the Iberian peninsula,269

Germany and France as well as south-west Greenland, Latin America and Africa270

show extremal index values significantly different from 1 which indicate a propensity271

to clustering of wind speed events.272

The fact that extreme wind speeds are clustered is consistent with the long-range273

dependence of wind speeds. In the next section we will provide evidence for regime274

behaviour which is one possible mechanism for the observed long-range dependence275

and clustering of extremes.276

4. Persistent North Atlantic Regimes and Extremes277

One of the most fascinating aspects of climate variability is that it can be described278

by just a few teleconnection patterns. This ability is attractive because this would279

not only allow for a very efficient description of the atmosphere but also offer280

the prospect of skillful long-range predictions. The quest to decompose the low-281

frequency atmospheric circulation into just a few recurring or preferred circulation282

patterns is long ongoing. The earliest attempts have been made by Defand (1924)283

and Walker and Bliss (1932). These studies identified the North Atlantic Oscillation284

(NAO) as the dominant teleconnection pattern in the North Atlantic region which285

exerts a significant influence on surface weather and climate. Other well known tele-286

connection patterns in the North Atlantic region are the East Atlantic (EA) and287

the Scandinavian patterns. These patterns are typically identified by Empirical Or-288

thogonal Function (EOF) analysis (Barnston and Livezey 1987), Gaussian mixture289

analysis (Smyth et al. 1999), deviations from Gaussianity (Kimoto and Ghil 1993)290

or cluster analysis (Cheng and Wallace 1993, Cassou 2008).291

In order to examine the relationship between persistent circulation regimes and292

extreme events here we are using the circulation regimes identified by Franzke et293

al. (2011). They used a Hidden Markov Model (HMM) to identify persistent regime294

states. A HMM identifies preferred persistent states in phase space by simultane-295

ously estimating a Gaussian mixture model and a Markov transition matrix. The296

Markov transition matrix describes the temporal evolution of the regimes (Majda297

et al. 2006, Franzke et al. 2008, 2009, 2011). As a proxy of North Atlantic climate298

variability the JLI has been used and three significant persistent regime states have299

been identified which correspond to a Northern, Southern and Central jet state (see300

Fig. 2 of Franzke et al. (2011)). Franzke et al. (2011) show that the regimes well301
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8 C. L. E. Franzke

describe the storm tracks and that Rossby wave breaking plays a large role in the302

maintenence of the regimes.303

The regime behaviour and long-range dependence are likely closely related.304

Regime behaviour is a case of non-stationarity which is able to induce long-range305

dependence (Klemes 1974). One of the simplest explanations of long-range depen-306

dence is that a system persists for long periods of time above or below its climato-307

logical mean value. This is exactly what happens for the jet stream regimes; they308

fluctuate for long periods of time around either their northern, southern or central309

states (Franzke et al. 2011). This suggests that the jet stream regime behaviour is310

a likely cause of the observed long-range dependence.311

As we will show next these circulation regimes determine the propensity of312

extremes. One sign of the possible presence of extremes are deviations from Gaus-313

sianity. For instance, deviations from Gaussianity can indicate that large values314

occur more frequently than one would expect if they were from the Gaussian dis-315

tribution. Nakamura and Wallace (1991) and Holzer (1996) provided evidence that316

deviations from Gaussianity in geopotential height fields are associated with ex-317

treme events. The first measures of deviations from Gaussianity are the skewness318

and kurtosis. Skewness indicates the degree of symmetry around the mean value;319

a Gaussian distribution has a skewness of zero. Kurtosis denotes the peakedness of320

the distribution; i.e. if it has more or less mass in the tail of its distribution than a321

Gaussian distribution. The skewness is defined as322

s =
1
n

∑n

i=1(xi − x)3

( 1
n

∑n

i=1(xi − x)2)
3

2

(4.1)

and the excess kurtosis as323

k =
1
n

∑n
i=1(xi − x)4

( 1
n

∑n
i=1(xi − x)2)2

− 3 (4.2)

where n denotes the length of the time series xi, and x the mean value of the time324

series.325

In Fig. 4 is displayed the skewness and in Fig. 5 the excess kurtosis of 500326

hPa geopotential height. These figures show that the jet stream regimes have an327

impact on the deviations of Gaussianity in the upper tropospheric circulation in328

the North Atlantic region and over Europe. The Southern jet regime is associated329

with negative skewness and positive excess kurtosis on the equatorward flank of330

the jet stream and negative skewness and positive kurtosis over south-east Europe.331

The Northern regime is associated with positive skewness on the equatorward flank332

of the jet stream and negative skewness over central Europe and negative kurtosis333

over the Norwegian and Barents sea, while the Central jet regime is associated with334

positive skewness on the equatorward flank of the jet stream, positive skewness over335

central Europe and negative skewness west of the Iberian peninsula and negative336

kurtosis on the poleward flank of the jet stream.337

These changes are likely due to changes in preferred locations of blocking in338

the jet regimes (Franzke et al. 2011). The northern jet regime is associated with339

blocking anti-cyclones mainly over southwestern Europe, the southern jet regime340

with Greenland blockings and the central jet regime with a reduction of blocking341

systems (Franzke et al. 2011). These changes in blocking and corresponding changes342
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Persistent Regimes and Extreme Events 9

in deviations of Gaussianity are consistent with the findings of White (1980) and343

Rennert and Wallace (2009). On the other hand, Luxford and Woollings (2012)344

put forward the idea that the observed deviations from Gaussianity are just a345

consequence of the jet stream shifts and do not necessarily imply nonlinear dynamics346

and changes in blocking locations.347

Next we examine how the regimes affect the occurrence of extreme wind speeds.348

For this purpose we computed the 99.9th percentile of unfiltered wind speeds. Fig.349

6 reveals that the regime states also affect extreme wind speeds over the North350

Atlantic and the UK. During the Southern jet state extreme wind speeds are more351

likely to occur on the poleward side of the jet while during the Northern jet state352

they are more likely to occur on the equatorward side. During the Central jet state353

extreme wind speeds are likely to occur in a small band north-west of Ireland. The354

extreme wind speed results are robust against a change in the exact percentile level;355

choosing the 99th percentile level gives broadly the same results (not shown).356

The statistical significance of the skewness, kurtosis and extreme wind speeds357

are tested by using a bootstrap approach. This tests whether the composite fields358

could have arisen from sampling issues. Our results suggest that the skewness, kur-359

tosis and extreme wind speeds are unlikely to be the result of sampling variability.360

We also performed a field significance test (Livezey and Chen 1983) and found361

the results to be significant at the 5% level. These results reveal that circulation362

regimes of the North Atlantic jet stream have a statistically significant impact on363

the propensity of extreme events.364

5. Summary and Discussion365

In this contribution we have provided evidence that circulation regimes of the North366

Atlantic eddy-driven jet stream affect the propensity of extremes. In the case that367

seasonal-to-interannual prediction systems can skillfully predict the regime states368

of the jet stream or their changes in frequency of occurrence this would offer the369

prospect of probabilistic forecasts of the likely number of extreme events for the370

next season or year. This kind of information is needed by many businesses and371

decision-makers. It has to be noted that many climate models still have problems372

simulating blockings, which are strongly related to the jet stream regimes. This373

is likely related to the nonlinear wave breaking which is essential in the life cycle374

of blockings. Capturing the wave breaking features likely requires high horizontal375

resolutions.376

We also provided evidence of long-range dependence of surface wind speeds. The377

occurrence of circulation regimes are a possible explanation of this property because378

they introduce non-stationary behaviour. It is well known that non-stationarity379

can cause long-range dependent behaviour. The fact that the wind speed extremes380

are serially clustered is consistent with both the long-range dependence and the381

regime behaviour (i.e. the non-stationarity). For instance, in Fig. 7 is displayed the382

wind speed time series at a grid point close to London. The time series looks non-383

stationary with periods with persistent high or low wind speeds. These persistent384

periods of high and low wind speeds are likely related to the regime behaviour of385

the jet stream and the long-range dependence.386

This finding also has wider implications for climate change because long-range387

dependent processes can produce apparent trends over rather long periods of time388
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10 C. L. E. Franzke

(Franzke 2010, 2012a) and there is evidence that surface temperatures are long-389

range dependent (Koscielny-Bunde et al. 1998). Also non-stationarities or regime390

behaviour can cause apparent trends. A typical HMM realisation, which is a paradig-391

matic non-stationary process, as displayed in Franzke et al. (2008) shows how regime392

behaviour can cause an apparent trend (see their Fig. 1b). However, there will be no393

trend for sufficiently long HMM realisations. The likely connection between climatic394

regime behaviour and climate trends needs further research.395

Furthermore, the fact that extreme wind speeds cluster suggests that return396

periods are not necessarily a useful measure. This is even more complicated by the397

presence of long-range dependence which will link even far apart extreme events.398

This linking will negate traditional attempts to de-cluster the time series (Coles399

2001). This calls for the need of new measures for describing the occurrence fre-400

quency of extremes, including the clustering of extremes, for serially dependent401

processes. Waiting time distributions are one promising measure of the reoccur-402

rence properties of extremes. We estimated the exponential distribution and the403

empirical waiting time distribution for the grid point closest to London (Fig. 8; the404

results are insensitive to the exact location). The exponential distribution describes405

the waiting times of a memory-less Poisson process. As can be seen in Fig. 8 the406

empirical waiting time has a much fatter tail of waiting times than one would expect407

from a memory-less Poisson process. This is the imprint from the clustering which408

means that for long periods no extremes occur but when they occur they occur in409

bunches. The mean waiting time of the Exponential distribution is 14 days, while410

the empirically estimated mean waiting time is 33 days. This indicates that tradi-411

tional extreme value statistics can be misleading if it does not take into account the412

dependence structure of the underlying process. The estimation of return periods of413

extremes becomes even more complicated when extremes tend to cluster. Then the414

return period becomes less meaningful. In principle then one would need two mea-415

sures: the return period of clusters and the return period of extremes in a cluster.416

Of course, also outside of clusters extremes can occur. Some promising statistical417

approaches on clustered extremes are described in Fawcett and Walshaw (2006,418

2007a, 2007b) and the relationship between long-range dependence and extremes419

is an active topic of current research.420

While this study has mainly focused on wind speed extremes there are also other421

atmospheric circulation related extremes like heat waves and droughts which are422

associated with blocking. The principal difference between both kinds of extremes423

is that the first are more ’fast’ extremes which last a day or two while the latter424

are more ’persistent’ extremes which can last for weeks or longer. Examples are425

droughts and heat waves. The jet stream regimes are closely linked to blocking426

(Franzke et al. 2011) and thus will affect the ’persistent’ extremes. For instance,427

the northern jet regime can last up to 3 weeks (Franzke et al. 2011). While most428

extreme value statistics is well suited to describe ’fast’ extremes the statistical model429

of the ’persistent’ extremes is less well developed. At a conceptual level the ’fast’430

extremes have highly non-Gaussian distributed increments while the ’persistent’431

extremes can have nearly Gaussian distributed increments. It is likely that the432

increments of the ’persistent’ extremes are very small due to the quasi-stationary433

character of the phenomenon. An interesting approach to model natural ’persistent’434

extremes are so-called bursts (Barabasi 2005, Lowen and Teich 2005).435

In Franzke et al. (2011) evidence has been provided for large interannual vari-436
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ability of the circulation regimes. Because of the potential that global warming437

might affect the regimes by e.g. changing their frequency of occurrence there is an438

urgent need for advanced statistical and mathematical tools to detect and attribute439

circulation changes and changes in extreme events. The approaches put forward by440

Horenko (2008, 2010) and O’Kane et al. (2012) are promising for this purpose.441

Possible processes causing the observed interannual variability are amongst oth-442

ers North Atlantic ocean variability (e.g. Atlantic Multidecadal Oscillation and443

the Meridional Overturning Circulation), Arctic sea ice decline, stratospheric cir-444

culation variability, variations in solar forcing or greenhouse gas emissions. More445

research is needed to disentangle these processes in a systematic way.446
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Figure 1. Long-range dependence parameter d of unfiltered surface wind speeds. Only
values significant at the 5% level are displayed. Online version in color.
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a) Shape Parameter b) Scale Parameter

Figure 2. Shape and scale parameter of Generalised Pareto Distribution of unfiltered
surface wind speeds for three different thresholds (Upper row: 88th percentile, middle
row: 90th percentile and lower row: 92th percentile). Online version in color.
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Figure 3. Extremal index of unfiltered surface wind speeds. Displayed are only values
which are significant at the 5% level. Online version in color.
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Figure 4. 500 hPa geopotential height skewness. Displayed are only values which are
significant at the 5% level. Online version in color.
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Figure 5. 500 hPa geopotential height kurtosis. Displayed are only values which are
significant at the 5% level. Online version in color.

a) Southern Jet b) Northern Jet c) Central Jet

Figure 6. 99.9th percentile of unfiltered surface wind speeds. Displayed are only values
which are significant at the 5% level. Online version in color.
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Figure 7. Wind speed time series at a grid point located close to London for the period
1958 through 1968.
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Figure 8. The cumulative waiting time distribution between consecutive 99th percentile
threshold exceedances at a grid point located close to London (solid line). Plotted is the
probability to exceed the waiting time in days (as given on the x-axis). The crosses denote
the corresponding exponential distribution and the dashed lines indicate the 5th and 95th
error bounds of the exponential distribution. Online version in color.
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