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Abstract. Electrical impedance tomography (EIT) aims to reconstruct the

electric conductivity inside a physical body from current-to-voltage measure-
ments at the boundary of the body. In practical EIT one often lacks exact

knowledge of the domain boundary, and inaccurate modeling of the boundary

causes artifacts in the reconstructions. A novel method is presented for recov-
ering the boundary shape and an isotropic conductivity from EIT data. The

first step is to determine the minimally anisotropic conductivity in a model
domain reproducing the measured EIT data. Second, a Beltrami equation is

solved, providing shape-deforming reconstruction. The algorithm is applied

to simulated noisy data from a realistic electrode model, demonstrating that
approximate recovery of the boundary shape and conductivity is feasible.

1. Introduction. In electrical impedance tomography (EIT), the electric conduc-
tivity inside a physical body is reconstructed from electric current and voltage mea-
surements at the boundary of the body. EIT has applications in medical imaging,
nondestructive testing, geophysical prospection and industrial process monitoring.

Most EIT algorithms rely on the assumption that the shape of the boundary
of the body is known exactly. However, that assumption is not always practical,
especially in medical applications. For instance, consider monitoring heart and lung
function of an unconscious intensive care patient using EIT [13, 24, 25]. The mea-
surement electrodes are attached around the chest of the patient. The shape of
a cross-section of the chest could in principle be obtained using another imaging
modality such as magnetic resonance imaging, but that option involves transporta-
tion and scheduling issues. Further, the shape of the thorax varies due to breathing
and changes in the patient position. Therefore, the shape of the boundary would
be known only approximately even at the best case. This is problematic as us-
ing even slightly incorrect model of the boundary can cause serious errors in the
reconstruction [31, 17, 1, 26].
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The traditional way in biomedical EIT for reducing partially the effect of inaccu-
rately known body shape has been to use difference imaging, where the objective is
to reconstruct the change in the conductivity between two measurement times (or
two frequencies) using a first order linear perturbation model [7] 1 The approach is
highly approximative since the actual nonlinear forward mapping is approximated
by a linear one, but it is computationally fast since the related Jacobian mappings
are precomputed (at some guessed conductivity), and iterations are not possible in
the first place.

Simultaneous reconstruction of the change in conductivity and electrode move-
ment have been proposed for difference imaging in the two-dimensional (2D) case
in [45, 16] and in three-dimensions in [33, 38]. These approaches are based on a
linearized perturbation model and have been demonstrated only for small tempo-
ral changes. While difference imaging can reduce the effect of inaccurately known
geometry, some artefacts usually remain [1, 45, 8, 9]. Also, difference imaging is
not always satisfactory. For example in high-contrast cases, such as accumulation of
well conducting liquid (haematothorax) or poorly conducting air (pneumothorax) in
the lungs, the linearization involved may prevent the detection of clinically relevant
conditions [23]. Also, the detection of pneumothorax is difficult using difference
imaging if the change in the lungs has occurred prior to the measurements [15].

Apart from difference imaging, only a few approaches have been proposed for
compensating the effect of inaccurately known boundary shape in EIT. In [40], the
Bayesian approximation error approach was applied for the compensation of the
inaccurately known boundary shape in (absolute) EIT problem. In the approxima-
tion error approach, the modelling error caused by the incorrect boundary model
is treated as an additive noise process in the measurement model. A Gaussian ap-
proximation for the probability distribution of modelling error noise was estimated
using an atlas of body geometries from computerized tomography images, and these
statistics were then employed in the image reconstruction process to compensate for
the uncertainty in the body shape. In [41], the approach was extended for recovery
of a low-rank approximation for the boundary shape based on the approximate joint
statistics of the shape and the modelling error.

In this paper, continuing the work reported in [32, 34], we introduce a novel
three-step method for the recovery of the conductivity and boundary shape in the
absolute EIT problem in the 2D case. See Figure 1 for a demonstration.

In the 2D case, the EIT problem is formulated as follows: Let Ω ⊂ R2 be a
bounded and sufficiently smooth domain representing the measurement domain,
and let γ = [γij(x)]2i,j=1 be a matrix modeling electrical conductivity in Ω. We
assume that γ has components in L∞(Ω) and is strictly positive definite, that is,
for some constant C > 0 we have

C−1‖ξ‖2 ≤ ξ · γ(x)ξ ≤ C‖ξ‖2, for ξ ∈ R2, a.e. x ∈ Ω.(1)

The conductivity γ is called isotropic if it has the form of a scalar valued function
times identity matrix; otherwise it is called anisotropic. In this work we discuss
the reconstruction of isotropic conductivities, but intermediate steps in our method
involve anisotropic conductivities as well.

1As opposed to “difference imaging”, the original EIT problem (posed by Calderón) of re-
constructing the conductivity function from the current and voltage data is often referred in the

biomedical literature as “absolute EIT imaging”.
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Recovering boundary and conductivity in EIT 219

Figure 1. Left: original synthetic conductivity. Right: recon-
struction, without knowing the shape of the boundary, from EIT
data simulated with the complete electrode model using 16 elec-
trodes and 42 dB noise level.

Let u denote the electric potential in Ω, where we assume that u belongs to
Sobolev space H1(Ω). The potential satisfies the conductivity equation

(2) ∇ · γ∇u = 0 in Ω.

and the Robin boundary condition

(zν· γ∇u+ u)|∂Ω = h.

The function z is called contact impedance and models voltage drops caused by
electrochemical effects at the electrode-skin interface. Measurements are modelled
by the Robin-to-Neumann map R = Rz,γ given by

R : h 7→ ν · γ∇u|∂Ω,

mapping the voltage potential distribution at the boundary to the current across
the boundary. We assume that the contact impedance function is continuously
differentiable and strictly positive: z ≥ c > 0.

The EIT problem considered in this article is to reconstruct an isotropic con-
ductivity γ inside Ω using values Rz,γg for all g ∈ H−1/2(∂Ω). It is shown in [35]
that R determines the map z, and hence the knowledge of R is equivalent to the
knowledge of the Dirichlet-to-Neumann map much studied in EIT literature.

The EIT problem was formulated mathematically by Calderón [12]. For funda-
mental results on the unique solvability of the EIT problem in the plane we refer
to works of Nachman [39], Brown-Uhlmann [11] and finally Astala-Päivärinta [5]
where this problem was settled for general isotropic L∞-conductivities. Numerical
solution of the EIT problem is typically computed, for example, using the regular-
ized least squares framework [13] or the Bayesian inversion framework [27]. For an
example on numerical implementation of a direct solution based on the uniqueness
proof of Nachman [39], see [44, 24, 30]. A common feature in all those numeri-
cal methods is that the boundary of the measurement domain Ω is assumed to be
known.

We consider recovering an unknown isotropic conductivity γ in Ω and an approx-
imation to the unknown shape of ∂Ω from discrete current-to voltage measurements
performed using N electrodes on the boundary ∂Ω. In practice, the data is a finite
matrix that approximates the Robin-to-Neumann map R.

Inverse Problems and Imaging Volume 7, No. 1 (2013), 217–242
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The starting point is to choose a model domain, the best available approximation
Ωm to the actual domain Ω. For example, Ωm can be a disc having roughly the same
area than Ω. We build a computational model for discrete Robin-to-Neumann data
from a given (possibly anisotropic) conductivity in Ωm measured using J electrodes
on ∂Ωm. Our reconstruction algorithm consists of the following steps:

1. Recovering minimally anisotropic conductivity. Compute γe(x), the
least anisotropic of all conductivities in the model domain Ωm producing the
same data matrix than was measured on ∂Ω. Under our assumptions there is
a unique γe. Furthermore, the function

η(x) := det(γe(x))1/2

represents a geometrically distorted image inside Ωm of the original isotropic
conductivity. See [32, 35] for the numerical implementation of this step.

2. Isotropization. Determine numerically isothermal coordinates x 7→ Fi(x)
corresponding to γe. This step gives approximate recovery of the domain de-
formation and boundary shape. The details of the numerical implementation
of Step 2, the main computational novelty of this paper, are in Section 4.2.

3. Shape-deforming reconstruction. Use the isothermal coordinates to re-
construct the original isotropic conductivity approximately as

η(Re(Fi(x)), Im(Fi(x))).

This paper is organized as follows. In Section 2 we give the details of the theory
of shape-deforming reconstruction. Section 3 is devoted to explaining the simula-
tion of discrete and noisy EIT measurements. In Section 4 we explain numerical
implementation of the theoretical ideas described in Section 2. Numerical results
are reported in Section 5, and finally, reasons behind the good performance of our
method are discussed in Section 6.

2. Theory of shape-deforming reconstruction.

2.1. Recovering minimally anisotropic conductivity. Quasiconformal maps
are the basic tools of our method. Conformal maps in two-dimensional space are
deformations that preserve angles and map discs to discs. Quasiconformal maps are
more general as they may distort angles to some extent, but not arbitrarily much.

Let us record the definition and basic properties of quasiconformal maps. Let
Ω, Ω̃ ⊂ C be open sets. An orientation-preserving homeomorphism F : Ω → Ω̃ is
called K-quasiconformal if

D(x) ≤ K for a.e. x ∈ Ω, where D(x) =
|∂F (x)|+ |∂F (x)|
|∂F (x)| − |∂F (x)|

≥ 1.

Here, ∂ = 1
2 (∂x1

− i∂x2
), ∂ = 1

2 (∂x1
+ i∂x2

), and x = x1 + ix2. The constant K
controls the extent to which angles can be distorted under F .

There is also a geometric definition of quasiconformal maps. Conformal maps
take infinitesimal discs at x to infinitesimal discs at f(x), and the radii get dilated
by |f ′(x)|. More generally, a homeomorphism f is quasiconformal on a domain
Ω if infinitesimal discs at any x ∈ Ω get mapped to infinitesimal ellipses at f(x).
The ratio of the larger semiaxis to smaller semiaxis is the dilation D(x) of f at
x, and taking the supremum over x ∈ Ω yields the so-called maximal dilation.
This dilation of infinitesimal discs is in fact the reason why isotropic conductivities
change to anisotropic ones in push-forwards with quasiconformal maps.

Inverse Problems and Imaging Volume 7, No. 1 (2013), 217–242
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The inaccurately known boundary can be considered as the boundary of the
deformed model domain. Such a deformation corresponds to a sufficiently smooth
diffeomorphism F that maps the original measurement domain Ω to another domain

Ω̃. Denote f = F |∂Ω. Then, if u solves (2) with a Robin boundary value h,

ũ = u ◦ F−1 and h̃(x) = h(f−1(x)), it can be shown that ũ solves the conductivity
equation

∇· γ̃∇ũ = 0, in Ω̃,(3)

z̃ν· γ̃∇ũ+ ũ|∂Ω̃ = h̃,

where z̃(x) = z(f−1(x))‖τ · ∇(f−1)(x)‖ with τ the unit tangent vector of ∂Ω̃, and
γ̃ is the conductivity

γ̃(x) := F∗γ(x) =
F ′(y) γ(y) (F ′(y))T

|detF ′(y)|

∣∣∣∣
y=F−1(x)

,(4)

where F ′ = DF is the Jacobian matrix of map F , and F∗γ is called the push-forward
of γ by F . The boundary measurements transform according to the formula

(R̃h)(x) = (R(h ◦ f))(y)|y=F−1(x) .(5)

where R̃ corresponds to conductivity γ̃ and contact impedance z̃ in domain Ω̃. Note
that formula (4) implies that even if γ is isotropic, the transformed conductivity γ̃
will in general be anisotropic. It is well known (see [28, 48, 39] and also [4, 37, 36])
that the Dirichlet-to-Neumann map, and hence also the Robin-to-Neumann map,
does not determine uniquely an anisotropic conductivity. When the anisotropy is
very strong it is even possible to construct counterexamples for unique solvability
of the inverse conductivity problem up to change of coordinates [21, 22, 29]. These
examples are closely related to the so-called invisibility cloaking see e.g. [18, 19, 20].

Our set-up is motivated by the fact that the quadratic form corresponding to the
pushed-forward Robin-to-Neumann map Rm,

Rm[g, g] =

∫
∂Ωm

g Rmg dS =

∫
∂Ω

(g ◦ fm)Rγ(g ◦ fm) dS, h ∈ H−1/2(∂Ωm)

represents the power needed to maintain g◦fm on the original boundary ∂Ω. Know-
ing Rm is equivalent to knowing the corresponding quadratic form.

Let us first consider a conventional approach to solve the EIT inverse problem
by minimizing the regularized least squares cost functional

‖Rm −Rz,γ‖2L(H−1/2(∂Ωm),H−1/2(∂Ωm)) + α‖γ‖2X(6)

over isotropic conductivities γ in the model domain Ωm. Here ‖ · ‖X is some regu-
larization norm, α > 0 is a regularization parameter and L(X,Y ) denotes the space
of linear bounded operator from X to Y . Since Rm usually does not correspond
to any isotropic conductivity because of the deformation done when going from the
original domain Ω to Ωm, we obtain an erroneous reconstruction γ when solving
the minimization problem (6). A systematic error in the domain model causes a
systematic error to the reconstruction. In particular, local changes of the conductiv-
ity often give rise to non-localized changes in the reconstructions due to the above
modelling error. Thus the spatial resolution of details of reconstructions are often
weak. This is clearly seen in practical measurements, see e.g. [17, 31].

To overcome the above difficulties and to reconstruct a conductivity up to a
conformal deformation close to the original conductivity, we first find in Ωm an
anisotropic conductivity that is as close as possible to isotropic conductivities, and
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then use the existence of isothermal coordinates to find a deformation that makes
the conductivity isotropic. In particular, in such a construction the obtained defor-
mation is small if the errors in the modeling of the domain are small. To explain
how this is done, we first recall (with slightly different notations) the quantitative
definition of anisotropy used in [32]:

Definition 2.1. Let [γjk(x)]2j,k=1 be a matrix-valued conductivity with elements

in L∞(Ω) and let λ1(x) and λ2(x), λ1(x) ≥ λ2(x) be the eigenvalues of γjk(x). We
define the maximal anisotropy of a conductivity to be A(γ) given by

A(γ) = sup
x∈Ω

A(γ, x), where A(γ, x) =

√
λ(x)− 1√
λ(x) + 1

, λ(x) =
λ1(x)

λ2(x)
.

The function A(γ, x) is the anisotropy of γ at x.

Note that if F is K-quasiconformal and γ is an isotropic conductivity, then

A(F∗γ) =
K − 1

K + 1
.(7)

Using a classical result of Strebel (see [47], [10]) on the existence of the extremal
quasiconformal map, it was observed in [32] that among all anisotropic conductiv-
ities in the model domain Ωm with a given Dirichlet-to-Neumann map, or equiva-
lently Rm, there is a unique conductivity γe that has the minimal anisotropy A(γe)
and that this conductivity γe is of the form γe = γ̂λ,θ,η,

γ̂λ,θ,η(x) = η(x)Rθ(x)

(
λ1/2 0

0 λ−1/2

)
R−1
θ(x),(8)

where λ ≥ 1 is a constant, η(x) ∈ R+ is a real-valued function with the property

η(x) = det(γe(x))1/2

and Rθ(x) is a rotation matrix corresponding to angle θ(x),

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
.(9)

Note that for the conductivities γ̂ = γ̂λ,θ,η the anisotropy A(γ̂, x) is constant in x,

(10) A(γ̂, x) =
λ1/2 − 1

λ1/2 + 1
.

This is why we call such conductivities γ̂ uniformly anisotropic conductivities. More-
over, there is a unique map Fe : Ω → Ωm such that Fe|∂Ω = fm and γe = (Fe)∗γ,
and the conductivity γe can be used to compute in Ωm a deformed image of the
original conductivity γ defined in Ω, namely, we have

det(γe(x))1/2 = γ(y), y = F−1
e (x), x ∈ Ωm,(11)

see [32]. Note that Rm determines γe, but not the original domain Ω or the map
Fe : Ω→ Ωm, the extremal quasiconformal map with boundary value fm.

Analogously to [32], with given Rm the conductivity γe can be found as the
unique solution of the minimization problem

min
(λ,θ,η)∈S

λ,(12)

S = {(λ, θ, η) ∈ [1,∞)× L∞(Ωm)× L∞(Ωm)| Rγ̂(λ,θ,η) = Rm}.
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Note that in implementation of the algorithm for noisy measurement data one can
approximate the problem (12) with the regularized minimization problem

min
(λ,θ,η)

‖Rγ̂(λ,θ,η) −Rm‖2L(H−1/2(∂Ωm),H−1/2(∂Ωm))(13)

+ε1f(λ) + ε2‖θ‖2H1(Ωm) + ε2‖η‖2H1(Ωm),

where f : [1,∞) → R+ is a convex function that has its minimum at λ = 1 and
limt→∞ f(t) =∞ and ε1, ε2, ε3 > 0 are regularization parameters.

2.2. Isotropization. Below we use tools of complex analysis and identify C and
R2. We extend the minimization algorithm (12) and its approximation (13) by
transforming the reconstructed conductivity γe to an isotropic conductivity. This
is done by extending γe by an isotropic unit conductivity to whole C, and defining
Fi : C→ C be the unique solution of the problem

∂Fi(x) = µ(x)∂Fi(x), x ∈ C,(14)

Fi(x) = x+ h(x),(15)

h(x) → 0 as |x| → ∞.(16)

Here

µ(x) =
γe,11 − γe,22 + 2iγe,12

γe,11 + γe,22 + 2
√

det γe
, γe = [γe,jk(x)]

2
j,k=1 .(17)

Equation (14) has a unique solution by [2] as |µ(x)| ≤ c0 < 1 and µ(x) vanishes
outside Ωm. Note that the map x 7→ Fi(x) can be considered as the isothermal
coordinates in which γe can be represented as an isotropic conductivity, and that
the Beltrami coefficient is related to the anisotropy defined in (10) via the following
formula: |µ(x)| = A(γ̂, x) for x ∈ Ωm. We say that the conductivity γe is isotropized
by defining

γi = (Fi)∗γe

according to the formula (4). The conductivity γi is isotropic, and actually

γi(x) = (det γe)
1/2 ◦ F−1

i (x) = γ ◦ (Fi ◦ Fe)−1(x), x ∈ Ωi = Fi(Ωm).(18)

In the following, we denote G = Fi ◦ Fe : Ω → Fi(Ωm). The above procedure and
[34] give us the following result:

Proposition 1. Let Ω be a bounded, simply connected C1,α-domain with α > 0.
Assume that γ ∈ L∞(Ω) is an isotropic conductivity and Rγ its Robin-to-Neumann
map. Let Ωm be a model of the domain satisfying the same regularity assumptions
as Ω, and fm : ∂Ω→ ∂Ωm be a C1,α-smooth orientation preserving diffeomorphism.

Assume that we are given ∂Ωm and Rm = (fm)∗Rγ . Let γe be solution of the
minimization problem (12), Fi be the solution of the equations (14)-(17), and γi =
(Fi)∗γe. Then

γi(x) = γ(G−1(x)), x ∈ Ωi = Fi(Ωm)(19)

where G : Ω→ Ωi is a conformal map.
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2.3. Shape-deforming reconstruction. Thus the obtained conductivity γi can
be considered as a conformally deformed image of the conductivity γ. As the map
Fe corresponds to the minimally anisotropic conductivity and the maps Fi and
G are related to the isotropization of the minimally anisotropic conductivity, the
deformation G obtained above is small if Fe : Ω 7→ Ωm is close to identity.

We will discuss the properties of this step further in Section 6.

3. Simulation of EIT data.

3.1. Electrode model. In practical EIT experiments, the data consists of a finite
number of voltage and current measurements that are taken using a set of electrodes
attached at the boundary ∂Ω. To model these measurements accurately, we employ
the so-called complete electrode model [46, 14], which is a certain finite-dimensional
approximation of the Robin-to-Neumann map.

Let ej ⊂ ∂Ω, j = 1, . . . , J be disjoint open paths modelling the electrodes that
are used for the measurements. In the electrode model, the boundary conditions
for the conductivity equation (2) are:

zjν· γ∇u+ u|ej = Uj ,(20)

ν· γ∇u|∂Ω\∪J
j=1ej

= 0,(21)

where Uj are constants representing electric potentials on electrode ej . This models
the case where electrodes ej having potentials Uj are attached to the boundary,
zj is the contact impedance between electrode ej and the body surface, and the
normal current outside the electrodes vanish (the gaps are insulated).

The existence and uniqueness of the solution (u, U), where u ∈ H1(Ω) and U =
(U1, . . . , UJ)T ∈ RJ is quaranteed by the charge conservation

(22)

J∑
`=1

I` = 0.

and by fixing the ground level of the potentials

(23)

J∑
`=1

U` = 0,

for details see [46].
The measurements in this model are the currents observed on the electrodes,

given by

Ij =
1

|ej |

∫
ej

ν· γ∇v(x) ds(x), j = 1, . . . , J.

Thus the electrode measurements are given by map

E : RJ → RJ , E(U1, . . . , UJ) = (I1, . . . , IJ).

We say that E is the electrode measurement matrix for (∂Ω, γ, e1, . . . , eJ , z1, . . . , zJ).
The conditions for the applicability of the algorithm (12) in case of the electrode

model (20)-(21) are given in Proposition 4.1 in [32]. In summary, when Ωm is our
model of Ω and the map fm : ∂Ω → ∂Ωm is the model map for the boundary, the
map fm has to be length preserving on the electrodes. From the practical point of
view, this means the very natural assumption that in electrode measurements the
size of the electrodes has to be known correctly.
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Another discussion of boundary perturbations is given in [8], studying the effect
of small boundary perturbations in linearized difference imaging induced by various
vector fields.

3.2. Discretization and notation. The finite dimensional approximation and
numerical solution of the model (2),(20)-(23) is based on the finite element method
(FEM). Detailed description on the variational form and FEM implementation of
the model with anisotropic (matrix valued) conductivities is given in [35]. Here we
give only the notation for the discretized problem.

In the discretized model, we represent the functions η(x) and θ(x) in equation (8)
as images on a finite dimensional pixel grid. That is, we write piecewise constant
approximations

(24) η(x) =

M∑
k=1

ηkχk(x), θ(x) =

M∑
k=1

θkχk(x)

where χk is the characteristic function of the kth pixel in the pixel grid and ηk, θk
are the pixel values of the parameters. With the representation (24), the parameters
η and θ are identified with the coefficient vectors

η = (η1, η2, . . . , ηM )T ∈ RM , θ = (θ1, θ2, . . . , θM )T ∈ RM

and λ is a scalar parameter.
In practical EIT devices, the measurements are made so that known currents

are injected into the domain Ω through some of the electrodes at ∂Ω, and the
corresponding voltages needed to maintain these currents are measured on some
of the electrodes. Often, voltages are measured only on those electrodes that are
not used to inject current. Thus, measurements made give only partial information
on the matrix E. To take this in to account, we introduce the following notation
for the discretized problem. We assume that the EIT experiment consists of a set
of K partial voltage measurements, V (j), j = 1, . . . ,K. For each measurement,
consider a current pattern I(j) ∈ RJ , j = 1, . . . ,K such that the vector I(j) fullfills
the charge conservation law (22). Typically, the corresponding measurements are
the voltages (potential differences) between pairs of neighboring electrodes. Let us
assume that the measurement vector V (j) corresponding to the current pattern I(j)

consist of L voltage measurements, i.e., we have V (j) ∈ RL. To take the presence
of measurement noise into account, we model the measurement vector V (j) by the
additive noise model:

V (j) = PjE
−1I(j) + ε(j),

where E is the electrode measurement matrix obtained from the FEM discretization
(for details see [35]), random vector ε(j) models the measurement errors and Pj :
RJ → RL is a measurement operator that maps the electrode potentials to the
voltages.

In the computations, the voltage measurement vectors V (1), V (2), . . . , V (K) are
concatenated into a single measurement vector

V = (V (1), V (2), . . . , V (K))T ∈ RN , N = KL.

For the finite element based discretization of the forward problem U : R2M+1 7→ RN ,
we use respectively the notation

U(η, θ, λ) = (U (1)(η, θ, λ), U (2)(η, θ, λ), . . . , U (K)(η, θ, λ))T ∈ RN .

Inverse Problems and Imaging Volume 7, No. 1 (2013), 217–242
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Here,

U (j)(η, θ, λ) = PjE
−1(η, θ, λ)I(j) ∈ RL

corresponds to partial voltage measurement with current pattern I(j) and conduc-
tivity γ̂η,θ,λ.

3.3. Simulation examples and parameters. We demostrate the reconstruction
method using simulated measurement data from four test cases:

(Case 1): The measurement domain Ω is an ellipse with main axes 17cm and
12cm in the x1 and x2 directions, respectively.

(Case 2): The measurement domain Ω is a truncated ellipse with main axes
12cm and 17cm in in the x1 and x2 directions, respectively. The truncation
surfaces are defined by setting x1 = min(x1, 10) and x2 = min(x2, 15).

(Case 3): The measurement domain Ω is bounded by a smooth curve.
(Case 4): The measurement domain Ω is segmented from a computerized to-

mography image of the human chest.

The boundary of the measurement domain ∂Ω for each of the test cases is shown
in Figure 2 with solid line.

In all four cases, we used a circle with radius of 14 cm as the model domain Ωm.
The model domain is illustrated with gray patch in Figure 2. In the computations,
the model domain Ωm was discretized to a FEM mesh with Ne = 4968 triangular
elements and Nn = 2677 node points. For the representation of the conductivity,
Ωm was divided to M = 1021 square pixels with pixel size 8× 8mm2.

We simulated an EIT system with J = 16 electrodes. The electrodes were lo-
cated at approximately equally spaced positions at the boundary ∂Ω of the target
domain Ω. The EIT measurements were simulated using the traditional adjacent
pair drive data acquisition method, where currents +1 and −1 are injected through
two neighboring electrodes, say electrodes en and en+1, and current through other
electrodes is zero. The voltages are measured between all J − 3 pairs of electrodes
with zero current. Each partial measurement consists of L = J−3 voltage measure-
ments and we have V (j) ∈ RJ−3. This process is then repeated for all the J pairs of
adjacent electrodes, leading to total of N = J(J − 3) voltage measurements. Thus,
with the J = 16 electrode system we have measurement vector V ∈ R208.

In all test cases we constructed isotropic target conductivity in the measurement
domain Ω. The simulated EIT measurements were computed using FEM. To avoid
inverse crime, the simulated measurement and the reconstructions were computed
using different FEM meshes. The numbers of node points Nn and triangle elements
Ne in the FEM meshes used in the data simulation are listed in Table 1. We
added Gaussian random noise with signal-to-noise ratio 42dB to the data. We
chose contact impedances z` = 1 and assumed them known in the reconstruction.

4. Shape-deforming reconstruction algorithm.

4.1. Recovering minimally anisotropic conductivity. We need to solve the
constrained minimization problem (13). As the first step, we note that as uniformly
anisotropic conductivities of the form (8) have the property γ̂λ,η,θ = γ̂λ′,η,θ′ , where
λ′ = 1/λ and θ′(x) = θ(x)+π/2, we can reparameterize (13) such that λ gets values
λ > 0, meaning that we get a more simple form that has positivity constraints only.
Thus, using the re-parameterization we write the discretized version of (13) as
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(Case 1) (Case 2)

(Case 3) (Case 4)

Figure 2. Measurement domain Ω in the Cases 1-4 (∂Ω is shown
with solid line). The model domain Ωm in all cases is a circle with
radius 14 cm (Ωm is shown as gray patch).

finding the minimizer of

(25) F (η, θ, λ) = ‖V − U(η, θ, λ)‖2 +Wη(η) +Wθ(θ) +Wλ(λ), η > 0, λ > 0,

where parameters η, θ, λ define a uniformly anisotropic conductivity of the form (8)
in Ωm and the regularizing penalty functionals are of the form

(26) Wη(η) = α0

M∑
k=1

η2
k + α1

M∑
k=1

∑
j∈Nk

|ηk − ηj |2,

(27) Wθ(θ) = β0

M∑
k=1

θ2
k + β1

M∑
k=1

∑
j∈Nk

|eiθk − eiθj |2,

(28) Wλ(λ) = β2(λ− 1)2,

α0,α1,β0,β1,β2 are non-negative, scalar valued regularization parameteres and Nk
denotes the 4-point nearest neighborhood system for pixel k in the pixel grid. In
principle, one could attempt minimization of (25) by constrained non-linear opti-
mization methods, which can be computationally involved [42]. To tranform the
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optimization problem into computationally less demanding form, we utilize a second
transformation of the variables as

(29) (ξ, θ, ζ), ξ = log(η) ∈ RM , θ ∈ RM , ζ = log(λ) ∈ R,

transforming the constrained optimization problem (25) into an unconstrained one

(30) F (ξ, θ, ζ) = ‖V −U(exp(ξ), θ, exp(ζ))‖2 +Wη(exp(ξ)) +Wθ(θ) +Wλ(exp(ζ)),

that can be solved by gradient based optimization techniques for unconstrained
optimization, for examples of the methods see [42]. In this study, the minimization
of (30) is carried out with the Gauss-Newton optimization method equipped with
an explicit line search algorithm, for details see [42].

4.2. Isotropization. Given the estimates

η = exp(ξ), θ, λ = exp(ζ)

that define the estimated uniformly anisotropic conductivity in the model domain
Ωm, the second step of our algorithm consists of the isotropization of the anisotropic
conductivity. For this step, we need to find the mapping Fi(x) by solving the
equations (14)-(17) numerically as follows.

Define the solid Cauchy transform by

(31) Pf(x) = − 1

π

∫
C

f(λ)

λ− x
dλ,

and Beurling transform by Sf = ∂Pf . Here x = x1 + ix2 and λ = λ1 + iλ2 and
dλ = dλ1dλ2 denotes the usual Lebesgue measure in the plane. Note that P is
the inverse operator of ∂ and that S transforms ∂ derivatives into ∂ derivatives:
S(∂f) = ∂f . The Beurling transform can be written as a principal value integral

(32) Sf(x) = − 1

π

∫
C

f(w)

(w − x)2
dw.

Substituting (15) to (14) gives ∂h(x) = µ(x) + µ(x)∂h(x) = µ(x) + µ(x)S(∂h)(x),
which can be written in the form

(33) h(x) = P [I − µS]−1µ(x).

The inverse operator in (33) is well-defined as it can be expressed as a convergent
Neumann series using the fact that |µ(x)| < 1.

We introduce a periodic version of equation (33) as follows. Let R > 0 be so
large that supp(µ) ⊂ Ωm ⊂ B(0, R). Take ε > 0 and set s = 2R + 3ε and define a
square Q := [−s, s)2. Choose a smooth cutoff function

(34) η ∈ C∞0 (R2), η(x) =

{
1 for |x| < 2R+ ε,
0 for |x| > 2R+ 2ε.

Define a 2s-periodic approximate Green’s function g̃ by setting it to η(x)/(πx) inside
Q and extending periodically:

(35) g̃(x+ j2s+ i`2s) =
η(x)

πx
for x ∈ Q \ 0, j, ` ∈ Z.

Formula (31) can be viewed as convolution on the plane with the non-periodic
Green’s function 1/(πx). Define a periodic approximate Cauchy transform by

(36) P̃ f(x) = (g̃ ∗̃ f)(x) =

∫
Q

g̃(x− w)f(w)dw,
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where ∗̃ denotes convolution on the torus. Further, an approximate Beurling trans-
form is defined in the periodic context by writing

β̃(x+ j2s+ i`2s) =
η(x)

πx2
for x ∈ Q \ 0, j, ` ∈ Z,

and setting, analogously to (32), S̃f(x) := (β̃ ∗̃ f)(x) =
∫
Q
β̃(x − w)f(w)dw. Now

the desired periodic version of equation (33) takes the form

(37) h̃(x) = P̃ [I − µ̃S̃]−1µ̃(x),

where µ̃ is the trivial periodic extension of µ.
The practical benefit of considering equation (37) instead of (33) is the finite

computational domain of (37), allowing straightforward numerical evaluation. The
solution of (37) can then be used to compute the solution of (33) as follows:

Let ϕ be a function with supp(ϕ) ⊂ B(0, R), and denote by ϕ̃ the periodic
extension of ϕ. Since the functions (πζ)−1 and g̃(ζ) coincide for |ζ| = |x − w| <
2R+ ε, the following identity holds for |x| < R+ ε:

(38) (Pϕ)(x) =
1

π

∫
D

ϕ(w)

x− w
dw =

∫
Q

g̃(x− w)ϕ̃(w)dw = (P̃ ϕ̃)(x).

Now we can write (33) and (37) using Neumann series as follows:

h = P
(
µ+ µS(µ) + µS(µS(µ)) + µS(µS(µS(µ))) + · · ·

)
,(39)

h̃ = P̃
(
µ̃+ µ̃S̃(µ̃) + µ̃S̃(µ̃S̃(µ̃)) + µ̃S̃(µ̃S̃(µ̃S̃(µ̃))) + · · ·

)
.(40)

The series in (39) and (40) converge in L2(Ω) because ‖S‖L(L2(R2)) = 1 and
‖µ‖L∞(R2) < 1. Since µ is supported in B(0, R), a combination of (38) and (39)
and (40) yields

(41) h̃(x) = h(x) for |x| < R.

Thus we may evaluate the function h(x0) at any point x0 ∈ C approximately:

1. Evaluate the function h̃(x) approximately for a fine grid of points x ∈ B(0, R)
by truncating the infinite sum in formula (40). Numerical implementation of

operators P̃ and S̃ is discussed in detail below.
2. If x0 ∈ B(0, R), then by (41) we have h(x0) = h̃(x0) and can interpolate.

3. If x0 6∈ B(0, R), then by (41) we can write h(x0) = P ((∂ h̃)|B(0,R))(x0). The

∂ derivative can be approximated by finite differences, and the non-periodic
Cauchy transform P is easy to implement using numerical quadrature in (31).

It remains to explain the implementation of the operators P̃ and S̃. Choose a
positive integer m, denote M = 2m, and set h = 2s/M . Define a grid Gm ⊂ Q by

Gm = {jh | j ∈ Z2
m},(42)

Z2
m = {j = (j1, j2) ∈ Z2 | − 2m−1 ≤ j` < 2m−1, ` = 1, 2}.

Note that the number of points in Gm is M2. Define the grid approximation ϕh :
Z2
m → C of a function ϕ : Q→ C by ϕh(j) = ϕ(jh). Set

(43) g̃h(j) =

{
g̃(jh), for j ∈ Z2

m \ 0,
0, for j = 0;
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note that here the point jh ∈ R2 is interpreted as the complex number hj1 + ihj2.
Now g̃h is simply a M ×M matrix with complex entries. Given a periodic function
ϕ, the transform P̃ϕ is approximately given by

(44) (P̃ϕh)h = h2 F−1
(
F(g̃h) · F(ϕh)

)
,

where F stands for discrete Fourier transform and · denotes element-wise matrix
multiplication. This approach is based on the fact that convolution ∗̃ on the torus
becomes multiplication under the discrete Fourier Transform. The discrete Beurling
transform is given by

(45) (S̃ϕh)h = h2 F−1
(
F(β̃h) · F(ϕh)

)
,

where β̃h is the complex-valued M ×M matrix

(46) β̃h(j) =

{
β̃(jh), for j ∈ Z2

m \ 0,
0, for j = 0.

4.3. Shape-deforming reconstruction. Once the numerical approximation of
the mapping Fi(x) = x+h(x) has been found, we compute η(Re(Fi(x)), Im(Fi(x)))
as the reconstruction of the original isotropic conductivity. The only practical
computation required by this step is interpolation of η(Re(Fi(x)), Im(Fi(x))) from
the irregular grid, which is given by numerical solution of Fi(x).

Table 1. Discretization details for the measurement domain Ω in
the test cases. Ne is the number of triangle elements and Nn is the
number of node points in the FEM mesh, and M is the number of
pixels for the representation of the conductivity. The second and
third column show the numbers of node points and elements for
the meshes that were used for the computation of the simulated
EIT measurement data. Columns 3-5 show the number of nodes,
elements and pixels for the reference reconstructions (conventional
isotropic reconstruction) in the correct geometry Ω.

Measurement domain Ω simulation of data reconstruction
Nn Ne Nn Ne M

Ellipse (Case 1) 3052 5718 2741 5096 1048
Truncated ellipse (Case 2) 2963 5540 2680 4974 938
Fourier domain (Case 3) 3025 5588 2679 4972 1005
Chest CT (Case 4) 5116 9846 2740 5094 1060

5. Numerical results. We computed conventional isotropic reconstructions both
in the correct domain Ω and in the incorrect model domain Ωm. These reference
reconstructions were obtained by minimizing

(47) H(γ) = ‖V − U(γ)‖2 +Wγ(γ), γ > 0,

where the unknown parameter vector γ ∈ RM is the representation of isotropic
conductivity in piecewise constant pixel basis and the regularization functional Wγ

is as in equation (26). The solution of (47) was computed by transformation to
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an unconstrained optimization problem by use of logarithmic parameterization ϕ =
log(γ) and then finding the minimizer of

(48) H(ϕ) = ‖V − U(exp(ϕ))‖2 +Wγ(exp(ϕ))

with respect to ϕ using the Gauss-Newton method.
The discretization details of the true measurement domain Ω in each of the test

cases for the minimization of (48) are given in Table 1. The mesh and pixel grid
that were used for minimization of (48) in the incorrect model domain Ωm were
the same that were used for the minimization of (30) in the proposed method (with
Nn = 2677, Ne = 4968 and M = 1021).

The regularization parameters for the penalty functionals (26)-(28) in minimiza-
tion of (30) were tuned manually in the first test case for visually best image qual-
ity and then these values were fixed for the remaining test cases. The values were
α0 = 10−5, α1 = 10, β0 = 10−5 and β1 = 0.5. In numerical tests, regulariza-
tion in the scalar parameter was not needed and we used the parameter β2 = 0.
In each case, the Gauss-Newton optimization was started from the initial values
η = 1 ∈ RM , θ = 0 ∈ RM and λ = 1 corresponding to isotropic unit conductivity.
The regularization parameters for the functional Wγ in the minimization of (48)
were chosen similarly considering the first test case in the correct domain Ω. The
values were α0 = 10−5 and α1 = 10.

The results for the Case 1 are shown in Figure 3, top row of Figure 7 and
top left in Figure 8. The target conductivity and true measurement domain Ω
is shown in the top left in Figure 3. The reconstruction in the top right is the
conventional reconstruction of isotropic conductivity using the correct domain Ω.
The reconstruction was obtained by minimization of (48). The bottom left is the
isotropic reconstruction by minimization of (48) using the incorrect model domain
Ωm. The bottom right shows the reconstruction with the proposed method using
the incorrect model domain Ωm. The image shows the determinant η = (det γe)

1/2

of the uniformly anisotropic conductivity γe in the isothermal coordinates Fi(x),
i.e., the displayed quantity is η(Re(Fi(x)), Im(Fi(x))). The uniformly anisotropic
conductivity γe := γ̂λ,θ,η (see 8) was computed by minimization of (30) using the
model domain Ωm. The top row of Figure 7 shows the reconstructed parameters
η and θ in the model domain Ωm. Using the reconstructed conductivity γe, the
numerical approximation of the map x 7→ Fi(x) was obtained by solving equations
(14)-(17) as explained in Section 4.2. The images in Figure 8 show for each of the
four test cases the recovered isothermal coordinates Fi(xk) corresponding to set of
points {xk} that define uniform grid in the model domain Ωm. The solid line in the
subfigures in Figure 8 show the boundary ∂Ω of the measurement domain.

The corresponding results for Case 2 are shown in Figure 4, the second row of
Figure 7 and top right in Figure 8. For Case 3 the results are shown in Figure 5,
the third row of Figure 7 and bottom left in Figure 8, and for Case 4 the results
are shown in Figure 6, the bottom row of Figure 7 and bottom right in Figure 8.

6. Discussion. As can be seen from Figures 3-6, the conventional reconstruction
of isotropic conductivity using the incorrect model domain Ωm has severe recon-
struction errors in all cases. The effect of incorrectly modeled geometry are seen as
spurious details, especially near the boundary of the model domain. On the other
hand, when using the same incorrect model geometry Ωm, the proposed method
produces reconstructions that are nearly similar to the conventional reconstruction
that is computed in the correct geometry Ω, and also the shape of the domain has
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been recovered reasonably well in all test cases. These findings indicate that the
proposed approach can efficiently eliminate reconstruction errors that arise from
inaccurately known measurement domain in EIT in the two-dimensional case.

To explain the good performance of our shape-deforming reconstruction method,
let us consider properties of the conformal mapG. Assume that a modeling map fm :
∂Ω→ ∂Ωm of the boundary, which is a C1,α-smooth diffeomorphism, is a boundary
value of C1,α-smooth diffeomorphisms F inm : Ω→ Ωm and F outm : R2 \Ω→ R2 \Ωm,
that is, F inm |∂Ω = fm and F outm |∂Ω = fm (for the existence of such maps, see [43]).
These maps can be considered as the modeling maps of the interior domain and the
exterior domain. Together they define the map Fm : R2 → R2,

Fm(x) =


F inm (x), x ∈ Ω,
fm(x), x ∈ ∂Ω,
F outm (x), x ∈ R2 \ Ω.

Let us assume that

‖DF inm (x)− I‖L(R2,R2) ≤ ε0, x ∈ Ω,(49)

‖DF outm (x)− I‖L(R2,R2) ≤ ε0, x ∈ R2 \ Ω,

where 0 < ε0 < 1, DF inm is the Jacobian matrix of map F inm and I ∈ R2×2 is the
identity matrix. Then Fm : R2 → R2 is a K0-quasiconformal map, where

K0 =
1 + ε0

1− ε0
.(50)

Let now F ine : Ω → Ωm be a Teichmüller extremal map (quasiconformal with
smallest possible dilation) with boundary value F ine |∂Ω = fm. Also, let F outmod :

R2 \Ω→ R2 \Ωm be a quasiconformal map having boundary value F outmod|∂Ω = fm,
whose dilatation is smaller or equal to the dilatation of the exterior map F outm .

Denote the Riemann sphere by S2 = R2 ∪ {∞}. Now F outmod can be extended to

a map S2 \Ω→ S2 \Ωm with infinity as a fixed point. It is not clear if, among the
quasiconformal maps H : S2 \ Ω → S2 \ Ωm with infinity as a fixed point and the
prescribed boundary values, there exist one whose dilatation is the smallest.

Let Kin and K be the dilatations of F ine and F outmod, correspondingly. Then

Kin ≤ K0 and K ≤ K0.(51)

Let us define ε1 such that K = (1 + ε1)/(1− ε1). Then 0 ≤ ε1 ≤ ε0. Define

F planemod (x) =


F ine (x), x ∈ Ω,
fm(x), x ∈ ∂Ω,
F outmod(x), x ∈ R2 \ Ω.

Then F planemod : R2 → R2 quasiconformal. Let us now consider the map g : R2 → R2

defined by g = Fi ◦ F planemod . As the restriction g|Ω : Ω → Ωi is conformal, we
see that g : R2 → R2 map is K-quasiconformal. Moreover, it satisfies g|Ω = G.
As g : R2 → R2 is K-quasiconformal satisfies by [3, Cor. 3.10.4 and p. 81] a
quasisymmetry estimate

(52)
|g(x)− g(z)|
|g(y)− g(z)|

≤ ηK
(
|x− z|
|y − z|

)
,

|x− z|
|y − z|

≤ ηK
(
|g(x)− g(z)|
|g(y)− g(z)|

)
,

for all x, y, z ∈ R2, where ηK(t) = λ(K)2K max(tK , t1/K) for t ≥ 0 and

1 ≤ λ(K) ≤ 1

16
eπK , lim

K→1
λ(K) = 1.
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Let us now consider the meaning of the estimate (52). We started from the assump-
tion that the boundary modeling map fm is the boundary value of diffeomorphisms
satisfying estimates (50) and (51). Then F outmod is a quasiconformal map having
boundary value fm with the dilatation K. This dilatation satisfies K ≤ K0 and it
may be much closer to one than K0. For instance, if fm happens by chance to be
a boundary value of a conformal map from the exterior of Ω to the exterior of Ωm,
the dilatation K has the value one, and ε1 = 0. Using this map we obtained the
K-quasiconformal homeomorphism g : R2 → R2 and the image Ωi = g(Ω). If K−1
is very small, the map g satisfies a global estimate (52) where ηK(t) is quite close
to the identity map. The closer K is to 1, the closer ηK(t) is to identity. Next,
let us assume for simplicity that 0 < ε0 < 10−2, so that K − 1 ≤ 3ε1, and that
diam (Ω) ≤ 1. Then, if x, y, z ∈ ∂Ω are arbitrary points which mutual distances
are larger than h = ε0, we see from (52) that the relative distances of the points
x, y, z ∈ ∂Ω and the points x′ = g(x), y′ = g(y), z′ = g(z) ∈ ∂Ωi satisfy∣∣∣∣ |x′ − z′||y′ − z′|

− |x− z|
|y − z|

∣∣∣∣ ≤ λ(K)2Kh1/K 1

K2| lnh|
(K − 1) + (λ(K)2K − 1)(53)

≤ L2(1+3ε1) 6ε1

| ln ε0|
+ (L2(1+3ε1) − 1), L = λ(1 + 3ε1).

Note that the last term is of the form O(ε1/| log(ε0)|) ≤ O(ε1/| log(ε1)|) as ε1 ≤ ε0

and ε1 → 0. Thus, is the scales larger that h = ε0 the boundaries ∂Ω and ∂Ωi are,
up to small errors, equivalent in an Euclidean similarity transform. We emphasize
that in the construction ε1 may be much smaller than ε0. In this case the errors
in (53) are much smaller than in the worst case where ε1 in equal to ε0. This may
explain why the reconstruction of the domain in our practical examples are so good.

Theoretically, the reconstruction may also fail: If one by chance has a boundary
modeling map fm which is a boundary value of a conformal map F inm : Ω→ Ωm, then
the map Fi is just the identical map and the reconstructed image of the domain Ωi
is equal to the original model domain Ωm. Due to the Riemann mapping theorem,
Ωm can be an arbitrary bounded simply connected domain.

Summarizing: If the boundary modeling map happens to be close to the set

X = {h|∂Ω ; h : R2 \ Ω→ R2 \ Ωm is conformal,

h : R2 \ Ω→ R2 \ Ωm is homeomorphism}

then Ωi is close to Ω up to a similarity transformation.
In this study, we considered the EIT problem with unknown boundary in the

2D case. In the clinical applications, such as imaging of the lung function, the
measurements are taken at the surface of a three-dimensional (3D) body and the
situation becomes more complicated. The present 2D formulation would in 3D be
valid to a case where the conductivity, boundary and electrodes are translationally
invariant in the direction perpendicular to the 2D plane and the domain is truncated
from the top and bottom with Neumann zero conditions. Such assumptions are
not very realistic when imaging the human body and the question that how good
approximations the approach would produce for the 2D cross section of the 3D
conductivity in a case of measurements from a 3D target that is not translationally
symmetric is yet open. Answering this question is left for future studies.

Another practical complictation with the method is that the solution of (4.6)
involves selection of 5 regularization parameters. We are not aware of any system-
atic algorithms for choosing such many regularization parameters. In the present
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manuscript, we tuned the parameters manually in the first test case and used the
same parameters in all of the remaining test cases, and found that the method
worked robustly with the fixed parameter values. Therefore we believe that for a
given measurement setup and target type the algorithm could be made to work by
tuning the parameters only once and then using fixed values.
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1 2 0.88 1.49

0.01 1.9 0.88 1.47

Figure 3. (Case 1). Top left: True conductivity and the mea-
surement domain Ω. Top right: Reconstruction of isotropic con-
ductivity using the correct domain Ω. Bottom left: Reconstruction
of isotropic conductivity using incorrect model geometry Ωm. Bot-
tom right: Reconstruction with the proposed method using the
incorrect model geometry Ωm. The image shows the parameter η
in the isothermal coordinates x 7→ Fi(x) (i.e., displayed quantity is
η(Re(Fi(x)), Im(Fi(x)))).
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1 2 0.82 1.62

0.01 1.94 0.81 1.6

Figure 4. (Case 2). Top left: True conductivity and the mea-
surement domain Ω. Top right: Reconstruction of isotropic con-
ductivity using the correct domain Ω. Bottom left: Reconstruction
of isotropic conductivity using incorrect model geometry Ωm. Bot-
tom right: Reconstruction with the proposed method using the
incorrect model geometry Ωm. The image shows the parameter η
in the isothermal coordinates x 7→ Fi(x) (i.e., displayed quantity is
η(Re(Fi(x)), Im(Fi(x))))
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1 2 0.84 1.54

0.01 1.93 0.88 1.53

Figure 5. (Case 3). Top left: True conductivity and the mea-
surement domain Ω. Top right: Reconstruction of isotropic con-
ductivity using the correct domain Ω. Bottom left: Reconstruction
of isotropic conductivity using incorrect model geometry Ωm. Bot-
tom right: Reconstruction with the proposed method using the
incorrect model geometry Ωm. The image shows the parameter η
in the isothermal coordinates x 7→ Fi(x) (i.e., displayed quantity is
η(Re(Fi(x)), Im(Fi(x))))
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0.6 1.8 0.45 1.64

0.01 3.78 0.45 1.55

Figure 6. (Case 4). Top left: True conductivity and the mea-
surement domain Ω. The domain Ω is a cross section of human
chest obtained from a CT reconstruction. Top right: Reconstruc-
tion of isotropic conductivity using the correct domain Ω. Bot-
tom left: Reconstruction of isotropic conductivity using incorrect
model geometry Ωm. Bottom right: Reconstruction with the pro-
posed method using the incorrect model geometry Ωm. The image
shows the parameter η in the isothermal coordinates x 7→ Fi(x)
(i.e., displayed quantity is η(Re(Fi(x)), Im(Fi(x))))
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0.88 1.47 −0.29 0.33

(Case 1)

0.81 1.6 −0.73 1.29

(Case 2)

0.88 1.53 −11.06 −8.35

(Case 3)

0.45 1.55 −1.57 1.24

(Case 4)

Figure 7. Results of step 1 of the algorithm for the test cases 1-4.
Left: η. Right: θ. The estimates were obtained by minization of
(30) using the model domain Ωm (circle with radius of 14cm).

Inverse Problems and Imaging Volume 7, No. 1 (2013), 217–242



242 V. Kolehmainen, M. Lassas, P. Ola and S. Siltanen

(Case 1) (Case 2)

(Case 3) (Case 4)

Figure 8. Approximate recovery of the deformation and domain
boundary. Each subfigure shows the isothermal coordinates z 7→
Fi(x) that were obtained from the numerical solution of (14)-(17).
The boundary ∂Ω of the true measurement domain is shown with
solid line.
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