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1 INTRODUCTION  

 

Protein oxidation in foods involves the reactions between food proteins and reactive 

oxygen species, such as peroxyl radicals from lipid oxidation and hydroxyl radicals from 

the Fenton reaction. From a molecular level, protein oxidation may lead to amino acid side 

chain modifications, protein cross-linking, protein backbone fragmentation and protein 

conformational changes (Lund and Baron 2010).  

 

The significance of protein oxidation in the food industry is that it may have negative 

effects on human nutrition, which includes the oxidative degradation of essential amino 

acids and reduced protein digestibility, and food quality, which may impact on food texture 

such as decreased water-holding capacity of oxidized meat (Lund et al. 2011), whereas 

protein oxidation is also exploited to tailor new food structures by promoting protein cross-

linking (Buchert et al. 2010). Due to the significance of protein oxidation, more research is 

needed to understand how food proteins are oxidized in a different food matrix and what 

effects protein oxidation may have on human nutrition and food quality. 

 

Analysis of protein oxidation can be carried out by a variety of methods, such as chemical 

detection by certain reagents, fluorescence spectroscopy and liquid chromatography-mass 

spectrometry (LC-MS). Among those alternatives, fluorescence spectroscopy is a 

promising technique to investigate protein oxidation because of its non-destructive, rapid 

and highly sensitive nature (Lakowicz 2006). With this method, the extent of protein 

oxidation can be monitored by measuring fluorescent protein oxidation markers, such as 

the loss of intrinsic tryptophan fluorescence, carbonyl formation (Estévez et al. 2008) and 

dityrosine formation (Giulivi and Davies 1994).  

 

Oats have the highest lipid content and a most even distribution of lipid (not centralized in 

the  germ)  among  the  major  cereals,  which  brings  about  a  more  pronounced  rancidity  

problem due to lipid oxidation (Webster 2002). Thus, it is considered that oat proteins may 

be more prone to oxidation, which can be initiated by the reactions with lipid oxidation 

products. However, oats are a valuable protein-rich cereal with the highest protein content 

and nutritionally balanced amino acid profile (Peterson 2011). Interestingly, the major 

storage protein in oats is saline-soluble globulin instead of alcohol-soluble prolamin (e.g. 

wheat and corn) and acid/alkaline soluble glutelin (i.e. rice) (McMullen 2000). Based on 
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the aforementioned uniqueness of oat lipid and protein, studies on oxidation of oat 

proteins, especially oat globulins, are therefore necessary.  

 

In the current research, emulsions were used as a vehicle to study oxidation of oat proteins. 

The theoretical basis was that primary oxidation products of emulsified lipid react with oat 

proteins, leading to protein oxidation. Therefore, probing the oxidation of oat proteins in 

food  emulsions  and  antioxidant  attempts  constituted  the  core  of  this  Master’s  thesis.  To  

this end, a series of coarse oil in water emulsions (10% oil, 0.1% protein) were prepared by 

first mixing lecithin (as an emulsifier), purified rapeseed oil and oat protein extract and 

then sonicating the mixture. Antioxidants, including ellagitannins and -tocopherol, were 

added to emulsion samples to investigate their possible antioxidant activities towards 

protein oxidation. Oat proteins were isolation from wholegrain oat flour and ellagitannins 

from cloudberries (Rubus chamaemorus). Emulsions were incubated in darkness for 9 days 

in an oven with a constant temperature at 37 oC.  Fluorescence  spectroscopy was  used  to  

evaluate the progress of protein oxidation by measuring the loss of tryptophan fluorescence 

and the formation of carbonyls and dityrosine. Lipid oxidation was also investigated by 

determining hexanal formation by a static headspace gas chromatography system (HS-

GC). As a reference, a commercial oat protein-containing cream (13% oil, 1% protein) was 

used to compare the oxidation process with prepared emulsions. Antioxidant trials against 

protein oxidation were also undertaken by adding ellagitannins and -tocopherol.  

 

The  following  review  of  the  literature  considers  special  attributes  of  oat  proteins  with  a  

focus on the saline-soluble oat globulin fraction and the principles of protein oxidation.  
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2 LITERATURE REVIEW 

 

2.1 Oat proteins 

 

2.1.1 Protein content, Osborne fractions and amino acid profile of oats 

 

Dehulled oat kernels (also called oat groat) possess the highest protein contents among the 

major cereals, varying from 12.4 to 24.5%, and the residual proteins in the removed hulls 

are negligible, being below 2% in the hull. The distribution of oat proteins in an oat groat 

is represented in Figure 1, where oat bran is the most protein-rich constituent followed by 

starchy endosperm and germ (McMullen 2000).  

 

 
 

Figure 1. Protein distribution in an oat groat (A. Sativa L.) (Adjusted from Webster 2002). 
 

The conventional protein separation technique of Osborne (1910) successively fractionates 

cereal protein into water-soluble albumins, salt-soluble globulins, alcohol-soluble 

prolamins and dilute alkaline or acid-soluble glutelins. The solubility and content of every 

fraction in oat protein is provided in Table 1. As seen, globulin is the most abundant 

fraction in oats accounting for 70% to 80% of total protein, followed by albumin, prolamin 

and  glutelin.  In  contrast,  all  the  other  major  cereals  except  for  rice  have  prolamin  as  the  

dominant fraction (Webster 2002). However, an oat globulin content of 52% - 56% has 

also been reported (McMullen 2000). This discrepancy of globulin content mainly results 

from the variation between extraction methods. It is noteworthy that the commonly used 

salt  solution  extraction  fails  to  recover  all  the  globulin,  leading  to  an  underestimation  of  

globulin content. This point of view is evidenced by the finding that the unextracted 

globulin is solubilized in sodium dodecyl sulfate-mercaptoethanol solutions and recovered 

from the glutelin fraction (Robert et al. 1983; Colyer and Luthe 1984).  
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Table 1. Osborne fractions of oat protein based on solubility (Welch 1995).  

 
Osborne fraction Solubility Content (%) 

Albumin  Water 15 – 20 
Globulin Dilute saline 70 – 80 
Prolamin Aqueous alcohol 5 – 10 
Glutelin Dilute alkali or acid 5 – 10 

 
Oats have a superior amino acid profile to other cereals due to a nutritionally balanced 

essential amino acid content. Compared to other cereals, lysine and threonine are more 

abundant in oats at an averaged percentage of 4.2% and 3.3%, respectively. However, both 

of them are still below the FAO reference standards of 5.5% and 4% (Peterson 2010). 

Enrichment of such essential amino acids is, however, achieved by germination (Klose and 

Arendt  2012).  Although  oats  are  rich  deposits  of  essential  amino  acids,  non-essential  

amino acids like proline and glutamine contents are lower than other cereals (McMullen 

2000). In terms of quantity, glutamic acid has the highest percentage (21.8%) in oat 

protein, followed by aspartic acid (8.9%), arginine (7%) and leucine (7%) (Draper 1973).  

 

2.1.2 Oat globulin – the major Osborne fraction  

 

Oat globulin is a general name representing a group of similar saline-soluble proteins, 

namely 3S, 7S, 12S and 18S globulins, among which the 12S globulin is the major fraction 

(90% of the total globulins) that is chiefly located in the endosperm (Burgess et al. 1983; 

Burgess and Miflin 1985). Studies on the quaternary structure of 12S globulin discovered 

that it is a protein hexamer containing six pairs of acidic and basic polypeptides or six 

subunits, and pairs are non-covalently linked to each other. Within each subunit, the acidic 

and the basic polypeptides are covalently linked by a disulfide bond (Shotwell et al. 1990). 

Features of the 12S globulin and its two constituent polypeptides are illustrated in Table 2.  

 
Table 2. Molecular weights (MW) and isoelectric points (pI) of the 12S oat globulin and its two constituent 
polypeptides. 
 

Protein MW(1 pI(2 
12S globulin 320,000 - 370,000 >5.5 

Acidic polypeptide 35,000 - 40,000 5.5 - 6.5 
Basic polypeptide 20,000 - 25,000 8 - 10 

           1) MWs of proteins were obtained from Peterson (1978). 
             2) pIs of proteins were obtained from Ma and Harwalkar (1984) 
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The basic polypeptides in the subunits are firmly folded in a core and surrounded by 

hydrophilic acidic polypeptides, and the latter are less folded but centered on proline 

residues (Shotwell et al. 1990). The amino acid sequence of a 12S oat globulin subunit is 

shown in Figure 2. 

 

 
 

Figure 2. The amino acid sequence of a 12S oat globulin subunit (Chang et al. 2011).   
 

Similar  to  the  secondary  structures  of  other  plant  globulins,  oat  globulin  has  a  small  

amount of -helix (24%) but a large number of -type structures ( -sheet 16%, -

turn/random coil 60%) without heating and pH adjustment (Ma et al. 2003). Light 

scattering measurements revealed the structure of the hexamer oat globulin as a cylinder-

shaped molecule, built up by two trimeric rings with a height of about 8.5 nm, and the 

diameter of each ring is around 11.8 nm, as shown in Figure 3 (Zhao et al. 2004).   

 

          
 

Figure 3. A proposed motif of an oat globulin hexamer according to Zhao et al. (2004). 
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The poor aqueous solubility of oat globulin proposes a major problem in the processing of 

liquid-based oat products. Loponen et al. (2007) pointed out that the solubilization of oat 

globulins requires a relatively high salt concentration or extreme pH conditions (Figure 4). 

Such low solubility can be explained by their unique amino acid sequence that glutamine-

rich repeats of eight amino acids, having a neutral isoelectric point, are located near the C-

terminus of the acidic polypeptide (Shotwell et al. 1988). Another unique attribute of oat 

globulins is that they have the highest thermal denaturation temperature among the major 

cereal storage proteins due to the rather compact quaternary structure of oat globulin 

(Marcone et al. 1998). 

 

 
 
Figure 4. A diagram of oat globulin solubility dependent on pH and NaCl concentration (shown at the right 
end of the curves as mol/L) (Loponen et al. 2007). 
 

2.2 Protein oxidation 

 

Protein  oxidation  is  the  modification  of  protein  by  reactive  oxygen  species  (ROS).  

Commonly encountered non-radical species involve hydrogen peroxide, lipid oxidation 

productions or even sugar oxidation products. ROS may attack amino acid side chains 

and/or protein backbones, leading to various amino acid side chain modifications, protein 

conformational changes, fragmentation and so forth (Lund and Baron 2010).  

 

2.2.1 ROS protein oxidation initiator 

 

The oxidative modifications of food proteins by reactive oxygen species (ROS) is 

implicated in the loss of food quality (Lund et al. 2010). Examples of ROS in foods are 

hydroxyl radicals, singlet oxygen, peroxyl and alkoxyl radicles, which are formed from 

metal-catalyzed oxidation, irradiation and lipid oxidation, and they can be present as free 
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radical or non-radical species (Lee et al. 2004). In particular, hydroxyl radical (•OH) is an 

exceedingly reactive radical with the highest one-electron reduction potential among free 

radicals (Korycka-Dahl and Richardson 1978), and it can be generated through Fenton 

reaction, where metal cations participate in their lower valence (Mn+) (Haber and Weiss 

1932). The reaction is shown below:  

 

Mn+ + H2O2  M(n+1)+ + •OH + OH-. 

 

For oil in water (o/w) food emulsions, protein oxidation may be initiated by lipid oxidation 

products, particularly peroxy radicals (ROO•) and alkoxyl radicals (RO•), through protein-

lipid interactions (Viljanen et al. 2004). Those radicals can readily abstract hydrogen atoms 

from protein molecules (PH), producing protein radicals (P•). Then a series of reactions 

may  happen.  For  example,  protein  cross-linking  (P-P)  can  be  formed  by  the  reaction  

between two protein radicals (Buchert et al. 2010). The reactions are: 

 

RO• / ROO• + PH = ROH  

ROOH + P•  P• + P• = P-P 

 

2.2.2 Amino acid side-chain modifications 

 

Lund and  Baron  (2010)  have  given  a  comprehensive  review about  amino  acid  side  chain  

modifications, which are classified into three groups including sulfur-containing, aromatic 

and aliphatic (without sulfur) amino acid side-chain modifications. In this section, special 

emphasis comes to the oxidation of tryptophan and protein carbonylation, as they are 

analyzed in the thesis and used as markers in protein oxidation.  

 

The oxidation of tryptophan starts from pyrrole of the indole nucleus followed by the 

phenyl moiety when hydrogen peroxide and lipid oxidation products are used as oxidative 

agents (Simat and Steinhart 1999). The authors indicated the reason that the detected 

tryptophan (Trp) oxidation products are mainly derived from the oxidative modification of 

the pyrrole ring. The formation of Trp-derived products is shown in Figure 5. If the pyrrole 

ring is not cleaved during oxidation of tryptophan, the resulting compounds could be the 

diastereomers A and B of oxindolylalanine (Oia A/B), dioxindolylalanine (DiOia A/B) and 

3-hydroxypyrroloindole-2-carboxylic acid (PIC A/B) (Salminen and Heinonen 2008). 

When tryptophan reacts with ROS such as singlet oxygen and ozone, the pyrrole ring is 
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broken and further degraded, producing N-formylkynurenine (NFK) and kynurenine (Kyn) 

(Ehrenshaft et al. 2009). Further degradation of Kyn generates kynurenic acid (KynA) and 

3-hydroxykynurenine (3-OH-Kyn) (Simat and Steinhart 1999; Schwarcz 2004). 

Hydroxylation of the phenyl ring gives rise to 5-hydroxy-tryptophan (5-OH-Trp) 

(Salminen and Heinonen 2008).  

 

 
  

Figure 5. Oxidation of tryptophan (Trp: tryptophan; Oia A/B: diastereomers A and B of oxindolylalanine; 
DiOia A/B: diastereomers A and B of dioxindolylalanine; PIC A/B: diastereomers A and B of 3-
hydroxypyrroloindole-2-carboxylic acid; NFK: N-formylkynurenine; Kyn: kynurenine; KynA: 
kynurenic acid; 3-OH-Kyn: 3-hydroxykynurenine; 5-OH-Trp: 5-hydroxy-tryptophan (Modified from 
Salminen and Heinonen 2008).  
 

Estévez (2011) summarizes four mechanisms for protein carbonyl formation, namely direct 

side chain carbonylation, glycation, protein backbone cleavage and bonding of protein 

molecules to carbonyl compounds. Among the four alternatives, direct side chain 

carbonylation is regarded as the main pathway, while the others are likely to happen in a 

rather complex food matrix. In this pathway, a Fenton reaction is implicated with the direct 

side chain carbonylation which generates a hydroxyl radical (Figure 6), which abstracts a 

hydrogen atom from a protein molecule with a protein radical formed. After the 

deamination of the amino acid residue, a carbonyl group is produced (Xiong and Decker 

1995). The susceptible amino acids to this pathway are lysine, threonine, arginine and 

proline (Stadtman and Levine 2003). Since proteins are able to chelate metals, hydroxyl 

radicals may have specific attacking sites on the target protein molecules (Stadtman and 

Levine 2003). 
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Figure 6. Metal-catalyzed protein carbonylation (Lund and Baron 2010). 
 

In protein-stabilized oil in water emulsions as well as cells, protein carbonylation can result 

from  the  Michael  addition  reactions  between  lipid  oxidation  products,  namely  ,  -

unsaturated aldehydes, and amino acid side chains of lysine, histidine, and cysteine 

(Viljanen et al. 2005; Stadtman 2006; Grimsrud et al. 2008). The mechanism of Michael 

addition-derived protein carbonylation is shown in Figure 7 by taking the example of 

reactions between 4-hydroxy-(2E)-nonenal (HNE) and lysyl residue on a protein molecule. 

Due to the electrophilic nature of the -carbon, nucleophilic amino group of the lysyl 

residue directly adds to the -carbon (Bruice 2011). Strictly speaking, protein 

carbonylation via this mechanism is not protein oxidation, but a direct addition of a 

carbonyl compound like HNE to the protein molecule (Lund and Baron 2010).  

 

 
 
Figure 7. The reactions of HNE with the lysyl residue on a protein molecule via: a) Michael addition; b) 
Schiff base formation (Bruenner et al. 1995). 
 

Bruenner et al. (1994) incubated -lactoglobulin B with HNE, and they found that about 

99% protein modifications are due to Michael addition. Together with Michael addition to 

the lysyl residue, HNE can also react with the lysyl residue forming an imine with a 
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nitrogen carbon double bond (Schiff base), but this is a minor reaction (Bruenner et al. 

1995). 

 

2.2.3 Protein cross-linking 

 

Protein cross-links are of great importance to tailor food structure and influence protein 

functionality (Buchert et al. 2010). Among a variety of protein cross-links, disulfide bonds 

and dityrosine are most frequently encountered ones, and they are essential in cereal 

products, especially breads. 

 

Disulfide bonds 

 

Disulfide bonds can be formed by oxidizing thiol groups (-SH) as shown in Figure 8. The 

sulfur-hydrogen bond (S-H) in the thiol group is relatively weak, and thus the thiol group is 

more acidic than water. It is the most reactive amino acid residue among the 20 naturally 

occurring amino acids. A thiol group is readily deprotonated by oxidizing agents such as 

hydroperoxides, and two deprotonated thiol groups react to form a disulfide bond 

(Whitford 2005; Vollhardt and Schore 2011). The formation of disulfide bonds does not 

require the adjacence of two amino acid residue, and both intra- and inter-molecular 

disulfide bonds can be formed (Bruice 2011).  

 

 
 

Figure 8. Formation of a disulfide bond (Vollhardt and Schore 2011). 
 

Dityrosine cross-link 

 

Giulivi et al. (2003) suggested that dityrosine be used as a specific marker for protein 

oxidation because it is the only stable oxidation product resistant to high pH, oxygen and 

enzymatic hydrolysis. The mechanism of dityrosine formation was elucidated by Giulivi 

and Davies (1994), which involves a three-step reaction: the generation of a tyrosyl radical, 

radical isomerization followed by diradical reaction and enolization (Figure 9).  Dalsgaard 
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et al. (2011) argued that the generation of dityrosine prefers the proximity of two tyrosine 

residues. 

 

 
 

Figure 9. The mechanism of dityrosine formation (Giulivi and Davies 1994). 
 

 

2.2.4 Protein backbone fragmentation and conformational rearrangements 

 

A mechanism of protein backbone oxidation is proposed by Lund and Baron (2010). One 

hydrogen atom is abstracted from the -carbon of an aliphatic amino acid generating an -

carbon-centered protein radical, which further reacts with oxygen and generate protein 

peroxyl radicals that undergo backbone fragmentation. Protein cross-linking can be formed 

by dimerization of two -carbon-centered protein radicals. They also suggest that 

conformational rearrangements of protein molecules can be achieved by radical transfer 

from one polypeptide to another, but the exact mechanism remain unclear.   

   

2.2.5 Analysis of protein oxidation 

 

Common measurements in protein oxidation are illustrated in this section, including 

tryptophan fluorescence, analysis of protein carbonyls and protein cross-links (Estévez et 

al. 2008; Armenteros et al. 2009; Koivumaki et al. 2012). Special emphasis is given to the 

fluorescent properties of the intact molecules (i.e. tryptophan) and protein oxidation 

products (i.e. carbonyls and dityrosine), because in the current research, all protein 

oxidation measurements are conducted by fluorescence spectroscopy.  

 

Analysis of tryptophan oxidation 
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Oxidative decomposition of tryptophan is regarded to be the primary stage during protein 

oxidation in oil-in-water emulsions (Estévez et al. 2008). It can be monitored by the loss of 

tryptophan fluorescence as well as the gaining of fluorescence from its oxidation products, 

such as N-formylkynurenine. The emission wavelength of tryptophan is in the range of 

330-370 nm upon excitation at 280 nm. The loss of tryptophan fluorescence may result 

from the oxidative degradation of tryptophan and the formation of its radicals. 

Additionally, the shift of its maximum emission wavelength is indicative of the relative 

position of the tryptophan residues in the protein (Ladokhin et al. 2000). As a typical 

tryptophan oxidation product, N-formylkynurenine can be detected by fluorescence 

spectroscopy, which emits at 400 nm when excited at 330 nm (Dalsgaard et al. 2007).   

 

Analysis of protein carbonyls 

 

Protein carbonyl formation is believed to occur later than the loss of tryptophan 

fluorescence (Estévez et al. 2008). There are three well-recognized methods for the 

analysis of protein carbonyls in foods: fluorescence spectroscopy, the DNPH (2,4-

dinitrophenylhydrazine) assay and LC-MS. 

 

Carbonyl compounds can be detected by fluorescence spectrometry. It is reported that the 

carbonyls, which are produced from the reaction between lipid oxidation products and 

protein amino groups, are conjugated fluorophores with the emission wavelength of about 

420 nm when excited at 350 nm (Viljanen et al. 2004). 

 

Carbonyl compounds can react with DNPH to form a hydrazone (Figure 10) that can be 

detected by a spectrophotometer at 370 nm (Johnson 1953). The problem with this method 

is that DNPH does not only react with carbonyl groups, but also lipid oxidation products 

which may lead to an overestimation, if the protein material is not isolated prior to 

analysis. In addition, DNPH is practically added in excess in order to ensure a 

comprehensive  derivatization  of  all  carbonyls.  However,  the  left  DNPH  has  similar  

absorption to hydrazone and thus interfere the result, so the unbound DNPH is usually 

washed out before the quantification of carbonyl groups (Lund and Baron 2010).  
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Figure 10. Reaction of DNPH with a carbonyl compound (Lund and Baron 2010). 
 

However, the aforementioned two methods for carbonyl detection share the same 

limitation that they aim to measure the total carbonyl compounds instead of the carbonyl 

products produced during protein oxidation or even during the oxidation of specific amino 

acids. If the natural carbonyls in non-oxidized protein samples are taken into account, the 

results is rather an overestimation. To this end, a specific analytical method has been 

developed to detect the carbonyls from the oxidation of arginine and lysine in meat, which 

is based on LC-MS (Estévez et al. 2009). 

 

Analysis of protein thiol groups 

 

The analysis of protein thiol groups can be performed by derivatization with 5,5'-dithiobis 

(2-nitrobenzoic acid) (DTNB), which is called Ellman's reagent. The reaction produces a 

coloured thiolate ion complex (Figure 11), which can be detected by a spectrophotometric 

measurement  at  412  nm with  an  extinction  coefficient  of  13600 mol-1cm-1(Ellman 1959). 

Notably, the reaction is stringently pH-dependent. The effects of interfering chromophores 

are reduced by the use of 2,2'-dithiobis (5-nitropyridine) (DTNP) (Winterbourn 1990). 

 

 
 

Figure 11. Detection of protein thiol groups by the DTNB assay (Lund and Baron 2010). 
 

Analysis of disulfide bonds 

 

Protein cross-links are formed through the covalent bonds between intramolecular or 

intermolecular amino acids. Apart from a large variety of enzyme-catalyzed protein cross-
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links, disulfide bonds and dityrosine formation are the most characteristic ones. Disulfide 

bonds can be quantified through the reaction of 2-nitro-5-thiosulfobenzoate (NTSB) with 

disulfide bonds in the presence of excess sodium sulfite, which measures the reaction 

product 2-nitro-5-thiobenzoate (NTB) in darkness (Damodaran 1985). It is noteworthy that 

free thiol groups also participate in the reaction and contribute to the results, and thus they 

should be quantified earlier. Besides chemical reagents, Lutz et al. (2011) developed a 

liquid chromatography-tandem mass spectrometry technique to detect the disulfide bonds 

in wheat gluten. 

 

Analysis of dityrosine 

 

The fluorescent property of dityrosine facilitates its analysis due to its intense fluorescence 

emission around the 400-420 nm range and excites within either 315 nm (alkaline solution) 

or 284 nm (acidic solutions) absorption bands (Giulivi and Davies 1994; Malencik and 

Anderson 2003). Therefore, the formation of dityrosine is usually detected by a 

fluorometer. However, accurate quantitation of dityrosine is still hindered by the lack of 

commercially available standard compounds. By a peroxidase-catalyzed tyrosine cross-

linking method (Huggins et al. 1996), dityrosine is synthesized and generally used as 

standard compounds. Later studies adopted this approach to obtain dityrosine standard and 

quantified dityrosine formation by various methods, such as gas chromatography or liquid 

chromatography coupled with mass spectrometry (Wells-Knecht et al. 1993; Hanft and 

Koehler 2005), and liquid chromatography coupled with a fluoremeter (Rodriguez-Mateos 

et al. 2006). Practically, the latter is widely used with simplification in data handling.   

 

2.3 Investigations on oxidation of oat proteins 

 

2.3.1 Thermal aggregation of oat globulin 

 

Thermal  aggregation  of  protein  relates  the  application  of  protein  as  gelling  agents.  Most  

globular proteins are readily aggregated when heated. As in the case of oat globulin, it was 

found that the hexamer initially dissociates into subunits and then they associate into 

aggregates. In the formation of soluble aggregates, disulfide bonds play an important role, 

because when free sulfhydryl groups are blocked, formation of soluble aggregates is 

hindered (Ma and Harwalkar 1987). The heat-induced buffer-insoluble aggregates of oat 

globulin were studied by Raman spectrometry. The peak intensity of the disulfide bond 
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increases, while the tyrosine doublet band intensity decreases, suggesting that the tyrosine 

residues be buried or act as hydrogen bond donors, but the exact change of tyrosine 

residues remained unknown. Interestingly, the peak intensity of tryptophan is increased, 

suggesting that the tryptophan residues are buried upon heating (Ma et al. 2003).  

 

2.3.2 Strecker degradation of -amino acids during aging of oat beer 

 

The level of oxidative indicators, 2-methyl-butanal and 3-methyl-butanal, slightly 

increased during aging of oat beer, but this level is considerably lower than those in barley 

beer due to the higher content of antioxidants in oat beer (Klose et al. 2011). The formation 

of such aldehydes involves a Strecker degradation mechanism which converts -amino 

acids into aldehydes (Alexander and Radwan 1952), as shown in Figure 12.  

 

 

 
 

Figure 12. Strecker degradation and aldehyde formation during beer aging (Schutter et al. 2008).  
 

During brewing, -amino acids in sweet wort react with -dicarbonyl compounds that 

originate from Maillard reaction during wort boiling. This reaction takes place by a 

nucleophilic addition -elimination manner: first, the nucleophilic nitrogen atom on the 

amino group adds to the carbonyl carbon; second, the hydroxyl group on the carbonyl 

carbon gets protonated and a water molecule is eliminated, producing a imine intermediate 

with a nitrogen-carbon double bond (Bruice 2011). After the subsequent formation of 
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hemiaminal intermediate, aldehydes like 2-methyl-butanal and 3-methyl-butanal are 

released (Schutter et al. 2008).  When isoleucine participates as an original reactant, 2-

methyl-butanal is expected, while 3-methyl-butanal could be generated if leucine joins the 

reactions (Estévez et al. 2010).  

 

2.3.3 Oat protein oxidation in bread-making 

 

The limitations of oat flour to make bread are that oat flour lack gluten proteins, and that it 

has high content of dietary fiber (Renzetti et al. 2010). To this end, various oxidative 

enzymes, such as glucose oxidase, tyrosinase and laccase, have been used to strengthen the 

dough by promoting the intermolecular cross-linking of oat proteins through dityrosine, 

isodityrosine (Figure 13) or disulfide bonds (Renzetti et al. 2010; Flander et al. 2011). 

Among  the  potent  enzymes,  glucose  oxidase  is  able  to  catalyze  the  oxidation  of  glucose  

and produce hydrogen peroxide, while tyrosinase and laccase specifically catalyze the 

cross-linking of biopolymers via their phenolic moieties (Buchert et al. 2010).  

 

 
 

Figure 13. Laccase-catalyzed isodityrosine bond formation (Mattinen et al. 2005). 
 

However, the research by Renzetti et al. (2010) shows that the application of glucose 

oxidase and laccase in oat bread-making leads to considerable protein aggregations, further 

causing undesirable texture due to the lack of soluble proteins to sustain the gas bubbles 

during bread-making. Instead, proteases are shown to be potent enzymes in oat bread-

making, which hydrolyze oat proteins, produce a sufficient amount of soluble proteins, and 
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unfold the protein structure. Thus good textural quality is achieved, but severe protein 

oxidation is supposed to happen, in terms of the unfolding of oat proteins to expose more 

residues and observed protein polymerization. Another study suggests tyrosinase together 

with xylanase is beneficial to produce gluten-free oat bread with desirable texture (Flander 

et al. 2011). Apart from enzyme-catalyzed crosslinking to improve protein network, a non-

enzymatic technique called "hydrostatic pressure" has recently come into use (Huttner et 

al. 2009). In this study, oat flour is mixed with water with a ratio of 1: 0.95 to produce a 

oat batter, which is then subject to hydrostatic pressure treatment. When the pressures are 

higher than 300 MPa, which are high enough to promote the deprotonation of thiol groups, 

disulfide bonds are formed.  

 

2.3.4 Oxidative degradation of essential amino acids in oat flake processing 

 

Total methionine and tryptophan contents in oat flakes were determined after processing, 

which were compared to those prior to processing (Horvatic and Vedrina-Dragojevic 

2000). Results showed that the decrease of methionine after processing was about 13% and 

tryptophan about 10%, but the loss of both amino acids was the lowest among the tested 

cereal flakes including rye, wheat, oat and barley. In addition, lipid oxidation products 

were also measured during processing, which were significantly correlated to the oxidative 

degradation of the aforementioned two amino acids. Relevant studies also suggest that the 

high susceptibility of the amino acids to oxidative degradation is associated with lipid 

oxidation products, especially lipid peroxides (Cuq et al. 1983; Strange 1984). 

 

2.3.5 Possible protein oxidation pathways in an oat-based beverage  

 

In oat-based beverages like Oatly milk (Oatly AB, Landskrona, Sweden), protein oxidation 

is supposed to first occur in the continuous phase. Zhang et al. (2007) monitored the 

nutritional changes of an oat-based beverage from production to a long-term storage (64 

weeks). Fatty acid profile was almost unchanged, and only a 9% loss of linolenic acid was 

observed in the presence of iron for one year. Efficient inhibition of lipid oxidation wa due 

to natural content of vitamin E in the lipid and the phenolic compounds in oats as potent 

antioxidants. Because of the limited lipid oxidation, oat proteins located in the emulsion 

interface are supposed to be slightly oxidized. However, the continuous phase in the 

research contained elevated level of dissolved oxygen, although it remained in low 

concentration of 0.71 mg/L after 64 weeks and the rate was gradually reduced. Based on 
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the observations, the authors raised the idea that a balance between oxygen consumption 

and oxygen uptake was slowly developed. Thus it is rational to infer that the compounds in 

the continuous phase, including soluble oat proteins, scavenge the oxygen and undergo 

oxidation. The protective role of soluble protein in continuous phase towards lipid 

oxidation is observed, where proteins oxidize before lipid oxidation (Salminen et al. 2010). 
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3 EXPERIMENTAL   RESEARCH 

 

3.1 Aim 

 

The current study aimed to investigate the oxidation of oat proteins (especially saline-

soluble oat globulins) as well as lipid oxidation using rapeseed oil in water emulsions as a 

vehicle, and the possible inhibition of oat protein oxidation by special phenolic compounds 

(i.e. ellagitannins). The latter was an attempt to mimic a real food: oat milk with 

cloudberry as a flavour. 

 

3.2 Materials and methods 

 

3.2.1 Materials 

 

Wholegrain oat flour (Provena, Raisio, Finland), oat protein-containing cream (Oatly AB, 

Landskrona, Sweden), rapeseed oil (Bunge Finland Oy, Raisio, Finland) and cloudberry 

(Rubus chamaemorus) were purchased from local stores and marketplace. Whole grain oat 

flour is produced from pure oat and labeled as gluten-free with a 14% protein. Oat protein-

containing cream contains 1% protein and 13% fat. It also contains rapeseed oil and palm 

oil, rapeseed lecithin as an emulsifier and both of xanthan gum and sea salts as stabilizers. 

Bovine serum albumin (BSA) and Amberlite XAD-7 nonionic polymeric adsorbent were 

purchased from Sigma Chemical Co. (St. Louis, MO, USA). Sephadex LH-20 adsorbent 

was provided by Pharmacia (Uppsala, Sweden). Sodium hydroxide (NaOH) in solid 

pellets, sodium dihydrogen phosphate (NaH2PO4•H2O), disodium hydrogen phosphate 

(Na2HPO4•12H2O), sodium chloride (NaCl), sodium tartrate dihydrate (C4H4Na2O6•H2O), 

copper sulfate (CuSO4), formic acid (HCOOH), sodium carbonate (Na2CO3), Folin-

Ciocalteu's phenol reagent and aluminium oxide (Al2O3) powder for column 

chromatography were bought from Merck (Darmstadt, Germany). All solvents were of 

HPLC grade, among which heptane was supplied by J.T Baker (Deventer, Holland), 

acetonitrile was got from Sigma (Steinheim, Germany), hexanal was from Merck (Munich, 

Germany), and methanol and acetone were obtained from Rathburn Chemicals 

(Walkerburn, Scotland). Water was purified by a Milli-Q system (Millipore Corp., 

Bedford, MA, USA). Emultop (partially hydrolyzed soybean lecithin) was received as a 

gift from Cargill (Hamburg, Germany). 
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3.2.2 Isolation of ellagitannins 

 

The isolation of ellagitannins refers to the work by Kähkönen et al. (2012), as outlined in 

Figure 14. Lyophilized berries were first ground into powder by a blender before solvent 

extraction. An accelerated solvent extractor was used to extract using 70% aqueous 

acetone in order to obtain a raw extract. Then the raw extract was filtered and purified by 

two consecutive reversed-phase column chromatography (i.e. Amberlite XAD-7 and 

Sephadex LH20) to remove polar impurities such as organic acids, sugars and flavonoids. 

Hence, an ellagitannin-rich extract was obtained. Ellagitannin dimers and trimers were 

further separated by a preparative HPLC system. The dimeric ellagitannin fraction, 

sanguiin H-6, was collected and used as a potential antioxidant in the present research.  

 

 
 

Figure 14. An outline of isolation of ellagitannins (Kähkönen et al. 2012). 
 

Quantitation of sanguiin H-6 in methanol was made using a UV-spectrophotometer 

(Perkin-Elmer, Buckinghamshire, England). The concentration was determined by Beer-

Lambert Law: A = dc, where A is absorbance, d is the path length in centimeter (d = 

1cm), c is the molar concentration (mol/L), and  is the molar extinction coefficient of 

sanguiin H-6 in methanol ( 260nm = 72070 M-1com-1) (Gasperotti et al. 2010). By taking 

into account of the molar mass of sanguiin H-6 as 1870.1540 g/mol (Gasperotti et al. 

2010), the concentration of sanguiin H-6 in methanol was calculated as 254.3 mg/L.  

 

3.2.3 Extraction of oat protein 

 

Oat globulins were extracted from wholegrain oat flour according to the procedure used by 

Chang et al. (2011) with modifications (Figure 15). A sample (8 g) of wholegrain oat flour 
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was mixed with MQ-water (40 mL). The mixture was stirred until  the oat flour was fully 

hydrated, and then the slurry was allowed to rest in an ice bath for 30 min. After 

centrifugation (4000 rpm, 20 min, 4oC), the supernatant was discarded and the residue was 

washed with 40 mL Milli-Q-water twice. Then the residue was mixed with 15 mL cold 

isolation  buffer  (10  mM  sodium  phosphate,  0.5  M  sodium  chloride,  pH  7.2).  Before  the  

final centrifugation, the mixture was homogenized for 30 s and let rest for 30 min. The 

supernatant was filtered and collected as oat protein extract, which was stored in a 50 mL 

Sarstedt tube at 4oC before the preparation of oil-in-water emulsions.  

 

           
 

Figure 15. The procedure for oat globulin extraction. 
 

The protein concentration of the oat extract was measured by the Lowry method (Lowry et 

al. 1951) using BSA as a standard. Quantitation of proteins required an alkaline Cu-reagent 

solution, which was prepared by mixing three solutions: 4% Na-tartrate solution, 2% 

CuSO4 solution and 10% Na2CO3 in 0.5 M NaOH solution. Folin-Ciocalteu's phenol 

reagent (5 mL) was diluted with 50 mL Milli-Q water. Those two solutions were prepared 

right before use. BSA standard solutions were prepared with four concentrations: 0.05, 

0.10, 0.20 and 0.40 mg/mL. An aliquot of oat protein extract (1 mL) was pipetted into a 

test tube and diluted with 9 mL Milli-Q water, and then the diluted oat protein solution was 

mixed. Diluted protein solution was pipetted into two replicate test tubes, and each 

contained 1 mL. Each of the standard solutions (1 mL) was pipetted into test tubes, while a 

reagent blank test tube contained 1 mL Milli-Q water, so there were in total 7 test tubes: 4 

for standard solutions, two replicate protein solutions and 1 blank. Freshly made alkaline 

Cu-reagent solution (1 mL) was added to each tube. Then the tubes were mixed and let 
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stand  for  10  min  at  room  temperature.  Afterwards,  3  mL  of  diluted  Folin-Ciocalteu's  

phenol reagent solution was added into each tube. The tubes were also mixed and 

incubated in a 50oC  water  bath  for  10  min.  When  the  tubes  cooled  down  to  room  

temperature, their absorbances were measured by a UV/Vis-spectrophotometer (Perkin-

Elmer, Buckinghamshire, England) at 540 nm. The reagent blank was used for autozero of 

the spectrophotometer. The protein concentration in the extract was 14.5 mg/mL. 

 

3.2.4 Purification of rapeseed oil 

 

Rapeseed oil (100 g) was purified using open column chromatography (diameter 29 mm, 

length 510 mm) packed with 180 g Al2O3 powder, in order to remove polar pro-oxidants 

and antioxidants (Lampi et al. 1999). The Al2O3 powders were heated (100oC for 16 h and 

200oC for 8 h) before use. Heptane was used as mobile phase and the separation was 

accelerated by a suction system at room temperature. Purified rapeseed oil dissolved in 

heptane was preserved in a glass bottle covered with aluminium foil, and it is stored in a 

freezer at -20oC before use. The rapeseed oil concentration was determined by pipetting 5 

mL purified oil solution into 2 replicate beakers with known weights. Beakers with oil 

solutions were put under nitrogen gas to evaporate heptane. Added weights were purified 

oil. Oil concentration was calculated as 0.306 g/mL according to the equation below:   

 

mL 5
(g)beaker empty  of Weight - (g) oil andbeaker  ofWeight   (g/mL)ion concentrat Oil

 
 

Before the preparation of emulsions, purified rapeseed oil was checked if it was free of 

tocopherols with a HPLC method (Haila and Heinonen 1994). The HPLC system was 

composed of a Waters 515 pump (Waters Corporation, Milford, MA, USA), an 

autosampler, a silica guard column (4×3.0 mm, Phenomenex), an Inertsil 5 SI column 

(300×3.9 mm, 5 m particle size, Varian Inc., Pal Alto, CA, USA) and a Waters 2475 

scanning fluorescence detector. This system was controlled by the Empower 2 program. 

Before injection, purified rapeseed oil in heptane solution (50 mg/10 mL) was filtered 

(Acrodisc GHP, 0.45 Pm, 13 mm) directly into a HPLC vial. Oil samples were analyzed in 

duplicate (25 µl injections) with a palm oil extract used as a standard to identify 

tocopherols. Analytes were isocratically eluted within 20 min using a mobile phase 

containing 3 % dioxane and 97% heptane mixture with a flow rate of 2 mL/min. The 

excitation wavelength ( ex) of the fluorescence detector was 292 nm and the emission 
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wavelength ( em) was 325 nm. Column temperature was kept at 30°C and the autosampler 

tray was cooled to 4°C. Results showed that the purified oil was free of tocopherols. 

 

3.2.5 Emulsion preparation 

 

A series of oil-in-water emulsions (10% w/w) were prepared in oxidation studies. This 

series consisted of five groups of emulsions including oil control group (OC) containing 

10% oil, protein control group (PC) containing 0.1% oat proteins or 1 mg oat proteins per 1 

mL emulsion, tocopherol group with -tocopherol concentration at 50 µg/g oil (PT 50), 

ellagitannin groups with ellagitannin concentrations at 25 µg/g oil and 50 µg/g oil (PE 25 

and PE 50). The information of each group in the emulsion series is shown in Table 3. 

 
Table 3. Emulsion group in the emulsion series. 

 

Group Concentration of oat 
protein (mg/mL emulsion) 

Concentration of the 
antioxidant (µg/g oil) Oil content (%) 

OC 0 0 10 
PC 1 (0.1%) 0 10 

PT50 1 (0.1%) 50 ( -tocopherol) 10 
PE25 1 (0.1%) 25 (Ellagitannin) 10 
PE50 1 (0.1%) 50 (Ellagitannin) 10 

 

Figure 16 shows the emulsion preparation procedure for the PC group. Lecithin powders 

were sonicated within Milli-Q-water for 3 min to obtain a 4% emulsifier solution. Purified 

rapeseed oil in heptane solution was evaporated under nitrogen gas to remove heptane, 

which was mixed with emulsifier solution and oat protein extract (in cold isolation buffer 

containing10 mM sodium phosphate, 0.5 M sodium chloride with a pH of 7.2) to obtain a 

mixture with 10% oil, 0.1% oat protein. The mixture was immersed in an ice bath and 

sonicated for 2 min to prepare a 10% oil-in-water emulsion with 0.1% oat protein. An 

aliquot (4 mL) of the emulsion was pipetted into each of four replicate emulsion vials. The 

OC group was prepared by replacing the oat protein extract with the same volume of cold 

isolation buffer.  

 

 
 

Figure 16. Emulsion preparation procedure for protein control group.  
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As a reference sample, an oat protein-containing cream (1% protein, 13% oil) was used to 

prepare the cream series, consisting of such groups as cream control (CC), tocopherol 

group (CT50) and two ellagitannin groups (CE25 and CE50). Cream was weighed (4 g) 

into  each  of  four  replicate  emulsion  vials  to  prepare  a  group.  The  composition  of  cream  

series is shown in Table 4. 

 
Table 4. Cream group in the cream series. 

 

Group Concentration of oat 
protein (mg/mL emulsion)1) 

Concentration of the 
antioxidant (µg/g oil) Oil content (%)1) 

CC 10 (1%) 0 13 
CT50 10 (1%) 50 ( -tocopherol) 13 
CE25 10 (1%) 25 (Ellagitannin) 13 
CE50 10 (1%) 50 (Ellagitannin) 13 

      1)Protein and oil contents of the reference cream product was from product labeling.  
 

The preparation of emulsion and cream groups with antioxidant compounds (Figure 17) 

followed the same protocol: addition of antioxidant solutions, solvent evaporation and 

addition of emulsions. First, -tocopherol in ethanol stock solution (384.0 µg/mL) was 

prepared. Second, an aliquot of -tocopherol stock solutions were pipetted into emulsion 

vials before adding emulsions, and evaporated to dryness by nitrogen gas. Then emulsions 

(4 mL) with 0.1% oat proteins were added into the vials to reach a final -tocopherol 

content of 50 µg /g oil and stirred, which was the PT50 group. PE 25 and PE 50 groups 

were then prepared by pipetting ellagitannin stock solutions (254.3 mg/L) into empty 

emulsion vials which were evaporated, added with emulsions and stirred, to reach the final 

concentrations of 25 and 50 µg/g oil, respectively. Similarly, cream groups with -

tocopherol (CT50) and ellagitannins (CE25 and CE50) were also prepared.   

 

 
 
Figure 17. Structures of antioxidant compounds used in the current study: dimeric ellagitannin sanguiin H6 
(a), and -tocopherol (b). 
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Oxidation was carried out in darkness by placing sealed emulsion vials on the magnetic 

tray  inside  an  oven  with  a  steady  temperature  at  37oC. During oxidation, emulsions and 

creams were constantly stirred by magnet stirrers.  

 

3.2.6 Oxidation measurements 

 

Oxidation studies were carried out by measuring hexanal formation and fluorescence 

intensities of protein oxidation markers including tryptophan, carbonyls and dityrosine. 

Sampling  for  oxidation  studies  was  carried  out  on  day  0,  3,  6  and  9  from  each  replicate  

emulsion and cream vial, as shown in Figure 18.  

 

 
 

Figure 18. Oxidation measurements of an emulsion or cream group. 
 

Lipid oxidation was studied by measuring hexanal formation using a HS-GC technique 

during the oxidation of emulsions and creams (Frankel et al. 1994). The system was 

composed of an Autosystem XL gas chromatograph, an HS40XL headspace sampler, a 

flame ionization detector, and a NB-54 column for separation. The parameters for GC 

analysis were set as: sample temperature 80oC, needle temperature 100oC, transfer 

temperature 100oC, GC cycle time 10 min, thermostatting time 18 minutes, pressurization 

time 2 min, injection time 0.1 min, withdrawal time 0.2 min and vial venting off. For each 

sample, an aliquot of emulsion or cream samples (250 L) was pipetted into a headspace 

vial,  which  was  sealed  with  a  PTFE-coated  septa  and  an  aluminium  cap.  A  hexanal  

solution was used as the standard for the determination of emerged hexanal in samples.  
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The oxidation of oat proteins was evaluated by measuring three oxidation markers 

including the loss of tryptophan fluorescence, formation of carbonyls and formation of 

dityrosine (Heinonen et al. 1998; Estévez et al. 2008; Koivumaki et al. 2012), using 

fluorescence spectroscopy (LS55 Perkin Elmer luminescence spectrometer, USA). The 

spectrometer was controlled by a FL WINLAB software. On each oxidation day, an aliquot 

of  emulsion  or  cream  samples  (250  L)  was  dissolved  in  phosphate  buffer  (750  L,  pH  

7.2) and diluted. For emulsion samples, dilution factors for the measurements of 

tryptophan fluorescence, carbonyls and dityrosine were 1:250, 1:500 and 1:500, whereas 

for cream samples they were 1:2000, 1:1000 and 1:2000, respectively. Diluted samples for 

measurements were dispended in a 4 mL quartz spectrofluorometer cell. Emission spectra 

of tryptophan were recorded from 300 nm to 400 nm upon excitation at 283 nm. Emission 

spectra of carbonyls were recorded from 400 nm to 500 nm when the excitation was at 350 

nm, and dityrosine was measured by recording their emission spectra from 400 nm to 480 

nm with the excitation wavelength set at 315 nm. The intensities of the highest peaks were 

recorded as the results of protein fluorescence measurements. In all of the measurements, 

excitation and emission slit widths were set at 10 nm and data was collected at 500 nm per 

minute. Change of fluorescence intensities of one of the three markers during oxidation 

C ) was calculated as: C  = Ct –  C0,  where  Ct is the fluorescence intensity of one 

marker at day t (t = 3, 6 or 9), and C0 is the initial fluorescence of the  marker at day 0 in a 

sample.  
              
Differences between changes of fluorescence intensities among emulsion or cream groups 

were tested by one-way analysis of variance using Minitab Statistical Software (Addison-

Wesley, Reading, MA). The significance level was P < 0.05. 
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3.3 Results 

 

3.3.1 Lipid oxidation in emulsion and cream samples 

 

Hexanal, a secondary lipid oxidation product, was detected by HS-GC using a hexanal 

standard solution. Figure 20 shows the GC chromatogram of volatile compounds in an 

oxidized emulsion sample. Hexanal was identified by a hexanal standard with a retention 

time at about 7.26 min. The generation of hexanal in cream and emulsion samples was 

recorded. Hexanal formation was plotted against the time of oxidation. 

 

 
 

Figure 19. A HS-GC chromatogram of an emulsion sample from the oil control (OC) group on day 9. 
 

Apart  from the  emulsions  in  the  oil  control  group,  no  hexanal  formation  was  detected  in  

the other emulsion or cream samples. Figure 20 shows the elevated hexanal formation in 

lipid control emulsions. Formation of hexanal was measured on the third day, followed by 

a steady increase during the rest of the oxidation days. On day 9, all oat protein containing-

emulsions were broken down by adding salt (0.1 g NaCl/mL emulsion) to achieve phase 

separation, and samples were taken from the upper layer for headspace GC analysis owing 

to the high affinity of hexanal to lipid phase (Druaux and Voilley 1997). No headspace 

hexanal was detected in the emulsions from the PC, PE25 and PT50 groups, but the ones 

from the PE50 group appeared to have hexanal formation. 
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Figure 20. Increase of hexanal (arbitrary units, AU) during oxidation of emulsions in oil control (OC) group. 
 

3.3.2 Protein oxidation in prepared emulsions 

 

Tryptophan fluorescence 

 

All of the emulsion groups displayed an increase of tryptophan fluorescence intensities 

compared with those on day 0 during oxidation, except for the PT50 group on day 3 which 

had a decrease of tryptophan fluorescence (Figure 21). Although there was a decrease of 

tryptophan fluorescence in the PT50 group on day 3, tryptophan fluorescence increased on 

day 6 and day 9. The increase of tryptophan fluorescence in the PC group climbed to the 

highest  level  on  day  6,  and  then  it  dropped  on  day  9,  when  it  however  still  emitted  the  

highest tryptophan fluorescence. On day 9, the PE25 group showed lowest tryptophan 

fluorescence, followed by the PT50, PE50 and PC groups.  

 

 
 

Figure 21. Changes of natural tryptophan fluorescence intensities (arbitrary units, AU) during oxidation of 
samples in the emulsion series. 
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The particular mode of tryptophan fluorescence evolution in the PC group can also be 

visualized in a more informative way, as shown in Figure 23. The peak around 345 nm 

designated tryptophan residues, and a slight red shift of tryptophan fluorescence was 

observed from 344.5 nm on day 6 to 345.1 nm on day 9. However, in the antioxidant 

studies, both of the PT 50 and PE 50 groups displayed a blue shift from 345.4 nm to 344.5 

nm and from 344.7 nm to 343.4 nm, respectively, whereas PE 25 group had a relatively 

steady emission wavelength stabilized around 344.5 nm (spectra not shown here).   

 

 
 
Figure 22. Fluorescence spectrum of tryptophan (  excitation = 283 nm) in emulsions from the protein 
control (PC) group during oxidation for 9 days. 
 

Carbonyl formation 

 

Carbonyls were formed in every emulsion group (Figure 23). The PC group dominated the 

level of carbonyl formation among the emulsion groups. The PT50 group had the lowest 

carbonyl fluorescence on day 3 and day 6, but on day 9 it had higher increaser of carbonyl 

fluorescence than the PE25 and PE50 groups. On the final day, the PE25 group exhibited 

the lowest increase of carbonyl fluorescence.  
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Figure 23. Changes of carbonyl formation (arbitrary units, AU) during oxidation of emulsions in the 
emulsion series. 

 

Figure 24 shows the increase of carbonyl formation in the PC group. Carbonyls were 

identified by the small peaks around 420 nm. During the 9-day oxidation, about 68% of the 

total carbonyl fluorescence increase was due to the first 3-day oxidation, and the rest 32% 

was caused by the subsequent 6-day incubation.  

 

 
 
Figure 24. Fluorescence spectrum of carbonyls (  excitation = 350 nm) in emulsions from PC group during 
oxidation for 9 days. 
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Dityrosine formation 

 

Dityrosine fluorescence increased in all the emulsion groups (Figure 25). On day 3, the 

PE25 group showed the highest dityrosine formation, but it turned out to be the one with 

lowest increase of dityrosine fluorescence on day 9, which was however not significantly 

different (P < 0.05) from the increases of dityrosine fluorescence in other emulsion groups 

on day 9. A higher ellagitannins load at 50 µg/g oil did not inhibit dityrosine formation but 

the PE50 group eventually contained the highest dityrosine among the emulsion groups. 

Interestingly, PT50 group also presented to be the one with lowest dityrosine fluorescence 

initially on day 3 and day 9. Similar to the case of carbonyl formation, the PE50 group also 

accumulated a high content of dityrosine comparable to the contents of dityrosine in the 

other emulsion groups. 

 

 
 

Figure 25. Changes of dityrosine formation (arbitrary units, AU) during oxidation of emulsion samples in the 
emulsion series. 

 

Dityrosine formation in the PC group could be seen in Figure 26. The peaks around 427 

nm represented the dityrosine fluorescence. Corresponding to the tendency in carbonyl 

formation, the first 3-day oxidation produced 64% of the total dityrosine and the rest was 

generated after the third day. Single peak were characteristic of the analyte without 

redundant or interfering signals in contrast with the spectra of tryptophan fluorescence 

(300 to 310 nm) and carbonyl fluorescence (400 to 415 nm).   
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Figure 26. Fluorescence spectrum of dityrosine (  excitation = 315 nm) in emulsion samples in the protein 
control (PC) group during oxidation for 9 days. 
 

3.3.4 Protein oxidation in cream samples 

 

Tryptophan fluorescence 

 

Although the CT50 and CE25 groups had an increase of tryptophan fluorescence on day 3, 

they showed a decrease of tryptophan fluorescence on day 9 (Figure 27). The CC and 

CE50 groups had a decrease of tryptophan fluorescence, with the former more pronounced. 

  

 
 
Figure 27. Changes of natural tryptophan fluorescence (arbitrary units, AU) during a 9-day oxidation of 
creams in the cream series. 
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The tryptophan fluorescence in the CC group was shown in Figure 28. Intense fluorescence 

peaks around 345 nm indicated tryptophan residues on protein molecules. The 9-day 

oxidation of cream samples resulted in an obvious loss of tryptophan fluorescence. 

Additionally, a red shift of tryptophan fluorescence was found from 345.7 nm on day 0 to 

347.1 nm on day 9.  

 

 
 
Figure 28. Fluorescence spectrum of tryptophan (  excitation = 283 nm) in cream samples in the cream 
control (CC) group during oxidation for 9 days. 
 

Carbonyl formation 

 

Carbonyls in all cream groups decreased during oxidation. Among them, the CC and CT50 

groups demonstrated a greater decrease than the ellagitannin-containing groups. Finally, 

the CC group had the highest decrease of carbonyl fluorescence, followed by the CT50, 

CE25 and CE50 groups (Figure 29). The continuous loss of carbonyl fluorescence was 

illustrated in Figure 30. The peaks representing carbonyls were not apparent. 
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Figure 29. Carbonyl formation (arbitrary units, AU) during oxidation of creams in the cream series. 
 

 
 
Figure 30. Fluorescence spectrum of carbonyls (  excitation = 350 nm) in creams from the cream control 
(CC) group during a 9-day oxidation. 
 

Dityrosine formation 

 

Dityrosine fluorescence decreased almost in all the cream groups except for the CE25 

groups on day 6 and day 9. Similarly, the highest decrease also occurred in the CC group, 

followed by the CT50 and CE50 groups (Figure 31). The decrease of dityrosine 

fluorescence in the CC group was shown in Figure 32. 
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Figure 31. Dityrosine formation (arbitrary units, AU) during oxidation of creams in the cream series. 
 

 
 
Figure 32. Fluorescence spectrum of dityrosine (  excitation = 315 nm) in creams from the cream control 
(CC) group during oxidation for 9 days. 
 

After  3-day  oxidation,  syneresis  in  cream  vials  from  the  CT  50  and  CC  groups  was  

observed, and this phenomenon was more pronounced at  day 6 and day 9.  Syneresis also 

took place in the CE 25 and CE50 groups although it was not visible during oxidation, 

because solids in white color were found sticking onto the vial walls in all cream samples. 

The picture for visible syneresis in a cream vial from the CT50 group on day 3 was shown 

in Figure 33.  
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Figure 33. Syneresis in a cream vial from the CT50 group observed on day 3.  
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3.4 Discussion 

 

3.4.1 Lipid oxidation in emulsions and creams 

 

Hexanal has been conventionally used as an indicator of lipid oxidation in rapeseed oil as it 

is a major secondary lipid oxidation product (Frankel 1985). Elevated level of hexanal in 

the OC group indicated the progression of lipid oxidation. However, hexanal was not 

found in the counterpart emulsion groups supplemented with oat protein and antioxidants. 

This could mean that oat protein or together with ellagitannins or -tocopherol might exert 

antioxidant activities towards lipid oxidation in the current study.  

 

Food proteins are well-recognized antioxidants towards lipid oxidation through their 

reactions with free lipid radicals, primary and secondary lipid oxidation products like 

hexanal (Elias et al. 2008), but it can hardly explain the missing of hexanal in the emulsion 

series. It is known that aldehydes including hexanal are able to form covalent bonds with 

amine groups of protein molecules to produce Schiff bases (Figure 34), whereas , -

unsaturated aldehydes can also react with amine groups to form Michael addition adducts 

(Viljanen et al. 2005). Both accounted for the covalent bonding mechanisms, leading to an 

increase of protein molecular weights and modifications of protein functions (Leaver et al. 

1999).  However,  Schiff  base  formation  is  considered  as  a  minor  event  for  the  missing  of  

hexanal, as this reaction prefers a weak acidic environment (Bruice 2011) in comparison to 

the weak alkaline emulsion medium maintained by sodium phosphate buffer system in the 

current study.  

 

 
 

Figure 34. Covalent bonding of a protein molecule with a hexanal molecule by a Schiff base formation.  
 

In  addition  to  the  unfavorable  pH  value,  the  availability  of  reactants  is  another  issue  of  

consideration. There is research evidence that unlike hexanal isomers such as trans-2-

hexanal, hexanal itself only reacts with lysyl residues of proteins (Meynier et al. 2004; 

Meynier et al. 2005), but the availability of lysine in the prepared emulsion is big issue if 
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two factors were taken into account: first, the protein concentration in prepared emulsions 

(1 mg/mL or 0.1%) was much lower than that in the referred studies (30 mg/mL or 3%); 

second, referred studies use sodium caseinates which are more lysine-rich than oat 

globulins (Draper 1973; Jost et al. 1999). Therefore, there must be other mechanisms 

implicated with the missing of hexanal in the emulsion series.  

 

Apart from covalent bonding of proteins with hexanal, proteins can also form reversible 

hydrophobic interactions with hexanal so that the volatility of hexanal is decreased 

(Druaux and Voilley 1997). The retention of hexanal by its hydrophobic binding with 

proteins is drastically increased with increasing pH from 6 to 9 (Well et al. 2003), so a 

relatively high retention of hexanal in the emulsions could be predicted, but it is still hard 

to know how much it contributed to the missing of hexanal in the oat protein-containing 

emulsions during oxidation. The hexanal discovered after the breakdown of emulsions in 

the PE50 group was probably trapped by the emulsion matrix through reversible 

hydrophobic interactions, thus it was released once the emulsion structure was disrupted by 

adding salts to emulsion samples.  

 

Specifically, the unique antioxidant capacity of oat flour or alkaline extract of oat proteins 

were closely linked to an enzymatic oxidation of hexanal into water-soluble hexanoic acid 

and a physical protection of food lipids from oxidative agents by oat proteins. Lehto et al. 

(2003) suggested that wholegrain oat flour itself has an aldehyde dehydrogenase type 

activity that can oxidize hexanal into hexanoic acid. This phenomenon is estimated to be 

the major culprit decreasing 80% hexanal in the referred study, while irreversible covalent 

bonding and simple adsorption combine to account for the rest 20%. The current study also 

used wholegrain oat flour as a raw material, but it is still unknown if the enzyme with such 

an aldehyde dehydrogenase type activity would survive in the buffered system (sodium 

phosphate buffer, pH 7.2) and exert an oxidation activity converting hexanal into hexanoic 

acids, because Lehto and coworkers did not study the enzymatic activity in the buffer.   

 

If  the  enzyme did  exist  in  the  emulsion  samples  with  oat  protein  extract,  it  is  possible  to  

explain the reason why there was hexanal formation after breaking down the emulsions in 

the PE50 group by adding salts. It is well-documented that tannins can inhibit enzymatic 

reactions by the formation of tannin-protein complexes (Haslam and Lilley 1988). 

Compared  with  the  emulsion  media  in  the  PE25,  it  is  probable  that  fewer  enzymes  were  

left active to oxidize hexanal into water-soluble hexanoic acid in the PE50 group due to a 
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stronger inhibitory effect of more ellagitannins on the enzymatic reactions. This finding 

was in accordance with the fluorescence results that PE25 group contained less protein 

oxidation products (carbonyls and dityrosine) than PE50 group. However, Kähkönen et al. 

(2012) found that cloudberry ellagitannin isolate has a higher inhibitory effect on hexanal 

formation with increasing phenolic concentrations from 1.4 (63% inhibition) to 4.2 g/mL 

(94% inhibition) using human low-density lipoprotein (LDL) dispersion as a model, which 

is  contradictory  to  the  current  findings.  The  reason  might  be  that  in  the  current  study,  it  

was relatively difficult for ellagitannins to locate themselves into the oil/water interfaces to 

exert an antioxidant activity, since in the emulsion samples, oat proteins, lecithin and 

ellagitannins would compete with each other to reside in the interfaces.  

 

Lehtinen and Laakso (2000) suggested that oat protein-rich fraction may provide a physical 

encapsulation of free fatty acids by restricting their contact with oxidative. An earlier 

research by the same authors supported that suggestion that oat protein could provide a 

physical protection to lipid from oxidation, and they highlighted that high antioxidant 

capacity of the oat extract was very pronounced in an alkaline condition (pH 8 - 10) but it 

collapsed upon a pH drop to 6 (Lehtinen and Laakso 1998). Being pH- sensitive, the 

antioxidant capacity of the extract is very likely to be attributed to oat globulin, because its 

solubility is much higher in the pH range from 8 to 10 (>80%) (Figure 4) but collapses 

when pH drops to 6, which is in agreement with the composition analysis of the extract.  

 

No hexanal formation in oat creams could be explained by high protein content and 

hydrocolloid formation. There were more proteins in creams (1%) acting as antioxidants 

towards lipid oxidation, than those in prepared emulsions (0.1%). Xanthan gum is used as 

a thickener in creams to create viscosity, which reduces the release of hexanal by viscosity 

and molecular interactions (Yven et al.1998). The high viscosity in cream samples might 

resist  the  diffusion  of  oxygen  into  creams to  react  with  lipid,  and  it  might  also  resist  the  

diffusion of hexanal from dispersed lipid phase to continuous water phase, and then to gas 

phase (de Roos 2003). Instead, Bylaite et al. (2005) argue that hydrophobic interaction 

between xanthan gum and hexanal is the major cause for a reduced release of hexanal other 

than viscosity. The proposed aldehyde dehydrogenase type activity is much less likely to 

happen, since the production of cream product includes an ultra-high temperature treatment 

which destroys the enzyme. The inactivation temperature of the enzyme is about 85oC 

(Lehto et al. 2003). 
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The absence of hexanal in emulsion and cream samples could not give rise to the 

conclusion that there was no lipid oxidation taking place in the samples. The reason is that 

no attempts to measure the primary lipid oxidation products (e.g. conjugated dienes) have 

been taken. Thus, if there was the formation of primary lipid oxidation products, lipid 

oxidation must have occurred even though no hexanal was formed. In addition, the claim 

that oat proteins as well as phenolics are efficient antioxidants towards lipid oxidation 

could not be launched.  

 

3.4.2 Protein oxidation in the emulsion series 

 

Tryptophan fluorescence 

 

Tryptophan is the main contributor to protein fluorescence, because it absorbs the least 

energy for excitation and has the highest extinction coefficient. Fluorescence spectra of 

tryptophan are quite useful to understand solvent polarity and protein folding (Lakowicz 

2006). Loss of tryptophan fluorescence has been conventionally used as an indicator of 

protein oxidation (Heinonen et al. 1998; Viljanen et al. 2005; Estévez et al. 2008) due to 

the oxidative modification of the indole ring of the tryptophan residue. In contrast, the PC 

group did not display a continuous loss of tryptophan fluorescence during oxidation, but 

the tryptophan fluorescence actually increased from day 3 to day 6 during oxidation. The 

increase of tryptophan fluorescence in the PC group from day 3 to day 9 was probably 

caused by the unfolding of oat globulin. When oat globulin is heated, protein molecules 

gradually unfold themselves, and more tryptophan residues are exposed to the solvent 

environment, leading to the increase of tryptophan fluorescence (Ma and Harwalkar 1988). 

Therefore, oxidation of emulsions under 37oC might slightly stimulate the unfolding of oat 

globulin compared to the oat globulin in protein extraction at about 4oC, and thus more 

tryptophan residues were possibly exposed due to temperature increase, leading to an 

increase of tryptophan fluorescence.  

 

Decrease of tryptophan fluorescence was not witnessed until day 9, and it was likely 

caused by quenching of tryptophan fluorescence due to continuous molecule unfolding 

(Yamagishi et al. 1981) or by other mechanisms, such as oxidative degradation (Gie auf et 

al. 1995). Interestingly, the red shift of tryptophan fluorescence from 344.52 nm (day 6) to 

345.10 nm (day 9) was found, which meant that slight protein denaturation happened 

(Kronman and Holmes 1971). 
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Due to interactions between antioxidant compounds and oat globulin, no decreases of 

tryptophan fluorescence have been observed in the PT50, PE25 and PE50 groups. This 

may also be explained by the shifts of the tryptophan fluorescence peak wavelengths 

except for the case in the PE25 group which showed a steady tryptophan fluorescence peak 

wavelength around 344.4 nm. The PT50 and PE50 group had a clear blue shift. 

Particularly, the PE50 group had a more pronounced blue shift from 344.7 nm to 343.4 nm, 

indicating a more severe shielding of the protein molecules (Ma and Harwalkar 1987) and 

a stronger interaction between ellagitannins and oat globulin. Due to the continuous 

shielding of oat globulin molecules, tryptophan residues were also less exposed to the 

aqueous phase, leading to an increase of tryptophan fluorescence during oxidation. 

 

According to the results in the present study, loss of tryptophan fluorescence was not 

recommended  as  a  protein  oxidation  marker  when  one  is  to  study  the  oxidation  of  heat-

coagulable proteins like oat globulin, because conformational changes in such proteins are 

more pronounced and contributed to the changes of tryptophan fluorescence. Proteins 

commonly used in oxidizable food models, such as -lactoglobulin, ovalbumin, BSA and 

collagen, coagulate or form gels after protein denaturation when they are heated in water 

(Aguilera and Rademacher 2004), but oat globulin readily coagulates before denaturation 

(Ma and Harwalkar 1987). Therefore, changes of tryptophan fluorescence could not reveal 

the real oxidative modifications of oat globulin, and the loss of tryptophan fluorescence as 

a protein oxidation marker is only recommended for those proteins with a good 

conformational stability when they are heated. 

 

Carbonyl formation 

 

Carbonyl  gain  occurred  in  all  of  the  groups  in  the  emulsion  series.  A  higher  dose  of  

ellagitannin in the PE50 group did not inhibit carbonyl formation but rather accelerated it 

compared with the PE25 group which exhibited an antioxidant activity of. Similarly, this 

type of antioxidant activity of ellagitannin towards carbonyl formation was also observed 

in a lactalbumin-lecithin liposome model, where a higher dose of ellagitannin at 4.2 g/mL 

has a weaker antioxidant activity than a lower dose of 1.4 g/mL (Viljanen et al. 2004). 

Since tannins can form strong interactions with proteins which could result in the 

formation of tannin-protein complexes, such type of antioxidant activity of ellagitannin 

towards protein oxidation might result from different binding patterns between ellagitannin 

and protein molecules (Li and Gu 2011).   
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One interesting finding was that -tocopherol displayed a significant antioxidant activity 

during the oxidation from day 3 to day 6, but on day 9 no significant difference of carbonyl 

compounds was found between the PT50 and PC groups, indicating that -tocopherol 

exerted an antioxidant activity in the early stage and then it decomposed. Similar founding 

is that -tocopherol decomposes more quickly than its counterpart tocopherol analogues 

(Koski et al. 2002). Since the oxidation was carried out in the dark, lipid oxidation did not 

involve photo-oxidation, and -tocopherol in the PE50 group could play a unique role as 

an effective radical scavenger to react with peroxyl radicles by donating hydrogen atoms 

(Buettner 1993), so a significant antioxidant activity during the oxidation from day 3 to 

day 6 could be found.  

 

As addressed in literature review, another issue associated with carbonyl formation is the 

magnitude that protein oxidation-induced carbonyl formation accounted for the total 

carbonyl formation, as multiple pathways collaborate to produce carbonyl compounds in a 

complex food matrix such as food emulsions (Estévez 2011). In an in vitro study where 

HNE was incubated with -lactoglobulin B, most of protein modifications were from 

Michael addition reactions (Bruenner et al. 1994), which are the major sources of protein 

carbonylation other than protein oxidation reactions. Therefore, a more specific method is 

needed to elucidate protein oxidation-induced protein carbonylation.  

 

Dityrosine formation 

 

Dityrosine accumulated in all of the groups in the emulsion series during oxidation, and its 

formation correlated well with carbonyl formation that the PE50 group contained more 

dityrosine and carbonyls than the PE25 group, which correlated well to the carbonyl 

formation in the emulsion series. Ellagitannin had a significant antioxidant activity towards 

dityrosine formation at the concentration of 25 g/g oil. The antioxidant activity of -

tocopherol  towards  dityrosine  formation  also  correlated  well  with  that  in  the  carbonyl  

formation: a more pronounced inhibitory effect at early oxidation stage.  

 

It is noteworthy that the highest peak emission wavelengths for dityrosine identification in 

all  emulsion  and  cream  samples  were  around  427  nm,  which  were  higher  than  most  

literature values ranging from 400-420 nm in alkaline solutions as illustrated in the 

literature review. This discrepancy might result from the difference of solvent 

environment. Since sodium chloride and phosphate in emulsions increased the polarity of 
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water molecules, those water molecules reoriented themselves around the excited-state 

fluorophores with dipoles. It reduced the energy of fluorophores and shifted the emission 

to higher wavelengths (Lakowicz 2006). In contrast, the highest peak emission 

wavelengths for tryptophan and carbonyl identification in the present study were not 

considerably affected by the relatively polar solvent environment.  

 

However, accurate identification of dityrosine in the present model indeed needs a 

dityrosine standard or a more specific method than fluorescence spectroscopy. In addition 

to the discrepancy of the highest peak emission wavelengths of dityrosine between the 

observed and reference values, there are some lipid oxidation-derived compounds having 

similar fluorescence properties to dityrosine, which might also emit fluorescence around 

427 nm. For example, the reaction between lysine and hexanal can result in fluorescent 

products which has maximum emission wavelength around 416 - 420 nm when excited at 

327 - 370 nm (Veberg et al. 2006). In an oxidized lens protein study, dityrosine only 

accounts for 1% of the dityrosine-like fluorescence (Wells-Knecht et al. 1993). Thus an 

inference can be drawn that the dityrosine spectra in the present study could be the sum of 

spectra of a series of oxidation-induced fluorescent products (Liang 1999), but this point of 

view needs a more specific method to determine if other oxidation products apart from 

dityrosine emit the same fluorescence around 427 nm as dityrosine.    

 

Compared with carbonyl and tryptophan fluorescence spectra, dityrosine fluorescence 

spectra displayed very intense peaks, meaning that dityrosine had a more specific 

fluorescence property and less interfered by other compounds. Thus dityrosine is suggested 

to be used as a protein oxidation marker when the protein oxidation of a complex food 

matrix is to be investigated. 

 

3.4.3 Protein oxidation in the cream series 

 

Tryptophan fluorescence decreased during oxidation in all cream groups, which seemed to 

lead to an inference that tryptophan was oxidatively degraded according to the literature 

(Estévez et al. 2008). However, this inference was not in agreement with the decrease of 

carbonyl and dityrosine contents, since theoretically both of them should increase or at 

least remain stable during the oxidation as opposed to the decrease of both.  
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As  discussed  in  the  section  of  protein  oxidation  in  the  emulsion  series,  changes  of  

tryptophan fluorescence may result from other mechanisms than protein oxidation alone, 

such as conformational changes of protein molecules. Moreover, the decrease of 

tryptophan fluorescence in the cream series could also be caused by syneresis, which is the 

separation of liquid from solids (Mizrahi 2010). Xanthan gum, which is used as a stabilizer 

in the cream, is considered as the main contributor to syneresis during cream storage by 

inducing emulsion droplet flocculation (Krstonosic et al. 2009). As liquid was expelled, 

dispersed proteins aggregated and adhered to the vial wall. Therefore, a less concentrated 

cream resulted, and simultaneous decreasing of tryptophan, carbonyl and dityrosine 

fluorescence was observed. Protein oxidation studies on the cream series were thus 

hindered by cream syneresis.  

 

Although the protein oxidation studies were not feasible by the cream model, other 

information from fluorescence spectra of tryptophan and carbonyls could also be obtained. 

For example, the fluorescence spectra of carbonyls in the CC group (Figure 29) showed 

unclear fluorescence peaks of carbonyls due to the fluorescence emitted by impurities from 

400 to 420 nm. The impurities were supposed to be sodium salts when the spectra in 

Figure 29 were compared with the corresponding ones in the study by Estévez et al. 

(2008). The referred study used potassium phosphate instead of sodium phosphate buffer, 

and the resulting spectra have clear fluorescence peaks for carbonyls and no intense 

fluorescence from 400 to 420 nm. This argument could be also supported by the 

fluorescence spectra of sodium phosphate buffer (not shown here), which showed strong 

fluorescence from 400 to 420 nm. Therefore, two actions could be taken to decrease the 

interference of sodium salts on fluorescence spectra of carbonyls: dialysis of protein 

extract and replacement of sodium by potassium.  

 

When the tryptophan fluorescence spectra of the emulsion series are compared with those 

of the cream series, it is obvious that the spectra from the cream series demonstrated much 

more intense and clear peak shapes than those from the emulsion series. This might be 

caused by the presence of phenolic compounds that have similar fluorescent properties to 

tryptophan. Phenolic compounds could be co-extracted with oat globulin (Ma et al. 2000), 

and the present work used whole-grain oat flour as a raw material which contains phenolic-

rich oat bran (Webster 2002). However, during the production of oat protein-containing 

cream, oat bran has been removed and less interference from those phenolics is expected.   
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In both of the emulsion and cream series, dityrosine fluorescence spectra showed intense 

base peaks, regardless of the presence of sodium salts and possibly co-extracted phenolic 

compounds. Thus here it is emphasised that dityrosine or dityrosine-like oxidation 

compounds could be used as a better protein oxidation marker.  
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4  CONCLUSION 

 

The current thesis work investigated lipid oxidation (e.g. hexanal formation) and protein 

oxidation in prepared oat protein-containing emulsion and cream samples, and inhibitory 

effects of ellagitannins and -tocopherol on protein oxidation.  

 

Hexanal was effectively inhibited by oat protein as no hexanal was detected in any oat 

protein-containing emulsion and cream during oxidation. Since no attempts to detect 

primary lipid oxidation products have been made, it is not certain if lipid oxidation took 

place in emulsion and cream samples. However, at least it is sure that lipid oxidation did 

occur in the emulsion samples with higher ellagitannin dose, because disruption of 

emulsion structure in those emulsion samples did release hexanal, which also indicated that 

hexanal could be trapped by the emulsion matrix. The greater protein content and high 

viscosity  of  cream  samples  could  partly  explain  the  fact  that  no  hexanal  was  detected  in  

those samples. 

 

Fluorescence spectroscopy is a promising tool to evaluate protein oxidation in food 

emulsions by measuring protein oxidation makers, namely loss of tryptophan fluorescence, 

carbonyl formation and dityrosine formation. The proposed method to monitor the loss of 

tryptophan is not a suitable way to evaluate protein oxidation, because it not only results 

from oxidative degradations, but also conformational changes of protein molecules. 

Possibly, oat globulin slightly unfolded, leading to an increase of tryptophan fluorescence 

rather than a loss. Therefore, this marker is recommended for the protein oxidation 

investigations on the proteins with a high structural stability. However, both carbonyl and 

dityrosine formation reflected the progression of protein oxidation, and the latter is highly 

recommended. The relevance of carbonyl formation to protein oxidation is not certain 

since it could also be formed by non-oxidation pathways. Hence, it is highlighted here that 

the formation of dityrosine, or more precisely "dityrosine-like compounds", could be used 

as a better protein oxidation marker.  

 

Antioxidant studies towards protein oxidation suggested that ellagitannins at a higher dose 

at  50  g/g  oil  was  less  efficient  than  a  lower  concentration  at  25  g/g  oil.  -Tocopherol  

preferentially exerted an antioxidant activity in the early stage of oxidation, and it was not 

as efficient as ellagitannins to inhibit protein oxidation.  
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Protein oxidation results from fluorescence spectra of the cream series could not reveal the 

oxidation extent in the cream series, due to syneresis of cream samples. The viscous nature 

and structural instability of the cream could hide protein oxidation products and lead to an 

underestimation, which was verified by the concurrent decreasing of fluorescence of all the 

protein oxidation markers. Therefore, it is emphasised here that when the samples are food 

hydrocolloids, structural stability of samples is the essential prerequisite if fluorescence 

spectroscopy shall be used.  

 

As suggestions for further studies, several points should be noticed. First of all, dialysis of 

oat protein extract is recommended to improve emulsion stability and enhance protein 

content. In addition, oat proteins should also be further purified to remove impurities, such 

as phenolics or oil. As a minor objective, lipid oxidation studies should encompass the 

detection of primary lipid oxidation products. More specific protein oxidation techniques 

are still needed to shed light on the contribution of protein oxidation-derived carbonyl and 

dityrosine formation to their total formation.   
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