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Do We Need to Analyze Spectra by Hand? 

Adam M. Terwilliger and Richard L. Lord 

Department of Chemistry, Grand Valley State University, Allendale, MI 49401 

 

Abstract 

Computational chemistry uses computer science to explore structures and energies of chemical 

species. A typical computational chemistry output file contains tens or hundreds of thousands of 

text lines. Automation makes the analysis of these large data sets increasingly more efficient. In 

turn, we constructed computer programs using Python that allow us to focus our time upon the 

chemical interpretation of these results. We used these efficient analyses to study a vanadium-

oxo species synthesized by our collaborators. Our calculations answer many questions about the 

redox states in these compounds, though they predict that the experimental crystal structure may 

not reveal all species present. Subsequently, in an effort to distinguish which species are present, 

we simulated the absorption spectra of the lowest energy structures. These spectra motivated a 

spectral analysis program written in Mathematica, with which we gain greater insight into why 

these compounds absorb light differently. 

Introduction 

There are over seven billion people on this planet.1 Each day the average human speaks 

approximately 7,000 words.2 On Earth, the life expectancy rate is 69.91 years.3 Through a simple 

extrapolation, that roughly equates to 125,119,674,750,000,000 total words spoken in the 

lifetime of every individual currently alive today. That’s 1.25 quintillion words! To put this into 

perspective, on a single day IBM generates 2.5 quintillion bytes of data.4 The magnitude of the 

digital world is almost unimaginable. Often it seems “big” data being described with such a short 
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adjective does not do it justice. We see data in this world as colossal, prodigious, tremendous, 

capacious, expansive, and paramount. In other words, society has a problem to face. Many 

questions can be asked as we look for a solution. What data is important and what data is 

irrelevant? Where can we focus our time and effort to make the most meaningful impact? How 

do we organize this data? Where do we even begin?!  

 Thankfully with the greatest of minds coming together, we are on our way to handling the 

many dimensions that the ever expanding technological world has to offer in the way of “big” 

data. One such way is automation.5 The beauty of automation is that it requires little to no control 

from the user. Any process that is overly repetitive can be automated. Traditionally, this 

automation has been focused on physical tasks (car assembly), but there is an increasing demand 

for automation of data organization.6 With automation in action, the user can focus his or her 

attention on more meaningful analyses.  

From understanding the human genome7 to preserving national security8 to the large 

hadron collider9; big data is everywhere. As research is vast in a multitude of fields, it is quite 

evident that owning control of data within the specific area is important. Computational 

chemistry is such a field where being able to manage data is crucial, and uses computer science 

to explore structures and energies of chemical species. Output files typically contain tens or 

hundreds of thousands of text lines. We hope to make more efficient and meaningful analyses of 

these structures and energies through the implementation of automation.  
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Equation 1. 

	    𝑯𝝍 = 𝑬𝝍	  
𝐻 = 𝐻𝑎𝑚𝑖𝑙𝑡𝑜𝑛𝑖𝑎𝑛	    
𝜓 = 𝑤𝑎𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛	  

E	  =	  Energy	  

Theory 

One of the major goals in computational chemistry is 

to gain insight into the structures and energetics of chemical 

species that cannot be isolated and studied in the laboratory. 

To do this, we need to be able to calculate the energy of a 

given species and to find its optimal geometry.10 To understand geometric optimization, one must 

first understand the basis behind Schrödinger’s equation.11 In Equation 1, Schrödinger’s equation 

describes how a physical system changes with respect to time involving the Hamiltonian 

operator, acting on the wavefunction, which can be broken into kinetic and potential energies. 

Furthermore, one can separate those terms into ones involving the nuclei and the electrons in a 

chemical system. These components, seen in Equation 2, include (in order) electron kinetic 

energy, nuclei kinetic energy, electron-electron potential energy, nuclei-electron potential 

energy, and nuclei-nuclei potential energy. 

 

 To help visualize these particles, refer to Figure 1, as it gives an out of scale picture of a 

“charge distribution” (electron cloud) and a “point charge” 

(nucleus). The mass of a nucleus is far greater than the mass of an 

electron; therefore, if we assume that the momentum of all particles 

is approximately equal, then the velocity of the nucleus is far smaller 

than the velocity of the electron. The assumption that nuclei are 

Equation 2. 
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Figure 1. Electron Cloud 
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point charges (relative to the size of the electron clouds) also allows us to easily evaluate the 

nucleus-nucleus potential energy. Through this approximation, known as the Born-Oppenheimer 

Approximation,12 inferences can be made that simplify the number of energies, and their 

interdependencies, necessary to solve for in the Hamiltonian operator. The kinetic energy of the 

nuclei and the nucleus-nucleus potential energy can be solved separate from the energy involving 

electrons due to the different timescale that these particles move on. The potential energy for an 

electron interacting with another electron is the most difficult remaining component in the 

Hamiltonian to solve for. In turn, this challenge provides the basis for the need of computation in 

solving quantum chemical problems.  

At this point, we cannot solve for the wavefunction directly; we look to represent our 

wavefunction in terms of more tractable functions. There are two main ways to approach this 

electronic structure problem. In one approach, known as the ab initio method, we assume that the 

total wavefunction can be represented as a linear combination of simpler functions, namely 

atomic orbitals (𝜓 =    𝑐!𝜙!! ). The problem of solving the wavefunction then becomes one of 

determining the ci, which are orbital coefficients.  

 

 

 𝐸! = 𝜓!∗𝐻𝜓! 𝑑𝜏 → ( 𝑐!∗𝜙!∗! )𝐻 ( 𝑐!𝜙!! ) 

𝐸! = 𝑐!∗𝑐!
!!

𝐸!𝛿!" =    |𝑐!|!𝐸!
!

 

|𝑐!|!𝐸𝑖  
!

−    𝑐! !𝐸!  
!

=   𝛼 

 

Equation 3. 
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ψi is some guess of our ground state wavefunction ψo. We choose φ such that they are 

eigenfunctions of H. As Ei-Eo=α, we can vary Ck such that α goes to zero, where Ei – E0 ≥ 0. 𝛿!" 

is the Kronecher delta. This systematic prescription for minimizing the ground state energy (and 

wavefunction) by varying the coefficients is known as the variational principle.13 Instead of 

solving instantaneous interactions within the Hamiltonian operator between the electrons, we 

make a mean-field approximation.14 That is, we will look at the ith electron interacting with an 

average density of the remaining (n-1) electrons. 

 ! ! !!
!

𝑑𝑟 = 𝑉!{𝑗} 

Where 𝜌 is the density, r is the distance between charges, q is the charge, and V is the mean-field 

potential mentioned above. This casts each of the Hamiltonian components as one-electron 

problems. The problem is that we must know the where the electrons are to solve for their 

locations, so the problem is iterative in nature; we refer to this procedure and the resulting 

wavefunction and energies as a Self-Consistent Field (hence E (SCF)) method. 

We can deconstruct this hierarchy of approximations, known as the Hartree Fock 

method,15 into seven main steps. Ultimately, while very complicated, this approach can be 

summarized by a relative simple flowchart (Figure 2) which has been automated in quantum 

chemical programs like Gaussian.16 
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Figure 2. Self-Consistent Field (SCF) Method.  

 

The second approach to the electronic structure problem is density functional theory 

(DFT),17 with 𝐹 𝜌 =   𝐸 ∗ 𝜌, where the energy is determined for the density and we do not 

attempt to solve for the complicated wavefunction. With ab initio methods, we know H exactly 

but we do not know Ψ; while, with DFT we know ρ exactly but we do not know F[]. From a 

philosophical perspective, with ab initio methods, we know what the question to ask for the E is, 

but we have no idea what the wavefunction looks like; however, with DFT, we know the density 

to get an E from exactly and can even measure it experimentally, but we do not know the 

question to that E from the density. The main advantage to using DFT is the relative cost 

compared to the expensive ab initio approaches. Unfortunately, a big disadvantage to DFT is the 

inability to systematically improve the energy. 

Choose	  basis	  set.	  

Choose	  ini<al	  geometry.	  

Define	  charge/spin.	  

CPU	  guesses	  where	  electrons	  reside.	  

Varia<onally	  minimize	  molecular	  orbitals	  that	  make	  up	  wavefunc<on.	  

Check	  orbital	  composi<on	  and	  overall	  energy	  (	  where	  electrons	  are)	  	  

Loop	  until	  there	  
is	  no	  change	  in	  
composition/	  
energy.	  
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Equation 4.  

𝐻! =   
−1
2 ∇!! −

𝑄!
𝑟!"!

+
1
𝑟!"!!

 

Our goal is to represent each part of the Hamilitonian in terms of density. Fortunately, we are 

able to solve two terms very easily.  

Equation 5.  

𝑄!
𝑟!"!

→
𝜌!(𝑟!)𝑄!
|𝑟! − 𝑟!|

𝑑𝑟! 

1
𝑟!"!!

(𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐) →
𝜌(𝑟!)𝜌(𝑟!)
|𝑟! − 𝑟!|

𝑑𝑟!𝑑𝑟! 

We can use orbitals to approximate the kinetic energy term. The final term we are left to solve 

for is the exchange and correlation term. This term collects various approximation errors and 

purely quantum effects and is usually fit to a small data set. In our calculations, we use the 

specific prescription called B3LYP18-22 because it has been shown to perform well for a diverse 

set of chemical problems.  

Returning to the idea of the Born Oppenheimer approximation, because nuclei move 

much slower than electrons, we consider the nuclear coordinates to be parameters in the 

electronic structure problem. Potential energy surfaces (PES) define the potential energy of a 

collection of atoms over all possible atomic arrangements. As energy is plotted versus nuclear 

coordinates we are particularly interested in maxima, minima, and saddle points that correspond 

to chemical species like reactants, products, intermediates, and transition states. To locate and 

evaluate these critical points, calculus can be utilized. To optimize the system partial first 

derivatives with respect to each coordinate are evaluated. A critical point is a point on the PES 

for which all partial first derivatives are equal to zero (Equation 6). In turn, the second derivative 
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with respect to each of the nuclear coordinates is taken. A positive second derivative (positive 

curvature) for all dimensions (or normal modes) in the system represents the minimum for which 

we set out to find. A negative second derivative gives rise to a maximum in that dimension, 

which is reported as an imaginary frequency by our quantum chemical program. We seek to rid 

our system of imaginary frequencies; in turn, we will see later one of our developed programs 

looks to solve this issue. 

 

!"
!!!

= !"
!!!

= !"
!!!

= !"
!!!

= !"
!!!

= !"
!!!

 = 0 

Equation 6. 
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Programming 

How can we make human analyses of our data sets most efficient? As noted in the 

Theory section, we look to find the minimized energies of our system. Additionally, linked to 

these energies as previously seen, are coordinates (geometries) and frequencies. Although this 

may seem fairly straightforward at first glance, with all cycles the total geometries and 

frequencies can run from 50-100 for each optimization. With each output file, the revelant data 

for analysis is found in only a handful of lines. However, the human must parse through 

thousands of lines in these log files to reach the very few revelant lines. We chose to utilize the 

language of Python23 as it allowed for quick understanding due to its relatively simple syntax. In 

turn, we save time and effort that can be focused on more meaninful analyses. Automation serves 

as the key with our programs.  

 

Thermo.py: Natures tends to thermodynamic equilibrium, and a large part of chemistry is 

understanding these equilibria. Thermo.py extracts and organizes thermodynamic data from a 

quantum chemical simulation.  
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Figure 3. Flow Chart of thermo.py 

 

Interpretation of Flow Chart: 

.log files are entered in command line by user. They are the converted using the open() function, 

in coordination with the sys.argv command. We then find the thermodynamic energies in the 

output file by using conditional logic with the line.startswith() command. We then calculate the 

multiple energies that are not calculated directly by using the formula S = (H – G)/T, where S is 

entropy, H is enthalpy, G is free energy, and T is temperature.11 We then use string formatting 

commands, which gives the print statements a fixed position and makes for easy importing into a 

program like Excel. Additional features were added to help the user identify common errors in 

the optimization. Our program checks for imaginary frequencies by utilizing conditional logic 

for which we can edit the filename variable to output with an asterisk. We also check for the 

correct temperature by creating a global temperature variable and utilizing the same 

line.startswith() command to change this global variable only if the temperature is not room 

.log	  file	  

read	  files	  

line.startswith()	   energy	  
calcula<ons	  

line	  formaRng	  

imaginary	  
frequency	  
check	  

temp	  check	  

mul<ple	  input	  
check	  

print	  energies	  
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temperature. This allows for the filename to be conditional changed with an “+”. Finally, our 

program checks for multiple files through running a while loop that checks the length of the 

sys.argv command until all of the files are read. For more information, including that of a user 

tutorial and future improvements, please see Appendix 3 and 6 (source code).  

 

Geom.py: Computed geometries can be compared to experimental X-ray structures, or can give 

us insight into species that cannot be isolated in the laboratory. A typical geometry optimization 

output file can have upwards of 50 geometries. Geom.py gives the user flexibility to quickly 

analyze the geometries of interest. See Appendix 4 and 7 for more information.  

 

Freq.py: Frequencies are related to experimental infrared spectra and they tell us about the 

shape of the potential energy surface for an optimized structure. Freq.py extracts all frequencies 

(in cm-1). See Appendix 8 for the source code. 

 

Imag.py (See Figure 4): If imaginary frequencies are found then the structure is not minimized. 

Imag.py gets the optimized geometry and checks for imaginary frequencies. The geometry is 

then displaced along the normal mode for that frequency, which returns a new geometry that can 

be re-optimized. This program is an example of how a new program can incorporate the 

previously written modules (geom.py and freq.py). See Appendix 5 and 9 for more information. 
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Figure 4. Flow Chart of Imag.py 

 

Interpretation of Flow Chart: 

Read file: A filename that is inputted on the command line by the user is called using the system 

module. 

Parse to Find Optimized Geometry: Regular expressions are utilized to compile a pattern 

which the program parses each line of the input file to find matches.  

Read	  File	  
Parse	  to	  find	  
Op<mized	  
Geometry	  

Append	  Array	  to	  
store	  the	  
Geometry	  

Parse	  to	  find	  
Imaginary	  
Frequencies	  

User	  specifies	  
which	  Frequency	  

is	  Displaced	  
Atomic_Convert	  

Append	  Array	  to	  
store	  the	  
Frequency	  

Sum	  the	  Arrays	  

Print	  New	  Geometry	  

geom.py	   disp.py	  

imag.py	  
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Append Array to store the Geometry: The module numpy allows for multidimensional arrays 

to be called.  

Parse to find Imaginary Frequencies: Again, regular expressions are utilized to compile and 

patterns just as seen in “Parse to Find Optimized Geometry” is used. We are now looking for the 

imaginary frequency displacements. 

User specifies which Frequency is Displaced: The user answers which geometry, or 

geometries, he or she wants. Then the user chooses between atomic symbols, names, or numbers.  

Atomic_Convert: An external program is called that formats the atom information according to 

the user input. 

Append Array to store the Frequency: Similar to storing the geometries, numpy is utilized to 

manipulate the multidimensional arrays. However, the inner calculations have differences that 

are specified in Appendix 5. 

Sum Arrays: Geometry and frequency arrays are consolidated with a sigma value that 

determines the magnitude of the displacement.  

Print New Geometry: Prints the data in a convenient format for the user.  
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Chemistry  

With our programs in hand, we wanted to apply them to a real life system. One of our 

collaborators, Professor Ken Caulton at Indiana University, had recently identified an unusual 

and intriguing vanadium species. His lab works on metal-containing molecules that are capable 

of making important molecules like carbon dioxide become reactive.24 Unfortunately, their 

molecules are often difficult to isolate and study in detail, so they looked to us for computational 

insight into the electronic structure of their newly acquired vanadium species. To better 

understand the electronic and geometric structure of [(Hbtzp)VCl2O] that was identified by 

crystallography, we addressed the following questions with density functional theory: (i) what 

are the oxidation states of the metal and ligands in the lowest energy spin state of 

[(btzp)VCl2O]0?, (ii) which N atom does the H atom prefer to bind to in this vanadium complex?, 

and (iii) how does the electron distribution change when the H atom binds to btzp? 

First, what are the redox/spin states of the ligand and metal without hydrogen attached to 

btzp? One can envision oxidation states for vanadium ranging from VIII to VV, depending on the 

oxidation state of the oxo ligand and the btzp ligand. VIV is expected if we assume that btzp is 

neutral and the oxo is 2–. Two spin states were explored for this species: doublet and quartet. 

The lowest energy optimized structure (doublet) can be seen in Figure 5 and a table of important 

bond lengths is presented in Table 1. The molecule is approximately C2v symmetric so bond 

lengths are only reported for one tetrazine arm. 
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Figure 5. Structure of doublet [(btzp)VCl2O]0 with atomic labels for important atoms. 

 

Table 1. Bond Lengths (Å) and Energies (kcal/mol) for the two spin states of [(btzp)VCl2O]0. 

 doublet 

(S = 1/2) 
quartet 

(S = 3/2) 
N1-N2 1.307 1.321 
N1-C3 1.361 1.356 
N2-C2 1.349 1.339 
C2-N3 1.346 1.356 
N3-N4 1.321 1.320 
C3-N4 1.333 1.335 

Relative  
Free Energy 0.00 +42.49 

 

Based upon the energy difference of 42.5 kcal/mol, we conclude that the neutral species 

has a doublet spin state. We used B3LYP for our calculations, a functional that is known to 

overstabilize high-spin states, so the large energy difference is likely a lower bound. We look to 

spin density and molecular orbital diagrams to understand the electron distributions in this lowest 

energy spin state. Those diagrams are shown in Figure 6. 
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Figure 6. Isosurface plots of the singly occupied molecular orbital (0.05 au, left) and spin 

density (0.002 au, right). 

Our spin density and SOMO show that the unpaired electron density is concentrated 

around the metal center with no concentration on the btzp ligand. This finding of one unpaired 

electron at the metal is consistent with our initial speculation that this species is VIV. The spin 

density plot shows a slight excess of β spin at the oxygen; however, the corresponding orbital 

analysis (used to generate the SOMO in Figure 6) did not identify an unpaired electron on O. For 

an explanation of this spin polarization see SI-3 and Appendix 1.  

To locate the thermodynamically preferred position of hydrogen atom binding to the 

Hbtzp ligand in [(Hbtzp)VCl2O] we considered each of the three tetrazine N atoms (N2, N3, N4; 

see Figure 5 for atom labels) not bound to the vanadium center. Adding the hydrogen atom (S = 

½) to the doublet species could result in either a singlet or triplet species, depending on whether 

the hydrogen’s electron prefers to orient in the same or opposite direction to that of the V ion. 

Thus, we ran optimizations on a total of six species with two spin states for each N binding 

location. To simplify the discussions below, we will refer to these three isomers as 2, 3, and 4 

(referring to H bound to N2, N3, and N4, respectively) with a subscript of either S or T to 

indicate singlet or triplet, respectively. The results are summarized in Table 2. 
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Table 2. Relative free energies in kcal/mol for various isomers in [(Hbtzp)VCl2O]. 

Species CalcID Spin 
State 

H 
Position 

Relative 
Free 

Energy 
2S 003 Singlet N2 –1.54 
2T 004 Triplet N2 +0.38 
3S 005a Singlet N3 0.00 
3T 006 Triplet N3 +1.36 
4S 007 Singlet N4 +7.47 
4T 008 Triplet N4 +7.21 

 

2 and 3 were found to be most stable, with 4 higher in energy by ~7 kcal/mol. Thus, we focus 

our attention on 2 and 3. For both isomers, the singlet is favored over the triplet by 1-2 kcal/mol, 

with 2 favored over 3, but by an energy difference that is within the expected error of our 

methodology. This energetic ordering may also be influenced by the fact that our model 

optimizes the structures without solvation effects or intermolecular interactions (that are present 

in the solid state). We suspected there is artificial stabilization of the N2–H site due to its 

proximity to the anionic oxo ligand. See Appendix 2 for view showing H-bonding between N2 

hydrogen and oxygen). We next compared the intra-ring bond lengths from 2S, 3S, and the 

experimental X-ray structure. We found the N–N and N–C bond lengths in the hydrogenated 

tetrazine arm of the btzp ligand to be most diagnostic and the comparison of these bond lengths 

is seen in Figure 7. A similar comparison of 2S, 3S, and 4T may be seen in Figure SI-1. 

The N2–C2 X-ray bond length of 1.309 Å is closest to that of the shorter 1.305 Å in 3S, rather 

than the longer 1.360 Å in 2S.  Similarly, the C2–N3 X-ray bond length of 1.349 Å is closest to 

that of the longer 1.365 Å in 3S, rather than the shorter 1.312 Å in 2S. 4T is the furthest from 

agreeing with experiment.  Therefore, the 3S structure gives the best agreement with experiment. 

Given the small energy difference between 3S and 3T, the singlet and triplet states, we wanted to 

use a structural comparison to further test our DFT-energy-based spin state assignment.   
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Figure 7. Comparison of [(Hbtzp)VCl2O] bond lengths (Å) for the two lowest energy singlets 

with experiment. 

 

As shown in Figure 7, the N2–C2 and C2–N3 bond lengths are most conclusive. The N2–

C2 X-ray bond length of 1.309 Å is closest to that of the shorter 1.305 Å in 3S, rather than the 

longer 1.360 Å in 2S.  Similarly, the C2–N3 X-ray bond length of 1.349 Å is closest to that of the 

longer 1.365 Å in 3S, rather than the shorter 1.312 Å in 2S. 4T is the furthest from agreeing with 

experiment.  Through this analysis, we unearthed that the 3S structure gives the best agreement 

with experiment. Given the small energy difference between 3S and 3T, the singlet and triplet 

states, we wanted to use a structural comparison to further test our DFT-energy-based spin state 

assignment.  Figure 8 shows that the structures of both spin states agree well with experiment. 

The largest difference is in the N1–C3 and C3–N4 bond lengths where 3S matches better with 

experiment by ~0.01 Å in both bonds. A more complete comparison of bond lengths between 3S 

and the X-ray structure may be found in Figure SI-2 and Table SI-1. 

  

N1

N2
C2

N3

N4
C3V 1.359 1.315

1.3861.358

1.360 1.312

N1

N2
C2

N3

N4
C3V 1.368 1.315

1.3651.373

1.304 1.365

N1

N2
C2

N3

N4
C3V 1.382 1.300

1.3551.378

1.309 1.349H H

2S 3S X-ray
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Table 3. V–N1 bond lengths (Å) for calculated and X-ray species. 

Species V–N1  
2S 2.048 
2T 2.159 
3S 2.070 
3T 2.156 
4S 2.139 
4T 2.155 

X-ray 1.9743(8) 
 

Finally, we sought to use the V–N1 distance to discriminate among NH regioisomers.  Table 

3 shows the V–N1 comparison for all six calculated isomers.  Although all calculated V–N1 

bond lengths are longer than experiment, the short V–N1 distance in 3S agrees well with 

experiment. 

 

Figure 8. Comparison of bond lengths (Å) for the singlet and triplet spin states to the X-ray data.  

 

The final question addressed was determining the redox/spin states of the ligand and metal 

within the isomer 3S that is most relevant to the X-ray structure.  The singlet was found to have 

an open-shell wavefunction: the restricted calculation with α and β confined to identical spatial 

orbitals was found to have a wavefunction instability and to be higher in energy than an 

“unrestricted” wavefunction where different spatial orbitals are allowed for the α and β 

electrons. We evaluated spin densities and corresponding orbitals (Figure 9) of the open shell 

singlet wavefunction to help with the redox/spin state assignments. This revealed spin density in 

N1

N2
C2

N3

N4
C3V 1.355 1.322

1.3671.370

1.305 1.367

N1

N2
C2

N3

N4
C3V 1.368 1.315

1.3651.373

1.304 1.365

N1

N2
C2

N3

N4
C3V 1.382 1.300

1.3551.378

1.309 1.349H H

3T 3S X-ray
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the singlet to be on both the metal center and the ligand, but with opposite spins: spin density at 

vanadium is β (white) while the ligand is α (blue). It is also noteworthy that there is α spin 

density at oxygen. However, a Mulliken analysis shows this spin to be only ~0.2 and none of the 

singly occupied orbitals (vide infra) are based on the oxo ligand. We then conclude that this spin 

density is due to spin polarization rather than oxyl character. 

The finding of spin density at only one tetrazine arm suggests that the added single hydrogen 

in this product injects an electron into the π* orbital of tetrazine upon binding to the ligand. For 

further clarification, we calculated the corresponding orbitals to determine which orbitals are 

singly occupied in this species. These results (Figure 9, bottom) show a β spin orbital on the 

metal center and an α spin orbital on the ligand with a small overlap of 0.36. Small overlap 

means that these two orbitals are spatially distinct, as is visually evident from Figure 9.  It is also 

clear from the SOMO of the ligand that this is a π*NN orbital. Because there is one vanadium d-

orbital singly occupied, this complex is best described as a VIV center antiferromagnetically 

coupled to a tetrazinyl radical. Contrary to our working hypothesis at the end of the 

crystallographic work, the Hbtzp ligand is an uncharged radical in this species.  Note that the 

metal SOMO is also of π symmetry with respect to the pincer plane, yet this does not mix 

significantly with the ligand SOMO (Sαβ = 0.36); spatial separation of opposite spins is found to 

give a more stable electronic structure.  It is worth noting that the analogous triplet species, 3T, 

has essentially the same metal and ligand redox states, but with the two electrons 

ferromagnetically coupled. 
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Figure 9. Isosurface plots for the spin density (top, 0.002 au) and the singly occupied 

corresponding orbitals (bottom, 0.05 au) of 3S. The overlap between the α (left) and β (right) 

orbitals is 0.36. 

 

Mini-Chemistry Conclusion 

In addition, we found a low energy isomer where the hydrogen transferred from the btzp 

ligand to the oxo species to give us a hydroxide. As such, our calculations suggested three 

comparably low isomers for this species: 2S, 3S, and OHT. In turn, we sought to gain a fuller 

understand of which species is truly present in solution. One convenient way to identify species 

in solution is with spectroscopy. After testing various spectroscopies, we found differences in the 

absorption spectra of the three low energy compounds, suggesting they are colored differently, as 

seen in Figure 10. This prompted us to create a program that could be utilized for similar 

problems in the future. 
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Figure 10. Simulated UV-Vis spectra for lowest energy isomers. The yellow, blue, and red lines 

correspond to OHT, 2S, and 3S, respectively. 

 

Future Work 

Our ongoing efforts are twofold: (i) develop a Mathematica25 notebook that interfaces with 

Gaussian to decide which excited states are significant, and (ii) automate interpretation for the 

nature of the excited states. Significant progress towards this goal has already been accomplished 

and is detailed below. 
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Python – UV-Vis 

Reads in log file. Parses to find energies and oscillator strengths of all excited states. Stores 

information in two distinct arrays. Each array is then written to a .txt file, which is later read in 

by our Mathematica program. For further details, see the source code in Appendix 9 and 10. 

 

Mathematica – UV-Vis 

  

Figure 11. Flow Chart of Mathematica Program 

 

Interpretation of Flow Chart: 

Import file: Set directory and call for user input of the .txt file for which the previous program 

created.  

Import	  File	  
Divide	  Data	  for	  
Energy	  and	  Osc	  

Strength	  

Set	  Func<on	  for	  
Curve	  FiRng	   Set	  Dynamic	  Axises	  

Loop	  to	  Plot	  
SubGaussians	  

Loop	  to	  Plot	  "s<cks"	  
as	  Parametric	  

func<on	  

Plot	  Total	  Spectrum	  	   Show	  Consolidated	  
Plot	  
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Divide Data for Energy and Osc Strength: Our data is “flattened” and stores in two tables, one 

for oscillator strength and one for energy.  

Set Function for Curve Fitting: We set function to use our table values in our Gaussian 

Function. See Appendix 10 for further details on this function.  

Set Dynamic Axises: Dynamic InputFields are set with default values and allow for the user to 

specify the dimensions of the plots. 

Loop to Plot SubGaussians: Dynamic Plotting is used for which we call our function to plot our 

table holding our SubGaussians.  

Loop to Plot "sticks" as Parametric function: We utilize ParametricPlot to plot our “sticks” 

that correspond to our maximum oscillator strength at each respective peak.  

Plot Total Spectrum: Our total spectrum is calculated by taking the sum of our SubGaussians 

Function. This new function is then plotted in the same manner as our SubGaussians were 

plotted. 

Show Consolidated Plot: An image is created that contains the SubGaussians, “sticks”, and 

total spectrum. This image can be manipulated for size and resolution, and can be saved and 

stored. 

 

Examples of the output our program produces are found in Figures 10, 12, and 13. The spectrum 

of butadiene is primarily due to four important excited states (green sticks), as shown, out of the 

25 excited states that were modeled. Many excited states make negligible contributions to the 

spectrum, as seen in Figure 12. Our program allows the user to quickly and easily focus on these 

3-4 states that are important. 



	   25	  

 

 

Figure 12. Example UV-Vis for simple system.  

For our vanadium-oxo complexes, many excited states make significant contributions, which can 

make the analysis complicated and time-consuming, as seen in Figure 13. Future work will 

include post-calculation analysis of the nature of each excited state so that the user can spend 

more time analyzing the chemical meaning. We have two approaches to this problem that we are 

pursuing: natural transition orbitals and natural bonding orbital analysis. Technical issues were 

encountered for both which delayed this component of the research project. 
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Figure 13. Example UV-Vis for complex real-world system. 
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Conclusion 

We set out to answer one main question: “can we manage ‘big data’ within the 

computational chemistry laboratory?” As we grew to comprehend the magnitude of “big data”, 

we simultaneously gained a deeper understanding of the underlying complexities we often take 

for granted. For instance, we realized there are many aspects of our calculations that are nearly 

impossible to calculate by hand and must be automated. In turn, we sought to understand the 

fullest picture for which the electronic structure problem is solved. As we delved into the theory, 

we found parallel variables in our log files like that of energies and geometries. Unfortunately, 

how much time it took to find these variables and the overwhelming magnitude of the variables 

between numerous optimizations provided a bottleneck of sorts for analysis. As aspiring 

researchers faced with a road block, we overcame this road block by learning the Python 

programming language. With this knowledge, we were able to construct four programs that 

streamline the analyses of our chemical systems. Each with distinct benefits, we are now able to 

extract meaningful thermodynamic, geometric, and frequency data with a few keystrokes. 

Accordingly, if our optimization ever is not at a minimum, our fourth program sets out to 

displace along an “imaginary” frequency for which a new geometry is created that is at a 

minimum. Previously, one would have to process each imaginary frequency by hand using 

visualization software (~5 minutes per molecule). These programs worked well on test systems 

that had already been analyzed. However, where we really see the beauty of our programs was 

when we were offered an opportunity to work with a real life system. We gained insight into 

many attributes of the vanadium-oxo species that helped our collaborators understand the 

oxidation states within that molecule. We may not have realized until later reflection, we were 

able to focus solely on the analyses of the system and spent little time mulling over the 
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magnitude of data in each log file, and future students in the lab may never have this realization 

(but this is a good thing!).  

Big data is everywhere. In this paper we have demonstrated many instances that occur in 

computational chemistry. Moving forward, we look to write more complex programs that will 

further elucidate details that are often difficult to acquire with ease including, but not limited to, 

the UV-Vis program. Ultimately, we plan to disseminate that program and the others we have 

written for use in the computational chemistry community.  We hope these programs will be a 

part of the grand solution for “big data” in computational chemistry.  
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