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Abstract
Wavelet based time frequency representations of various signals
are shown to reliably represent perceptually relevant patterns at
various spatial and temporal scales in a noise robust way. Here
we present a wavelet based visualization and analysis tool for
prosodic patterns, in particular intonation. The suitability of
the method is assessed by comparing its predictions for word
prominences against manual labels in a corpus of 900 sentences.
In addition, the method’s potential for visualization is demon-
strated by a few example sentences which are compared to more
traditional visualization methods. Finally, some further appli-
cations are suggested and the limitations of the method are dis-
cussed.
Index Terms: continuous wavelet transform; speech prosody;
intonation analysis; prominence

1. Introduction
The assumption that prosody is hierarchical is shared by pho-
nologists and phoneticians alike. There are several accounts for
hierarchical structure with respect to speech melody: In the tone
sequence models which interpret the f0 contour as a sequence
of tonal landmarks of peaks and valleys (e.g. [15]) the hierarchy
is mainly revealed at the edges or boundaries of units whereas
in superpositional accounts (e.g., [13, 6]) it is seen as a superpo-
sition of different levels at each point of the contour. The prob-
lem with the tone sequence models stems from their phonolog-
ical nature which requires a somewhat discretized view of the
continuous phonetic phenomena. The superpositional accounts
suffer, conversely, from the lack of signal based categories that
would constrain the analysis in a meaningful way. Both mod-
els suffer from being disjointed from perception and require a
priori assumptions about the utterances.

Wavelets emerged independently in physics, mathematics,
and engineering, and are currently a widely used modern tool
for analysis of complex signals including electrophysiological,
visual, and acoustic signals [5]. In particular, the wavelets have
found applications in several speech prosody related areas: The
first steps of the signal processing by the auditory periphery are
well described by models that rely on wavelets [23, 22, 17];
they are used in a robust speech enhancement in noisy signals
with unknown or varying signal to noise ratio, in automatic
speech segmentation, and in segregation along various dimen-
sions of speech signal in a similar way as mel-cepstral coeffi-
cients [2, 1, 8, 9]; the multiscale structure of the wavelet trans-
form has been taken advantage of in musical beat tracking [19].
The quantitative analysis of speech patterns through wavelets
might also be relevant for understanding the cortical processing
of speech (e.g. [3, 14, 7]).

In the present paper, we apply the wavelet methods to

recorded speech signals in order to extract prosodically impor-
tant information automatically. Here, only the fundamental fre-
quency of the speech signal is analyzed by wavelets although
similar analysis could be performed to any prosodically rele-
vant parameter contour (e.g., the intensity envelope contour or
a speech rate contour) or even the raw speech signal itself.

The analysis of intonation by wavelets is not a new idea.
Discrete wavelet analysis with Daubechies mother wavelets
was the key component in automatically detecting the cor-
rect phrasal components of synthesized f0 contours of the Fu-
jisaki model further developed under the name general super-
positional model for intonation proposed by van Santen et al.
[21, 12]. Continuous wavelet transforms with Mexican hat
mother wavelet have been used for Fujisaki accent command
detection by Kruschke and Lenz [10]. Overall, previous work
with wavelets and f0 have been mainly concerned with utilizing
wavelets as a part of model development or signal processing
algorithm, instead of using the wavelet presentation itself.

In Finnish, the prosodic word is an important hierarchical
level and the prominence at that level reveals much of the syn-
tactically and semantically determined relations within the ut-
terances. We have successfully used a four level word promi-
nence in text-to-speech synthesis in both Finnish and English
[20] and the automatic detection of word prominence is a pre-
requisite for building high quality speech synthesis. In relation
to both a tone sequence and superpositional accounts the suc-
cesfull detection of word prominence would be related to distin-
guishing the accentedness of the unit as well as the magnitude
of the accent.

Using an inherently hierarchical analysis we can do away
with a fixed model and try to directly link acoustical features of
an utterance to the perceived prominences within the utterance.
In order to evaluate the wavelet analysis we calculated CTW
based prominences for about 7600 separate words in 900 ut-
terances previously annotated by human labelers and compared
various wavelet and f0 based features with each other. In this
paper we first discuss the CWT and its application to f0 and
then show the quantitative evaluation followed by discussion
and conclusion.

2. Continuous wavelet transform
The continuous wavelet transform (CWT) can be constructed
for any one-dimensional or multidimensional signal of finite en-
ergy. In addition to the dimensions of the original signal, CWT
has an additional dimension, scale, which describes the internal
structure of the signal. This additional dimension is obtained
by convolving the signal by a mother wavelet which is dilated
to cover different frequency regions [5]. The CWT is similar to
the windowed Fourier transform: the CWT describes the time-
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Figure 1: Different analyses aligned temporally. Top pane depicts the continuous wavelet transform with Mexican hat mother wavelet
of f0, second pane shows the interpolated f0 contour; third pane shows spectrogram of the speech signal; the bottom pane shows gain.
The light gray vertical lines show the word boundaries. The text superposed to the third pane transcribes the uttered words (The ship
was moved outwards and the gap between the board of the ship and the gangplank got wider, still.)

frequency behaviour of the signal and the signal can be recon-
structed from the CWT by inverse wavelet transform. We use
here a Mexican hat shaped mother wavelet which corresponds
formally to the second derivative of the Gaussian, see pages 76–
78 in [11]. In the Figure 1, the top pane shows the CWT of the
f0 contour shown in the second pane. The peaks in f0 curve
show up in the CWT as well, but the size of the peaks in the
wavelet picture depends on the local context: the higher at the
picture, or in other words, the coarser the scale, the slower the
temporal variations and the larger the temporal integration win-
dow. Although several hierarchical levels emerge, the quantita-
tive evaluation of the suitability of the CWT to prosodic analysis
is only performed on word level. Note that in Finnish, content
words have a fixed stress on the first syllable, clearly visible
in the Figure 1. The third and fourth panes show the spectro-
gram and the intensity envelope of the same utterance. The time
scales in the wavelet picture range from the 67 Hz as finest to
less than 1 Hz as coarsest.

3. Quantitative evaluation
A visualization tool cannot be evaluated quantitatively as a
whole. However, if the different temporal scales reflect per-
ceptually relevant levels of prosodic hierarchy, the representa-
tion of f0 at any scale should correlate with judgements of the
relative prominence at that particular level. This hypothesis is
tested at the level of prosodic word. Although word prominence
is signaled by f0, it is, to large extent, signaled by other means
as well including intensity, duration, word order, and morpho-
logical marking. Hence, the f0 based prominence annotation is
compared to a simple baseline f0 prominence annotator and to
the labels obtained from phonetically trained listeners.

3.1. Recorded speech data

The evaluation data consisted of 900 read sentences by a pho-
netically trained, native female speaker of Finnish. Linguisti-

cally, the sentences represented three different styles: modern
standard scientific Finnish, standard Finnish prose, and phonet-
ically rich sentences covering the Finnish phonemes. The sen-
tences were recorded using high quality condenser microphone
in a sound proof studio, digitized, and stored on a computer
hard drive. The mean durations of the sentences had average
durations of 6.1 s, 3.5 s, and 3.8 s. The total duration amounted
to 1h 1 min. Acoustic features were extracted of the utterances
with GlottHMM [16], and then the utterances were aligned with
the text.

3.2. Fundamental frequency extraction

The fundamental frequency of the test utterances were extracted
by GlottHMM speech analysis and synthesis software. In Glot-
tHMM analysis, the signal is first separated to vocal tract and
glottal source components using inverse filtering, and the f0 is
then extracted from the differentiated glottal signal using au-
tocorrelation method. Parameters concerning voicing thresh-
old and admissible range of f0 values were tuned manually for
the current speaker. While GlottHMM performs some post-
processing on analyzed f0 trajectories, deviations from per-
ceived pitch remain, particularly in passages containing creaky
voice. Thus, f0 values were first transformed to logarithm scale
and then all values lower than 2 standard deviations below the
mean of log f0 were removed.

The unvoiced segments of the speech and the silent inter-
vals make the direct wavelet analysis impossible since f0 is not
well defined for these segments. Hence, the unvoiced gaps were
filled using linear interpolation. Additionally, to alleviate edge
artifacts, the continuous f0 contour was extended over the silent
beginning and end intervals by replacing the former by the mean
f0 value (logarithmically scaled) over the first half of the com-
pleted f0 contour, and the latter by the mean over the second
half. Then the f0 curve was filtered by a moving average Ham-
ming window of length 25 ms and finally normalized to zero
mean and unity variance.
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Figure 2: The word prosody scale is chosen from a discrete set of scales with ratio 2 between ascending scales as the one with the
number of local maxima as close to the number of words in the corpus as possible. The upper pane shows the representations of f0 at
different scales. The word level (4.2 Hz; see text) is drawn in red. The lower pane shows the f0 curve. The abscissa shows the frame
count from the beginning of the utterance (5 ms frame duration).

3.3. Baseline annotation based on f0 signal

For each word in the evaluation data, we extracted two common
measurements from the preprocessed and normalized f0 sig-
nal, the maximum value observed during word (BMax) and the
maximum minus minimum (BRange). The measurements were
not further processed, despite the scale differences compared to
manual annotation, as only correlation was being tested.

3.4. CWT annotation based on f0 signal

The CWT transform was first perfomed with one scale per oc-
tave, with finest scale being 3 frames or 15 ms. Then, the scale
of interest for word prominence was selected as the one with
positive peak count closest to the number of words (see Figure
2; the word scale corresponds to 4.2 Hz in the current data).
This is intuitively suitable for Finnish, with relatively few un-
accented function words. Three wavelet based measurements
were then extracted for each word, height of the first local max-
imum (WPeak) as well as the same two measurements as in f0

baseline (WMax, WRange). If the word contained no maxima,
then the prominence of the word was set to zero. Note that the
peak method is not applicable to raw F0, as the noisier con-
tour contains many peaks. More complex measurements were
experimented with, such as averaging over multiple scales, but
with only moderate success.

3.5. Prominence labeling

Ten phonetically trained listeners participated in prominence la-
beling. The listeners were instructed to judge the prominence
of each word in a categorical scale: 0 (unaccented, reduced); 1
(perceivably accented but no emphasis); 2 (accented with em-
phasis); 3 (contrastive accent). The listeners reported to have
based their judgements mainly on listening and secondarily to
the available Praat analyses of pitch, intensity, and spectrogram.
Every listener labeled 270 sentences in such a way that every
sentence was labeled by three listeners. The prominence of a
word was set to the average of the three judgements.

3.6. Statistical analysis

The two baseline annotations and the three wavelet based an-
notations were compared to the listeners’ judgements of word
prominence by linear regression analysis. The amount of vari-
ance explained (R squared) by the regression model was used
as an indicator for the goodness of the used measure.

3.7. Results

The baseline measure BMax has a strong correlation to the
prominence judgements with 37 % of the variance explained.
The other baseline measure BRange explained 36 % of the
variance. The wavelet based measures fitted better to the data:
WMax and WRange explained 47 % and 39 % of the vari-
ance, respectively. The more involved measures WPeak ex-
plained 53 % of the variance.

4. Discussion
The results of the evaluation show that it is fairly straightfor-
ward to extract prosodically relevant information form the CWT
analysis. In this case it was at the level of prosodic word (which
in Finnish correponds well with the grammatical word). As can
be seen in Figures 1 and 2, there are other levels both above
and below the word that are relevant and if discretized, form a
hierarchical tree which can be further exploited for instance in
text-to-speech synthesis. However, such an analysis is not free
of problems. For instance, the temporal scale corresponding to
syllables becomes coarser (higher levels in the Figure 1) when
the speech slows down, as is the case in e.g. pre-pausally.

What is important to notice here is that the CWT analysis
– as applied to the pitch contour – takes into account both the
f0 level and its temporal properties as cues for prominence. Al-
though we only used one level it is the analysis as a whole that
we are interested in. As mentioned earlier, the wavelet analy-
sis can be done on any prosodically relevant signal either alone
or jointly – although multidimensional may no longer be easily
visualizable.
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Figure 3: Comparison of selected word scale and original f0 contour with detected peaks marked with gray triangles. Observe that the
wavelet contour is free of noise and declination trend.

5. Conclusion
Continuous wavelet transfrom, a standard mathematical tool
for simultaneous analysis and visualization of various tempo-
ral scales of a signal, is applied to f0 signal of recorded speech.
At the temporal scale corresponding to prosodic word, the lo-
cal maxima correlate strongly with the listeners’ judgements
on the perceived word prominence. This is taken as evidence
that the small and large scale contributions induced by segmen-
tal micro-prosody and phrasal intonation components are effec-
tively removed by the analysis. Moreover, a hierarchical struc-
ture emerges which is easily visible and has similarities with the
classical description of prosodic structure through a prosodic
tree. Unlike other hierarchical models of prosody, the struc-
ture rises directly from the signal with no assumptions on the
f0 model.

Some interesting future directions could include building a
’spectrogram of prosody’ -visualization tool combining spectro-
gram and prosody in the same picture, attempting to discretize
the hierarchical structure for higher level applications, apply-
ing the decomposed prosodic features for TTS prosody models,
studying other prosodic features such as energy by CWT, and,
finally, exploring the relationship between the CWT analyses
and human auditory processing.
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