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Multiple Multidimensional Morse Wavelets
Georgios Metikas and Sofia C. Olhede

Abstract—This paper defines a set of operators that localize a
radial image in space and radial frequency simultaneously. The
eigenfunctions of the operator are determined and a nonseparable
orthogonal set of radial wavelet functions are found. The eigen-
functions are optimally concentrated over a given region of radial
space and scale space, defined via a triplet of parameters. Analytic
forms for the energy concentration of the functions over the re-
gion are given. The radial function localization operator can be
generalised to an operator localizing any 2( 2) function. It is
demonstrated that the latter operator, given an appropriate choice
of localization region, approximately has the same radial eigen-
functions as the radial operator. Based on a given radial wavelet
function a quaternionic wavelet is defined that can extract the local
orientation of discontinuous signals as well as amplitude, orienta-
tion and phase structure of locally oscillatory signals. The full set
of quaternionic wavelet functions are component by component or-
thogonal; their statistical properties are tractable, and forms for
the variability of the estimators of the local phase and orientation
are given, as well as the local energy of the image. By averaging es-
timators across wavelets, a substantial reduction in the variance is
achieved.

Index Terms—Analytic signal, image analysis, monogenic signal,
Riesz transform, scalogram, wavelets.

I. INTRODUCTION

LOCALIZED analyses in one–dimension(al) (1-D) have
proven to be remarkably successful—notably so wavelet

analyses. The latter is based on the idea that observed signals
varying over an increasing argument, time say, exhibit disparate
and highly localized behavior associated with variations at a
particular scale and at particular time points. Analysis is based
on the wavelet transform (WT), given for signal using
mother wavelet via

(1)

where is referred to as the scale, the translation and denotes
conjugation. Equation (1) facilitates the recognition of patterns
specific to time points and length scales associated with scale

if the function is chosen such that the support of is
essentially limited to a region near the origin, and the support of
the Fourier transform of , is essentially limited to a region
near some reference frequency . A function cannot
have compact support in the two domains simultaneously and to
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measure the localization of an arbitrary function , localiza-
tion operators were introduced. The operators generalize trunca-
tion operators, that act consecutively in time and frequency [1],
to operators simultaneously localizing a signal in time and fre-
quency (or equivalently scale) over a given region [2], [3]. The
eigenfunctions of such operators are optimally localized with
respect to a given time-frequency domain and the problem of
defining appropriate operators in one dimension and calculating
their eigenfunctions has been considered in detail [2]–[5].

Extending 1-D local decomposition methods to 2-D anal-
ysis is nontrivial as variation in the spatial variable is often as-
sociated with a specific direction, that in general, may not be
aligned with the observational axes. If a local oscillation at angle

with respect to the axes and frequency is consid-
ered, then a tensor product local decomposition would repre-
sent the structure as oscillations in both axes with local fre-
quency and . A local decom-
position in the correct direction would yield constant behavior
in one orthogonal axes and an oscillation with frequency
in the other. This gives a simpler representation. Naturally ei-
ther of the two representations describes the same structure in
two different ways, where a directional representation has the
potential of additional compression and elegance. The latter fea-
tures provide arguments in favour of using a decomposition that
can be tuned to a given direction. In 2-D, localization will be
made to spatial point , in scale to and in orienta-
tion to angle , following work by Antoine, Murenzi
& Vandergheynst [6]. For a discussion of recently developed
multidimensional decompositions, see Antoine, Murenzi, Van-
dergheynst, and Ali [7]. To construct a 2-D continuous wavelet
decomposition we define the dilation , and translation
operators for , with , , by

and , and define
. The WT is constructed from the family of func-

tions defined in terms of the mother wavelet function
by

(2)

with given as the rotation matrix [7]. The 2-D continuous
wavelet decomposition of image is constructed from

(3)

Equation (3) is a continuous space decomposition of an ob-
served signal, and will be used for analysis of observed signals,
rather than serve as the basis of an image estimation procedure,
which requires perfect reconstruction decomposition filters. The
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decomposition of (3) will, with an appropriate choice of wavelet
function, uncover/disentangle behavior across specific spatial
points, scales and orientation, and facilitate the analysis of non-
stationary image phenomena. In perfect analog with 1-D theory
an appropriate choice of wavelet function will correspond to
using a mother wavelet function that is local to, or essentially
supported near, and some particular choice of scale and
direction localization. Existing continuous wavelet methods that
deal with the orientation of the image explicitly are based on di-
rectionally selective filters, or directional wavelets.

Antoine, Murenzi, and Vandergheynst [6] defined com-
plex directional wavelets with a preferred orientation in the
frequency domain, as their frequency support is limited to a
predefined cone, parameterized via the opening and closing an-
gles of the cone [6, pp. 324, 325]. Highly directional wavelets,
by necessity, filter the image nonisotropically. For images
containing directional structures this will lead to very useful
representations of these directional structures. We wish to con-
struct wavelets where the local decomposition coefficients are
calculated by averaging the image over a region in the spatial
domain which is defined in terms of radial distances from its
centre point, and associates oscillations with approximately the
same period. This choice associates energy at spatial point
and spatial frequency with energy at and depending on
the value of and .

As aforementioned, an isotropic WT is used to separate out
disparate components occurring at different scales and/or at dif-
ferent spatial locations. The directional structure of the image
will at this stage not be considered explicitly. To facilitate the
radial separation of structures, wavelets that are optimally con-
centrated in radial space and radial frequency are required. We
define a family of radial 2-D localization operators and find the
radial eigenfunctions of any given operator in this family, de-
noted the isotropic Morse wavelets. The eigenfunctions can be
considered as optimally concentrated over a given domain. Any
operator in this family of localization operators is characterized
via three parameters: the two shape parameters that determine
the localization region, and thus the compromise between spa-
tial position and spatial frequency localization, and the hyper-
volume parameter. Any choice of the parameters fixes a par-
ticular operator that in turn possesses a family of eigenfunc-
tions. These functions are orthogonal, and indexed via an integer
value , but do not depend on the value of the hypervolume. The
eigenvalues explicitly give the radial concentration of the eigen-
functions. The eigenfunctions are related, but not equivalent, to
the even eigenfunctions of the 1-D Morse localization operator
[3].

The second part of the paper discusses the choice of local
directional representation. The directional representation will
correspond to the extension of the isotropic wavelets into a di-
rection sensitive analysis tool representing the local oscillatory
structure in terms of a phase, similar in nature to the 1-D analysis
of [8]. For every fixed value of , and given radial eigenfunc-
tion wavelet, an additional pair of functions are defined for each
Morse wavelet, constructed in analog to analytic 1-D wavelets.
In 1-D, an even wavelet function is complemented by its Hilbert
transform and the two are combined into an analytic wavelet.
Analytic wavelets are used to represent local phase structure. In

2-D, several additional wavelets are calculated at each spatial
point. Each additional set of wavelets is considered to have the
same local spatial energy and variational structure as the orig-
inal wavelet. The full set of components is used to define the
local orientation and variational structure of an analyzed image.

We complement the real wavelet by a special pair of func-
tions, namely the Riesz transform pair [9] of the isotropic
wavelet, thus forming a monogenic wavelet [9]. The Riesz
pair should be thought of as a single vector valued object that
characterizes the orientation of the local variations. If treated
as a single vector valued object, the norm of the object may be
considered to have the same localization in space and spatial
scale as the original radial function, in analog to the Hilbert
transform [10] of a 1-D signal. A triplet consisting of the
original function plus the Riesz transforms are represented by
a positive real-valued amplitude, a direction of variation, and
a phase specifying the period of the variation. The triplet may
be represented using quaternions [11]. The quaternion algebra,
as we shall observe, allows for easy parameterization of phase
and orientation structure.

In 1-D analytic wavelets, i.e., Cauchy or Morlet wavelets
[12, p. 28], are used to identify local oscillatory structure of a
real-valued signal. The monogenic Morse wavelets proposed in
this article are a natural 2-D extension of the analytic Morse
wavelets [3]. The WT defines a local phase and orientation struc-
ture at each spatial position and spatial scale point. To show
the properties of the suggested decomposition particular classes
of signals are decomposed in terms of the monogenic Morse
wavelet decomposition. This includes examples of locally 1-D
signal structures such as edges and local oscillations, where gen-
eral images will correspond to a collection of such phenomena.
Note that edges, or spatial discontinuities, have an orientation if
they locally correspond to (1-D) curved discontinuities, and will
be characterized by their orientation and amplitude. Point (2-D)
discontinuities have no associated orientation, and correspond
to point locations and amplitudes. We discuss the extraction of
these characterising features from the WT of an image.

Oscillations may structurally take the form of 1-D objects
such as repeated lines with an even spacing that, if rotated to
the appropriate axes, can be locally described as constant in one
variable and as a sinusoid in the other. Two-dimensional oscil-
lations, circularly emanating from a single point, when consid-
ered locally at a distance from their source may be described
approximately as 1-D oscillations. The extraction of such typ-
ical signal features in terms of the wavelet coefficients will be
discussed. Note that if a sum of oscillatory components is ob-
served, the characterizing features could not be found directly
from the monogenic extension of the image, as then a single
component with a spatially varying phase function is not an ap-
propriate model for the original image. In this case, it is neces-
sary to combine the calculation of a local phase with scale-local-
izing methods such as the WT using the monogenic extension
of an isotropic real wavelet.

It is well known in image processing that phase information
[13] provides important structural information, and scale-local
image phase information will enable the disentanglement of dif-
ferent multiscale phase structures present at the same spatial
position. Potential applications include image segmentation as
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well as image feature recognition [14], based on criteria de-
fined from the local phase and magnitude via the WT of the
observed image. Analyses using the separable discrete WT in
addition with local phase structure characterizations, have been
previously considered [15], [16]. However, in contrast to such
procedures, we define multiple orthogonal continuous wavelets,
based on a different 2-D extension to the analytic signal. Other
notable quaternionic decompositions includes the work of [17],
however this decomposition is only suitable for deterministic
images, as the Wigner distribution is not estimated well for sig-
nals in noise [18].

The fourth section of the paper deals with application of the
theoretical framework to sampled images. We discuss the dis-
crete implementation of the 2-D monogenic Morse WT, via
the inverse discrete Fourier transform. We discuss the range of
values the scale and spatial parameters the WT may be calcu-
lated at from a given discrete sample of the image. Unavoidably,
most observed signals are contaminated by noise, and so the
local analysis of a noisy image is considered. As the operator
problem yields solutions of multiple orthogonal wavelets, un-
correlated estimates of local properties arising from using each
of the orthogonal wavelet functions in the analysis may be av-
eraged [1] to achieve a reduced variance in the estimation. Mul-
tiple orthogonal filters have been considered in several dimen-
sions for stationary processes [19], and nonstationary processes
[20] using the windowed Fourier transform and tensor product
windows, but our wavelets are in contrast to these methods or-
thogonal, nonseparable monogenic wavelet functions. The main
developments of this paper are thus concerned with the develop-
ment of radial localization in 2-D, the introduction of local di-
rectional analysis of images via the monogenic wavelets and the
derivation of the statistical properties of the developed methods.

II. NOTATION

The d-D inner product is given by ,
and, therefore, the d-D Fourier transform (FT) of is

. The d-D convolution of functions
and is given by with FT

. An arbitrary quaternion is denoted
by , where , ,

, while ,
, and . For more information on

quaternions, see [11]. The d-D FT in terms of any unit quater-
nion is , so that .
All implementations are carried out in terms of real-valued
quantities. The rotation operation is implemented using matrix

. We also define the
spatial variable , with corresponding
Fourier variable , the spatial vari-
able of the local decomposition ,
and its Fourier variable ,
where , , , and , , , . Let

.

III. LOCALIZATION OPERATORS

A. 1-D Localization Operators

One-dimensional local analysis is based on a decomposi-
tion of a function in terms of a set of wavelet functions

, local to scale and time . The coefficients of this
decomposition are defined by (1). Coefficient is
thus associated with the function . For the coefficients
to be interpretable as local contributions of , the mother
wavelet is chosen to be well localized to time and
frequency . In this case is associated with a
phase space of time and frequency, and uncovers the behavior
of in this phase space. To obtain well-localized ,
Daubechies and Paul [2] introduced localization operators, and
a full discussion of this topic can be found in [5, pp. 17–45].

To construct a localization operator a time-scale region and
a “fiducial vector” are chosen, where are
given fixed parameters. is picked to be essentially
supported near time and frequency ,
and is also the eigenfunction of a suitable differential operator
[5, p. 41]. A family of such functions are the Generalised Morse
fiducial vectors defined via their FTs in angular frequency

by [3, p. 2663]

if

if
(4)

where , and . From

, a family of coherent states , are
defined. Their FTs are given by [3, p. 2663]

(5)

where the parameter represents a dilation of ,
and when , the function is stretched out in time. If ,
the time-scale coherent state has been shifted by in time. If

, the coherent state has been shifted in time at a different
rate at any given scale, or subjected to a generalized time-shift,
see [3, p. 2663],[21]. is essentially supported near

, and

, where , 1, 2 are constants [2, p.
678]. The reason, in this context, for introducing the generalized
time-shift is to define projection operators with localization to
a larger class of time-frequency regions than solely allowing

would permit.
If is chosen [3, p. 2669] to satisfy the

condition , then any can be reconstructed
from the weighted , via the “resolution of identity”

(6)

where , is a normalization constant.
The right-hand side (RHS) of (6) can be thought of as an
operator; . Instead of reconstructing the
function by acting on it with , define an operator

by restricting the area of the integration to region
. projects the function into a new func-

tion , constructed from only using a subset of the
family of coherent states, those indexed by . Hence,

is local to a time-frequency domain , de-

termined by and . An example of is the
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Morse region
[3], where determines the area of , denoted .
The Morse region, for , maps out circles centred at

in the time-scale plane, with
and . As ,

.
The Morse localization operator localizes to

time-frequency region

Specifying determines , the localization region
of the projection operator. The same region is used to
construct different operators, localizing a function to different
time-frequency regions by the choice of and .

The ratio of the energy of a localized function to
the original function energy is a measure of the localization
of and is given by .

, and is well localized to if is
near one. The eigenfunctions of can be shown to achieve
maximum values of [3], and may be determined from the
differential operator that defined the fiducial vector: the local-
ization operator and the differential operator can be shown to
commute [5, p. 41].

B. 2-D Localization Operators

In 2-D the WT coefficients are given by (3), and is
associated with a given member of the wavelet family, .
If the mother wavelet is essentially supported at spatial position

and spatial frequency , then is essen-
tially supported at and . Then
is the local contribution of at and .
To construct mother wavelets with small essential support, 1-D
methods will be mimicked and 2-D localization operators for,
in theory, generic spatial and spatial frequency regions , are
constructed. This is done by specifying a fiducial vector ,
a family of coherent states , and the local index region,

is local to a given
spatial position and spatial frequency determined by the value of

thus specifies a region of space and spatial fre-
quency denoted , where the form of , combined with the
localization of , determine its form. The eigenfunctions of
the localization operator will be found, and correspond to opti-
mally local functions. The eigenfunctions are appropriate to use
as mother wavelets for analysis of images whose local content
can be averaged over .

Given an arbitrary function , assuming is
square integrable and satisfies the wavelet admissibility condi-
tion [7], with , a projection operator
is defined by

(7)

with constant. may be reconstructed from the weighted
sum of by taking , or

[7, p. 39]. The class of functions achieving

large values of the ratio of the energy of the projected signal
to the energy of the original signal (denoted ), are well
localized to . We shall build a new class of by redefining

and .
If is radial, in (3) is formed as a local weighted

sum of , giving an equal weighting in magnitude at
all spatial positions such that takes the same value.
This is a desirable property, as the notion of distance in the spa-
tial domain is naturally associated with the Cartesian distance
metric. Dahlke and Maass [22] have shown that the orienta-
tion and scale may be considered separately when determining
well-concentrated 2-D functions; furthermore radial functions
have optimal scale versus position localization. Thus isotropi-
cally well-localized functions can be modulated in direction to
obtain anisotropic well-localized functions. These factors moti-
vate the study of radial localization operators. We define

by restricting in terms
of and letting . The subscript of in-
dicates the isotropic structure of the region. Denote by

, the values of and obtained
for .

A family of coherent states denoted , will be con-
structed from an isotropic function . A coherent state
is (initially) defined by its FT in angular frequency

(8)

where is given by (4). The scale parameter for
stretches isotropically in the spatial domain.

The region does not restrict the value of and is
assumed to be radial: thus the choice of localization in is re-
dundant, and is not used in this section. In 2-D, the coherent state
is defined with a generalized spatial shift, in analog with (5).
The generalized shift is introduced to permit the localization to
a larger class of localization regions, as in 1-D. is es-
sentially supported only at a limited set of frequencies and so the
multiplication by the complex exponential is interpreted roughly
as an ordinary spatial shift. Using (7) to define the projection op-
erator, replacing by and by , a projec-
tion of the function is defined, and denoted .
As we wish to obtain well-localized isotropic functions, the next
step is to determine the isotropic eigenfunctions of this localiza-
tion operator.

C. Isotropic Localization of Isotropic Functions

Here it is assumed that is isotropic. We start by sim-
plifying the expression for for such .
This will lead to the definition of a new operator, valid for
isotropic functions only. The act of projecting cor-
responds to integrating over , and
the projection is calculated in the frequency domain. Write

, where , and
let , as well as .
Denote the zeroth Bessel function by [23, pp. 358–362],
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and recall . The FT of (7) with
, , and is

(9)

(10)

thus, defining , and the angular average of the coherent

state is with .
A change of variables to polar coordinates and integra-
tion over , and have been implemented, note that

, and the integration of the
complex exponential follows by [23, p. 364, 8.2.1]. The term

represents scale but does not depend on or . When
projecting the parameter in (9) corresponds to a gener-
alized spatial shift and the parameter in (10) is the distance of
the generalized spatial shift from the origin. As is radial,
the orientation of the shift is not important when calculating
the projection over , .

To project a radial function the expression in (9) can there-
fore be simplified to (10). It is still very difficult to determine
the radial eigenfunctions of the operator from (10). We shall de-
fine another localization operator that approximately performs
the same localization as , when is radial. The ac-
tion of the inconvenient Bessel function in (10) will be approxi-
mated, and will be replaced by another function, this
defining the new operator.

We define an alternative angular average coherent state
, for and in the angular frequency

domain by

(11)

is defined by (4) and . is
well localized in frequency near the circle , where

, and it de-

cays isotropically in space from . The

are localized to the circle . The factor
in the coherent state is added to ensure a suit-

able normalization of the function defined by (11).
To clarify the effects of replacing by in

(10) we introduce ,
and . The angular average of the transla-
tion by , denoted by , has a decay for large values

of that is the same as the decay of . Their
zero-crossing structure is also similar, and replacing one by
the other may be justified in terms of the asymptotic expan-
sion of the Bessel function [24]. Ignoring small arguments,
the two functions are performing a similar action, but the
functional behavior for small values of of and

are respectively given by

and , where the latter is
unbounded near . The angular average of the coherent
state defined using is written as and for
small values of

for some constant and . Hence, for , both
as long as , combined with the

previous constraints of , and , [3, p.
2663]. Given that the two different operators and
take approximately the same value at all values for which

has nonnegligible magnitude, can be

given the same interpretation as .

Given the similar nature of and we
shall replace the former function by the latter in (10) and, thus,
define a new projection operator. We shall write for

, and use this as the “radial coherent state.” A
projection operator is then defined for any radial function
in terms of an inner product

and localization region . We take
, where the is

added to the notation as is equivalent to a quarter of the
Morse domain . regulates the area of , denoted

. determine the shape of the localization domain

for , 3, 4 constants. , 3, 4 are the average
spatial position and modulus of the spatial frequency of the co-
herent state whose angular average corresponds to .

The projection operator, for a radial , is then defined by

(12)
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(13)

To retrieve the spatial domain operator the inverse FT of (13)
is calculated, and note that by definition . If the family

rather than were to be used to de-
fine the operator, then (12) is equivalent to (10), with re-
placed by .

It follows that

(14)

A “resolution of identity” (cf. [3, p. 2669]) is thus achieved for
radial functions when . The radial func-
tion is reconstructed as the domain encompasses all space for .

The eigenfunctions of the operator defined in (12) can be
found by solving

(15)

Fortunately, this equation can be directly related to the cor-
responding 1-D problem whose solution is known. The 1-D
Morse wavelet projection operator can for real and even,
for , (similar expressions are derived for , but
as we shall use this to obtain solutions to (15) we only need to
consider , and the term vanishes due to
symmetry arguments)

(16)

where we define

(17)

Kernel in (17) is similar to kernel of (13),
the only difference being that has the extra term,

, and . The Morse wavelets [3]
are the solution to

(18)

Consider (15); multiply both sides by , set
, and note that the equation to be

solved has now exactly the form of (18)

where , is used. Thus, the solutions of (15) are
given by

(19)

for , where are the even Morse
wavelets defined in 1-D, see [3], , ,
and enumerates the eigenvectors. The eigenvalues
correspond to

(20)

and this yields the concentration of

decreasing monotonically in . It may seem surprising that, in
2-D, the same eigenvalues, and, thus, concentration values, are
found as in the 1-D case. Note that the result is only derived for
a radial , that is constrained to the same behavior in both
spatial directions. The hypervolume of is directly
related to , and we may formulate the notion of bias in the
estimation (leakage) of local properties of the signal in terms
of the eigenvalues, as [3]. To reconstruct a single

function , the wavelet can, for a fixed value of
, be used to calculate and can be recon-

structed from (7) with . In theory functions
may also be represented by a decomposition in terms of the full
set , as this will form a basis of the radial square

integrable functions. The spatial localization properties of the
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Morse wavelets deteriorate with increasing and, therefore, fol-
lowing [1], only a finite number will be used for analysis.

D. Nonradial Localization Operators

was constructed in the radial frequency domain
and is valid for . To define an operator in 2-D, a generic
region will be used, and define as the hypervolume of

. Let

i.e., the region corresponds to a radial domain, with no direc-
tional asymmetries. The scale and modulus of the spatial shift
are constrained like the of the Morse region, . A
coherent state will be constructed to form the building
block of the projection operator. The coherent state at at a
given angular frequency is defined from generic fidu-
cial vector by

(21)

The definition of is analogous to (2), and corresponds

to (8) if is a dilation of by
, the translation is a generalized spatial shift in both axes,

i.e., the coherent state is multiplied by , and there
is a rotation of . The localization operator acting on
any function is defined from (7) with

, given by (21) and an arbitrary localizes
a function over a region . By calculating the moments
of in the spatial and spatial frequency domains we de-
termine that by restricting to we restrict to
some spatial and spatial frequency region . If
and then

for , 3, 4, taking the same values as in Section III-C.
We need to normalize the operator and take such

that as , . With
changes of variable given by ,

, , , ,
and

Define , so that

with , is reconstructed. By direct
calculation , and recall .

de-
termines the localization of , to any given

.
Furthermore when , the operator is related

to . In the frequency domain, from (9), with radial

, and we obtain

(22)

Note that if is sufficiently small and
the term for , is considered as the point

has zero measure in the plane. For the asymp-
totic approximation to the zeroth Bessel function is

, cf. [24]. We require
however, this is not an issue as and . For fixed
nonzero for values such that the integrand is nonzero

(23)
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The integration is over and also , hence, the
first term of (23) dominates over the second term. The integrand
of can be replaced by defined in
(13) of the previous section. The operator when acting on
in the frequency domain is then approximated via

Defining using and specifying
in (7) allows us to calculate the localization of an

arbitrary function to . The radial eigenfunc-
tions of are approximately those of ,
where the derivation of the approximation shows the reasoning
behind the definition of in more detail. Finally,

can be generalized to an arbitrary localization by
removing the constraint of radial symmetry in , and using
nonradial .

E. Eigenfunctions: The Isotropic Wavelet

From (19), note that the isotropic 2-D Morse wavelets are the
eigenfunctions of , given for , ,

, and fixed by

(24)

in terms of . Equation (24) is (19) with the 1-D
Morse wavelets substituted into the equation
from [3]. The quantity
is a normalization factor, , and
is a generalized Laguerre polynomial [23, p. 783]. The spa-
tial domain wavelets with are determined by the
inverse FT of (24). Since they are isotropic this is equivalent
to , where is
the zeroth Bessel function. Fig. 1 shows the
isotropic 2-D Morse wavelets in the spatial domain [(a) ,
and (b) ] and their modulus in the spatial frequency
domain [(c) , and (d) ]. Their radially symmetric
oscillatory structure is very clear, and their spatial decay is
radial from the spatial origin. Their modulus in the spatial
frequency domain demonstrates that they are bandpass fil-
ters, nonzero for a range of frequencies centred at the same
distance from the spatial frequency origin. The trough in the
modulus of the wavelet follows from the orthogonality
of and . The sum of the moduli squared,

i.e., , will be large in a ring-shape
structure.

To characterize the frequency content of the th wavelet, sup-
pressing the dependence, define

(25)

The magnitude square of the FT of analysis wavelet

will have a maximum at frequency and is unaffected by

Fig. 1. The isotropic Morse wavelets in the spatial domain, (l;m) = (8; 3)
and n = 0 (a), n = 1 (b). The modulus of the isotropic Morse wavelets in the
spatial frequency domain, (l;m) = (8;3) and n = 0 (c), n = 1 (d).

both and the rotation. Recall that in the analysis, as the eigen-
values decrease, and thus the spatial localization of
deteriorate with , only a finite number
will be used in direct analog to [1]. Analysis using the isotropic
Morse mother wavelets cannot extract directional structure as

, .

IV. LOCAL PHASE DESCRIPTIONS OF VARIATION

A. The Riesz Transformations

In 1-D, the analytic signal is used to unambiguously define
the amplitude and phase of a given real signal. Using an ana-
lytic analysis wavelet defines the local magnitude and phase of
a signal at each time and scale point via the WT. This is a ne-
cessity for the analysis of multicomponent signals [10]. A local
oscillation in 1-D is defined by its amplitude and phase where
the phase describes the dominant local instantaneous frequency
of the signal, whereas the amplitude gives the local energy con-
tribution. The analytic signal is constructed in the frequency do-
main by removing all negative frequencies in the signal, and
then inverting the FT—and so any real signal is comple-
mented by its Hilbert transform . The analytic signal
corresponds to . If an oscillation is
persistent over a range of times, then it will be heavily weighted
in the Fourier domain, and the analytic signal approximately
takes the form of a complex exponential.

The correct extension of the analytic signal to 2-D has been
the subject of much debate—of particular note are perhaps the
single orthant image of [25], the hypercomplex signal of [26]
and the monogenic signal of [9]. To calculate the monogenic
extension of a real image its two Riesz transforms [9]
are defined: , and
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, 1, 2, where as before denotes the 2-D con-
volution. The FTs of are given by

(26)

The full Riesz transform of an image is represented as
. Define the monogenic image

[9] as . This is a quaternionic object,
and following [9] a local amplitude, orientation and phase of the
image , may be defined from .

B. Locally Oscillatory Signals

Images that locally exhibit intrinsically 1-D oscillations will
be considered, and such images appear, for instance, in machine
vision, granular flow, and general oriented patterns [27]. They
can be modeled by a sum of locally modulated sinusoids as fol-
lows:

(27)

and let
, and .

The unit vector is assumed to be varying slowly, in
comparison with , across the spatial period, and the local
variable is defined. corresponds to
the orientation modulation (OM), whereas is the phase
modulation of component 1. as a function of plays
the same role as the phase/frequency modulation (FM) of a
1-D signal. Assume varies slowly in comparison to the
cosine term, and corresponds to the amplitude modulation
(AM). For examples of real images that can be modelled
in such a form, see Fig. 4(a) (T03_03.jpg), as well as
Fig. 4(b) (T24_17.jpg added to T24_23.jpg) from [30].
The former is a bark pattern, where analysis of the local
structure would give information regarding its formation
process, the latter is a combination of corduroy patterns, and
is an example of a structure whose local characterization
could be the basis of a segmentation algorithm of a picture
containing multiple patterns. It follows for ,
with , and ,

that .
The monogenic image of the th component is, in terms of

, given by

(28)

combining the calculation of the Riesz transformation of a si-
nusoid with linear phase [28], with a Taylor expansion of the
oscillation, and defining the error term as . Assuming
the orientation is constant across values of for which

is nonzero, we shall calculate the FT of in terms
of the unit quaternion instead of . De Moivre’s theorem
is still valid for any unit quaternion, and so can be in-
terpreted in terms of a decomposition in terms of oscillations in
direction . Note that

(29)

We apply the stationary phase approximation to the above inte-
gral [29]. We assume that

has the unique stationary point , and
that there is quadratic behavior around this point, i.e.,

, where is the
Hessian matrix of . Under these assumptions we
find that the only nonnegligible contribution in the inte-
gral of (29) is at , where

. Thus,

provides a local description of component near
, in terms of a local oscillation with parameters
, that may be determined from (28), just like the

analytic signal allows for the determination of a magnitude
and a phase in 1-D. The instantaneous frequency of the local
oscillations is , where the orientation of these oscilla-
tions, is given by . The sign of is taken so that the
orientation angle is restricted from to . Finally,
the local magnitude has the interpretation of local
energy presence.

If the image is actually a sum of several AM/FM/OM terms
present at the same spatial location, i.e., the signal is multicom-
ponent, as is the case in Fig. 4(b) and also often in many ob-
served images, we will not be able to use directly to
determine the properties of the local oscillations. This is due
to the components not being separated. The corresponding
problem with multi-component signals in 1-D is much docu-
mented [10]. Generally, to analyze multicomponent signals lo-
calized methods are combined with the analytic signal construc-
tion and for this purpose the local monogenic descriptions of
images will be calculated, cf. ridge analysis [29]. The local de-
scription will be able to resolve the individual components de-
pending on the choice of wavelet function . The descriptions
may when different oscillations are present at the same spatial
location extract well-behaved orientation, phase and amplitude
functions locally, and for this reason monogenic wavelets are
defined and used.

C. Monogenic Wavelets

In 1-D the analytic Morse wavelets can be constructed from
the even Morse wavelets. The even Morse wavelet is invariant
to sign changes of the argument, or time direction, whereas the
Hilbert transform of the even wavelet corresponds to the odd
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Morse wavelet. A monogenic version of isotropic wavelets in
2-D is constructed, based on the real isotropic Morse wavelets,
using the Riesz transforms. The monogenic wavelets are repre-
sented as quaternionic functions defined for each via

(30)

where the FT of the real part of the monogenic wavelet is given
by (24) and the additional two real functions are defined in the
Fourier domain as Riesz transforms of the isotropic wavelet
function via

(31)

We consider as a single

object. has the same norm as . The entire
monogenic wavelet thus has twice the norm of the isotropic real

wavelet, i.e., . Fig. 2 shows
plotted in the spatial domain [(a) and (b) ],
as well as the moduli of in the spatial frequency
domain [(c) and (b) ]. Note that, although the
real component of the monogenic wavelet is isotropic, the two
Riesz components of the monogenic wavelet are odd in the

and directions respectively. In the following, are
fixed and their values suppressed for notational convenience.
We define here the translated, rotated and dilated wavelet as

. This can also be thought of
as the sum of translating, rotating, and dilating each of the
real components of the mother wavelet. The continuous WT
of an image with respect to either the components of,
or with respect to the full quaternionic wavelet, is defined as

. The associated scalogram is

given by . The WT of image is
then given either in the spatial domain, or spatial frequency
domain, in terms of , where is the Fourier
variable for via

(32)

(33)

These equations follow by direct calculation.
The WT can, thus, be understood in terms

of the FT of , given by

. has

modulus , and the
modulus of the real isotropic wavelet is invariant with respect
to . In terms of , the monogenic wavelet is band passing
the image to frequencies with period , whereas the
term is repositioning the wavelet in orientation
depending on the value of .

Fig. 2. For (l;m) = (8; 3): the x Riesz transform Morse wavelets in the
spatial domain for n = 0 (a), and n = 1 (b). The modulus of the x Riesz
transform Morse wavelets in the spatial frequency domain for n = 0 (c), and
n = 1 (d).

When using more than one mother wavelet, letting
, we may note the following orthogonality

relations between the wavelets

(34)

The multiple Morse wavelets thus combine to form an orthog-
onal system, and this will have implications for their usage when
performing estimation of local characteristics of real images.
The total energy of the image using the th wavelet only is given
by

For any fixed , recast the full WT
of the noise as a vector with real valued entries,

. Then we note
that as is radially symmetric with

(35)

where . The WT only needs to be calculated at one
orientation, unlike the case with directional wavelets that filter
the wavelets selectively in the frequency domain. The prevalent
local directional structure of the signal at that position and scale
may be determined from the three wavelet coefficients at each

.
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V. THE MONOGENIC WT

The WT separates out the signal into local behavior, so that
different components present in the same signal can be esti-
mated. The Sections V-A and B relate typical local structures
in terms of their characterizations via their wavelet coefficients.

A. The Monogenic WT of Discontinuities

The idealized version of a point discontinuity at cor-
responds to , where is
assumed to be a well-behaved function at point .
This singularity is characterized by , its location, and

, the amplitude at the location. The WT of this object
is . This is
maximum near where the function has a modulus
square of . Thus, point singularities can

be located by finding maxima in . Furthermore
has no dependence on , and as the magnitude of the wavelet at
the origin is known, can be determined.

A 1-D singularity is modeled as
. The line

modulated by the value of is permitted, however,
we do not permit the line , as this would
lead to an image of infinite energy. Also, we constrain

, for calculational convenience. As-
sume that is a symmetric function around a maximum
at . We characterize the structure of , using
the WT. The WT with the isotropic mother wavelet, noting that
for some , , is given by the

equation shown at the bottom of the page). will
be large for values of such that

Similar results hold for , as , 1, 2
roughly have the same spatial support as . The loca-
tion of the singularity for any fixed value is identified as

, as maxima in the
modulus of the WT using the monogenic wavelet. The orien-
tation will be visually apparent from the plane and can be
determined at a fixed point . The FT of is

where is the FT of . The WTs of the Riesz compo-
nents of this image are

where . The FT of the rotated wavelet is by (35)
given by

with following mutatis mutandis. Calculating the
wavelet transform at , with

(36)

Equation (36) defines , as an even function
of , and . For fixed
values of a value of such that , de-
noted , can be found. When then

vanishes identically for all
. Hence, , while from (35) it follows

that the energy of the WT with is conserved under
rotations. Thus is maximum at , and .
With the correct choice of rotation the angle can be found
by maximizing the energy of and minimizing the
energy of . If the magnitudes of the two WTs at

are equal then , otherwise take a value of
that maximises .
has a stationary point at

(37)

corresponding to a maximum if the appropriate solution
is chosen. Note that if

with , is a maximum

whereas if the restric-

tion , or is made.
Thus at any fixed point the orientation that would result
from a line-discontinuity passing through can be determined
by utilizing the above equation, and this characterizes local
orientational structure. A line discontinuity can be locally char-
acterized, once separated from the rest of the signal using the
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monogenic Morse wavelet transform, in terms of its wavelet co-

efficients by its strength, given by maxima in ,
and its local direction, namely .

B. The Monogenic WT of AM/FM/OM Images

Analysis of AM/FM/OM images of the form given by (27),
is considered in this subsection. Then

where . Also

1, 2. It follows from (35) that
, with

, , cor-
responding to the local analog of (28). For multicomponent
images, by a suitable choice of wavelets we may be able to
separate the components, in the spirit of ridge analysis based on
complex wavelets [29]. Ridge analysis requires the assumption

,

at all considered, which imposes a constraint on , and
corresponds to a choice of .

Furthermore, the modulus of the WT is
, and the WT of is locally maximal

on the curve given by ,

where is given by (25). This defines the monogenic
wavelet ridges [29] of an AM/FM/OM image, where at any
point on this ridge, the local orientation may be computed.
Ridge analysis is based on the fact that not all information of
the redundant WT representation needs to be used to charac-
terize the image. As the ridge definition does not depend on the
angle , the transform can be calculated at only one value of

. The oscillatory components are characterized by their local
orientation, amplitude, and oscillation frequency

(38)

We have constrained and
by the choice of sign for the . Hence,

having isolated a local oscillatory component at point , it can
be characterized by (38). For further discussion of the analysis
of AM/FM/OM signals using the monogenic WT, including ex-
amples of univariate as well as bivariate analyses, see Metikas
and Olhede [31], [32].

VI. DIGITAL IMPLEMENTATION AND ESTIMATION

A. Digital Implementation

Given sampled image , where
the sampling period is and in and respectively, to
preserve the exact monogenic structure the WT is implemented
from the Fourier domain. The implementation follows very
much in the spirit of Olhede and Walden [3], and is calculated
by the inverse discrete FT, thus, making the algorithm of
order . With , and
denoting integer part, it follows:

(39)

where , 1, 2, , , and
. , and , 1, 2 are given by

(26). The WT at any value of can be found from (35) and by
calculating each individual , , 1,
2 from (39). For a discretely sampled image the WT can then
be calculated easily by the above procedure for
and . Also note the maximum and
minimum scales that can be resolved: the real 2-D even wavelet
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is built from a real 1-D wavelet corresponding to an es-
sentially supported bandpass filter, and, thus, there exists fre-
quencies and [3], such that

(40)

Assume that sampling is sufficiently fine so that
for all frequencies not in the Nyquist band. The WT can be
calculated only at scales such that

. This neces-

sitates . As
increases in magnitude, the wavelet becomes more peaked
in the frequency domain, and to ensure the wavelet covers
at least frequency points we constrain

. This gives clear
description on how to calculate the WT, and for what ranges of
the parameters the transform coefficients are meaningful.

B. Statistical Properties

Consider estimation of features present in an image im-
mersed in white noise where the image is collected in a
regular grid consisting of ,

1, 2. The observed image is modelled as
, with assumed to be isotrop-

ically Gaussian and white. It is assumed that ,
and . The WT of the
noise will also be Gaussian, as it corresponds to a sum of
jointly Gaussian variables. Thus to determine the distribu-
tion of the wavelet coefficients, its first and second order
structure is found at a fixed . The WT is a linear opera-
tion and . It follows that

, and the second order structure of
the estimators can be determined from the distribution
of the noise coefficients. In the appendix, with the ad-
ditional assumption of

, for fixed , ,
and , where the latter denotes a diagonal
matrix.

Any estimator of local signal properties needs to be
smoothed, or averaged to obtain a low variance [1]. The WT
using any of the specified wavelet functions averages the data
across a window in space and spatial frequency, ,
apparent from Fig. 1(a)–(d) as the spatial and spatial frequency
region the wavelets are essentially supported over. Thomson [1]
suggested forming estimates of local properties by averaging
local energy estimates using several orthogonal wavelets/func-
tions. This usage explicitly reduces the variability of the esti-
mates with a clearly specified averaging region .
Deterministic structure over is reenforced across
wavelet estimates, but the noisy uncorrelated behavior cancels.
The bias inherent in the averaging is characterized by the eigen-
values square of the localization operator. In the Appendix,
it is shown that ,

and, thus, is uncorrelated (and independent from the
Gaussianity assumptions on the errors) with unless

. Averages of the WTs and the scalograms across will
be defined and used as a basis for calculating estimators of other
quantities as ,

, with . For

, and images , ,
, is also defined.

We define the estimators and

, for , as well as

.
The Gaussian assumptions on then give

, where
. For most quantities intuitively a reduction of

in the variances is achieved by the averaging. The energy of the
image at point is estimated by

(41)

Up to order , with the additional assumption of the local-
ized behavior of constant across the support of the

wavelets, it can be shown

(42)

Hence the variance of the energy estimate decreases .

C. Distribution of Estimators

We may estimate the orientation of a discontinuity potentially
present at by maximizing the difference between
the energy of the second and first components. Each wavelet
indexed by satisfies (37) and thus averaging over the equations
gives

(43)

Let , which entails that
for , and expand the above expression

. Note that : the esti-

mator up to order is, thus, unbiased, and with



934 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 3, MARCH 2007

, the esti-
mator has variance

(44)

Thus, using multiple wavelets leads to a variance reduction. For
AM/FM/OM signals, we define the estimator for the orientation
angle of the unit quaternion at any fixed local point as

(45)

Given the WT of the noise has expectation zero, the estimator
is unbiased and it has variance, up to order

(46)

Using multiple wavelets leads to variance reduction. To estimate
the phase only a single wavelet is used, namely the . Due
to the orthogonality relations, the wavelet filters in the Fourier
domain cannot be strictly positive for all frequencies, and, thus,
for there are induced variations in the phase estimate
whenever the wavelet filter changes sign. Such variations would
give substantial bias in the phase estimate. Then: see (47) at the
bottom of the page. As the expected value of the WT of noise
is zero, the estimator is thus unbiased, and the variance of the
phase estimator is

(48)

When considering larger scales, the wavelets are av-
eraging across many sample points, and the variance
of the phase estimate decreases. The amplitude is es-
timated as ,

.

Fig. 3. The local energy of signal 1 on a dB scale using three wavelets (a),
or one wavelet (b), a = 1:4, and l = 8, m = 3. The contour axis in (a)
and (b) ranges from�7:5 (white) to 37 (black). The deviation of the estimated
orientation of signal 2 from the true orientation at scale a = 1:66 using dB
scale, using three wavelets (c) and one wavelet (d). The contour axis in (c) and
(d) ranges from �10 (white) to 5 (black).

D. Examples

To illustrate the wavelets’ capacity of characterising local
properties, and verify the theoretical variance reduction results
we give some examples. Consider a collection of singularities
observed in noise: , where

and we take as well as . The and
are point singularities whereas and are line

singularities. See Fig. 3(a) and (b) for a plot of the scalogram of
the observed image at scale 1.4, corresponding to radial
frequencies of 0.17. The discontinuities are clearly identified.
The estimate using three wavelets of the local energy is a great
deal more robust to the noise.

(47)



METIKAS AND OLHEDE: MULTIPLE MULTIDIMENSIONAL MORSE WAVELETS 935

Fig. 4. Two signals with typical AM/FM/OM structure (a) and (b). Local anal-
ysis of the image in (b) at positions b = 0; . . . ; 300 and b = 301; . . . ; 480

and scales a = 6:4 corresponding to f � 0:037 (c) as well as a = 2:8 corre-
sponding to f � 0:086 (d), using three wavelets with l = 8, m = 3.

Signal 2 is a multicomponent AM/FM/OM signal given by
, where

We consider estimating the local orientation at a scale where the
more rapid sinusoid is present near the left-hand side (LHS) of
the image, and find that the orientation estimate is substantially
less noisy when using three wavelets, as is confirmed by Fig.
3(c) and (d). Clearly, using the multiple wavelets is in both cases
substantively decreasing the variability of the estimator.

Finally, let us mention some potential applications:
AM/FM/OM signals are often used to model texture [27].
An important problem in this area is segmentation on the basis
of the local structure of the signal. The better localization an
analysis filter achieves, the more accurately can local texture
be characterized. Estimates with reduced variance improves the
estimation procedure. We analyze the combination of corduroy
textures previously mentioned: see Fig. 4(b). To extract local
properties of the image by projecting the image to different
scales we find that we may estimate the local orientation of
the two different corduroy patterns, see Fig. 4(c) and (d). The
low scales Fig. 4(c) extract the vertical oscillations, while the
WT at the higher scale, Fig. 4(d) gives the diagonal oscillation.

The examples combine to demonstrate that the Morse wavelets
describe discontinuities well, give reduced variance estimates
of orientation of oscillatory signals, and the final corduroy
pattern illustrated that the good localization of the wavelets
allow us to identify different behavior local to different scales.
More complicated algorithms, based on reasoning as in [27]
and [29] will be investigated in future work.

VII. CONCLUSION

We have constructed a 2-D localization operator for radial
functions and determined its eigensystem. We denoted the
eigenfunctions of this operator as isotropic Morse wavelets
given they form a natural 2-D extension to the 1-D even Morse
wavelets. These 2-D wavelets are optimally localized to the
radial Morse region, and we have calculated exact expressions
for their localization. Furthermore, in analogy to the 1-D
analytic Morse wavelet, we have defined the 2-D monogenic
Morse wavelet through the Riesz transform of the isotropic
Morse wavelet. The monogenic Morse wavelets constitute a
natural framework for determining local directional phase and
orientation properties. The monogenic Morse wavelets form a
set of orthogonal functions. We have used the orthogonality to
establish the statistical properties of the wavelet coefficients of
deterministic images immersed in Gaussian white noise. We
also discussed the analysis of images formed from aggregations
of typical features such as discontinuities and local oscillations.
When we average coefficients across wavelets, estimators of
local amplitude, phase and orientation of the deterministic
image achieve reduced variabilities. Finally, using some ex-
amples, we have shown that the theoretical properties of the
monogenic Morse wavelets which we derived in this paper hold
for discrete implementations.

APPENDIX

Define the discrete Fourier transform of the noise , via
. As the wavelet transform at any angle can be formed

from linear combinations of the wavelet transform at , cf.
Section IV-C, only the joint statistical properties of ,;

, 1, 2, need to be found at . We have

thus, by (34). Similarly
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following from (34). This completes the covariance calculations
for the distribution.
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