
In Search of a Consistent World View:

Induction as Extension

Panu A. Kalliokoski

March 28, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/16744482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In this paper, I develop an account of classi�catory induction that gives, for any
observation report, a theory that contains all inductive consequences of the ob-
servation report. Such a theory is called the maximal plausible generalisation of
the observation report, and it is shown to be consistent, unique for each observa-
tion report, and to capture nicely the intuitive notion of inductive consequence
by being the most informative generalisation that is still plausible.

In the course of de�ning the maximal plausible generalisation, I present
the conditions of entailment, consistency and plausibility, which any relation
of inductive consequence should observe. These conditions also hold for the
maximal plausible generalisation.

Keywords: classi�catory induction, con�rmation, consistency, constraint,
generalisation, induction, induction, inductive consequence, inductive logic, logic,
plausibility.

Contents

1 The vague concept of induction 5

1.1 Induction as extension . 5

1.2 Structure of this thesis . 6

2 Conventions and terminology 7

2.1 Terminology . 7

2.2 Notational conventions . 8

2.3 Logical language . 9

3 Hempel's account of induction 10

3.1 Hempel's criteria for con�rmation 10

3.2 Hempel's proposal for the con�rmation relation 12

3.3 Shortcomings in Hempel's con�rmation relation 14

4 What is induction not? 17

4.1 Mathematical induction . 17

4.2 Conceptualisation . 17

4.3 Validation of hypotheses . 18

4.4 Abduction . 18

4.5 Setting of induction . 18

4.6 Classi�cation of objects . 19

4.7 Generalisation of clauses . 20

4.8 Calculation of probabilities . 20

5 Theoretical background 22

5.1 Generality of concepts and generality of statements 22

5.2 Version spaces . 24

5.3 Conjunctive normal form . 26

5.3.1 Rewriting formulae into CNF 27

5.3.2 Signi�cance of CNF . 29

5.4 θ-subsumption . 30

5.5 Two types of induction . 32

6 Version spaces applied to logic 35

6.1 Version spaces of truth . 35

6.2 Generalisation of truth as a version space problem 35

6.3 Logical version spaces and Hempel's conditions 38

6.4 Minimal and maximal generalisations 39

6.5 Choosing the correct generalisation 40

6.6 Search in the generalisation space 41

7 Plausible clauses 43

7.1 Plausibility: why and how? . 43

7.2 Maximal plausible generalisation 45

7.3 Conditions for the preference relation 46

2

8 Symmetry 50

8.1 Implausibility of irrelevant clauses 51
8.2 Implausibility of irrelevant weakenings of falsi�ed clauses 52
8.3 Conclusion . 54

9 Total strength ordering of clauses 55

9.1 De�nition of the preference relation 56
9.2 Properties of the preference relation 58
9.3 Examples of plausible clauses . 59
9.4 Problems with the preference relation 61

10 Possibilities of the maximal plausible generalisation 62

10.1 Conclusions . 62
10.2 Algorithmic induction . 62
10.3 Developments in the preference relation 63
10.4 Conceptualisation . 64

3

Preface

This thesis is the outgrowth of a simple idea about human reasoning I had in fall
2006. This idea was based on the observation that people, upon encountering
something surprising (something that does not �t their current conception of the
world), tend to search for explanatory conditions in the context of the surprising
observation. Could this process not be formalised? Attempts to formalise this
account of human reasoning eventually produced my bachelor's thesis [Kal07],
which is in practice a description of algorithmic constraint induction. In the
course of developing this theory, I also implemented it as a scheme program.

However, working with concrete examples of induction quickly brought into
my attention many cases where the seemingly plausible conclusions of induc-
tive inference were inconsistent. Of course, it is a basic tenet of induction that
any hypothesis that is inconsistent with our experience is rejected; but in many
cases, two (or more) hypotheses are just jointly inconsistent with our experi-
ence and it is not easy to tell which one is the �culprit�. This was problematic,
since people certainly strive for a consistent world view � any theory of induc-
tion that produced mutually inconsistent results would hardly be a satisfactory
description of the inductive process.

I had also come across Hempel's account of con�rmation [Hem43], and no-
ticed that Hempel had set the exactly same condition for con�rmed hypotheses:
that they should all be jointly consistent with our experience. However, I found
Hempel's concrete proposal for con�rmation relation highly unsatisfactory, and
set out to search re�nements to Hempel's con�rmation relation in later research.
Quite surprisingly, there were none.

So, this thesis is an attempt to �nd the most general relation of inductive
consequence that will still only produce mutually consistent conclusions, and
to give precise formalisation for that relation of inductive consequence. The
result is far from �awless, but still a big improvement over Hempel's account of
con�rmation, and can be used as a starting point for further re�nements.

I would like to thank my friends, who have provided valuable feedback in
several discussions and have often had the patience of commenting on my ideas
even when the purpose of them has been obscure. Especially, the discussions
with Miikka Silfverberg and Lauri Alanko have been helpful. I would also like
to thank the people who have invested their time in proofreading the thesis.
Naturally, I am also grateful to my instructor Ahti-Veikko Pietarinen for taking
the time to go over my work and suggest corrections.

4

1 The vague concept of induction

Given that induction is mentioned on almost every introductory course on logic
and it is central in the scienti�c method, the concept of induction remains as-
toundingly vaguely de�ned. Induction is usually described as generalisation
from several instances, and contrasted with deduction: while deduction pro-
duces true conclusions from true premisses, induction only produces plausible
conclusions (from true premisses). However, induction is usually pursued no
further. It is simply something that generalises from instances and is not de-
duction.

It is hardly a philosophical attitude to leave central concepts ill-de�ned;
after all, de�ning concepts clearly is a very important part of all philosophical
activity. There are crystal clear criteria for what is and what is not a deductive
inference; why are there no similar criteria for inductive inference? There are
algorithms to deterministically produce all deductive consequences of a set of
clauses; why are there no algorithms to produce all inductive consequences in
the same way?

Part of the problem of de�ning induction is the vast scope of induction.
Induction supposedly covers a broad area of human thinking: everything that
extracts any kind of rules or lawlike results from experience. It is very di�cult
to form a de�nition that applies to everything that people would intuitively
call �induction�. Many formalisations of induction (such as the ones mentioned
below) seem to apply to some cases of inductive thinking, but are not applicable
to other cases.

However, much of the di�culty is also certainly due to the unclear initial
intuitions about induction. Induction has usually been explained by examples,
and the choice of particular examples has tended to guide the work in the area.
Thus, those interested in machine learning (e.g. [Ren86]) have mostly studied
the problem of classi�cation, which means categorisation of instances (exam-
ples) into several classes that are either given or invented in the process; logic
programmers (e.g. [Mug92a]) have been interested in the synthesis of logic
programs, which in practice means the search for a concise de�nition of the suf-
�cient and necessary conditions of one or several predicates; and philosophers
of science (e.g. [Car50]) have extensively studied the process of veri�cation (or
con�rmation) and falsi�cation of hypotheses. These approaches, while possibly
reconcilable, address induction from di�erent angles and within di�erent frame-
works. It is also possible that some of the approaches depict totally di�erent
kinds of induction.

1.1 Induction as extension

The general approach in this thesis is to consider induction as a broadening,
or extension, of our conception of the world. Our knowledge of the world is
necessarily incomplete, that is, the world is underdetermined by our experience.
Induction is the process of extending this world view by statements that are
plausible. A statement is plausible if and only if it is based on and consistent
with our knowledge. This thesis attempts to carefully de�ne the circumstances
where a proposition is based on some piece of knowledge.

Induction has a double goal: it should produce as strong claims as possible
while only producing claims that are plausible. The �rst goal is called the

5

informativeness of the induced theory. Scienti�c theories are expected to be
informative: the more situations a theory denies, the more informative it is.
The second goal is called the plausibility of the theory: a theory is plausible
if it is possible in view of what we know. As the informativeness of a theory
increases, it becomes more di�cult for the theory to remain plausible, because
there are more potential situations that would disprove the theory.

The ultimate goal of inductive inference is to �nd all propositions that are
plausible. This will give us a theory that is as informative as possible without
sacri�cing plausibility. I will call such a theory the maximal plausible generali-
sation of our experience.

1.2 Structure of this thesis

This thesis consists of two parts. The �rst part (sections 3�5) is dedicated to
de�ning what is meant by induction in this thesis and excluding di�erent kinds
of activities that are also called induction, in other sources. Some of these
activities are more obviously di�erent from the conception of induction in this
thesis, while some di�erences are subtle enough to warrant special attention.
In the �rst part, we examine the account of con�rmatory induction given by
Hempel as a brave but unsatisfactory attempt at de�ning induction.

The second part (sections 6�9) is an application of modern machinery such
as version spaces and θ-subsumption to the problem of induction. In this part,
I study the meaning of generalisation in the setting of logic, and develop condi-
tions of plausibility that pertain to inductive generalisations that are intuitively
�good�. Finally, I present a proposal that meets the requirements of the condi-
tions.

6

2 Conventions and terminology

Some conventions are used throughout this thesis.

2.1 Terminology

Most of this thesis deals with formulae in �rst-order predicate logic without
identity (FOL). A well-formed formula is called a proposition if it contains no
free (unbound) variables; otherwise, it is called a matrix of the variables that
are free in it. A proposition is also called statement or claim to emphasise its
semantic side; and sentence to emphasise its syntactic side. A proposition is
atomic when it does not contain connectives: conjunctions, disjunctions, impli-
cations or equivalences. Note that an atomic proposition may be negated. A
set of propositions is also called a theory.

When propositions are in conjunctive normal form (CNF, see section 5.3),
a clause is a sentence that is a universally quanti�ed disjunction of atomic
matrices. The atomic matrices in a clause are called the literals of the clause.
An empty clause is a clause with no literals. Such a clause represents the
contradiction (the strongest claim) and is written as ⊥. An empty theory is a
theory with no clauses. Since the theory does not claim anything, it represents
the weakest claim and is written as >.

For every binary relation R, there is a converse relation Rc de�ned by:

∀x∀y(Rcxy ≡ Ryx) (1)

Di�erent kinds of generality are discussed extensively in this thesis. A con-
cept (or relation) is called more general than another if its instances (or tuples of
individuals satisfying it) include all the instances of the other one. Moreover, a
concept is strictly more general than another if it is more general than the other
concept but the converse does not hold. The converse relations are more speci�c
and strictly more speci�c, respectively. On the other hand, a statement is more
general than another if it logically entails the other statement. Strict generality,
speci�city and strict speci�city are then de�ned equivalently for statements. For
a detailed discussion about this terminology, see section 5.1.

A sentence S is called ground if and only if it contains no variables. This
means that the terms of S are elements of a Herbrand universe. A sentence S
is a ground instance of another sentence S′ if and only if S is ground and can
be obtained by substituting variables in S′ with other terms.

A set of propositions K is consistent with or logically compatible with another
set of propositions O if their combination K ∪O is consistent, and inconsistent
with or contradictory with O if K ∪O is inconsistent.

A set of propositions H is maximally consistent if and only if all proper
supersets of H are inconsistent but H is consistent. Correspondingly, H is
minimally inconsistent if and only if H is inconsistent but all proper subsets
of H are consistent. Moreover, H is minimally inconsistent with another set of
propositions O if and only if H ∪ O is inconsistent but for all proper subsets
H ′ ⊂ H, the theory H ′ ∪ O is consistent. This is not the same as minimal
inconsistency of H ∪ O, because O may contain clauses that do not a�ect the
consistency.

7

2.2 Notational conventions

The formulae in this thesis refer to many kinds of objects. In the formulae, the
letters S, T , U are used to refer to sentences (propositions) or matrices, while p,
q and r are used to only refer to propositions. For clauses of CNF, the capital
letters C and D are used; these clauses are represented by sets of literals, so that
L ∈ C means that L is a literal (i.e. disjunct) of C. In this notation, clauses are
implicitly taken to be universally quanti�ed with respect to all their variables.

The capital letters P , Q, R are used to denote predicate symbols. Other
capital letters such as E, H, K and O are used for sets of propositions, and
capital Greek letters Γ and ∆ are used for sets of propositions that are general-
isations of other sets of propositions. All letters may have subscripts or primes
to extend the vocabulary.

In propositions and matrices, names of individuals are written as a, b, c,
etc., and names of variables as x, y, z. Occasionally we also need metavariables
(variables that may have as their value the name of another variable); the low-
ercase Greek letters α and β are used for names of metavariables. Arbitrary
terms are referred to by lowercase letters t and u.

In the FOL object language, the letters f , g, h are used to denote function
symbols, but occasionally more descriptive names are used, such as Stinky for
individuals, ContainerOf for functions and Cow for predicates. In the metalan-
guage, functions are usually written capitalised, such as D(. . .) or Sk(. . .). For
both predicates and functions, the arguments follow the predicate or function
symbol, parenthesised and separated with commas, as in P (a, b, c) or f(b1, g(b2)).
However, for predicates the shorter notation with simple juxtaposition is some-
times used for brevity, as in Pabc. Most binary relations are written in in�x
form: S ∈ O means ∈ (S, O) (S is a member of the set O), O Γ means
 (O,Γ) etc. See the next section for the precedence rules of in�x symbols.

Substitution of terms in a sentence or matrix is written in post�x form as
S[t/u], which means S with occurrences of the term t replaced by another
term u. Substitutions may naturally be composed as in S[t1/u1][t2/u2]; such a
substitution of multiple terms is denoted by the lowercase Greek letters σ and
θ, also written post�x as in Sσ.

Various symbols have the following readings:

symbol reading
= is
≡ if and only if
→ implies
∈ belongs to (the set)
|= entails
7−→ rewrites to
|∼ con�rms
 generalises to
⊇ is more general than / is a superset of
⊃ is strictly more general than / is a proper superset of
�θ θ-subsumes
≥pl is preferred to

In addition, we use the expression Mod Γ to denote that the set of proposi-
tions Γ is consistent (has a model).

8

2.3 Logical language

This thesis uses FOL for two purposes: as an object language, to describe
the propositions, predicates, functions and terms that we refer to; and as a
metalanguage, to reason about these propositions, predicates, functions and
terms, and sets thereof. The same language is used for both, except that the
metalanguage is much richer with relations such as ∈ (�belongs to�). This means
that sometimes parentheses must be used to denote whether a given connective
is to be understood to belong to the object language or the metalanguage; for
instance, the proposition p → q ∈ Γ means that whenever proposition p is
true, proposition q belongs to the set of propositions Γ, whereas the proposition
(p→ q) ∈ Γ means that the proposition p→ q belongs to the set of propositions
Γ. In the �rst case, the implication is a part of the metalanguage, and in the
second case, of the object language.

The notational conventions of FOL are as follows. Logical negation, con-
junction, disjunction, implication and equivalence are denoted by the signs ¬, ∧,
∨, → and ≡, respectively; of the connectives, negation binds most tightly, fol-
lowed by conjunction and disjunction, followed by implication and equivalence.
Whenever the structure of an expression must be disambiguated, parentheses
are used.

Universal and existential quanti�cation are denoted by the signs ∀ and ∃,
respectively. The sign is followed by a variable and a matrix of that variable,
and quanti�cation binds on the same level as negation. Quanti�ers and negation
naturally associate to the right since they are pre�x operators.

The metalanguage has the relation ∈ (set membership) which binds more
tightly than the logical connectives, and the relations |∼, |=, =, �θ and ≥pl

which bind less tightly than the logical connectives. Set comprehensions are
also used: {F (x) : P (x)} means the set of F (x) for all x for which P (x) is true.

The relation |= (entails) is overloaded with respect to its �rst operand. In
the conventional way, Γ |= p means that the proposition p is true in every model
of the set of propositions Γ, that is, Γ logically entails p. For a single proposition
q, q |= p means the same as {q} |= p.

In some places, the inference rule of resolution is referred to. The rule is as
follows:

p ∨ r ¬r ∨ q

p ∨ q
(2)

Together with substitution of terms, resolution is a refutation complete in-
ference rule. This means that every proposition p that is entailed by a theory
H can be proved by resolution by showing that ¬p is inconsistent with H. In
the application of resolution, it is said that p∨ r is resolved against ¬r∨ q. The
result p ∨ q is called the resolution of the original clauses, and the literal r is
called the resolvent.

9

3 Hempel's account of induction

To give a �rst impression of the kind of induction this thesis describes, let us in-
vestigate Hempel's early work on con�rmation relations [Hem43, Hem45]. This
work was later criticised (and appraised) mostly for its account on what con�r-
mation is, rather than Hempel's concrete proposal for a con�rmation relation.
Eventually, this discussion evolved to the probabilistic approach to con�rma-
tion, which is no longer applicable to Hempel's concrete con�rmation relation.
However, I hold the view that Hempel's view of con�rmation, which is classi�-
catory instead of quantitative, is far less faulty than Hempel's proposal for the
implementation of it.

Hempel's discussion of con�rmation is one of the most interesting and am-
bitious accounts of induction. Con�rmation is a relation between evidence and
hypothesis: some evidence is said to con�rm a hypothesis if the evidence pro-
vides support � not necessarily conclusive � that the hypothesis might be true.
We use the symbol |∼ to denote such a con�rmation relation; E |∼ H means
�evidence E con�rms hypothesis H�. Evidence is represented by an observation
report, which is a logical description (i.e. conceptualisation) of an observation.

Con�rmation is important for induction, because any con�rmation relation
can be seen as a de�nition of inductive consequence. Indeed, E |∼ H can also
be read �H is an inductive consequence of E�, and the inductive closure of E is
given by {H : E |∼ H}.

3.1 Hempel's criteria for con�rmation

Hempel de�nes some necessary conditions that any con�rmation relation should
satisfy. The article motivates the conditions by appealing to intuition, and
Hempel admits that there is no kind of proof for them; the conditions are just
an attempt to capture the properties of the intuitive notion of con�rmation.1

Condition 3.1 (Entailment condition). Any sentence which is entailed by an
observation report is con�rmed by it.

(E |= H)→ (E |∼ H) (3)

Condition 3.2 (Consequence condition). If an observation report con�rms
every one of a class K of sentences, then it also con�rms any sentence which is
a logical consequence of K.

(∀S(S ∈ K → (E |∼ S))) ∧ (K |= H)→ (E |∼ H) (4)

Condition 3.3 (Consistency condition). Every logically consistent observation
report is logically compatible with the class of all the hypotheses which it con-
�rms.

Mod E → Mod(E ∪ {H : E |∼ H}) (5)

1Hempel also considers a fourth condition, the converse consequence condition, but rejects
it right away: no con�rmation relation can satisfy it together with the consequence condition
and the consistency condition.

10

There are several things to notice about the conditions. Firstly, as Hempel
elaborately explains, this view of the con�rmation relation does not take into
account di�erent degrees of con�rmation. An observation report that entails
the hypothesis con�rms it certainly (Hempel calls this conclusive con�rmation),
while inductive inference also admits con�rmation of a weaker kind: tentative
con�rmation. Hempel does not stipulate about what kinds of con�rmation there
are; he believes that it is of a more pragmatic character to assess hypotheses with
various di�erently con�rming and discon�rming pieces of evidence, that to give
a qualitative account whether a given piece of evidence con�rms, discon�rms,
or is neutral with respect to a hypothesis [Hem45, 114�115].

Secondly, the con�rmation relation is heavily underdetermined by the con-
ditions. Hempel mentions, as an example, that the entailment relation satis-
�es the criteria. Indeed, we notice that the conditions in no way suggest that
observation reports might sometimes con�rm hypotheses that make stronger
claims than the observation reports. Hempel, however, clearly presupposes this,
because his own suggestion for the con�rmation relation allows observation re-
ports about individuals to con�rm hypotheses that have universal quanti�cation.
Hempel justi�es this by explaining that in addition to the explicit conditions
given above, the con�rmation relation should also match our intuitions about
scienti�c con�rmation. These intuitions, however, are left formally rather un-
speci�ed. They are conveyed by Hempel's own proposal for the con�rmation
relation, which we shall soon study.

So, it should now be obvious that Hempel's conditions allow a plethora of
possible con�rmation relations, some more general and some more speci�c.2 It
is probably quite possible to �nd very counterintuitive con�rmation relations
that still manage to ful�ll Hempel's conditions.

However, conditions 3.1 and 3.2 de�ne nontrivial minimal requirements for
the con�rmation relation, and condition 3.3 de�nes a nontrivial maximal require-
ment for the con�rmation relation. By this I mean that con�rmation relations
cannot be so general as to con�rm mutually inconsistent sentences, and not
so speci�c as to fail to con�rm the logical consequences of a sentence. Conse-
quently, both the most speci�c admissible con�rmation relations and the most
general admissible con�rmation relations are nontrivial relations.

It is quite easy to see that the logical entailment relation |= is the most spe-
ci�c con�rmation relation possible in the sense that every con�rmation relation
|∼ which is more speci�c fails to satisfy condition 3.1.

Proof. If the con�rmation relation |∼ were more speci�c than logical entailment,
then by de�nition 5.3, there would be some sentences p and q for which

(p |= q) ∧ ¬(p |∼ q) (6)

This violates condition 3.1.

So, the weakest con�rmation relation is uninteresting from the point of view
of induction: it is the familiar notion of deductive consequence.

However, it is not so clear what would be the most general con�rmation
relation possible. This turns our attention to condition 3.3, since it is the only
condition setting an upper limit for the con�rmation relation. This problem is

2For de�nitions of these terms with respect to relations, please refer to section 5.1.

11

investigated in more detail in section 6, where we restate conditions on con�r-
mation relations, and section 7, where we develop conditions of plausibility that
guarantee the consistency of the con�rmation relation.

3.2 Hempel's proposal for the con�rmation relation

After stating his conditions in [Hem43], Hempel proceeds to give a de�nition of
the con�rmation relation for FOL. This de�nition is apparently motivated by
a certain property of scienti�c generalisations. Namely, observation reports are
always about particular individuals, but scienti�c theories3 are general rules.
However, the accepted theories are those that hold true for the particular part
of universe that the observation report talks about. For instance, if we have a
theory ∀xPx, then we would probably say that an observation report con�rms
our theory (tentatively) if it talks about some individuals, e.g. a, b and c, and
shows Px for all of those individuals, i.e. Pa ∧ Pb ∧ Pc.

Hempel makes an attempt to formalise this notion of con�rmation. The
result is, in e�ect, a formal account of what it means for a rule to hold for the
particular part of universe that an observation report talks about. The meaning
of a rule for a part of universe is called the C-development of the rule for a given
�nite set C of individuals.

De�nition 3.4 (C-development). The C-development DC(C, p) of a proposi-
tion p for the set of individuals C is de�ned thus:4

DC(C,S) = S if S is atomic

DC(C,¬S) = ¬D(C,S)
DC(C,S1 ∨ S2) = D(C,S1) ∨D(C,S2)
DC(C,S1 ∧ S2) = D(C,S1) ∧D(C,S2)

DC({},∀αS) = >
DC({x} ∪ C ′,∀αS) = DC({x} ∪ C ′, (S[α/x] ∧D(C ′,∀αS)))

DC({},∃αS) = ⊥
DC({x} ∪ C ′,∃αS) = DC({x} ∪ C ′, (S[α/x] ∨D(C ′,∃αS)))

(7)

where S[x/a] means the sentence S with occurrences of the variable x replaced
by the constant a.

Intuitively, the C-development of a universally quanti�ed sentence S for a
set C of individuals states that S is true for all those individuals, and the C-
development of an existentially quanti�ed sentence S states that S is true for
at least one of the individuals. For sentences S without quanti�cation, the
C-development of S is the original sentence.

Example 3.5. The C-development of a conditional rule ∀x(Px → Qx) for

3Here, I use the term �scienti�c theory� in the narrow sense of a con�rmable claim.
4The de�nition is adapted for CNF, i.e. it is assumed that abbreviations such as implication

connectives are already eliminated, and given a more rigorous de�nition with respect to C
than in the original [Hem43].

12

individuals a and b is as follows:

DC({a, b},∀x(¬Px ∨Qx))
= DC({a, b}, (¬Pa ∨Qa) ∧DC({b},∀x(¬Px ∨Qx)))
= DC({a, b}, (¬Pa ∨Qa) ∧ (¬Pb ∨Qb) ∧DC({},∀x(¬Px ∨Qx)))
= DC({a, b}, (¬Pa ∨Qa) ∧ (¬Pb ∨Qb) ∧ >)
= DC({a, b}, (¬Pa ∨Qa) ∧ (¬Pb ∨Qb))
= DC({a, b},¬Pa ∨Qa) ∧DC({a, b},¬Pb ∨Qb)
= (DC({a, b},¬Pa) ∨DC({a, b}, Qa)) ∧ (DC({a, b},¬Pb) ∨DC({a, b}, Qb))
= (¬DC({a, b}, Pa) ∨Qa) ∧ (¬DC({a, b}, P b) ∨Qb)
= (¬Pa ∨Qa) ∧ (¬Pb ∨Qb)

(8)

Hempel then proceeds to de�ne con�rmation in terms of the C-development
of the rule to be con�rmed. Firstly, an observation report E directly con�rms
a hypothesis H, expressed E |∼d H, if and only if it entails the C-development
of H for all individuals in the observation report. However, this notion of
direct con�rmation does not satisfy Hempel's condition 3.2, so Hempel de�nes
con�rmation in terms of direct con�rmation.

Example 3.6. Let us have the observation report E and the hypotheses:

E = {Pa}
H1 = ∀xPx

H2 = Pc

(9)

Now, E |∼ H1 because the C-development of H1 for I(E) is Pa, which is
equivalent with E and thus logically entailed by E. However, E |6∼ H2. Since
H1 |= H2, this violates condition 3.2.

De�nition 3.7 (C-development con�rmation). An observation report E con-
�rms a hypothesis H if H is entailed by a class of sentences K, and E directly
con�rms all sentences in K. The de�nitions can be formally expressed as:5

(E |∼d H) ≡ (E |= DC(I(E),H))
(E |∼ H) ≡ ({H ′ : E |∼d H ′} |= H)

(10)

where I(E) means the set of individual constants in E.

Hempel further constrains observation reports to molecules, by which he
means ground propositions. Hempel also requires that the C-development
DC(I(E),H) is not analytic unless H also is, for reasons that we will study
in the next section.

Example 3.8 (Red and green objects). Let our hypothesis be �no object is
both totally red and totally green�. Then, let us have an observation report of

5The formalisation here is a simpli�ed but logically equivalent version of Hempel's de�ni-
tions of Cfd2 and Cf2 [Hem43, 138].

13

three individuals a, b and c, one of which is green, another red, and the third
one is neither. This gives us the following propositions and C-development:

H = ∀x(¬Rx ∨ ¬Gx)
E = ¬Ra ∧Ga ∧Rb ∧ ¬Gb ∧ ¬Rc ∧ ¬Gc

DC(I(E),H) = DC({a, b, c},H)
= (¬Ra ∨ ¬Ga) ∧ (¬Rb ∨ ¬Gb) ∧ (¬Rc ∨ ¬Gc)

(11)

The C-development is clearly entailed by E. So E directly con�rms H, and
consequently, also con�rms it.

Hempel's con�rmation relation can be shown to satisfy all of Hempel's con-
ditions. Consequently, whatever critique is to be directed against Hempel's
de�nition, it must rest on our intuitions about the nature of con�rmation. The
con�rmation relation manages to follow common conceptions about con�rma-
tion in many cases, but now we will study cases where it does not seem to do
so.

3.3 Shortcomings in Hempel's con�rmation relation

Despite its intuitive appeal, Hempel's account of con�rmation is not with-
out problems. Some of these problems Hempel notices himself, and makes
workarounds for them, such as the requirement of nonanalytical C-developments
mentioned in the last section.

One critical problem is that I(E), that is, the set of individuals in the ob-
servation report, leads to some strange C-developments if its cardinality is too
small. One example given by Hempel is the hypothesis H = ∀xPx ∨ ∀x¬Px.
This hypothesis is not analytic, but its C-development over a singleton set is:

DC({a},∀xPx ∨ ∀x¬Px) = Pa ∨ ¬Pa. (12)

Thus, the C-development is entailed by any observation report whatsoever, and,
consequently, the hypothesis is con�rmed by any observation report that only
mentions one individual, for instance Qa ∧Ra.

We might add that an observation report mentioning no individuals at all,
for instance >, con�rms all universally quanti�ed hypotheses. Hempel does not
encounter this problem, because his language does not include nullary predicates
and observation reports are required to be ground.

A di�culty in another direction is that the observation reports may introduce
individuals which in no way a�ect the logical content of the observation report.
This problem is cursorily discussed in a very long footnote in [Hem45, 110�111].

Example 3.9. Consider the hypothesis H = ∀xPx and the observation reports

E1 = Pa

E2 = Pa ∧ (Qb ∨ ¬Qb).
(13)

Now, E1 and E2 are logically equivalent, but the set of individuals in E1 is
I(E1) = {a} whereas in E2 it is I(E2) = {a, b}. This leads to di�erent C-
developments of H, namely DC(I(E1),∀xPx) = Pa and DC(I(E2),∀xPx) =
Pa∧Pb. It is, then, easily seen that both observation reports entail the former C-
development, while the latter is entailed by neither. As a consequence, E1 |∼ H
while E2 |6∼ H, in spite of the logical equivalence.

14

These problems do not violate any of Hempel's criteria for con�rmation re-
lations, since the conditions actually say very little about how two somewhat
similar observation reports relate to each other. There is no condition that log-
ically equivalent observation reports con�rm the same hypotheses; nor need the
conjunction of two observation reports con�rm anything that the original obser-
vation reports con�rm. This is probably sensible given the nonmonotonicity of
con�rmation: strengthening the observation report Pa ∧ Pb by a new conjunct
¬Pc should de�nitely drop its con�rmation for the hypothesis ∀xPx. However,
the unintuitive results above call for criteria that explicate the relations between
observation reports.

Hempel deals with the problem of extraneous individuals in observation re-
ports by introducing the concept of essential individuals. An individual is es-
sential in a proposition if and only if it is present in every logically equivalent
proposition. In my opinion, this is hardly a su�cient remedy for the situa-
tion. Some individuals may be essential to some hypotheses and others may be
essential for others. This calls for a more �ne-grained notion of essentiality.

Example 3.10. Take, for instance, two totally unrelated observation reports
E1 = Pa and E2 = Qb. For the individual observation reports, we have:

E1 |∼ ∀xPx

E2 |∼ ∀xQx
(14)

However, the conjunction of the observation reports E1 ∧E2 fails to con�rm ei-
ther. The situation cannot be remedied by an account of essential and inessential
variables, since both a and b are obviously essential for their respective predi-
cates, P and Q.

Now someone can claim that it is not appropriate for scienti�c observation
reports to combine unrelated data, so E1 and E2 should just be treated sep-
arately. However, in the absence of any formal de�nition of when observation
reports can be combined and when they cannot, the exact con�rmative con-
tent of E1 ∧ E2 remains unclear. Worse yet, in light of the observation report
Pa∧Pb∧¬Pc, observation reports cannot be split arbitrarily and still produce
reliable results: the clause ∀xPx is supported by Pa and Pb, but falsi�ed by
Pc.

It is also possible to come up with examples where the interdependence of
observations or lack thereof is not so clear. Take, for instance,

E = Pa ∧ Pb ∧Qb. (15)

Now, should E, intuitively, con�rm the hypothesis ∀xQx? By Hempel's con�r-
mation relation, it does not. However, the only reason here is that it is unknown
whether Qa holds. What kind of criterion could there be to exclude Pa from
the observation report, in order to drop a from I(E)? A similar situation occurs
if, in our example 3.8, we add a new individual d for which we only know that
it is red (Rd) but the observation report fails to include any information about
its greenness (Gd or ¬Gd).

So, actually there appear to be two problems with Hempel's con�rmation
relation. The �rst one is that Hempel's notion of universe of discourse, upon
which C-development is based, is very crude. Simply taking that set on indi-
viduals that an observation report somehow mentions does not yield adequate

15

results in the way that a small set of individuals makes it �too easy� to con�rm
a rule, and a large set makes it �too hard�. Maybe there could be some kind of
local C-development that would give a di�erent set of individuals for rules that
concern di�erent parts of the observation report.

But there is the even harder problem that Hempel's con�rmation relation
is too cautious, i.e. too strong. This is caused by the fact that the observation
report is required to entail the C-development of a rule in order to con�rm it.
Consequently, any absence of information (such as information about greenness
above) tends to thwart otherwise totally sensible rule candidates. This is a de-
pressing result, because our experience of the world is usually quite incomplete.
If our ability to scienti�cally con�rm anything depends on picking exactly the
right data to do so and ignoring the rest of our knowledge, this hardly seems an
good account of scienti�c con�rmation.

16

4 What is induction not?

Given the enormous scope and usage of the word �induction�, it is necessary to
dedicate a whole section for explaining what is not meant by induction in this
article.

4.1 Mathematical induction

The �rst thing to mention is probably the contrast between mathematical in-
duction and induction in philosophy. Mathematical induction is actually a kind
of deduction (necessary reasoning), because it produces irrefutably true conclu-
sions from true premisses. The premisses of mathematical induction are also
di�erent from the premisses of philosophical induction: philosophical induction
proceeds from particular instances only, while mathematical induction uses at
least one generic rule as its premiss.

Example 4.1. The typical examples of philosophical and mathematical induc-
tion are the following inferences. To emphasise the similarities between both
kinds of induction, we denote an arbitrary enumeration E of individuals by a
function f from natural numbers to individuals. This is philosophical induction:

P (f(1)) P (f(2)) P (f(3))
∀n(n ∈ N→ P (f(n)))

(16)

And this is mathematical induction:

P (f(0)) ∀n(P (f(n− 1))→ P (f(n)))
∀n(n ∈ N→ P (f(n)))

(17)

The greatest di�erence between mathematical and philosophical induction
is that philosophical induction can produce general rules from �nite premisses,
that is, premisses that only involve a �nite number of individuals. What the
two kinds of induction have in common is that they both produce general claims
by some kind of enumeration of individuals. For mathematical induction, this
enumeration starts from f(0) and covers f for all natural numbers, so it is ex-
haustive. The enumeration in philosophical induction is also exhaustive within
the �nite domain of the premisses; the result is just raised to a broader domain.

4.2 Conceptualisation

Although inductive thinking usually proceeds from experience, it is not nec-
essary to de�ne what experience is and how experience is related to generic
thinking. Rather than such a psychological theory, we are developing a syntac-
tic theory that deals with representations of experience and representations of
general rules. The chosen language for representing both is FOL.

The process of transforming experience into conceptual representations of
that experience is called conceptualisation. Conceptualisation is a very inter-
esting problem in its own right. Conceptualisation is also intimately connected
with induction, because both give some kind of structure to the world: induc-
tion collects random facts into general rules, whereas conceptualisation collects
random experience, such as sense data, into concepts, such as individuals and
their relations. Both may also involve errors and nonmonotonic thinking: an

17

inductive conclusion may prove to be false, and a concept may turn out to not
to refer to anything at all.

However, the process of conceptualisation is outside the scope of this thesis.
For our purposes, we simply assume we have a correct conceptualisation of
our experience, called an observation report, and build the rules of producing
inductive conclusions from these observation reports.

4.3 Validation of hypotheses

Induction produces hypothetical claims which are based on the information
available at a given moment. The assessment of these hypotheses is an important
part of inductive thinking. If we would not, for instance, abandon a hypothesis
when it is refuted, the results of induction could hardly be considered to be
based on experience.

However, validation of hypotheses does not constitute all of inductive in-
ference. The hypotheses do not come out of the blue. It would seem that
it is possible to build logics that depict at least the simplest forms of induc-
tive inference: people have a tendency to form the same conclusions from the
same experience, and this process may be given a de�nite form. It is hardly a
philosophical attitude to deny the possibility of such an account without even
attempting to formalise it. I feel that a lot of interesting inference has been ne-
glected simply because formation of hypotheses has been mysti�ed, for instance
as in [Car50, 192�193].

Some aspects of theory formation may be harder to formalise than others,
such as the need for new concepts. However, whatever the process is that people
use for such activities, it is possible to at least model the process. It is hard
to see why there could not be a logic for thinking processes in general and
scienti�c thinking processes in particular. The possibility of such a logic is also
defended in [Meh99] and [Fla96]. Such a logic might be complicated, but it can
also be tackled in smaller pieces. The piece that this thesis deals with is the
generalisation of statements that express our experience.

4.4 Abduction

The terms induction and abduction warrant a terminological note. Both are
nowadays used in many meanings, but the most widely accepted de�nitions
are probably these: induction is reasoning that produces a general rule out
of many particular instances, while abduction is �inverse deduction�, reasoning
from conclusions to premisses. But general propositions usually logically entail
their particular instances, and premisses logically entail their conclusions. Thus,
for many cases, the de�nitions actually coincide or at least overlap: both include
types of reasoning where we take a proposition p and produce from that other
propositions that logically entail p.

Since of these two, the term abduction seems even less clearly de�ned, I shall
only talk about induction in this thesis.

4.5 Setting of induction

In this thesis, induction is treated as an operation in logic, more speci�cally, in
�rst-order predicate logic (FOL). While this choice might seem uncontroversial,

18

it has been challenged by several general frameworks of induction: for instance,
in [Sol64], induction is de�ned as extrapolation (prediction) of symbol sequences,
and in [Ren86], induction is de�ned as partitioning of a set of objects into subsets
(classi�cation).

The classical account of inductive inference is that it takes examples and
produces propositions that extrapolate the properties of these examples to pre-
dict some properties of future examples. The examples are usually observations
of some kind, but many problems of induction also use other kinds of input such
as background theories that codify assumed knowledge of the world. I doubt
that this classic view of induction can be accommodated by the aforementioned
frameworks.

As for extrapolation of symbol sequences, the problem is that while symbol
sequences can be used to codify all kinds of information, they are inadequate
for codifying the unimportance or lack of a certain kind of information, such
as independence of two points of data. For the purposes of logical induction,
the order of both the learning data and the data to be predicted are irrelevant
unless explicitly studied. For instance, if we observe properties of di�erent kinds
of trees, induction is not required to predict whether we will see a tree or a crow
�rst in the future, or whether we will ever observe a tree anymore. How could
this kind of irrelevance be expressed in symbol sequences?

The problem with classi�cation is that the results of logical induction cannot
always be seen as de�nitions of distinct classes. There are certain subcases of
induction that are clearly classi�cation, but not all inductive thinking can be
seen as classi�cation (see section 4.6).

In this thesis, induction is simply thought of as an operation that takes
logical formulae as input and produces logical formulae as output. Further re-
strictions on induction are de�ned in sections 6 and 7. More precisely, induction
is treated as inductive inference: as a logical process of deriving correct induc-
tive consequences from a set of clauses that represent known facts. Induction
is taken to have a de�nite logical form: for any given set of facts, we should be
able to tell exactly which clauses are its inductive consequences and which are
not.

4.6 Classi�cation of objects

The problem of classi�cation of objects has similarities with induction, and
concept learning, which is a subcase of induction, is basically the same as clas-
si�cation of objects. For instance, if we are told that the numbers 5, 11 and 23
are prime but 8, 15 and 26 are not, we can try to induce some kind of de�nition
for primality. In doing so, we have classi�ed numbers into two kinds: prime and
not prime. This is exactly the kind of problem that inductive logic programming
(ILP, see for example [Mug92c]) researches.

In logic, classes of objects are represented by predicates. If we induce sen-
tences that provide the su�cient and necessary conditions for a predicate to
be true, we have e�ectively de�ned a class, because for each object, we can
use these conditions to determine whether it belongs to the class. This is the
similarity between induction and classi�cation.

However, inductive thinking need not produce clear-cut classes. Induction
may well leave the truth value of a predicate unknown for some objects; induc-
tion doesn't necessarily �x, for every possible claim, some �experience-based�

19

truth value. Also, classi�cation does not work as well for real-world objects as
for mathematical objects. The di�erence between the two is that mathematical
(or logical) objects are totally determined by their name; for instance, all the
properties of number 3 can be found out by referring to its de�nition. Real-world
objects, on the other hand, have no de�nitions, so there is no telling whether
an individual called Spark belongs to the class of �sh or the class of dogs (or
some other class).

For this reason, ILP methods usually involve background theories, which
provide information about the properties of the individuals in the observation
reports. The result of these methods, then, is a classi�cation of objects based
on the properties mentioned in the background theory.

The induction method in this thesis does not produce rules for determining
whether an object belongs to a given class, but rather induces constraints that
hold across all the individuals in our observation reports. As a side e�ect, it
does not need any kind of background theory. From another point of view, the
induced rules use the facts in the observation report to explain other facts in
the observation report.

The di�erence between classi�catory and constraint induction are further
discussed in section 5.5. There, both are studied for their goal, which for classi-
�catory induction is usually information compression, and for constraint induc-
tion, informativeness.

4.7 Generalisation of clauses

There is another aspect in which ILP has a narrower setting than our account
of induction. In our account of induction, the result of induction is an extension
of our experience and so logically implies all of our experience. However, it is
not required that individual clauses in the inductive consequence theory always
imply some individual clauses in the original input theory.

ILP, on the other hand, is concerned with construction of clauses that are
logically stronger than clauses in the input theory. When combined with the
language bias of ordinary ILP where no conjunctions are permitted (ILP deals
with clauses of conjunctive normal form, see section 5.3), this produces fairly
di�erent results from our conception of induction.

4.8 Calculation of probabilities

There has been, in the philosophy of science, a long discussion whether induction
is about the probabilities or degrees of acceptance of various hypotheses, or of
a totally di�erent nature. In [ZZ96], Zwirn and Zwirn show that there are two
fundamentally di�erent models of con�rmation, which are named absolute and
relative con�rmation after terminology that was adopted from Carnap's classic
[Car50].6

Carnap uses his own probabilistic framework [Car50, 468�482] to criticise
the conditions presented by Hempel in [Hem45]. Hempel's conditions pertain to
absolute con�rmation, whereas Carnap builds a theory that is based on relative
con�rmation, and proceeds to show that Hempel's conditions fail on Carnap's
de�nition of con�rmation. If we take quantitative con�rmation to be the most

6Actually, [ZZ96] also presents a third kind of con�rmation, which is not discussed here.

20

fundamental kind of con�rmation, this shows strong support that the kind of
con�rmation Hempel had in mind is a fundamentally �awed concept.

However, it is shown by [ZZ96, 218�223] that while Hempel's criteria are
mutually consistent, no probabilistic criterion of con�rmation can satisfy them.
So, the argument that seemed to be unfavourable for absolute con�rmation
actually turns out to show that probabilistic accounts of induction are simply
fundamentally incompatible with the kind of con�rmation Hempel studies. This
is also the case of the maximal plausible generalisation presented in this thesis.

21

5 Theoretical background

In this section, I discuss theories and concepts that are important for induction,
machine learning and concept learning in general. For the problem at hand, the
most important of these are the concept of version space presented by [Mit82]
and the θ-subsumption relation [Plo71].

5.1 Generality of concepts and generality of statements

Let us �rst examine the concept of generalisation. Generalisation seems to carry
two meanings. The �rst and by far more common one is the generalisation of
concepts, which we will de�ne �rst.

A common view is that a concept, such as �dog�, is a class; its members (in-
stances) are all the concrete dogs that exist. All concepts have zero to numerous
instances. Generality of concepts is de�ned as a inclusion relation of their in-
stances. In logic, concepts are usually represented by predicates: a concept c is
represented by a predicate Pc which is true of exactly those individuals that are
instances of concept c. This allows the following de�nition of generality.

De�nition 5.1 (Generality of concepts). A concept c1 is more general than
another concept c2 if all of the instances of c2 are also instances of c1. Using ⊇
for �more general than�, this becomes:

c1 ⊇ c2 ≡ ∀x(Pc2(x)→ Pc1(x)) (18)

In this situation, we use the same terminology for the predicates, calling Pc1

more general than Pc2 .

Example 5.2. The concept of binary relation is a generalisation of the concept
of equality relation. Using Eq(x) to denote �x is an equality relation� and R2(x)
to denote �x is a binary relation�, this can readily be expressed as ∀x(Eq(x)→
R2(x)).

This de�nition of generality generalises naturally to predicates of an arbi-
trary valence, i.e. relations.

De�nition 5.3 (Generality of relations). A relation R1 is more general than
R2 if and only if all tuples of individuals that satisfy R2 also satisfy R1.

R1 ⊇ R2 ≡ ∀x∀y . . . (R2(x, y, . . .)→ R1(x, y, . . .)) (19)

Example 5.4. The relation �is a parent of� is a generalisation of the relation
�is a father of�. This can be expressed as

∀x∀y(Father(x, y)→ Parent(x, y)). (20)

However, sometimes the word generalisation is also used to refer to gener-
alisation of statements, especially so when discussing inductive reasoning. The
de�nition of generality above, which is based on the inclusion relation of in-
stances, is problematic for statements because the meaning of �instance� is far
less obvious for statements than for concepts. Even more problematically, the
common usage of �more general� for statements seems contrary to the one for

22

concepts in the following way. For concepts, the claim that c1 ⊇ c2 means
that c1 is a weaker concept, placing less restrictions on its instances than c2,
and consequently, has more instances. However, for statements S1 ⊇ S2 means
that S1 is a stronger statement, placing more restrictions on the world, and
consequently, has less situations where it remains true.

Example 5.5. The statement S1 = �every human is mortal� is a generalisation
of the statement S2 = �every human is a spatial object�. This is because,
presuming that all mortal things are spatial objects, S2 is true whenever S1 is
true. S1 is a stronger claim than S2 because it claims more.

This suggests that we should really investigate what the �instance� of a
statement is. I'll take a look at two alternative approaches. The �rst one is a
model-theoretic approach and the second one is a meaning-based approach that
tries to unify the view of generalisation with respect to concepts and statements.
The model-theoretic generality of statements has the following de�nition.

De�nition 5.6 (Model-theoretic generality of statements). An instance of a
statement S is a possible world (or situation, context) where S is true. Using
w : S to mean that S is true in possible world w, the common use of �S1 is more
general than S2� can be described thus:

S1 ⊇ S2 ≡ ∀w((w : S1)→ (w : S2)) (21)

Now, this makes clearly visible the discrepancy mentioned above. Contrast-
ing 5.1 with 5.6, we notice that the implication points in the opposite direction,
which corresponds to the reversal of �stronger� and �weaker� in our account of
generality.

The second approach is to consider as instances of a statement, not the
worlds where it is true, but the constraints it places on the world(s) where it
is true. This way, a stronger statement which places more constraints on the
world, has more instances. The statement is �weaker� in the way that it places
less restrictions on its instances, which are constraints on the world.

De�nition 5.7 (Truth-based generality of statements). An instance of a state-
ment S′ is another statement S that is true in every model of S′, that is, S
represents a constraint that is observed in all models of S′. Formally put:

S1 ⊇ S2 ≡ ∀S((S2 |= S)→ (S1 |= S)) (22)

Now, we can see that 5.1 and 5.7 are equivalent, with PSn(S) = (Sn |= S).
This might seem counterintuitive because the instances of statements are other
statements, but because all constraints on the world are facts and every fact is
expressible as a statement, this is not so surprising. Actually, this interpretation
of generality lends itself to the interpretation that facts are examples of truth
and generalisations are extrapolations of truth. This view is used in section 6.

It should be noted that both de�nitions 5.6 and 5.7 are really equivalent;
they just express di�erent views of the common use of the generality relation
between statements. In fact, both are equivalent to:

S1 ⊇ S2 ≡ (S1 |= S2) (23)

23

As it happens, this is also the de�nition of generality given by Stephen Mug-
gleton in [Mug92a]. The value of the restriction-based interpretation is that is
allows us to apply the concept of version spaces to generalisation of statements.

The confusion that remains is that for concepts, the relation �more general� is
synonymous with �weaker� and the relation �more speci�c� is synonymous with
�stronger�, whereas for statements, the situation is the other way around: �more
general� is synonymous with �stronger� and �more speci�c� is synonymous with
�weaker�. There is little to be done about this terminological problem. Usage
with relations follows that of concepts: the weaker a relation is, the more general
it is, which means that it holds for at least the same individuals as the more
speci�c (i.e. stronger) relation. E.g. [IA93] follows this convention.

5.2 Version spaces

Tom M. Mitchell presented in [Mit82] a generic framework for generalisation of
concepts. Generalisation of concepts is a broad area of application indeed, but
it turns out Mitchell's framework is applicable to even broader areas, with a
slight stretch to what is considered a �concept�. We shall now study Mitchell's
concept of version space in detail.

Mitchell's analysis applies to a class of generalisation problems that can
be de�ned in the following way. A generalisation algorithm accepts descrip-
tions of training instances as input. The training instances are represented in
a language called the instance language, and they are accompanied with a clas-
si�cation of whether or not they belong to the target generalisation that the
generalisation algorithm should �nd. The algorithm then outputs a generalisa-
tion, which corresponds to a class of instances and is represented in a language
called generalisation language. In order to test various possible generalisations,
the algorithm also has access to a matching predicate, which tells whether a gen-
eralisation matches an instance, i.e. whether the instance belongs to the class
of instances that the generalisation represents. This problem can be formalised
in the following way.7

De�nition 5.8 (Generalisation algorithms). A generalisation algorithm takes,
as input:

1. a matching predicate M(g, i) which is true if and only if the generalisation
g matches (includes) the instance i;

2. a set of positive instances I+ that belong to the target generalisation, in
the instance language; and

3. a set of negative instances I− that do not belong to the target generalisa-
tion, in the instance language.

As output, the algorithm produces a generalisation g that matches all the pos-
itive training instances while matching none of the negative training instances.
It is also said that g is consistent with the training sets.

De�nition 5.9 (Version space). The set of all generalisations that are consis-
tent with the training instances is called the version space for those instances

7This formalisation is adapted from [Mit82, 204].

24

V S(I+, I−). More formally put:

V S(I+, I−) = {g : ∀i(i ∈ I+ →M(g, i)) ∧ ∀i(i ∈ I− → ¬M(g, i))} (24)

The training set I+ gives a lower bound for the version space, because it makes
inconsistent those generalisations that are too speci�c to match instances in I+;
and correspondingly, the training set I− gives an upper bound for the version
space by making inconsistent those generalisations that are general enough to
match instances in I−.

Example 5.10 (Ranges of real numbers). As an example, consider an instance
language where the instances are real-valued numbers and a generalisation lan-
guage where the generalisations are inclusive ranges on the real scale. A gener-
alisation [y, z] matches an instance x if and only if x belongs to the range, i.e.
y ≤ x ≤ z. Then, for the positive training set {0, 1} and negative training set
{−10, 3, 5}, the version space is de�ned as:

V S({0, 1}, {−10, 3, 5}) = {[y, z] : −10 < y ≤ 0 ∧ 1 ≤ z < 3} (25)

It is easy to notice that the set of all generalisations G forms a kind of
search space. The goal of a generalisation algorithm is to �nd a generalisation
g ∈ V S(I+, I−) ⊂ G which is consistent with the training sets; generally there
may be many such generalisations, but this depends on the training sets and the
expressiveness of the generalisation language. It is also important to notice that
the matching predicate M gives an inherent structure for G. More precisely, M
gives rise to a partial ordering of generalisations, de�ned below.

De�nition 5.11 (Generality of generalisations). A generalisation g1 is more
general than another generalisation g2 (denoted g1 ⊇ g2) if and only if g1

matches at least the same instances as g2. The converse relation is that g2

is more speci�c than g1. Likewise, a generalisation g1 is strictly more general
than g2 (denoted g1 ⊃ g2) if g1 matches more instances than g2, and then g2 is
strictly more speci�c than g1.

g1 ⊇ g2 ≡ ∀i(M(g2, i)→M(g1, i))
g1 ⊃ g2 ≡ g1 ⊇ g2 ∧ g2 6⊇ g1

(26)

The existence of such a partial ordering means that in every generalisation
problem, if we have a way to systematically construct, from a generalisation
g, the sets of more general generalisations {g′ : g′ ⊇ g} and more speci�c
generalisations {g′ : g ⊇ g′}, then we can search through G by generalising and
specialising until we arrive at a consistent generalisation. Another requisite is
that we have some kind of starting point for the search. There is often a natural
starting point in G, or the starting point can often be formed from the training
instances. In section 6.6, we will examine what this means from the viewpoint
of generalisations in logic.

Example 5.12. The starting point for real ranges is easily obtained from any
positive instance: for example, the instance 1 is minimally matched by the
generalisation [1, 1]. Ranges can be generalised by lowering the lower bound or
raising the upper bound, and specialised by the contrary actions.

25

The partial ordering of generality and the boundaries of version spaces to-
gether give rise to another two concepts: the minimal and maximal generalisa-
tions.

De�nition 5.13 (Minimal and maximal generalisations). A minimal generali-
sation is a generalisation for which there are no strictly more speci�c consistent
generalisations. Conversely, a maximal generalisation is a generalisation for
which there are no strictly more general consistent generalisations.

min(g,M, I+, I−) ≡ ∀g′(g ⊃ g′ → ∃i(i ∈ I+ ∧ ¬M(g′, i)))
max(g,M, I+, I−) ≡ ∀g′(g′ ⊃ g → ∃i(i ∈ I− ∧M(g′, i)))

(27)

Example 5.14. In example 5.10, there is only one minimal and one maximal
generalisation in the version space, the minimal one being [0, 1] and the maximal
one being [lim+

x→−10 x, lim−
x→3 x].

One way to look at the minimal and maximal generalisations is to say that a
minimal generalisation predicts that all unknown instances (whose classi�cation
is left unde�ned by the training sets) are outside the target generalisation, while
a maximal generalisation predicts that all unknown instances do belong to the
target generalisation.

One of the most important contributions of Mitchell's article was to note
that the sets of minimal and maximal generalisations together totally de�ne the
version space. This is because every generalisation in the version space is more
general than at least one of the minimal generalisations and more speci�c than
at least one of the maximal generalisations. Moreover, Mitchell introduced a
technique for �nding generalisations that incrementally tracks the whole version
space by updating the list of minimal and maximal generalisations to account
for all instances in the training sets.

5.3 Conjunctive normal form

For the treatment of logical formulae, it is practical to keep their language
as simple as possible. For FOL, we can greatly simplify the logical language
by transforming all propositions and sets of propositions, i.e. theories, into
conjunctive normal form (CNF). Since every FOL formula can be transformed
into CNF, we can do this without losing any expressivity.

In CNF, all conjunctions of a formula are on the top level of the formula.
The conjuncts of the formula, also called clauses, are disjunctions of atomic
formulae, also called literals. Every literal is either a predicate expression or the
negation of a predicate expression. All quanti�ers enclose a whole clause. The
requirement that negations are only used before atomic formulae is also called
negative normal form (NNF), and the requirement that quanti�ers only occur
on top level of clauses is called prenex normal form (PNF). The clauses are
usually also skolemised, which means that existentially quanti�ed variables are
replaced by functions of the universally quanti�ed variables which the existen-
tially quanti�ed variable depends on, that is, the universally quanti�ed variables
the scope of which the existential quanti�er resides in.

26

Example 5.15. The following proposition is in CNF:

∀x∀y(¬P (x) ∨Q(x, y) ∨ P (y))∧
∀x(¬Q(x, a) ∨R(x))∧
∀x∀y(¬Q(x, f(y)) ∨ ¬Q(y, x))

(28)

5.3.1 Rewriting formulae into CNF

The following method for obtaining the CNF of a formula is adapted from
[RN03, 295�297] by stating the rewrite rules more rigorously. The CNF of
a formula can be obtained by successive applications of rewrite rules to the
formula. First, we eliminate abbreviations (implications and equivalences) by
the following rewrite rules:

(S ≡ T) 7−→ (S → T) ∧ (T → S)
(S → T) 7−→ ¬S ∨ T

(29)

Example 5.16. If we have a claim that a sword is dangerous if and only if its
blade is sharp, we eliminate the abbreviations in the following way:

∀x(DangerousSword(x) ≡ Sword(x) ∧ ∃y(Blade(x, y) ∧ Sharp(y)))
7−→ ∀x((DangerousSword(x)→ Sword(x) ∧ ∃y(Blade(x, y) ∧ Sharp(y)))∧

(Sword(x) ∧ ∃y(Blade(x, y) ∧ Sharp(y))→ DangerousSword(x)))
7−→ ∀x((DangerousSword(x) ∨ ¬(Sword(x) ∧ ∃y(Blade(x, y) ∧ Sharp(y))))∧

((Sword(x) ∧ ∃y(Blade(x, y) ∧ Sharp(y))) ∨ ¬DangerousSword(x)))
(30)

The next step is to obtain negative normal form by permuting negations
deeper into clauses by double negation elimination, De Morgan's laws and mu-
tual de�nitions of quanti�ers. This gives the following rewrite rules:

¬¬S 7−→ S

¬(S ∨ T) 7−→ ¬S ∧ ¬T

¬(S ∧ T) 7−→ ¬S ∨ ¬T

¬∃xS 7−→ ∀x¬S

¬∀xS 7−→ ∃x¬S

(31)

Example 5.17. The NNF of the de�nition of dangerous swords looks like this:

∀x((DangerousSword(x) ∨ ¬Sword(x) ∨ ∀y(¬Blade(x, y) ∨ ¬Sharp(y)))∧
((Sword(x) ∧ ∃y(Blade(x, y) ∧ Sharp(y))) ∨ ¬DangerousSword(x)))

(32)

The process of skolemisation is not so easily expressed as rewrite rules, be-
cause the rewriting of existentially quanti�ed variables depends on their context:
the universal variables they depend on. Because of this, we de�ne skolemisation
as a recursive function where the depended-on variables are passed as a param-
eter. Moreover, skolemisation is based on substitution of terms, which we also
de�ne.

27

De�nition 5.18 (Substitution of terms). Substitution of a term t by another
term u in a formula S is denoted by S[t/u].

S[t/u] 7−→ S if t does not occur in S

(¬S)[t/u] 7−→ ¬S[t/u]
(S ∨ T)[t/u] 7−→ S[t/u] ∨ T [t/u]
(S ∧ T)[t/u] 7−→ S[t/u] ∧ T [t/u]

(∀xS)[t/u] 7−→ (∀zS[x/z])[t/u] if x occurs in t or u; z is a new variable

(∀xS)[t/u] 7−→ ∀xS[t/u] otherwise

(∃xS)[t/u] 7−→ (∃zS[x/z])[t/u] if x occurs in t or u; z is a new variable

(∃xS)[t/u] 7−→ ∃xS[t/u] otherwise

P (v1, v2, . . .)[t/u] 7−→ P (v1[t/u], v2[t/u], . . .) where P is a predicate symbol

f(v1, v2, . . .)[t/u] 7−→ f(v1[t/u], v2[t/u], . . .) where f is a function symbol

t[t/u] 7−→ u

v[t/u] 7−→ v if t does not occur in v

(33)

De�nition 5.19 (Skolemisation). The �rst parameter D which is a set of
depended-on variables is initially the empty set.

Sk(D,S) 7−→ S if S does not include existential quanti�ers

Sk(D,¬S) 7−→ ¬Sk(D,S)
Sk(D,S ∨ T) 7−→ Sk(D,S) ∨ Sk(D,T)
Sk(D,S ∧ T) 7−→ Sk(D,S) ∧ Sk(D,T)
Sk(D,∀xP) 7−→ ∀xSk(D ∪ {x}, P)

Sk(D,∃xP) 7−→ Sk(D,P [x/fx(D)])

(34)

where fx(D) is a function term whose parameters are the variables in D and the
function symbol fx is totally new (it does not occur anywhere in the formula
before). As a special case, fx is a constant (a nullary function) if the set D
is empty, which means that x does not depend on any universally quanti�ed
variables.

Example 5.20. Our sword example has only one existential quanti�er (for y),
which is in the scope of one universal quanti�er (for x). Skipping the interme-
diate steps of skolemisation, this yields:

∀x((DangerousSword(x) ∨ ¬Sword(x) ∨ ∀y(¬Blade(x, y) ∨ ¬Sharp(y)))∧
((Sword(x) ∧ ∃y(Blade(x, y) ∧ Sharp(y))) ∨ ¬DangerousSword(x)))

7−→ ∀x((DangerousSword(x) ∨ ¬Sword(x) ∨ ∀y(¬Blade(x, y) ∨ ¬Sharp(y)))∧
((Sword(x) ∧ Blade(x, fy(x)) ∧ Sharp(fy(x))) ∨ ¬DangerousSword(x)))

(35)

Intuitively, the meaning of fy(x) is �the blade of x�.

After skolemisation, the formula is put into CNF by raising all conjunctions
above disjunctions via disjunction distribution. We also permute universal quan-
ti�ers below conjunctions in order to be able to apply disjunction distribution

28

to universally quanti�ed formulae.

∀x(S ∧ T) 7−→ ∀xS ∧ ∀xT

(S ∧ T) ∨ U 7−→ U ∨ (S ∧ T)
S ∨ (T ∧ U) 7−→ (S ∨ T) ∧ (S ∨ U)

(36)

Example 5.21. The CNF of the sword de�nition looks like this:

∀x(DangerousSword(x) ∨ ¬Sword(x) ∨ ∀y(¬Blade(x, y) ∨ ¬Sharp(y)))∧
∀x(¬DangerousSword(x) ∨ Sword(x))∧
∀x(¬DangerousSword(x) ∨ Blade(x, fy(x)))∧
∀x(¬DangerousSword(x) ∨ Sharp(fy(x)))

(37)

Finally, we obtain prenex normal form by lifting universal quanti�ers over
disjunctions. In doing so, the only special consideration is that we must not
cause name clashes between variables in di�erent literals.

S ∨ ∀xT 7−→ ∀xT ∨ S

∀xS ∨ T 7−→ ∀x(S ∨ T) if x does not occur in T

∀xS ∨ T 7−→ ∀y(S[x/y] ∨ T) otherwise

(38)

Here, y is a new variable occurring in neither S nor T .

Example 5.22. The PNF of the sword de�nition is as follows.

∀x∀y(¬Blade(x, y) ∨ ¬Sharp(y) ∨DangerousSword(x) ∨ ¬Sword(x))∧
∀x(¬DangerousSword(x) ∨ Sword(x))∧
∀x(¬DangerousSword(x) ∨ Blade(x, fy(x)))∧
∀x(¬DangerousSword(x) ∨ Sharp(fy(x)))

(39)

This �nal form bears little resemblance to our original example and can be
deemed rather unintuitive. However, it is readable and intuitive in its own way.
Every clause (conjunct) represents a rule about the relationship between various
concepts, and the literals of a clause are the alternatives that may make the rule
hold for given individuals; at least one of the alternatives must be true for every
assignment of variables.

5.3.2 Signi�cance of CNF

The bene�t of transforming a proposition or a set of propositions into con-
junctive normal form is twofold. Firstly, CNF makes it easy to algorithmically
reason about the proposition or set of propositions. Practically all automated
deduction methods beginning with [Rob65] deal with theories in conjunctive
normal form.

One of the most obvious bene�ts of CNF is that it eliminates the distinction
between a proposition and a set of propositions that are taken to hold together.
Because the conjunctions are all on the top level of the proposition, it does
not really matter whether the clauses are combined with conjunctions or simply
put in the same set of propositions. For this reason, many automatic theorem
provers only deal with sets of clauses and forget about conjunctions altogether.

29

Also, because clauses are in prenex normal form and skolemised, there are no
existential quanti�ers and the scopes of the universal quanti�ers always include
a whole clause, making quanti�ers super�uous.

But these considerations are just a sign of a deeper signi�cance of conjunctive
normal form. Namely, CNF gives a simple theory of what kind of propositions
there actually are. Since every proposition can be expressed in CNF, we can
study the properties of all propositions by only studying di�erent kinds of sets
of clauses. It is also much more simple to algorithmically generate clauses than
whatever propositions. Since CNF is equivalent to full FOL without identity,
this means that generation of clauses su�ces: any other proposition is at best
an abbreviation for a set of clauses.

5.4 θ-subsumption

In order to systematically investigate the space of possible propositions, we
need a means to produce, from a given proposition p, the propositions that are
more general than p and the propositions that are more speci�c than p. This
is because, we need a way to strengthen the generalisations that are too weak
(to be informative) and weaken the generalisations that are too strong (to be
plausible).

If we work in CNF, a proposition p can be factorised into clauses C1, C2, C3,
. . . Then, generalisation or specialisation of p is reduced to the generalisation
or specialisation of these clauses. Unfortunately, the generality relation given
by implication is problematic, because implication between clauses (and con-
sequently, propositions) is undecidable. This means that there is no algorithm
that would, in �nite time, calculate for any two given clauses C and D whether
C |= D. See [SS88] for the proof.

There is, however, a much simpler relation between clauses that resembles
implication. It was developed by Plotkin [Plo71] and was also shown not to
be equivalent to implication in the same thesis. This relation is called the θ-
subsumption of clauses.

De�nition 5.23 (θ-subsumption). A clause C θ-subsumes another clause D
(written as C �θ D) if and only if some subset of the literals of D is a more
particular instance of C, i.e. it can be obtained by substituting the variables in
C by other terms. This can be formalised as:

C �θ D ≡ ∃θ(Cθ ⊆ D) (40)

where C and D are represented as sets of literals and θ is a substitution of
variables by other terms.

Example 5.24.

∀x∀yLoves(x, y) �θ ∀x(Loves(Panu, x) ∨ Loves(Igoemon, x))
≡{Loves(x, y)}θ ⊆ {Loves(Panu, x),Loves(Igoemon, x)}

(41)

These are true since there are two substitutions θ that make the latter claim
true, namely θ = [x/Panu][y/x] and θ = [x/Igoemon][y/x]. Of course, even one
substitution would su�ce.

30

How exactly does θ-subsumption �resemble� implication? It can be easily
seen that whenever C �θ D, then C |= D. The proof can be found in e.g. [IA93,
21]. However, the converse does not hold. This means that θ-subsumption is a
strictly more speci�c (i.e. stronger) relation than implication. Which are then
the cases where a clause C implies another but does not θ-subsume it?

Example 5.25 (Implication and θ-subsumption). These clauses form a classic
example:

C = ∀x(P (x) ∨ ¬P (f(x)))
D = ∀x(P (x) ∨ ¬P (f(f(x))))

(42)

It can now be seen that C implies D but does not θ-subsume it.

The general answer as to which implications θ-subsumption �misses� can be
found in [Mug92b]. Basically, θ-subsumption fails to cover those implications
whose proof uses a clause recursively.

De�nition 5.26 (Recursive use of a clause). In order to de�ne what is a re-
cursive use of a clause, we need to make use of the inference rule of resolution,
often used in arti�cial intelligence (see section 2). A clause is used recursively
if and only if in a proof, it is resolved against itself, either directly (p ∨ r and
¬r∨q are instances of the same clause) or indirectly (a clause is resolved against
a clause that has been produced by resolution against the same clause).

It follows from this property of θ-subsumption that only the specialisa-
tions and generalisations of recursive clauses are potentially not captured by
θ-subsumption. A recursive clause is one that can be resolved against itself.

Example 5.27. In example 5.25, the clause C is recursive because it has an
instance (namely, ∀x(P (f(x))∨¬P (f(f(x))))) that can be resolved against itself.
This produces:

∀x(P (x) ∨ ¬P (f(x))) ∀x(P (f(x)) ∨ ¬P (f(f(x))))
∀x(P (x) ∨ ¬P (f(f(x)))

, (43)

that is, D, which itself is also recursive.

De�nition 5.28 (Recursive clauses). A clause C is recursive if and only if it
contains literals S ∈ C and T ∈ C such that S and ¬T are uni�able, that is,
there are substitutions θ1 and θ2 of variables into terms such that

Sθ1 = (¬T)θ2. (44)

The good news is that θ-subsumption can be used to reliably identify, for
non-recursive clauses, all clauses that are more general or more speci�c. This
is of great help in algorithmic generalisation and specialisation, because of the
following theorem.

Theorem 5.29. A clause C may be generalised, under θ-subsumption, in the
following ways:

1. by substituting some (but not all) occurrences of a variable α in C by a
new variable y not previously occurring in C;

31

2. by substituting some or all of the occurrences of a non-variable term t in
C by a new variable x not previously occurring in C; and

3. by dropping literals from C.

Proof. Let C and D be clauses such that C �θ D but D 6�θ C. The �rst method
of generalisation corresponds to a substitution θ = [x/y] where the variable y
that is already used in the clause D. Since D already has occurrences of of y,
there is no converse substitution, so C strictly θ-subsumes D.

The second method of generalisation corresponds to a substitution θ = [x/t]
where t is not a variable. Since the substitution in θ-subsumption may only
substitute variables, there is no converse substitution, so C strictly θ-subsumes
D.

The third method of generalisation simply describes a situation where θ is a
null substitution and C is a proper subset of D. Consequently, D cannot be a
subset of C, so C strictly θ-subsumes D.

It is also interesting to note the following property.

Theorem 5.30. For any clause C, there is a �nite number of clauses C ′,
modulo variable renaming, which are more general than C by θ-subsumption
(C ′ �θ C).

Proof. I prove that there is a �nite number of ways to generalise a clause C
under θ-subsumption (up to variable renaming). The number of literals in a
clause is �nite, so the number of subsets of C is �nite. The number of di�erent
terms in a subset C ′ ⊆ C is �nite too, and the number of subsets of occurrences
of these di�erent terms in C ′ is �nite. Now, partitioning every set of occurrences
of di�erent terms in C ′ into subsets that are left alone or substituted with new
variables, there is a �nite number of ways to make these choices, except for
picking the names of the new variables.

Conversely, a clause C can be specialised under θ-subsumption by:

1. substituting the occurrences of a variable x in C by some term t (possibly
already occurring in C);8 and

2. by adding literals to C.

We return to the use of θ-subsumption in search of generalisations in section
6.6.

5.5 Two types of induction

Hempel's conditions in [Hem45] are by no means the only conditions that have
been o�ered for induction (or con�rmation). Hempel himself brie�y discusses
the converse consequence condition that is incompatible with his other condi-
tions, and numerous other conditions have been o�ered elsewhere. So many, in
fact, that it seems unclear what was meant by induction in the �rst place.

Peter Flach [Fla95, 16�26] made the distinction between two kinds of induc-
tion, explanatory and con�rmatory induction, and gave sets of conditions for

8If t did not already occur in C, then t may not be a variable.

32

both. Zwirn and Zwirn [ZZ96] went even further, proving the mutual relations
of thirteen di�erent conditions for con�rmation, especially mutual inconsisten-
cies and cases where one condition is a weakened version of another. The result
on Zwirns' research was three maximally consistent subsets of conditions which
correspond to three di�erent kinds of induction (or con�rmation). Two of them
correspond to Flach's explanatory and con�rmatory induction, called relative
and absolute con�rmation by Zwirn and Zwirn, and the third one seems almost
unresearched.

This distinction between two (or three) kinds of induction is surprising, as
lots of work on induction has been made without noticing the di�erence. The
essential component of explanatory induction is the converse consequence condi-
tion, while the essential component of con�rmatory induction is the consequence
condition 3.2. It should be noted that no practical implementation of induction
strictly meets the requirements of explanatory induction, because the converse
consequence condition requires that if a theory has any inductive consequence
at all, then it has also absurdity (and inconsistent clause) as its inductive con-
sequence. The conditions of con�rmatory induction, on the other hand, are met
by such relations as deductive consequence, so they can hardly be considered
su�cient conditions of inductive consequence relations.

However, the converse consequence relation and the consequence relation
give di�erent foci for the inductive process, which could be called the compression-
oriented and information-oriented views of induction respectively. We shall now
describe them brie�y.

In compression-oriented induction, we are concerned with the problem of
inverting logical entailment. This means that given a proposition p, we search
for all propositions q |= p. Since the induced proposition q logically entails p, it
can be said to stand for p. Because many propositions q meet this condition,
the ones that are deemed �good� are those that express the facts in p most
succinctly. This is what I mean by the compression orientation of this kind
of induction. Usually this compression also results in some kind of predictive
power, since as a side product, q usually covers some cases not covered by p.

Information-oriented induction, on the other hand, is concerned with induc-
ing, for a given proposition p, just any proposition q that is logically compatible
with p. Since q does not try to express any facts, the succinctness of q is hardly
any criterion of its goodness. Quite on the contrary, q is often expected to be as
informative as possible: to make as strong a claim as possible. An upper limit
to q is given by some kind of criterion of plausibility, such as the consistency
condition 3.3.

Practically all work in inductive logic programming (ILP), for instance, has
been guided by compression-oriented induction, while the system I presented in
[Kal07] and a constraint search system in Flach's [Fla95, 131�154] fall to the
category of information-oriented induction. From the information-oriented point
of view, the work in ILP is further confused by the fact that the usual setting
of ILP is the Prolog language, which saturates every theory by treating every
proposition whose truth value is unknown as false.9 In such an environment, all
theories are implicitly maximally informative, so there is little to be done for
information-oriented induction.

This distinction gives perspective why the account of induction presented

9This is called negation as failure.

33

here is quite di�erent from other work on algorithmic induction. The goals
of compression-oriented induction and information-oriented induction simply
di�er. A lot of background research, however, is relevant to both kinds of
induction; for instance, the problem of inverting logical entailment is relevant
to both.

34

6 Version spaces applied to logic

The version space model was originally developed for generalisation of concepts,
but logic is not only about concepts. Instead, in the case of induction, we will
deal with generalisation of statements. It is not immediately obvious exactly
what the concepts are that we try to generalise when we think inductively.

6.1 Version spaces of truth

The approach taken in this thesis is to construct induction as a system of gen-
eralising the concept of truth (and falsehood). This corresponds to a world-view
where known facts such as observations are examples of truth, and their nega-
tions, examples of falsehood. From these examples, inductive generalisation
produces broader claims about what is true and what is false; optimally, we
would have a saturated theory where, for every imaginable claim about the
world, we would have a prediction of its truth.

Example 6.1. Let us have an instance (i.e. observation) that the sun is bright.
This can be conceptualised as Bright(Sun) and states an example of what is
true. Then ∀xBright(x) is a generalisation that extrapolates our example of
truth to other propositions. However, if we had an observation ¬Bright(Moon),
then the generalisation would be overly broad because it extends the concept of
truth to a claim that is false, namely Bright(Moon).

This is by no means the only choice for interpretation of the word �gen-
eralisation� with respect to logic. As mentioned in section 5.1, one natural
interpretation of instance of a proposition is a model of the proposition, that
is, a possible world where the proposition is true. In this setting, the gener-
alisation problem would mean an algorithm that takes a set of actual possible
worlds and a set of counterfactual possible worlds, and produces a theory which
is true in all of the actual possible worlds while being false in all of the coun-
terfactual possible worlds. However, while such an activity seems sensible, it
arguably does not describe induction. This is because in induction, we usually
have incomplete information about the world, but giving whole models as input
already requires us to stipulate the total state of the world. It would, however,
probably be worthwhile to study this problem of generalisation and its utility.
This is outside the scope of this thesis.

6.2 Generalisation of truth as a version space problem

Let us now formalise the problem of generalisation of truth. In this problem, our
given knowledge, which is obtained from observations or is treated as unques-
tionable for some other reason, is represented by propositions, usually ground
propositions. This knowledge simultaneously de�nes both I+ and I−, since the
examples of falsehood are the negations of the examples of truth. If we denote
our given knowledge by O, this gives the following de�nition.

De�nition 6.2 (Instance sets for generalisation in logic). The set of positive
instances is the set of propositions in our given knowledge, and the set of negative
instances are their negations.

I+ = O

I− = {¬S : S ∈ O}
(45)

35

The generalisation is a theory, that is, a set of clauses Γ matching our ob-
servations and not matching their negations. Note that in the case of logic, we
use the same language for both instances and generalisations.10 FOL allows
using the same language for both, because a fragment of FOL is a good �t for
representing observations: the set of nondisjunctive ground clauses.

Example 6.3. Let us have an observation that Tweety is a sparrow, Croaky
is a raven, and Croaky is not a sparrow. Then a correct generalisation of our
observations is a theory that matches all instances in I+ and does not match
any instance in I−, given below.

I+ = {Sparrow(Tweety),Raven(Croaky),¬Sparrow(Croaky)}
I− = {¬Sparrow(Tweety),¬Raven(Croaky),Sparrow(Croaky)}

(46)

What, then, is the meaning of matching in this setting? There are a couple
of choices. One obvious one is that M(Γ, S) if and only if Γ implies S. This
choice is motivated by the observation that in these situations, Γ can stand
for S when we talk about what is true, because Γ contains all the information
about S. But other choices are possible. We could, for instance, make a broader
de�nition of matching, requiring Γ only to be consistent with S. This would
allow

M(Sparrow(Tweety),Human(Socrates)) (47)

We could also go in the narrower direction, saying that M(Γ, S) if and only of
S is a ground instance of some proposition in Γ. This would make

¬M(Human(Socrates) ∧ ∀x(Human(x)→ Mortal(x)),
Mortal(Socrates))

(48)

As the choice of the interpretation of matching is largely a matter of intuition
when a proposition �includes� another, I will take the liberty to de�ne matching
as logical entailment.

De�nition 6.4 (Matching in logic). If S is a sentence in logic and Γ is a theory
in logic, then Γ matches S if and only if Γ logically entails S.

M(Γ, S) ≡ (Γ |= S). (49)

Example 6.5. Let us use the observation in example 6.3. Then,

Γ = {Sparrow(Tweety),Raven(Croaky), Invisible(Croaky),
∀x(¬Sparrow(x) ∨ ¬Raven(x))}

(50)

is a generalisation of our observation, because it implies all sentences in I+ while
implying none of those in I−.

Let us then look at the whole problem of induction as expressed as a gener-
alisation problem.

De�nition 6.6 (Induction algorithms). An induction algorithm is one that
satis�es the following criteria:

10This is called the �single representation trick�.

36

input The input of the algorithm is a set of propositions O.

output The output of the algorithm is a set of propositions Γ for which the
following conditions hold:

1. ∀S(S ∈ O → (Γ |= S)) and
2. ∀S(S ∈ O → (Γ |6= ¬S)).

Theorem 6.7. If we work in classical logic, every generalisation Γ is simply a
consistent theory implying all propositions in O.

Proof. From the �rst condition on output in de�nition 6.6, we know that for
all sentences S ∈ O, Γ |= S. Now, if the second condition did not hold, there
would be a sentence S ∈ O for which Γ |= ¬S. But then Γ would entail both
the a�rmation and negation of a sentence, making Γ inconsistent. On the other
hand, if Γ is inconsistent, it entails all sentences, negations of sentences S ∈ O
included. This completes the proof that the second condition is equivalent with
saying that Mod Γ.

This lets us devise the following de�nition of generalisation which can be
decomposed into two conditions that every generalisation must satisfy:

De�nition 6.8 (Generalisations). A generalisation Γ of a set of propositions
O is a consistent set of propositions that logically entails all propositions in
O. Using as the sign for �has a generalisation of�, we can write this in the
following way:

(O Γ) ≡ ∀S(S ∈ O → (Γ |= S)) ∧Mod Γ (51)

Condition 6.9 (Entailment of generalisations). Every generalisation Γ of a set
of propositions O logically entails all sentences in O.

(O Γ)→ ∀S(S ∈ O → (Γ |= S)) (52)

Condition 6.10 (Consistency of generalisations). Every generalisation Γ of
every set of propositions O is consistent.

(O Γ)→ Mod Γ (53)

Interestingly, even if we did take the more liberal approach of de�ning match-
ing as mutual consistency, we would get the same result:

Theorem 6.11. If matching is de�ned as

M(Γ, S) ≡ Mod(Γ ∪ {S}) (54)

then Γ is a generalisation of O if and only if it is consistent and implies O.

Proof. In order to not match propositions in I−, Γ will have to be inconsistent
with them. This means that Γ must imply their negations. However, the set of
negations of I− is the same as the set of our original observations O. Also, to
be consistent with I+, Γ will have to be consistent itself. Thus, the matching
requirements translate to conditions 6.9 and 6.10.

This provides vague support for the view that conditions 6.9 and 6.10 are
fundamental for this kind of generalisation in logic. In the following section, I
will compare these conditions with Hempel's criteria on con�rmation.

37

6.3 Logical version spaces and Hempel's conditions

If we now compare the version space based notion of generalisation with Hempel's
conditions in section 3.1, we notice interesting similarities and dissimilarities.
But in order to compare the de�nitions, we need to �rst de�ne the relation
between the relations �con�rms� (|∼) and �has a generalisation of� ().

De�nition 6.12 (Inductive closure). As mentioned in the section 3.1, a con�r-
mation relation gives rise to an inductive closure de�ned by

IC(E) = {H : E |∼ H}. (55)

I will take the approach that the inductive closure is a generalisation of E.
This means that con�rmation relations and generalisations of an observation
report have a one-to-one correspondence.

For now, I will simply presume that there is a correct generalisation for every
consistent set of prior knowledge, and that an observation report con�rms every
sentence entailed by this correct generalisation. In section 6.4, I show that every
consistent set of prior knowledge has at least one generalisation.

De�nition 6.13 (Relation of con�rmation and generalisation). If a set of propo-
sitions O is consistent, then it has a unique generalisation Γ called the correct
generalisation of O, which logically entails all and only sentences con�rmed by
O.

∀O(Mod O → ∃Γ((O Γ) ∧ ∀S(O |∼ S ≡ (Γ |= S)))). (56)

Having de�ned the relation between con�rmation and generalisation in logic
thus, the most obvious similarity between Hempel's conditions and our account
of generalisation is the consistency condition.

Theorem 6.14. Condition 6.10 and condition 3.3 are equivalent.

Proof. → . If the correct generalisation Γ of a theory O has a model, then all
sentences implied by Γ are mutually consistent. Because all sentences in O are
implied by Γ by condition 6.9 and all sentences con�rmed by O are implied by
Γ by de�nition 6.13, it follows that Mod(O ∪ {H : O |∼ H}).
← . If the inductive closure IC(O) of a theory O is consistent with O,

then IC(O) is also consistent by itself. Consequently, all sentences implied by
the correct generalisation Γ of O are mutually consistent by de�nition 6.13. It
follows that Γ is consistent.

Theorem 6.15. The condition 6.9 implies Hempel's conditions 3.1 and 3.2.

Proof. For 3.1, we have to show that O |= H implies O |∼ H. Let Γ be a
generalisation of O. If O |= H, then also its generalisation Γ |= H, because Γ
implies every sentence in O by condition 6.9. And if Γ |= H, then O |∼ H by
de�nition 6.13, because Γ is a generalisation of O.

For 3.2, we have to show that ∀S(S ∈ K → (O |∼ S)) and K |= H together
imply O |∼ H. By the �rst antecedent and 6.13, ∀S(S ∈ K → (Γ |= S)), where
Γ is a generalisation of O. Together with K |= H, this gives that Γ |= H too.
Again, by de�nition 6.13, then O |∼ H.

38

6.4 Minimal and maximal generalisations

It is easy to note that by this account of generalisation, every consistent theory
is its own generalisation. This is because for every consistent set of propositions
O,

∀S(S ∈ O → (O |= S)) ∧Mod O (57)

so O itself satis�es the conditions 6.9 and 6.10, and consequently O O. This
is important because it means that every consistent set of observations has
at least one generalisation. On the other hand, no inconsistent theory has a
generalisation at all.

Theorem 6.16. If theory O is inconsistent (¬Mod O), no theory Γ is a gen-
eralisation of the theory O.

Proof. If a theory O is inconsistent, then it claims for some (or equivalently,
every) proposition p that p∧¬p. This means that its generalisation Γ must also
imply p ∧ ¬p. But then ¬Mod Γ, so no Γ can satisfy O Γ.

For this reason, I presume in this thesis that every theory to be generalised
is consistent: generalisation is in any case an operation that is only de�ned for
consistent input data. It would probably be quite possible to de�ne generali-
sation for inconsistent input by working in paraconsistent logic; this is outside
the scope of this thesis.

A related fact worth noticing is that not only is a consistent theory its own
generalisation, it is also the unique minimal generalisation for itself. This is
also important because it means that the minimal generalisation is uninterest-
ing from induction's point of view: it is the traditional notion of deductive
consequence.

Theorem 6.17. Every theory O is the only minimal generalisation of itself.

∀O∀Γ((O Γ)→ (Γ ⊇ O)) (58)

Proof. This can be demonstrated by showing that all generalisations of a con-
sistent theory O are more general than O. We recall from de�nition 5.11 that
g1 ⊇ g2 ≡ ∀i(M(g2, i) → M(g1, i)). For our de�nition of matching, this reads
as

Γ ⊇ O ≡ ∀S((O |= S)→ (Γ |= S)). (59)

Now, if a sentence S is implied by O (i.e. O |= S) then Γ |= S because S is
implied by some subset of O and Γ implies all propositions in that subset by
de�nition 6.8. It follows that Γ is indeed more general than O if O Γ.

If the minimal generalisation is relatively uninteresting, then how about the
maximal generalisation(s)? It turns out that the situation is not at all so simple
there.

De�nition 6.18 (Maximally consistent extension). A theory Γ is a maximally
consistent extension of another theory O if and only if Γ entails all propositions
in O, Γ is consistent and for each proposition p, either p ∈ Γ or ¬Mod(Γ∪{p}).

MCE(Γ, O) ≡∀p(p ∈ O → (Γ |= p)) ∧Mod Γ∧
∀p(Mod(Γ ∪ {p})→ p ∈ Γ)

(60)

39

Lemma 6.19. The maximal generalisations of O are exactly the maximally
consistent extensions of O.

Proof. The �rst two conditions of maximally consistent extensions are equivalent
with conditions 6.9 and 6.10. A generalisation Γ′ is strictly more general than Γ
if and only if there is a proposition p for which Γ′ |= p but Γ |6= p. Since p 6∈ Γ,
Γ′ is inconsistent by de�nition 6.18, so it is not a generalisation of O. Thus, the
third condition is equivalent with saying that there are no strictly more general
generalisations of O.

Lemma 6.20. If Γ is a maximally consistent extension of some theory, then
for each proposition p, either p ∈ Γ or (¬p) ∈ Γ, but not both.

Proof. Γ is consistent by de�nition 6.18, so it cannot contain both p and ¬p
for any proposition p. Now, assume Γ does not contain either. Then if p is
consistent with Γ, p ∈ Γ so the assumption is false. On the other hand, if p is
inconsistent with Γ, then Γ must entail ¬p. Since Γ is consistent and entails
¬p, Γ ∪ {¬p} is also consistent, and consequently (¬p) ∈ Γ, so the assumption
is false.

Theorem 6.21. A proposition p belongs to every maximally consistent exten-
sion Γ of a theory O if and only if O |= p.

Proof. If O |6= p, then Mod(O ∪ {¬p}). Because the maximally consistent ex-
tensions of O ∪ {¬p} are also maximally consistent extensions of O and cannot
contain proposition p, not all maximally consistent extensions of O contain
proposition p in that case. If, on the other hand, O |= p, then ¬Mod(O∪{¬p}),
so there are no maximally consistent extensions of O∪{¬p} as all its extensions
are inconsistent. Consequently, p belongs to all of the maximally consistent
extensions of O in this case.

In the view of this, the maximal generalisations of O are also quite irrele-
vant from the point of view of induction. They are very numerous since every
proposition p that is not implied nor contradicted by O divides the maximal
generalisations into two sets: those where p holds and those where ¬p holds.
The only propositions that are common to all maximal generalisations of O,
that is, the propositions in the intersection of all maximal generalisations of O,
are those implied by O. This means that maximal generalisations of O have a
high degree of arbitrariness.

6.5 Choosing the correct generalisation

Since the minimal generalisation of a theory is uninteresting and the maximal
generalisations make arbitrary decisions about the truth value of various propo-
sitions, it is necessary to develop further criteria that restrict the generalisations
to those we would consider plausible or sensible. In this thesis, I take the stance
that the �correct� generalisation of a theory O is the strongest generalisation
that is plausible. This corresponds to the view that induction has a double
goal: that of producing as many predictions as possible (informativeness) while
minimising the likelihood that these predictions will turn out to be false (plau-
sibility).

40

Example 6.22. In example 6.5, the clause Invisible(Croaky) is not plausible
since it has nothing to support it in our observations.

In section 7, I propose restrictions on the kind of clauses that a generalised
theory may contain. These restrictions can also be viewed as restrictions on
generalisations, because they outrule those generalisations that contain clauses
forbidden by our criteria. Among the allowed generalisations, the �correct�
one is then the maximal one. I'll call this generalisation the maximal plausible
generalisation (MPG). The MPG of a theory O can be formed by extending
the theory O with all plausible clauses. The MPG is more formally de�ned in
section 7.2.

6.6 Search in the generalisation space

There remain two domain-speci�c requisites for being able to apply the version
space theory to FOL. First, we need to be able to generate some initial gener-
alisation(s) to start the search from, and second, we need a means to generalise
overly speci�c generalisations and to specialise overly general generalisations.
The �rst requisite is easily covered since every theory is its own generalisation;
we can always start the search for generalisations of a theory O from O itself.
But how is the second requisite satis�ed?

The answer is θ-subsumption (see section 5.4), which gives a straightforward
way to generalise and specialise (nonrecursive) clauses. θ-subsumption can also
be used for recursive clauses; the only possible harm in doing so is the risk of
missing a more minimal generalisation or specialisation.

Recall from section 5.4 that a clause C can be generalised by substituting
a subset of occurrences of some term t in C by a new variable or dropping
literals from C, and specialised by substituting all occurrences of a variable x
in C with some term t or adding literals to C. This means that there are, in a
sense, two dimensions of generality: the generality of terms and the generality
of disjunctions. The generality of terms increases when more speci�c terms
are replaced by variables and decreases when variables are replaced by more
speci�c terms, whereas the generality of disjunctions increases when disjuncts
are discarded and decreases when new disjuncts are added.

Example 6.23. Consider the clauses

C = ∀x(Pretty(x) ∨ ¬Pretty(MotherOf(x)))
D1 = ∀x¬Pretty(MotherOf(x))
D2 = ∀y∀x(Pretty(x) ∨ ¬Pretty(y))
D3 = ∀x(Pretty(x) ∨ ¬Pretty(MotherOf(x)) ∨ ¬Female(x))
D4 = ∀x(Pretty(SpouseOf(x)) ∨ ¬Pretty(MotherOf(SpouseOf(x))))

(61)

Then, D1 and D2 are generalisations of C under θ-subsumption, whereas D3

and D4 are specialisations of C under θ-subsumption (D1 �θ C, D2 �θ C,
C �θ D3 and C �θ D4).

It is interesting to note that if the initial theory O is a typical observation
report, it starts at the most speci�c extreme in one of these dimensions but at
the most general extreme in the other. Observation reports contain no variables,
since they only express facts about particular individuals, so their terms are as

41

speci�c as possible; but they contain no disjunctions either, because the facts
they express are not conditional, so their disjunctions are as general as possible
� excluding the empty clause, whose presence would make the observation
report inconsistent. This naturally suggests the following strategy for searching
the generalisations of a theory O: starting from O, generalise the clauses of
O by generalising their terms; when the clauses become strong enough to be
inconsistent with O, specialise them by adding disjuncts.

42

7 Plausible clauses

In this section, I will introduce further conditions on generalisations: the con-
ditions of plausibility. Intuitively, a generalisation is plausible if and only if we
have some reason to believe everything in the generalisation. Since even one
clause can render a generalisation implausible, the conditions of plausibility of
generalisations translate to conditions on clauses. Accordingly, I shall in this
section de�ne the conditions of plausibility of clauses.

De�nition 7.1 (Plausible generalisations). A generalisation is plausible if and
only if all clauses in the generalisation are plausible. We will use Pl(Γ, O) to
denote that Γ is plausible with respect to the set of propositions O, and Pl(C,O)
to denote that a clause C is plausible with respect to O.

Pl(Γ, O) ≡ ∀C(C ∈ Γ→ Pl(C,O)) (62)

Condition 7.2 (Plausibility). The correct generalisation Γ of a theory O is
plausible with respect to O. So, for all theories O and all propositions H,

(O |∼ H)→ Pl(H,O) (63)

Plausibility of clauses is de�ned gradually as we build the necessary concep-
tual machinery for de�ning plausibility.

7.1 Plausibility: why and how?

In section 6.4, it was proved that maximal generalisations have a high degree
of arbitrariness: for each proposition which is neither implied by nor incon-
sistent with our observations, a maximal generalisation will include either the
proposition or its negation, but of course not both, since that would make the
generalisation inconsistent. Due to this arbitrariness, the maximal generalisa-
tions provide few hints about the intuitive meaning of generalisation.

Example 7.3. Consider the observational theory O = {Pa, Pb}. It is univer-
sally accepted as an example of induction that the clause ∀xPx generalises O,
which can be expressed in our notational conventions:

Γ = O ∪ {∀xPx}
O Γ

(64)

However, with our de�nition of generalisation, ∆ = O∪{¬Pc} is also a general-
isation of O. As Γ and ∆ are mutually inconsistent, no maximal generalisation
will have both as subsets. If we were to choose Γ or ∆ as the generalisation of
O, we would probably prefer Γ. But on what grounds?

The conditions of plausibility are an attempt to develop criteria to prefer
one generalisation to another. Viewed from another angle, plausibility is a
criterion to prefer one clause to another, since by de�nition 7.1, the plausibility
of generalisations is de�ned by the plausibility of clauses. Plausibility of clauses,
in turn, can be de�ned in terms of the preference of clauses to each other. The
idea is that in a set of clauses that is minimally inconsistent with our prior
knowledge, the least preferred clause(s) are the implausible one(s).

43

De�nition 7.4 (Preference relations). Let us have a weak order relation pre-
ferred to on clauses,11 written as p ≥pl q. The corresponding strict ordering
relation strictly preferred to is written as p >pl q, and the equivalence relation
equally preferable with is written p =pl q. The following hold for all p, q and r:

p ≥pl p

p ≥pl q ∧ q ≥pl r → p ≥pl r

p >pl q ≡ p ≥pl q ∧ ¬q ≥pl p

p =pl q ≡ p ≥pl q ∧ q ≥pl p

(65)

De�nition 7.5 (Plausible clauses). Given the ≥pl relation, a clause C is im-
plausible with respect to a theory O if and only if there is a set of clauses K for
which the following conditions hold:

1. K ∪O is consistent (and consequently, K is consistent).

2. K ∪O ∪ {C} is inconsistent.

3. Every clause in K is preferred to C.

Naturally, a clause C is plausible if and only if C is not implausible. In precise
notation:

Pl(C,O) ≡ ¬∃K(Mod(K ∪O) ∧ ¬Mod(K ∪O ∪ {C})∧
∀D(D ∈ K → D ≥pl C))

≡ ∀K(Mod(K ∪O) ∧ ¬Mod(K ∪O ∪ {C})→
∃D(D ∈ K ∧ ¬D ≥pl C))

(66)

If such a set K exists, it is called a witness of the implausibility of C.
It is interesting to note that the preference relation ≥pl is not relative to the

theory O being generalised. I believe that there are good reasons to universally
prefer certain clauses in generalisations to others; intuitively, the role given to
O by de�nition 7.5 is that O �lters away from this preference hierarchy those
clauses that are inconsistent with O. The e�ects of di�erent preference relations
are discussed in section 7.3.

Theorem 7.6. All clauses are plausible with respect to an inconsistent theory
O.

Proof. If ¬Mod O, then no set K is consistent with O. Consequently, for any
clause C, there is no set K that would witness the implausibility of C.

Accordingly, implausibility is interesting only for consistent reference theo-
ries, i.e. consistent theories that we are generalising from. From here on, we
will presume that the reference theory O is consistent.

Theorem 7.7. Every clause C that is inconsistent with a (consistent) theory
O is implausible with respect to O.

Proof. If ¬Mod({C}∪O), then the empty set {} is a witness of the implausibility
of C, since it satis�es the conditions of implausibility in de�nition 7.5.

11Any re�exive and transitive binary relation is a weak order.

44

Theorem 7.8. Every clause C that is entailed by a (consistent) theory O is
plausible with respect to O.

Proof. Since O |= C, then if K ∪ {C} is inconsistent with O, K is also incon-
sistent with O as C is redundant. It follows that no set K can be a witness of
the implausibility of C. Consequently, C is plausible.

De�nition 7.9 (Plausible closure). The plausible closure of a theory O (denoted
PlC(O)) is the set of clauses that are plausible with respect to O.

PlC(O) = {C : Pl(C,O)} (67)

Theorem 7.10. If the preference relation ≥pl is a total order, then PlC(O) is
consistent with O.12

Proof. Suppose the plausible closure PlC(O) is inconsistent with O. Then there
is at least one set K ⊆ PlC(O) which is minimally inconsistent with O, meaning
that all proper subsets K ′ ⊂ K are consistent with O. Since ≥pl is a total order,
there is at least one clause C ∈ K that is minimal with respect to K, which
means ∀D(D ∈ K → D ≥pl C). This clause C is implausible, because K is
inconsistent with O, K\{C} is consistent with O (as K is minimally inconsistent
with O) and all clauses in K \ {C} are preferred to C.

Since C ∈ K ⊆ PlC(O), this is a contradiction with de�nition 7.9. Conse-
quently, the assumption of the inconsistency of PlC(O) with O is false.

If the preference relation is not total, then the set of all plausible clauses may
well be inconsistent, since the inconsistency may be caused by clauses neither
of which is preferred to the other.

Example 7.11 (Mutually inconsistent clauses). Examine the following back-
ground theory O and clauses:

O = {Pa,Qa, Ra,¬Pb,¬Qb,¬Rb, Pc,¬Rc}
C1 = ∀x(¬Px ∨Qx)
C2 = ∀x(¬Qx ∨Rx)

(69)

If we use logical entailment as the preference relation, then both C1 and C2 are
plausible with respect to O, because no clause stronger (more general) than C1

is consistent with O and consequently in any set K that is inconsistent with
O, no other clause is preferred to C1 (and similarly for C2). Moreover, neither
C1 |= C2 nor C2 |= C1, so neither clause is preferred to the other one.

However, O ∪ {C1, C2} is inconsistent because of Pc and ¬Rc.

7.2 Maximal plausible generalisation

The condition 7.2 determines an upper bound for generalisations: generalisa-
tions should never be so general as to include implausible clauses. However,
induction also has the goal of producing informative theories, that is, as general
theories as possible. This gives the basis for the following condition.

12The order relation ≥pl is total if and only if the following axiom holds for all p and q:

p ≥pl q ∨ q ≥pl p (68)

45

Condition 7.12 (Maximal plausibility). The correct generalisation Γ of a the-
ory O is maximally plausible with respect to O: Γ is plausible with respect to
O and all strictly more general theories are implausible with respect to O.

In section 7.1, I proved that if the preference relation ≥pl is total, then all
clauses that are plausible with respect to a given theory O are consistent with O
and mutually consistent. This is very bene�cial, because it means that we can
extend the theory O with all clauses that are plausible with respect to O (the
whole plausible closure of O) and get a unique maximal plausible generalisation.
This gives basis for the following conditions.

Condition 7.13 (Totality). The preference relation ≥pl is total.

Condition 7.14 (Completeness). The correct generalisation Γ of a consistent
theory O includes all clauses that are plausible with respect to O. For all theories
O and all propositions H,

Pl(H,O)→ (O |∼ H) (70)

Theorem 7.15. If the preference relation ≥pl is total, then the theory Γ =
PlC(O) is a generalisation of O.

Proof. Since all clauses entailed by O are plausible with respect to O, Γ is a
superset of O, so Γ includes and consequently implies every sentence S ∈ O.
As proved by theorem 7.10, PlC(O) is consistent, so Γ is consistent. It follows
from de�nition 6.8 that O Γ.

Corollary 7.16. If the preference relation ≥pl is total, then for each consistent
theory O, there is exactly one correct generalisation Γ that satis�es conditions
of entailment (6.9), consistency (6.10), plausibility (7.2), maximal plausibility
(7.12) and completeness (7.14).

Proof. The theory Γ = PlC(O) is such a generalisation by theorem 7.15 and
because conditions 7.2 and 7.14 together totally determine the clauses in the
correct generalisation.

This theory Γ is called the maximal plausible generalisation of O, or MPG
for short. The MPG is the most informative generalisation that is still plausible,
and so it is also the generalisation that best captures the two goals of induc-
tion, which are informativeness and plausibility. This provides strong support
that the MPG of O nicely captures the notion of inductive consequence of O.
This also gives the de�nition of classi�catory con�rmation by de�nition 6.13: O
con�rms every sentence S that is entailed by the MPG of O.

7.3 Conditions for the preference relation

Obviously, the choice of the preference relation ≥pl totally determines the kind
of plausible clauses there can be, and consequently, the kind of plausible gen-
eralisations we can obtain. However, not every kind of preference relation pro-
duces results that look like induction; some properties of preference relations
are clearly desirable.

Firstly, from a syntactic point of view (that is, lacking any information
about the meanings of atomic predicates), there's never reason to strictly prefer

46

a clause C to another which is equivalent to C except that one of the atomic
matrices of C has been negated. This is naturally because for every predicate P ,
there is another predicate P̄ which is true for those and only those individuals
for which P is false. Now, if we were to strictly prefer the a�rmative or the
negative modality, the preference would produce exactly contrary results for P
and P̄ .

Interestingly, systems that make such assumptions nevertheless exist. The
logic programming environments (especially Prolog) usually incorporate a fea-
ture called negation as failure, which means that if the truth value of a clause
is unknown, then it is assumed to be false. Similar results can be obtained
by strictly preferring all negative ground clauses to all a�rmative ones, and by
strictly preferring ground clauses to all non-ground clauses. As a result, negation
as failure can be considered a very peculiar kind of generalisation technique.13

However, I will base all discussion about implausibility on the balanced
choice that neither the a�rmative nor the negative modality of an atomic pred-
icate is strictly preferred to the other. The preference relation is called sym-
metric with respect to negation if it treats the a�rmation and negation of an
atomic sentence as equally preferable with each other. Symmetry with respect
to negation is more rigorously de�ned in section 8.

Condition 7.17 (Symmetry). The preference relation ≥pl is symmetric with
respect to negation.

A preference relation that strictly prefers stronger (more general) clauses to
weaker (more speci�c) ones seems sensible because more informative generalisa-
tions are preferable over less informative ones as long as they remain plausible.
This choice also seems to be supported by the preference of Γ over ∆ in example
7.3.

Another reason why it might be a good idea to strictly prefer more general
clauses to less general ones is that for every clause C, there is a �nite num-
ber of clauses that are more general by θ-subsumption (see section 5.4). This
guarantees that an algorithm that computes the plausibility of a clause C will
terminate: it will only have to check whether any subset of a �nite number of
clauses will contradict C in order to �nd out whether C is implausible.

However, if we are to use generality between clauses (as given by implica-
tion or θ-subsumption) as the preference relation, there is a problem. Even
when generalised by giving equal preference to a�rmatives and negatives, the
generality of clauses is not a total ordering.

Example 7.18. Consider the clauses:

C1 = ∀xPx

C2 = Pa

C3 = ¬Pa

C4 = Qa

(71)

13To see that negation as failure is a generalisation technique, consider the following proof.
If an a�rmative clause C is considered for the generalisation of a theory O and O does not
entail C, there are always strictly preferred negative clauses D1, D2, . . . which contradict
C, making C implausible. Thus, the only clauses that belong to a plausible generalisation of
O with this preference relation are a�rmative clauses that are logical consequences of O and
negative clauses that don't contradict O. This is exactly the de�nition of negation as failure.

47

The proposed preference relation has C1 >pl C2 since C1 �θ C2, C2 =pl C3 since
both negative and a�rmative modality are equally preferable, and C1 >pl C3

by transitivity. However, the clause C4 is incomparable with the other clauses.

This suggests that the preference relation should be a total ordering that
honors generality of clauses.

De�nition 7.19 (Honoring). A weak total ordering ≥ honors a weak partial
ordering w if and only if these conditions hold for all x and y:

x w y ∧ y w x→ x ≥ y ∧ y ≥ x

x w y ∧ ¬y w x→ x ≥ y ∧ ¬y ≥ x
(72)

Condition 7.20 (Honoring generality). The preference relation ≥pl honors
generality of clauses.

Such a total ordering can be constructed by weakening the generality of
clauses by adding C ≥pl D or D ≥pl C (or both) for clauses C and D which
are incomparable (neither C |= D nor D |= C is true). However, from the
point of view of informativeness, it is not good to have too weak a preference
relation. To get as informative MPG's as possible, it is good to have as speci�c
a preference relation as possible.

Theorem 7.21. If the preference relation ≥1
pl is more speci�c (i.e. stronger)

than the preference relation ≥2
pl, then the maximal plausible generalisations gen-

erated by ≥1
pl are supersets of the maximal plausible generalisations generated

by ≥2
pl.

Proof. If ≥1
pl is more speci�c than ≥2

pl, then for all clauses C and D,

C ≥1
pl D → C ≥2

pl D. (73)

It follows that

∃K(Mod(K ∪O) ∧ ¬Mod(K ∪O ∪ {C}) ∧ ∀C ′(C ′ ∈ K → C ′ ≥1
pl C))

→ ∃K(Mod(K ∪O) ∧ ¬Mod(K ∪O ∪ {C}) ∧ ∀C ′(C ′ ∈ K → C ′ ≥2
pl C))

(74)

That is, if a clause C is implausible under ≥1
pl, then C is also implausible under

≥2
pl by the same witness set K.

Intuitively, the clauses that will be plausible by ≥1
pl but not by ≥2

pl are
those that are equally preferable with some implausible clause in a minimally
inconsistent set by ≥2

pl but not by ≥1
pl. It is easy to see that if the preference

relation is to be total, the only way to strengthen it is to treat less clauses as
equally preferable with each other.

There's still one more condition to set on the preference relation ≥pl. Usu-
ally, inductive thinking is used to produce rules, that is, statements that pertain
to all individuals. Consequently, it makes sense to prefer universally quanti�ed
sentences over particular ones, even in the cases where they are otherwise in-
comparable in terms of generality.

48

Condition 7.22 (Preferring rules). The preference relation ≥pl prefers univer-
sally quanti�ed clauses to particular ones. Less restricted value domains are
also preferred to more restricted ones.

Example 7.23. Let us have

C = ∀xPx

D1 = ∀x(Px ∨Qx)
D2 = Pa

(75)

Both D1 and D2 are more speci�c than C by θ-subsumption (and consequently
also logical entailment) but mutually incomparable. However, for generalisation,
we should prefer the rule-like D1 to the particular D2.

Example 7.24. In example 6.23, the clauses D3 and D4 are mutually incom-
parable. However, the clause D3 is to be preferred to D4, because D3 makes a
claim that pertains to all individuals, while D4 only a�ects individuals that are
somebody's spouses.

In section 9, we will return to the problem of de�ning a preference relation
that observes all these conditions and requirements.

49

8 Symmetry

The consistency condition 6.10 or Hempel's equivalent condition 3.3 give inter-
esting results when combined with the symmetry condition 7.17. In this section,
we will discuss these results.

Lemma 8.1 (Implausibility of symmetric clauses). If two (or more) clauses are
equally preferable but contradict each other, then a plausible generalisation may
have neither (or none) of those clauses.

Proof. Consider a set of clauses K = {C1, C2, . . . } that is minimally inconsistent
with a theory O and where all clauses are equally preferable with each other.
Then, all of those clauses are implausible, that is, ¬Pl(Cn, O) for all n, because
K ∪ O is inconsistent, (K ∪ O) \ {Cn} is consistent and ∀D(D ∈ K → D ≥pl

Cn).

Symmetry with respect to negation is especially important, because mutual
negations are inconsistent. But which clauses exactly should be treated as
equally preferable? It is now time to give a more precise de�nition of what is
meant by symmetry with respect to negation. Any clause C should be equally
preferable with its inverse: a clause where one of the atomic predicates of C,
say P , is replaced by its inverse predicate P̄ , given as

P̄ (x, y, . . .) ≡ ¬P (x, y, . . .) (76)

for all individuals x, y, . . .

De�nition 8.2 (Inverse). The inverse set of a clause C, denoted Inv(C), con-
sists of those clauses that can be obtained by negating exactly one literal in C.
All clauses D ∈ Inv(C) are called inverses of C. Representing a clause by a set
of literals, we get the following formalisation.

Inv({}) = {}
Inv({L} ∪ C ′) = {{¬L} ∪ C ′} ∪ {{L} ∪D : D ∈ Inv(C ′)}

(77)

Example 8.3. Given the clauses,

C = ∀x∀y(¬Px ∨ ¬Rxy ∨ Py)
D1 = ∀x∀y(Px ∨ ¬Rxy ∨ Py)
D2 = ∀x∀y(¬Px ∨Rxy ∨ Py)
D3 = ∀x∀y(¬Px ∨ ¬Rxy ∨ ¬Py)

(78)

The clauses D1, D2 and D3 are inverses of C (and vice versa), and there are no
other inverses of C. Note, however, that none of the clauses D1, D2 and D3 are
mutual inverses.

Example 8.4. The empty clause ⊥ has no inverses, and the inverse of a sin-
gleton ground clause is its negation.

De�nition 8.5 (Symmetry with respect to negation). The preference relation
≥pl is called symmetric with respect to negation if and only if mutual inverses
are equally preferable with each other.

C ′ ∈ Inv(C)→ C =pl C ′ (79)

50

Having thus precisely de�ned symmetry with respect to negation, it is time
to look at an interesting result that pertains to all preference relations that are
symmetric with respect to negation: the implausibility of irrelevant clauses.

8.1 Implausibility of irrelevant clauses

If all mutual inverses are symmetric, then there are wide classes of clauses that
are implausible. The �rst one to be studied are the irrelevant clauses, which
intuitively mean those clauses that have nothing to do with our observational
theory O.

De�nition 8.6 (Inverse class). An inverse class is a set of clauses that is closed
under inversion.

InverseClass(K) ≡ ∀C(C ∈ K → ∃D(D ∈ K ∧ C ∈ Inv(D))) (80)

The inverse class of a clause C is the inverse class to which C belongs. The
inverse class of C, denoted IC(C), can be constructed by forming a closure over
inversions of C.

IC(C) = {C} ∪
⋃

C′∈Inv(C)

IC(C ′) (81)

Example 8.7. The following set of clauses is an inverse class:

O = {∀x(Px ∨Qx),∀x(Px ∨ ¬Qx),
∀x(¬Px ∨Qx),∀x(¬Px ∨ ¬Qx)}

(82)

Theorem 8.8. Every inverse class is minimally inconsistent.

Proof. The inconsistency of inverse classes can be established by induction on
the number of literals in the clauses of the class. For clauses of zero literals,
the inconsistency of the inverse class {⊥} is trivially established. For clauses of
more than zero literals, the inverse class K can be formed from a inverse class
of shorter clauses K ′ by constructing all clauses with a�rmative and negative
versions of a new literal L added:

K = {{L} ∪ C : C ∈ K ′} ∪ {{¬L} ∪ C : C ∈ K ′} (83)

Now, from this inverse class K we can deduce all clauses in K ′ by resolving,
for every clause C ∈ K ′, the clauses {L} ∪ C and {¬L} ∪ C, producing the
original clause C. It follows that the inverse class K is inconsistent if K ′ is.
This completes the proof by induction.

Minimal inconsistency follows from the fact that in every inductive step,
every clause in the theory K is needed for resolution to produce the smaller
inverse class K ′. It follows that no proper subset of K is inconsistent.

De�nition 8.9 (Independence). A set of sentences K is independent from a
theory O if and only if all proper subsets of K are consistent with O.

Intuitively, a set of sentences K is independent from O when O does not
a�ect the consistency of K.

51

Theorem 8.10. All clauses in an inverse class which is independent from a
theory O are implausible with respect to O.

Proof. Because every inverse class is inconsistent by theorem 8.8, then by de�ni-
tion of independence, every independent inverse class is minimally inconsistent
with O. In addition, all clauses in an inverse class are symmetric. Since the
independent inverse class is minimally inconsistent with O and all clauses are
preferred to all clauses in it, its every clause is implausible.

De�nition 8.11 (Irrelevance). A clause C is irrelevant with respect to a theory
O if and only if none of the clauses in Inv(C) resolve against any clause in O.

Theorem 8.12. If C is irrelevant with respect to O, the inverse class IC(C)
is independent from O.

Proof. Since Inv(C) contains all the literals in IC(C), irrelevance of C with
respect to O implies that no clauses in O will resolve against a clause in IC(C),
and thus IC(C) has no consequences with O. It follows that IC(C) is indepen-
dent from O if and only if all proper subsets of IC(C) are consistent, which is
true for every inverse class by theorem 8.8.

Corollary 8.13. All irrelevant clauses are implausible.

Proof. For every clause C that is irrelevant with respect to a theory O, IC(C)
is inconsistent by 8.8, independent from O by 8.12, and consequently all clauses
in IC(C) are implausible by 8.10. Since C ∈ IC(C), C is implausible.

Example 8.14. Let us have the following theory O and clauses:

O = {P1a, P2b,¬P2c, P3c}
C1 = ∀xP4x

C2 = ∀x(P4x ∨ P5x)
C3 = ∀x(¬P1x ∨ P4x)
C4 = ∀x(P2x ∨ P3x)

(84)

Of these clauses, the clauses C1 and C2 are irrelevant with respect to O,
because they only contain predicates not mentioned in O and, consequently,
their inverse classes are independent from O.

The clauses C3 and C4, on the other hand, are not irrelevant. Accordingly,
the clause C4 has the inverse ∀x(P2x∨¬P3x) which is disproved by the individual
c in O; and the clause C3 has the following set K ⊂ IC(C3) which is inconsistent
with the clause P1a in O:

K = {C3,∀x(¬P1x ∨ ¬P4x)} (85)

8.2 Implausibility of irrelevant weakenings of falsi�ed clauses

It turns out that the implausibility of irrelevant clauses is just a special case
of a more general phenomenon. For any clause C, we �nd that if C has been
falsi�ed by O (i.e. C is inconsistent with O), then all clauses C ∪D where D is
irrelevant with respect to O, are implausible.

52

De�nition 8.15 (IC-extensions). The class of clauses K is called an IC-extension
of a clause C (by K ′) if there is some inverse class of clauses K ′ such that

K = {C ∪D : D ∈ K ′} (86)

and C is irrelevant with respect to K ′.

Theorem 8.16. If a clause C is inconsistent, then all IC-extensions of C are
minimally inconsistent.

Proof. This can be proved in the similar way as theorem 8.8, except that the
empty clause ⊥ is substituted with the clause C.

Lemma 8.17. All IC-extensions are subsets of some inverse class.

Proof. Given two inverse classes K1 and K2 whose clauses are irrelevant with
respect to each other, the combination of these inverse classes

K = K1 ×K2 = {C ∪D : C ∈ K1 ∧D ∈ K2} (87)

is also an inverse class. This is because for each clause (C ∪D) ∈ K, all clauses
in Inv(C ∪ D) also belong to K, since the clauses where the inverted literal
belongs to D can be found in {C ∪D′ : D′ ∈ K2} ⊂ K and the clauses where
the inverted literal belongs to C can be found in {C ′ ∪D : C ′ ∈ K1} ⊂ K.

Since an IC-extension of C by an inverse class K ′ is a subset of IC(C)×K ′,
every IC-extension is indeed a subset of some inverse class.

Theorem 8.18. Let K be an IC-extension of an inconsistent clause C and
suppose K is independent from a theory O. Then all clauses in K are implausible
with respect to O.

Proof. Since an IC-extension K of a clause C is a subset of an inverse class by
theorem 8.17, all clauses in K are symmetric. Since K is minimally inconsistent
with respect to O by theorem 8.16 and de�nition of independence, all clauses
in K are implausible.

De�nition 8.19 (Irrelevant IC-extensions). An IC-extension K of a clause C
by the inverse class K ′ is irrelevant with respect to a theory O if and only if the
clauses in K ′ are irrelevant with respect to O.

Theorem 8.20. An irrelevant IC-extension K of a clause C (by K ′) is inde-
pendent from theory O if C is inconsistent with O.

Proof. If the clause C is inconsistent with O, then the IC-extension K of C
by the inverse class K ′ is logically equivalent with K ′, since it is formed as
disjunctions of clauses in K ′ with C, which is already known to be false. We
also know by de�nition of irrelevant IC-extensions that K ′ is irrelevant with
respect to O. Then by theorem 8.12, we know that K ′ is independent from O.
Since K and K ′ are logically equivalent, naturally K is also independent from
O.

Corollary 8.21. All clauses that are disjunctions of a falsi�ed clause and an
irrelevant clause are implausible.

53

Proof. For every clause C that is inconsistent with a theory O and inverse class
K ′ that is irrelevant with respect to O, the set of sentences K = {C} × K ′

is inconsistent by 8.16, independent from O by 8.20, and consequently, every
clause in K is implausible by 8.18. Since every disjunction of C with a clause
that is irrelevant with respect to O belongs to some such set K, all such clauses
are implausible.

Example 8.22. Consider the theory O and clause C3 from example 8.14. The
clause C = ∀x¬P1x is disproved by O because of the clause P1a, and C3 extends
C with the irrelevant literal P4x. C3 is implausible because it belongs to this
irrelevant IC-extension of C:

K = {C3,∀x(¬P1x ∨ ¬P4x)} (88)

It can be readily veri�ed that K is minimally inconsistent with O and both
clauses in K are equally preferable.

8.3 Conclusion

In addition to being intuitively attractive, the symmetry condition 7.17 has the
satisfactory consequence of making all irrelevant clauses and irrelevant exten-
sions of falsi�ed clauses implausible. This strongly suggests that any account of
inductive thinking should observe the condition of symmetry.

54

9 Total strength ordering of clauses

From sections 7.2 and 7.3, we know that the following properties of the prefer-
ence relation are tempting for various reasons. To summarise:

Totality (Condition 7.13.) If the preference relation is a total order, then for
every theory O, there is a unique maximal plausible generalisation that
maximises the measures of informativeness and plausibility which de�ne
the utility of any inductive consequence of O.

Symmetry with respect to negation (Condition 7.17.) If the preference
relation treats mutual inverses as equally plausible, which also has some
appeal of its own, then the generalisations of any theory O do not include
clauses that are irrelevant with respect to O.

Honoring generality of clauses (Condition 7.20.) If the preference relation
is a generalisation of the generality of clauses, then generalisations will
consist of the most general clauses that are mutually consistent and con-
sistent with the reference theory O. This seems good for reasons of both
informativeness and implementation.

Preferring rules over particularities (Condition 7.22.) If the preference re-
lation always prefers more rule-like clauses, then the generalisation will
have clauses that apply to as many individuals as possible.

Strength The stronger (more speci�c) the preference relation is, the more
clauses will be plausible under the preference relation. This will improve
the informativeness of maximal plausible generalisations.

It is now time to devise a de�nition of the preference relation ≥pl that will meet
the conditions above.

The �rst thing to notice is that, if we simply weaken the generality of clauses
by treating all incomparable clauses as equally good, the result will be trivial:
all clauses will be equally good. For the proof, consider the following: for all
clauses C1 and C2, there is a third clause D that is incomparable with both
C1 and C2 � for instance, a clause that is irrelevant with respect to them.
If incomparable clauses are equally good, then C1 =pl D and D =pl C2. By
transitivity of preference relations, then C1 =pl C2.

Such a preference relation does not honor generality of clauses, either.

Example 9.1. Consider the following clauses.

C1 = ∀xPx

C2 = ∀x(Qx ∨Rx)
C3 = ∀xQx

(89)

Now, C3 |= C2 and C2 |6= C3, so in order for the generality relation to honor
generality of clauses, we should have C3 >pl C2. However, because C1 =pl C2

and C1 =pl C3, then by transitivity of preference relations, C3 =pl C2.

This suggests that disjunctions should not be treated as equally preferable
with non-disjunctive clauses, even for totally unrelated predicates. Generalising
this idea further, the preference of clauses should always be based on some kind
of syntactic generality. This leads to the following de�nitions, which are also
heavily motivated by considering what it takes to honor θ-subsumption.

55

9.1 De�nition of the preference relation

In this section, we build a de�nition of the preference relation that meets the
criteria listed at the beginning of this section. The de�nition of preference is
based on a property of clauses called relative universality, which in turn is based
on a similarly named property of literals.

De�nition 9.2 (Universality of literals). The universality of a literal L on
rank n is the number of universally quanti�ed variables nested within at least n
function terms in L � direct arguments of predicates are on rank 0, arguments
of direct arguments of predicates are on rank 1 and so on. Ranks with smaller
number are called higher ranks.

Vars(¬L, n) = Vars(L, n)

Vars(P (T̄), n) =
⋃
t∈T

Vars(t, n)

Vars(f(T̄), n) =
⋃
t∈T

Vars(t, n− 1)

Vars(x, 0) = {x} if x is a variable

Vars(x, n) = {} if n 6= 0
Vars(a) = {} if a is a constant

VarsDownTo(L, 0) = Vars(L, 0)
VarsDownTo(L, n) = Vars(L, n) ∪VarsDownTo(L, n− 1)

Univ(L, n) = |Vars(L, n) \VarsDownTo(L, n− 1)|

(90)

where P (T̄) means a predicate application whose argument terms form the set
T , f(T̄) means a function application whose argument terms form the set T ,
and |C| is the cardinality of the set C.

De�nition 9.3 (Relative universality of literals). A literal L1 is strictly more
universal than another literal L2 (denoted L1 >univ L2) if and only if the uni-
versality of L1 is greater than that of L2 on the highest rank where the uni-
versalities di�er. If the universalities don't di�er on any rank, L1 and L2 are
equally universal.

MoreUniv(L1, L2, n) ≡Univ(L1, n) > Univ(L2, n)∨
(Univ(L1, n) = Univ(L2, n) ∧MoreUniv(L1, L2, n + 1))

L1 >univ L2 ≡MoreUniv(L1, L2, 0)
(91)

Example 9.4. Let us have the literals

L1 = P (x)
L2 = Q(x, f(y))
L3 = Q(x, f(f(x, z)))
L4 = Q(x, a)

(92)

L2 is strictly more universal than L1 since Univ(L1, 0) = Univ(L2, 0) = 1
and Univ(L1, 1) = 0 < Univ(L2, 1) = 1. L2 is also strictly more universal than

56

L3, since Univ(L3, 1) = 0 (the variable z on rank 2 does not a�ect the situation).
L3 is strictly more universal than L1 as they have the same universality on ranks
0 and 1, while Univ(L3, 2) = 1 > Univ(L1, 2) = 0.

L4 is equally universal with L1, because both have universality 1 on rank 0
and 0 on lower ranks.

De�nition 9.5 (Relative universality of clauses). Within a clause C, a mini-
mally universal literal is a literal L which is not strictly more universal than any
other literal L′ in C. A clause C1 is strictly more universal than another clause
C2 if and only if the minimally universal literal L1 of C1 is strictly more uni-
versal than the minimally universal literal L2 of C2, or if L1 and L2 are equally
universal and (C1 \{L1})σ1 is strictly more universal than (C2 \{L2})σ2, where
σn is a substitution of variables in Ln with new constants.14

The empty clause ⊥ which does not have a minimally universal literal is
strictly more universal than any other clause. If the literals of C1 and C2 are
all equally universal (as arranged by universality), then C1 and C2 are equally
universal.

min univ{L} =L

min univ({L} ∪ C) =

{
L if min univC >univ L

min univC otherwise

(93)

Relative universality is de�ned as:

C1 >univ C2 ≡min univC1 >univ min univC2∨
(¬(min univC2 >univ min univC1)∧
(C1 \ {min univC1})σ1 >univ (C2 \ {min univC2})σ2)

(94)

where σn is a substitution that substitutes variables in min univCn by new con-
stants.

Example 9.6. Suppose we have the clauses,

C1 = ∀x(P (x) ∨ ¬P (f(x)))
C2 = ∀x(P (x) ∨ ¬P (f(f(x))))
C3 = ∀x∀y(R(x, y) ∨ ¬R(x, f(y)))
C4 = ∀x∀y(R(x, x) ∨ ¬Q(y, f(x)))
C5 = ∀x∀y(R(f(x), f(y)) ∨ ¬R(x, f(y)))

(95)

The clauses C3 and C4 are strictly more universal than C1 and C2, since
their minimally universal literals have one variable on rank 0, while C1 and
C2 have none. C5 is also strictly more universal, since its minimally universal
literal has two variables on rank 1, while C1 has one and C2 has none. Also
consequently, C1 is strictly more universal than C2.

The clauses C3 and C4 are equally universal: their minimally universal lit-
erals are equally universal, and �bind� both x and y, so the stronger literals
become equally universal too. Both are strictly more universal than C5.

14These variables are, in a way, �bound� by the literals Ln.

57

De�nition 9.7. A clause C is preferred to another clause D if and only if C is
strictly more universal than or equally universal with D.

C ≥pl D ≡ ¬(D >univ C) (96)

9.2 Properties of the preference relation

Theorem 9.8. Preference is total.

Proof. Universality on rank n is total, because it is based on the total ordering
of natural numbers. Relative universality of literals is total, because it combines
the total orders of di�erent ranks in a dictionary order. Relative universality of
clauses is total, because it combines the total orders of di�erent literals in a dic-
tionary order. Consequently, preference is total, because it is the corresponding
weak order for the strict total order of universality.

Theorem 9.9. Preference is symmetric with respect to negation.

Proof. Because the a�rmation and negation of a literal are equally universal by
de�nition 9.2, mutual inverses are equally universal. It follows that all clauses
in an inverse class are equally universal and so equally preferable.

Theorem 9.10. Preference gives priority to rules over particular claims.

Proof. Since a literal with no (universally quanti�ed) variables has the lowest
possible universality and clauses are compared by their minimally universal liter-
als, a clause that involves variables in every literal is always preferred to a clause
that does not. In addition to this, variables in function terms are on a lower
rank than other variables, ensuring that a clause whose every literal involves
variables as direct arguments of predicates is preferred to a clause including a
literal that does not.

Theorem 9.11. If C �θ D and D �θ C, then C =pl D.

Proof. If C �θ D and D �θ C, then there is a substitution θ for which Cθ = D,
and there must be an inverse substitution θ−1 such that Dθ−1 = C. Now, θ must
be a substitution that substitutes distinct variables with other distinct variables,
because otherwise the inverse θ−1 would not be a substitution of variables,
contradicting the de�nition of θ-subsumption. Since the substitution θ does not
do anything than rename variables, C and D have equal universality.

Theorem 9.12. If C �θ D but D 6�θ C, then C >pl D.

Proof. As seen in section 5.4, a clause C may be generalised, under θ-subsumption,
in two ways: by substituting some occurrences of one of its terms by a new vari-
able, or by dropping literals from it.

If the clause is generalised by substitution, we have three cases.

1. Some occurrences of a constant are substituted with a new variable. Be-
cause of the new variable, the universality of at least some rank of some
literal increases, which makes the clause more universal.

58

2. Some occurrences of a function term are substituted with a new variable.
This may decrease the universality of some rank in some literal L, but it
will increase the universality of a higher rank in L, which makes the clause
more universal. (Think, for instance, of substituting f(x) with y.)

3. Some (but not all) occurrences of a variable are substituted with a new
variable. On each rank where the variable occurs, we have either the same
universality if all occurrences on that rank were substituted, or greater
universality if only some occurrences were substituted (so some occur-
rences of the old variable remain). Consequently, we have increased the
universality of at least some rank of some literal, which makes the clause
more universal.

If the clause is generalised by dropping literals, we can prove that a subset C ′

given by C = C ′ ∪ {L} is always more universal by induction on number of
literals. If C ′ is the empty clause, the result follows trivially since the empty
clause is more universal than any other clause. Likewise, if all literals in C ′ are
strictly more universal than L, then C ′ is trivially more universal than C.

For the inductive step, suppose the above trivial cases do not hold. Then,
the minimally universal literal L′ = min univC

′ = min univC, and C ′ is strictly
more universal than C if and only if C ′\L′ is strictly more universal than C \L′,
which is given by the inductive assumption.

Consequently, in whatever way a clause C ′ θ-subsumes clause C, C ′ >pl C.
Since any clause that θ-subsumes C can be produced by applying some number
of such generalisation steps, by transitivity of the preference relation, all those
clauses are strictly preferred to C.

Corollary 9.13. Preference honors generality as given by θ-subsumption.

Proof. Follows directly from de�nition 7.19 together with theorems 9.11 and
9.12.

However, it is not known whether preference honors logical entailment.
We now see that the presented preference relation meets all requirements

listed at the beginning of this section. However, the de�nition given is not
necessarily the strongest one that the other conditions permit. Future work
may show improvements in some of these directions:

1. an intuitively acceptable strengthening of the given preference relation

2. a preference relation that provably honors logical entailment

3. a proof that the preference relation presented here honors logical entail-
ment

4. a more straightforward de�nition of the preference relation.

9.3 Examples of plausible clauses

Now that we have a de�nition of preference, it is possible to examine some
examples of plausible clauses. Let us start with the simplest possible example,
a generalisation of an unfalsi�ed unary predicate.

59

Example 9.14. The clause C = ∀xPx is plausible with respect to the theory
O = {Pc}.

Proof. Of the clauses that are preferred to C, only its inverse ∀x¬Px is relevant
with respect to C. However, the latter clause is inconsistent with O, so no
witness set K may contain it. We don't need to consider clauses that are
irrelevant with respect to C, because they cannot have any consequences when
combined with C. Consequently, there is no witness of C's implausibility, so C
is plausible.

A merger of two theories with no common predicates will have all and only
the plausible clauses of both theories. This is not true for Hempel's con�rmation
relation (see section 3.2).

Example 9.15. The clause C1 is plausible with respect to theory O1, and C2

is plausible with respect to theory O2:

O1 = {Pa}
C1 = ∀xPx

O2 = {Qb}
C2 = ∀xQx

C3 = ∀x(¬Px ∨ ¬Qx)

(97)

Both C1 and C2 are also plausible with respect to O1∪O2. C3 is consistent with
O1∪O2 but implausible: there is a witness set K = {C1, C2} of its implausibility,
since K is consistent with O, K ∪ {C3} is inconsistent and both clauses in K
are preferred to C3. C3 is also implausible with respect to both O1 and O2,
since for both theories, it is a disjunction of a falsi�ed clause with an irrelevant
clause.

A disjunctive clause may be plausible if all the inverses of its disjuncts are
falsi�ed.

Example 9.16. The clause C = ∀x(Px ∨Qx) is plausible with respect to the
theory O = {Pa,¬Pb,¬Qa, Qb}.

Proof. In the list, we have the clauses which are preferred to and relevant with
respect to C:

C1 = ∀xPx

C2 = ∀x¬Px

C3 = ∀xQx

C4 = ∀x¬Qx

C5 = ∀x(Px ∨ ¬Qx)
C6 = ∀x(¬Px ∨Qx)
C7 = ∀x(¬Px ∨ ¬Qx)

(98)

Of these, C1 . . . C6 are falsi�ed by O, so they cannot be in any witness set of
C's implausibility. As for C7, we notice that the set O ∪ {C,C7} is consistent,
so the set {C7} cannot witness the implausibility of C, either. For similar
considerations, C7 is also plausible with respect to O.

60

9.4 Problems with the preference relation

The preference relation presented here possesses some nice properties, but it
is by no means perfect. One aspect that is not taken properly into account is
the plausibility of clauses with restricted domain. This means a clause which
contains an universally quanti�ed variable, but that variable is an argument of
a function f , so the domain of the quanti�cation is constrained to the codomain
of the function f .

Example 9.17. It would seem intuitive if clause C was plausible with respect
to theory O:

O = {¬P (a), P (f(a))}
C = ∀xP (f(x))

(99)

However, the following clauses prove C to be implausible:

D1 = ∀x∀y(¬P (x) ∨Q(x, y))
D2 = ∀x∀y(¬Q(f(b), y))

(100)

It can be seen that K = {D1, D2} is a witness set for C, because K implies
¬P (f(b)) which is consistent with O but inconsistent with C, and both D1 and
D2 are preferred to C.

The problem here seems to be that the variable y on rank 0 protects, so to
say, the clause D2 from being less universal than C. This would suggest that
the problem could be �xed by giving a de�nition of universality of literals that
treats variables di�erently, but it is not so easy to invent a de�nition that �xes
this problem and still meets the other conditions of the preference relation.

Another problem is that the preference relation potentially disregards recur-
sive clauses, as it is based on θ-subsumption and not logical entailment. This
has potentially big consequences. A recursive clause C may, for instance, be
implausible by a witness set whose clauses are all more speci�c than C, as
preference does not necessarily honor logical entailment for recursive clauses.
Dealing with these problems is left for future research.

61

10 Possibilities of the maximal plausible general-

isation

10.1 Conclusions

This thesis has presented a novel approach to induction. The approach is mo-
tivated by three main ideas:

1. the need to �nd a precise de�nition for the term plausible;

2. the de�nition of induction as a process that produces consistent extensions
of our world view; and

3. an attempt to devise a description of induction that can be implemented
algorithmically.

These three goals are nicely met by the de�nition of maximal plausible general-
isation. The de�nition presented is by no means the only possible one, but for
every choice that has been made, some intuitive argumentation has been o�ered.
There are numerous details that need to be sorted out, such as the best de�nition
of the preference relation. However, I believe that the conditions of plausibility
and completeness provide a �rm foundation for classi�catory induction.

The de�nition of plausibility deserves special attention, as it is quite di�erent
from any probability-based de�nition. Clauses are either totally plausible or
totally implausible; and while all conclusively proved statements are always
plausible and all conclusively refuted statements are always implausible, the rest
of all statements also fall into the two categories. Plausibility of a statement is
de�ned with respect to the validity of other statements. Simplifying a little, we
could say that a sentence is plausible when it is the broadest hypothesis that is
unrefuted by our experience.

The de�nition of induction in this thesis has the bene�t that it has a very
simple setting. The result of inductive inference is only dependent on the input
theory; the inductive process uses no background theories, no initial probabil-
ities, nor any kind of anterior hypotheses. The results of induction are purely
an extension of the facts that we already know. As such, this kind of induction
can be used to generalise any kind of theory whatsoever, be it originally based
on observation or not.

The induction framework also accounts for a problem that has been sel-
dom addressed in inductive logic. Namely, the maximal plausible generalisation
excludes irrelevant sentences, which are usually permitted by refutation-based
frameworks for induction: if induction is taken to con�rm any kind of unre-
futed hypothesis, then all kinds of irrefutable hypotheses become as �plausible�
as hypotheses that can actually be tested. Our plausibility framework, com-
bined with symmetry with respect to negation, provides an argument for why
sentences are not con�rmed by a theory for which they are irrelevant.

10.2 Algorithmic induction

Although the matter has not been directly addressed in this thesis, it should be
possible to implement this kind of induction as a terminating algorithm. Since
it is unnecessary to examine irrelevant clauses, we can �nd all (nonrecursive)
inductive consequences of a theory O by the following steps:

62

1. From all clauses C ∈ O, form all generalisations and gather them in H1 =
{D : C ∈ O,D �θ C}.

2. Connect the clauses in H1 by forming disjunctions of them so that vari-
ables in two clauses may be rewritten to be the same:

Conn({}) = {{}}
Conn({C} ∪K) = Conn(K) ∪ {Cσ ∪D : D ∈ Conn(K), σ ∈ SS(C,D)}

H2 = Conn(H1)
(101)

where SS(C,D) is the set of all substitutions that substitute variables in
C with those in D.

3. From the clauses in H2, form all subsets that are minimally inconsistent
with O, and �lter out the clauses that are least preferred in those mini-
mally inconsistent subsets.

4. The remaining clauses in H2 form the inductive closure of O.

The e�ciency of this method can be improved in many ways. For instance,
clauses in H2 that are inconsistent with O can be disregarded, because they are
implausible and no witness set can contain them. It is also probably possible
to build H2 incrementally by considering each of the clauses C ∈ O in turn and
appropriately weakening clauses that are refuted by C. However, such concerns
are outside the scope of the current thesis, and left for future research.

Also, future research in inverting implication may give a more �ne-grained
method of generalisation and specialisation of clauses than θ-subsumption.

10.3 Developments in the preference relation

The preference relation, as de�ned in section 9, manages to meet the conditions
postulated in section 7, but is quite probably not the best possible de�nition.
The preference relation could be improved in several areas.

Strength ordering of terms The preference relation honors generality of clauses
as given by θ-subsumption, but literals with complicated terms are some-
times ordered unintuitively (see section 9.4). As a result, the MPG ex-
cludes some clauses that would seem intuitively plausible.

Simplicity The de�nition of the preference relation is complicated and could
possibly be simpli�ed. One possibility in this direction would be some
application of �attened representation of clauses, where function terms
are replaced by literals that state their conditions explicitly.

Honoring logical entailment In the current work, it is left open whether
the preference relation honors generality of clauses as de�ned by logical
entailment.

63

10.4 Conceptualisation

The applicability of the maximal plausible generalisation of a theory rests crit-
ically on the correctness of the information (and informativeness) of the input
theory. However, real-world induction processes rely on observational data, and
the process of producing a precise and correct observation report from obser-
vational data � that is, conceptualisation of observational data � is anything
but trivial.

Even though conceptualisation is strictly outside the scope of this thesis, the
processes of syntactic induction and conceptualisation are clearly related. For
example, the formation of the maximal plausible generalisation gives hints about
what kind of conceptualisation is needed for induction. Also, the de�nition of
plausibility gives a practical heuristic of what should be done when we have two
equally strong but mutually inconsistent hypotheses: gather proof against one
or the other. Finally, the MPG can potentially be used in veri�cation of con-
ceptualisations: a counterintuitive MPG hints at an error in conceptualisation.

64

References

[Car50] Rudolf Carnap. Logical Foundations of Probability. The University
of Chicago Press, 1950.

[Fla95] Peter A. Flach. Conjectures � an inquiry concerning the logic of in-
duction. Institute for Language Technology and Arti�cial Intelligence,
April 1995.

[Fla96] Peter A. Flach. On the logic of induction. 1996. fetched, April
20, 2007, http://www.cs.bris.ac.uk/��ach/Conjectures/PS/�ach-
LogicOfInduction.pdf.

[Hem43] Carl G. Hempel. A purely syntactical de�nition of con�rmation. Jour-
nal of Symbolic Logic, 8(4):122�143, 1943.

[Hem45] Carl G. Hempel. Studies in the logic of con�rmation. Mind, 54(213�
214):1�26,97�121, 1945.

[IA93] Peter Idestam-Almquist. Generalization of clauses. PhD thesis,
Stockholm University, Department of Computer and Systems Sci-
ences, Edsbruk, Sweden, 1993.

[Kal07] Panu A. Kalliokoski. A theory-based logic of inductive generalisation.
Bachelor's thesis, University of Helsinki, Department of Theoretical
Philosophy, 2007.

[Meh99] Joke Meheus. Deductive and ampliative adaptive logics as tools in
the study of creativity. Foundations of Science, 4:325�336, 1999.

[Mit82] Tom M. Mitchell. Generalization as search. Arti�cial Intelligence,
18(2):203�226, 1982.

[Mug92a] S.H. Muggleton. Inductive logic programming. In Muggleton
[Mug92c], pages 3�27.

[Mug92b] S.H. Muggleton. Inverting implication. In Proceedings of the Second
Inductive Logic Programming Workshop, pages 19�39, Tokyo, 1992.
ICOT (Technical report TM-1182).

[Mug92c] Stephen Muggleton, editor. Inductive Logic Programming. Academic
Press, London, England, United Kingdom, 1992.

[Plo71] G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis,
Edinburgh University, 1971.

[Ren86] Larry Rendell. A general framework for induction and a study of
selective induction. Machine Learning, 1:166�226, 1986.

[RN03] Stuart J. Russell and Peter Norvig. Arti�cial Intelligence: a Modern
Approach. Prentice Hall, Pearson Education International, 2003.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23�41, 1965.

65

[Sol64] R. J. Solomono�. A formal theory of inductive inference. Information
and Control, 7:1�22, 1964.

[SS88] Manfred Schmidt-Schauss. Implication of clauses is undecidable. The-
oretical Computer Science, 59:287�296, 1988.

[ZZ96] Denis Zwirn and Hervé P. Zwirn. Metacon�rmation. Theory and
Decision, 41(3):195�228, 1996.

66

