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B.Wozna@mp.ajd.czest.pl

Abstract. We present Mcmas-x, an extension of the Obdd-based model
checker Mcmas for multi-agent systems, to explicit and deductive knowl-
edge. We use Mcmas-x to verify authentication properties in the Tesla

secure stream protocol.

1 Introduction

Model checking has traditionally been used for the verification of reactive sys-
tems whose properties are specified in one of the many variants of temporal logic.
But autonomous and open systems, such as multi-agent systems [25] are best
described and reasoned about by richer formalisms whose study is often pursued
in frameworks studied in Artificial Intelligence (AI). One of the richer logics
used in AI for this task is epistemic logic, or logic for knowledge [7] often com-
bined with temporal logic [16, 9, 17, 14]. Epistemic logic has been shown useful
in the modelling of a variety of scenarios from robotics, communication, etc, all
sharing the need to represent formally the knowledge of the agents. Also of great
interest is the use of temporal-epistemic formalisms to represent and analyse for-
mally security protocols. While the original BAN logics [5] lacked computational
grounding, more recent attempts [10, 15] provide a full trace-based semantics to
interpret the epistemic modalities as well as standard temporal modalities. Key
to these approaches is the use of not only a modality for implicit knowledge,
representing the knowledge that can be ascribed to a principal from an external
point of view, but also one of explicit knowledge [7, 21, 13].

While model checkers for standard temporal (implicit) knowledge have re-
cently been made available [8, 19, 12], they currently do not support explicit
knowledge and derivable notions and so their applicability to an “epistemically-
oriented” verification of security protocols has not been pursued yet1.
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1 Anonymity protocols (such as the dining cryptographers) can successfully be
analysed by using implicit knowledge only[8, 24, 11].
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The aim of this research note is twofold: first we present a model checker
that supports modalities for explicit and deductive knowledge; second we on the
use of these techniques to validate the correctness of Tesla [20], a protocol for
secure real-time streaming.

The work presented here builds upon our earlier analysis of Tesla[15] and
our engineering of Mcmas [12], a symbolic model checker for multi-agent sys-
tems. The rest of the paper is organised as follows. In Section 2 we present syntax
and semantics of the logic formalism used throughout the paper. In Section 3 we
briefly present Mcmas-x. In Section 4 we introduce the Tesla protocol and in
Section 5 we model check some of its key properties. We conclude in Section 6
by discussing experimental results.

2 A Temporal Epistemic Logic

We shortly present the syntax and semantics of TDL [15], a multi-modal tem-
poral epistemic logic with security-specialised primitives; we assume familiarity
with the intuitive meaning of basic cryptographic primitives like keys, nonces,
pseudo-random functions, and MAC functions. This section summarises material
in [15].

Syntax. We begin with the definition of messages, which constitute a base
for the security-specialised part of TDL.

Assume the following disjoint sets: a set K = {k1, k2, . . .} of symmetric and
asymmetric keys, a set N of nonces, a set T = {t1, t2, . . .} of plain-texts, and a set
F of commitments to keys defined by {f(k) | k ∈ K where f : K → {0, 1, . . .} is a
pseudo-random function}; the commitment to a key k is an integer value that is
computed by applying a pseudo-random function f to key k. It is assumed that
f−1 cannot be computed from f , so the key k cannot be computed from the
commitment to k. The set of messages M is defined by the following grammar:

m := t | k | n | f(k) | m · m | {m}k | MAC(k,m)

where t ∈ T, k ∈ K, n ∈ N, f(k) ∈ F, m is a generic message, and MAC : K×M →
{0, 1, . . .} is a message authentication code function. Again, we assume that the
inverse of MAC cannot be computed (so the key k cannot be inferred from the
MAC value).

We write m · m′ for the concatenation of m and m′, {m}k for encryption
of m with the key k, and MAC(k,m) for the message authentication code of
m and k. We assume that the set K is closed under inverses, i.e., for a given
key k ∈ K there is an inverse key k−1 ∈ K such that {{m}k}k−1 = m. If the
cryptosystem uses symmetric keys, then k = k−1; for the public cryptosystem
k and k−1 are different. We also define a submessage binary relation v on M as
the smallest reflexive and transitive relation satisfying the following conditions:
(1) m v m · m′, (2) m v m′ · m, (3) m v {m}k.

Let PV be a set of propositional variables, AG a finite set of agents, p ∈ PV ,
i ∈ AG, and m ∈ M. The set WF(TDL) of well-formed TDL formulas is defined
by the following grammar:



ϕ := p | hasi(m) | senti(m) | receivedi(m) | fakedi(m) | droppedi(m) |
¬ϕ | ϕ ∨ ϕ | E©ϕ | E(ϕUϕ) | A(ϕUϕ) | Kiϕ | Xiϕ | Aiϕ

The meaning of temporal and epistemic operators is standard. We shall further
use the shortcut Diα to represent E(KiαUXiα). The formula Diϕ is read as
“agent i may deduce α (by some computational process)”. For more details we
refer to [15, 13].

Interpreted Systems. In this section we will briefly summarise the multi-
agent framework [7], over which a semantics for TDL will be given. In particular,
we will focus on a specific class of multi-agent systems, appropriate to modelling
security protocols. These are message-passing systems in which one or more of
the agents is an adversary controlling the communication channel.

A multi-agent system (MAS) consists of n agents and an environment, each
of which is in some particular local state at a given point in time. We assume
that an agent’s local state encapsulates all the information the agent has access
to, and the local states of the environment describe information that is relevant
to the system but that is not included in any local agent’s state; the environment
can be viewed as just another agent, as we will do here.

In the security settings, in particular here, we assume that the local state of
an agent is a sequence of events of the form (e0, . . . , em), where e0 is the initial
event, and for i ∈ {1, . . . ,m}, ei is a term of the form sent(i,m) or recv(m),
where m is a message and i is an agent. The term sent(i,m) stands for the agent
has sent message m to agent i. Similarly the term recv(m) represents that the
agent has received message m. Note that in recv(m) the sender is not specified.
This is because the receiver will not in general be able to determine the sender
of a message he has received.

A multi-agent system is not a static entity. Its computations are usually
defined by means of runs (see [7]), where a run is a sequence of all the possible
global states. Thus, in these settings, an interpreted system for a multi-agent
system is defined as a set of runs together with a valuation function for the
propositional variables of the language under consideration. We interpret TDL
on an extension of interpreted systems representing awareness sets; for more
details we refer to [7, 15].

Definition 1 (Interpreted system). Let AG be a finite set of n agents, and let
each agent i ∈ AG be associated with a set of local states Li, and the environment
be associated with a set of local states Le. Then, an interpreted system is a
tuple M = (S, T,∼1, . . . ,∼n,V, A1, . . . , An) such that S ⊆

∏n

i=1 Li × Le is a
set of global states, T ⊆ S × S is a serial (temporal) relation on S, for each
agent i ∈ AG, ∼i⊆ S × S is an equivalence (epistemic) relation defined by:
s ∼i s′ iff li(s

′) = li(s), where li : S → Li is a function that returns the local
state of agent i from a global state, V : S → 2PV is a valuation function, and
Ai : Li → 2WF(TDL) is an awareness function assigning a set of formulas to
each state, for each i ∈ AG.

Awareness sets represent facts (expressed as TDL formulas) an agent is
aware of at a given state; we refer to [7, 15] for more details.



Satisfaction. A path in M is an infinite sequence π = (s0, s1, . . .) of global
states such that (si, si+1) ∈ T for each i ∈ IN. For a path π = (s0, s1, . . .), we
take π(k) = sk. By Π(s) we denote the set of all the paths starting at s ∈ S.

Definition 2 (Satisfaction). Let M be an interpreted system, s a state, and
α, β TDL formulas. The satisfaction relation |=, indicating truth of a formula
in M at state s, is defined inductively as follows:
(M, s) |= p iff p ∈ V(s), (M, s) |= α ∨ β iff (M, s) |= α or (M, s) |= β,

(M, s) |= ¬α iff (M, s) 6|= α, (M, s) |= E©α iff (∃π ∈ Π(s))(M, π(1)) |= α,

(M, s) |= E(αUβ) iff (∃π ∈ Π(s))(∃m ≥ 0)[(M, π(m)) |= β and (∀j < m)(M, π(j)) |= α],
(M, s) |= A(αUβ) iff (∀π ∈ Π(s))(∃m ≥ 0)[(M, π(m)) |= β and (∀j < m)(M, π(j)) |= α],
(M, s) |= Xiα iff (M, s) |= Kiα and (M, s) |= Ai(α),

(M, s) |= Aiα iff α ∈ Ai(li(s)), (M, s) |= Kiα iff (∀s′ ∈ S) (s ∼i s′ implies (M, s′) |= α).

Note that since Diα is a shortcut for E(KiαUXiα), as defined on page 3, we have
that (M, s) |= Diα iff (M, s) |= E(KiαUXiα).

Henceforth, we will only consider models with a fixed interpretation for the
security-specialised propositional variables senti(m) and receivedi(m); in par-
ticular, we take |= to be defined for these propositions as follows:
(M, s) |= senti(m) iff (∃m′ ∈ M)(∃j ∈ AG) such that m v m′ and sent(j, m′) ∈ li(s),
(M, s) |= receivedi(m) iff recv(m) ∈ li(s).

We leave definitions of the other security-specialised propositions open. Namely,
for distinct protocols these propositions will be defined differently. They are not
needed for the analysis of Tesla presented below.

Let M be an interpreted system. We say that a TDL formula ϕ is valid in
M or M is a model for ϕ (written M |= ϕ), if M, s |= ϕ for all states s ∈ S.

3 The model checkers Mcmas and Mcmas-x

Overview of Mcmas. Mcmas is a symbolic model checker for multi-agent
systems developped for the automatic verification of temporal and epistemic
modalities in interpreted systems [7] as well as other modalities to reason about
strategies and correct behaviour of agents [24]. Mcmas implements efficient ver-
ification algorithms based on ordered binary decision diagrams (Obdds, see [4]
for more details).

An input to Mcmas is a program written in ISPL (Interpreted Systems Pro-
gramming Language) representing all possible evolution of the system under
analysis. ISPL is an SMV-like programming language for the description of in-
terpreted systems. An ISPL program contains a list of agents, each of which is
declared by reserved keywords:

Agent <AgentID> <AgBody> end Agent

Above <AgentID> is any string uniquely identifying an agent, and <AgBody>

contains the declarations of the local states, the actions, the protocols, and the
evolution function for the agent. Following the agents’ declaration, an ISPL file
includes sections to declare the set of initial states, the evaluation function, and



the set of formulae to be verified. Figure 1 reports the definition of a simple
agent; we refer to the documentation available [22] for more details about the
ISPL language.

Agent SampleAgent

Lstate = {s0,s1}; Lgreen = {s0,s1}; Action = {a1,a2};

Protocol:

s0: {a1}; s1: {a1, a2};

end Protocol

Ev:

s1 if (Lstate=s0 and Action=a1 and AnotherAgent.Action=a7);

s0 if (Lstate=s1 and Action=a1);

end Ev

end Agent

Fig. 1. An agent’s definition using ISPL.

Mcmas is available under the terms of the GNU General Public License
(GPL) and it has been compiled on a number of platform. Mcmas is run from
the command line and it accepts various input parameters to inspect and fine-
tune its performance.

Mcmas-x: an extensions of Mcmas. Mcmas-x extends Mcmas to support
the verification of the operators Xi, Ai, and Di (see Section 2). Given an inter-
preted system M , let [[ϕ]] denote the set of global states of M is which ϕ holds.
By the definition of satisfiability given in Section 2, we have:

[[Ai(ϕ)]] = {s ∈ S|ϕ ∈ Ai(li(s))}

Using standard procedures (e.g., see [6, 24]) this definition can be re-casted in
terms of Obdds, so that the set [[Ai(ϕ)]] can be expressed as an Obdd. Conse-
quently, the sets of states [[Xi(ϕ)]] and [[Di(ϕ)]] can be expressed using Obdds,
too.

We have implemented software procedures to perform the computation of
these sets automatically in a tool called Mcmas-x available for download [23].

Mcmas-x extends Mcmas’s syntax in two ways: first, it supports the ver-
ification of all the formulae introduced in Section 2; second, it augments the
description of an agent with the definition of the function Ai. This latter step is
achieved by introducing the keywords

Aware: <definitions> end Aware

as exemplified in Figure 2. In this example, the agent SampleAgent is aware of
propositions p1 and p2 in local state s0, and of proposition p2 in local state s1.
Note that, following the definitions of Section 2 no consistency checks are made
when defining awareness sets.



Agent SampleAgent

Lstate = {s0,s1,s2,s3}; Lgreen = {s0,s1,s2}; Action = {a1,a2,a3};

Protocol: [...] end Protocol

Ev: [...] end Ev

Aware: s0 : {p1,p2}; s1 : {p2}; end Aware

end Agent

Fig. 2. An agent’s definition using ISPL in Mcmas-x.

4 The Tesla protocol

In this section we introduce the timed efficient stream loss-tolerant authentica-
tion (Tesla) protocol [20]. Tesla provides secure authentication of the source
of each packet in multicast or broadcast data streams. Five schemes of the pro-
tocol exist; each assumes a single sender (S) broadcasting a continuous stream of
packets to receivers (R) acting independently of one another; below we will de-
scribe the first variant of the Tesla protocol, and we will take into consideration
one receiver only.

In order to provide security, in Tesla it is assumed that: (1) the sender and
the receiver must be loosely time-synchronized; this can be done via a simple
two-message exchange using, for example, the NTP protocol [18]; (2) the pro-
tocol must be bootstrapped through a regular data authentication system; this
can be done using any secure session initiation protocol; (3) the protocol uses
cryptographic primitives like MAC values and pseudo-random functions (PRFs);
MAC is computed by a message authentication code function that takes as input
a message and a secret key, whereas PRF provides commitments to keys. It is
assumed that S and R know the PRF as well as the message authentication
code function to be used in the session.

Following [1, 3], we now outline a Tesla scheme assuming that the protocol
uses one pseudo-random function only, the participants are initially synchro-
nised, R knows the disclosure schedule of the keys, and S sends packets at reg-
ular intervals that are agreed with R during the synchronisation process. More
details are in [20].

Let [x, y] denote the concatenation of x and y. Assuming that S has a digital
signature key pair, with private key k−1

S
and public key kS known to R, and

that R chooses a random and unpredictable nonce, the initial n steps, for n > 1,
of the protocol for one sender and one receiver are the following:
( -1) R → S : nR

(0) S → R : {f(k1), nR}k
−1

S

(1) S → R : [P1, MAC(k1, P1)], for P1 = [t1, f(k2)]
(2) S → R : [P2, MAC(k2, P2)], for P2 = [t2, f(k3), k1]
. . .

(n) S → R : [Pn, MAC(kn, Pn)], for Pn = [tn, f(kn+1), kn−1]
As one can see from the above, with the exception of the two initial packets,

which are used to bootstrap the broadcasting process, each packet contains: (1)
the message ti to be delivered; (2) a commitment f(ki) to the key to be used to



encode the MAC of the next packets; (3) the key ki that was used to encode the
MAC of the previous sent packet; (4) the MAC MAC(ki, Pi) of the current packet.

Tesla guarantees, among others, the following security property: “the re-
ceiver does not accept as authentic any message unless it was actually sent by
the sender”.

We verify this and other properties by means of Mcmas-x in the next section.

5 The Tesla protocol and Mcmas-x

In the section we model check the Tesla protocol by means of Mcmas-x. To
do this we define and encode an interpreted system M = (S, T,∼S,∼R,∼I,

V, AS, AR, AI) representing Tesla’s executions. Given our state space needs be
finite we set a limit n to the number of packets that can be broadcast during
one session; obviously this assumption does not affect the analysis as no attack
depends on the number of broadcasted packets.

As defined in Section 4, the Tesla protocol involves two participants: a
sender (S) and a receiver (R), communicating through an unreliable channel
that is under complete control of an intruder (I). In the interpreted system
framework it is convenient to see the principals as agents, and the intruder as
the environment. While specifying the agents (i.e., defining a set of local states,
a set of actions, a protocol, and an evolution function), we assume that S has
all the information he needs to prepare a packet, i.e., he has a complete set of
messages MS ⊆ M. We also assume that MS constitutes S’s initial database that
remains accessible to him throughout the run. Moreover, we assume that I has all
the information needed to prepare well-formed packets, with MI ⊆ M such that
MI ∩ MS = ∅, and we assume that MI can grow during the run. We work with
a Dolev-Yao intruder in control of the channel and able to encrypt and decrypt
messages if he has the appropriate key. We assume the intruder sends (resend
and fakes) well-formed packets only, i.e., any packet contains a message body, a
key commitment, a key, and an appropriate MAC value. Finally, we assume that
S, R, and I use a shared PRF and a shared MAC function, R and I know the
public key of S, S and I begin with disjoint sets of keys, and that R knows the
precise schedule of packets, and that this information is incorporated into the
first packet P0, which cannot be dropped or faked.

We introduce the following sets of local states for S, R and I, respectively:

LS = {[·], [recv(nR)], [sent(R, P0)]} ∪ {[sent(R, Pi−1), sent(R, Pi)] | 0 < i ≤ n}
∪{[sent(R, Pi−1), sent(R, Pi), sent(R, Pi+1)] | 0 < i ≤ n}.

LR = {[·], [sent(S, nR)], [stop], [recv(P0)]} ∪ {[recv(P0), recv(P2)]}∪
{[recv(Pi), recv(Pi+1)] | 0 ≤ i ≤ n} ∪ {[recv(P0), recv(P ′

1), recv(P2)]}∪
{[recv(Pi−1), recv(Pi), recv(Pi+1)] | 0 < i ≤ n}∪
{[recv(Pi−1), recv(Pi), recv(Pi+2)] | 0 < i ≤ n}∪
{[recv(Pi), recv(Pi+1), recv(P ′

i+2)] | 0 ≤ i ≤ n}∪
{[recv(P0), recv(P ′

1)]} ∪ {[recv(P0), recv(P ′
1), recv(P ′

2)]}.



LI = {[·], [recv(nR)], [recv(P0)]} ∪ {[recv(Pi), recv(Pi+1)] | 0 ≤ i ≤ n}∪
{[recv(Pi−1), recv(Pi), recv(Pi+1)] | 0 < i ≤ n}∪

{[recv(P0), recv(P1), send(R, P ′
1)]}∪

{[recv(P0), recv(P1), send(R, P ′
1), recv(P2)]}∪

{[recv(P0), recv(P1), send(R, P ′
1), recv(P2), send(R, P ′

2)]}∪
{[recv(Pi−1), recv(Pi), recv(Pi+1), send(R, P ′

i+1)] | 0 < i ≤ n}.

and the following sets of actions, performed in compliance with the description
in Section 4:

– ActS = {λ} ∪ {sendPi, acceptPi | 0 < i ≤ n}.
– ActR = {λ, nonce, stop} ∪ {acceptPi | 0 < i ≤ n}.
– ActI = {λ} ∪ {dropPi, fakePi, acceptPi | 0 < i ≤ n}.

The intuitive meaning of S’s local states is the following: [·] represents S’s
initial state in the protocol; [recv(nR)] represents the message sent by R in order
to establish communication; [sent(R, P0)] represents the fact that S has just sent
packet P0 to R; [sent(R, Pi−1), sent(R, Pi)] and [sent(R, Pi−1), sent(R, Pi),
sent(R, Pi+1)] represent fact that S has sent packets Pj , where j ≤ i+1 and 0 <

i ≤ n. With regards to S’s actions, action λ is the null-action, sendPi stands
for S sending packet Pi, and acceptPi represents that S recognises packet Pi as
accepted by the receiver.

R’s local states above stand for the following: [·] represents R’s initial state
in the protocol; [sent(S, nR)] represents the fact that R has just sent the nonce
nR to S and he is waiting for packets; [stop] represents the fact that R has just
stopped collecting packets; [recv(P0)], [recv(P0), recv(P2)], [recv(Pi), recv(Pi+1)],
[recv(Pi−1), recv(Pi), recv(Pi+2)] and [recv(Pi−1), recv(Pi), recv(Pi+1)] repre-
sent the packets R has received from S; [recv(P0), recv(P ′

1)], [recv(P0), recv(P ′
1),

recv(P ′
2)], [recv(P0), recv(P ′

1), recv(P2)], and [recv(Pi), recv(Pi+1), recv(P ′
i+2)]

represent the faked packets R has received. As regards to R’s actions, acceptPi

represents R accepting packet Pi as authentic; the other action names have
intuitive correspondences.

For what concerns I, [·] represents I’s initial state in the protocol; [recv(nR)]
stands for I’s state following the interception of R’s initial message to S; [recv(P0)],
[recv(Pi), recv(Pi+1)] and [recv(Pi−1), recv(Pi), recv(Pi+1)] represent the pack-
ets intercepted by I; [recv(P0), recv(P1), send(R, P ′

1)], [recv(P0), recv(P1),
send(R, P ′

1), recv(P2)], [recv(P0), recv(P1), send(R, P ′
1), recv(P2), send(R, P ′

2)],
and [recv(Pi−1), recv(Pi), recv(Pi+1), send(R, P ′

i+1)] represent the packets in-
tercepted by I and their faked versions. The action acceptPi denotes the fact
that intruder is not able to fake or drop the packet Pi; dropPi (respectively
fakePi) encodes the action of I dropping (respectively faking) packet Pi.

We have now defined the set of states and set of actions for the multi-agent
system representing Tesla, so we can describe how the protocol evolves. In
the multi-agents settings this is defined by means of an evolution function t :
S×Act → 2LS×LR×LI , where Act ⊆ ActS×ActR×ActI and S ⊆ (LS×LR×LI).
The function t gives the transition relation T ; namely, for all the s, s′ ∈ S,



(s, s′) ∈ T if there exists an act ∈ Act such that t(s, act) = s′. We do not report
here the the full evolution function for Tesla; this can be found in [15].

To finalise the description of the interpreted system M for Tesla, we have
to define a valuation function V : S → 2PV and the awareness functions AX :
LX → 2WF(TDL), for X ∈ {S,R, I}. We first introduce the following set PV of
propositional variables, which we find useful in analysis of the TESLA scenario:

PV = {hasR(m), sentS(m), receivedR(m), droppedI(m), fakedI(m) | m ∈ M}

We define V : S → 2PV as follows:
– hasR(ti) ∈ V(s) if there exist packets Pi−1, Pi and Pi+1 such that f(ki) v

Pi−1, ti v Pi, ki v Pi+1, recv(Pi−1) ∈ lR(s), recv(Pi) ∈ lR(s) and
recv(Pi+1) ∈ lR(s),

– sentS(m) ∈ V(s) if there exists packet Pi such that m v Pi and sent(R, Pi) ∈
lS(s), for any m ∈ MS,

– receivedR(m) ∈ V(s) if recv(m) ∈ lR(s), for any m ∈ MS ∪ MI,
– droppedI(m) ∈ V(s) if recv(m) 6∈ lR(s) and recv(m) ∈ lI(s), for any m ∈

MS,
– fakedI(m) ∈ V(s) if there exist packets Pj such that m v Pj and send(R, Pj) ∈

lI(s), for any m ∈ MS ∪ MI.
For R we take the following awareness function AR : LR → 2WF(TDL). Let

l ∈ LR and α be a TDL formula. Then, α ∈ AR(l) if:
– α = receivedR(m) and recv(m) ∈ l and m ∈ MS ∪ MI,
– α = fakedI(m) and l = [stop] and m ∈ MS ∪ MI,
– α = droppedI(m) and l = [stop] and m ∈ MS,
– α = hasR(m) and (recv(m) ∈ l or ∃m′ such that m v m′ and recv(m′) ∈ l)

and m ∈ MS ∪ MI.
For X ∈ {S, I}, the awareness function AX : LX → 2WF(TDL) is the following:
for any l ∈ LX , AX(l) = ∅.

To generate automatically the above interpreted system of Tesla we have
produced a C++ program that given the number n of packets generates the
corresponding ISPL code (see Figure 3) to be used with Mcmas-x. In this way
we can generate a number of instances of the protocol which can help evaluate
the performance of Mcmas-x.

Given the interpreted system M of Tesla as defined above, we now set out to
check by means of Mcmas-x all the properties examined in [15]. First we would
like to establish whether or not Tesla satisfies the desired security property:
“the receiver does not accept as authentic any message unless it was actually
sent by the sender”, i.e., whether or not M is a model for the following TDL
formula: for any 0 < i < n,

hasR(ti) ⇒ (sentS(Pi−1) ∧ sentS(Pi) ∧ sentS(Pi+1)) (1)

Next we would like to check whether or not Tesla satisfies the stronger
property “the receiver does not accept as authentic any message unless he knows
that it was actually sent by the sender”. This is expressed by the following TDL
formula: for any 0 < i < n,



Agent Receiver

Lstate={empty,send_s_nr,stop,recv_p0,recv_p0_recv_p1,recv_p0_recv_p2,...};

Action = {nothing,nonce,stop,accept_p1,accept_p2}; Protocol:

empty : {nonce}; recv_p0 : {nothing};

send_s_nr : {nothing}; stop : {stop};

recv_p0_recv_p2 : {stop}; recv_p0_recv_p1 : {nothing};

end

Protocol Ev:

stop if ((Lstate=stop and Action=stop and Sender.Action=nothing and

Intruder.Action=nothing) or (Lstate=recv_p0_recv_p2 and Action=stop

and Sender.Action=nothing and Intruder.Action=nothing) or ...);

...

end Ev Aware:

recv_p0 : {received_r_p0,has_r_p0};

recv_p0_recv_p1 : {received_r_p0,received_r_p1,has_r_p0,has_r_p1};

recv_p0_recv_p2 : {received_r_p0,has_r_p0,received_r_p2,has_r_p2};

...

end Aware

end Agent

Fig. 3. A fragment of R’s definition in the ISPL format for n = 2.

hasR(ti) ⇒ KR(sentS(Pi−1) ∧ sentS(Pi) ∧ sentS(Pi+1)) (2)

Further, we would like to check whether Tesla meets the following prop-
erties: (3) “it is always the case that the receiver does not accept as authentic
any message unless he knows that it was actually sent by the sender”. (4) “the
principals know about the presence of the intruder”. (5) the receiver is able to
check the source of messages, i.e., “if a packet is faked, then the receiver would
deduce this”. (6) “if the receiver receives some packets Pi−1, Pi, and Pi+1 with
a message ti v Pi, and he does not accept ti as authentic, then he knows that
at least one of the packets was not sent by the intended sender”. In other words,
if a packet was indeed faked, the receiver is able to deduce this fact. (7) “the
intruder has to send a packet at each interval, which was agreed by the sender
and the receiver at the beginning of the transmission under consideration”.

The properties above can be expressed in a temporal-epistemic language by
means of the formulas below.

A�(hasR(ti) ⇒ KR(sentS(Pi−1) ∧ sentS(Pi) ∧ sentS(Pi+1))) (3)

KSE♦(sentS(Pi) ∧ ¬receivedR(Pi)) (4)

fakedI(Pi) ⇒ DR(fakedI(Pi)) (5)

(receivedR(Pi−1) ∧ receivedR(Pi) ∧ receivedR(Pi+1) ∧ ¬hasR(ti)) ⇒ (6)
(

KR(¬sentS(Pi−1) ∨ ¬sentS(Pi) ∨ ¬sentS(Pi+1))∧



(DR(fakeI(Pi−1)) ∨ DR(fakeI(Pi)) ∨ DR(fakeI(Pi+1)))
)

A�(droppedI(Pi) ⇒ DR(droppedI(Pi)) (7)

6 Experimental results and conclusions

We have employed the ISPL generator defined in the previous section to create a
number of instances of the Tesla protocol, from 5 to 320 steps. We have verified
all formulas above for all steps analysed, demonstrating the correctness of Tesla

with respect to the specifications above. While process algebras [3] and Lynch-
Vaandrager automata [1] have previously been used to analyse the protocol, our
results demonstrate the correctness of it with respect to the temporal-epistemic
specifications above.

Mcmas-x uses Obdds to verify the properties. Consequently most of the
computational time spent by the model checker is used to construct a symbolic
representation of the model for the system. Table 1 reports some experimental
results obtained using a MacBook Pro equipped with a 2.1GHz Intel proces-
sor, 2GBytes of RAM, running Mac OS X 10.4.6. The first column reports the
number of packets, the second column contains the time required for the verifi-
cation, while the third and the fourth column provide information about space
requirements. In particular, column three lists the number of variables required
to encode the example: from this value the size of the model can be deducted.
For instance, 85 Boolean variables are required when n = 200, corresponding to
a model of size 285 ≈ 4 · 1025. The last column reports the actual memory used
by Mcmas-x.

N. of packets Time (sec) N. of BDD variables Memory (bytes)

5 2 40 4612376
10 3 48 4737832
20 8 55 5644888
50 25 67 6562280
100 38 76 9572968
150 77 82 9191848
200 92 85 10674616
250 110 91 11481224
320 190 91 15703560

Table 1. Experimental results.

Figure 4 depicts all the experimental results for time and memory require-
ments. The oscillating behaviour of the memory requirements shown in the figure
is justified by the heuristic techniques employed in the construction of Obdds
(a similar behaviour was observed for a different example in [11]). Nevertheless,
an increasing trend is evident, especially for time requirements (dotted line).



Fig. 4. Experimental results.

Given that no other model checker is available to verify explicit knowledge we
cannot offer a direct comparison of the results above. On their own they do seem
adequate. Obviously, other specialised model checkers exist to verify temporal
only properties (or simply reachability) for security protocols, notably AVISPA

[2], but given the different emphasis in the two approaches it would not seem
appropriate to compare experimental results.
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13. A. Lomuscio and B. Woźna. A combination of explicit and deductive knowl-
edge with branching time: completeness and decidability results. In Proceedings of

DALT’05, volume 3904 of LNAI, pp. 188 – 204. Springer Berlin/Heidelberg, 2006.
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