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ML-estimation based on mixtures of Normal distributions is a widely
used tool for cluster analysis. However, a single outlier can make the
parameter estimation of at least one of the mixture components break down.
Among others, the estimation of mixtures mélistributions by McLachlan
and Peel Finite Mixture Models(2000) Wiley, New York] and the addition
of a further mixture component accounting for “noise” by Fraley and Raftery
[The Computer J41 (1998) 578-588] were suggested as more robust
alternatives. In this paper, the definition of an adequate robustness measure
for cluster analysis is discussed and bounds for the breakdown points of the
mentioned methods are given. It turns out that the two alternatives, while
adding stability in the presence of outliers of moderate size, do not possess
a substantially better breakdown behavior than estimation based on Normal
mixtures. If the number of clustessis treated as fixed; additional points
suffice for all three methods to let the parameters aflusters explode.
Only in the case of = s is this not possible for-mixtures. The ability
to estimate the number of mixture components, for example, by use of the
Bayesian information criterion of Schwar&rin. Statist6 (1978) 461-464],
and to isolate gross outliers as clusters of one point, is crucial for an
improved breakdown behavior of all three techniques. Furthermore, a mixture
of Normals with an improper uniform distribution is proposed to achieve
more robustness in the case of a fixed number of components.

1. Introduction. ML-estimation based on mixtures of Normal distributions
(NMML) is a flexible and widely used technique for cluster analysis [e.g., Wolfe
(1967), Day (1969), McLachlan (1982), McLachlan and Basford (1988), Fraley
and Raftery (1998) and Wang and Zhang (2002)]. Moreover, it is applied to
density estimation and discrimination [Hastie and Tibshirani (1996) and Roeder
and Wasserman (1997)]. Banfield and Raftery (1993) introduced the term “model-
based cluster analysis” for such methods.

Observationsgs, ..., x, are modeled as i.i.d. with density

(1.1) Fo) =270y, 520,

j=1
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where n = (s,as,...,a5,01,...,05,7T1,...,7s) IS the parameter vector, the
number of componentse N may be known or unknowm,; e R, o; > 0,7; >0,
j=1...,s, Z;Zl 7; =1andg, .2 denotes the density of a Normal distribution

with meana and variance 2, ¢ = o 1. Mixtures of multivariate Normals are often
used, but for the sake of simplicity, considerations are restricted to the case of one-
dimensional data in this paper. The results essentially carry over to the multivariate
case.

As in many other ML-techniques that are based on the Normal distribution,
NMML is not robust against gross outliers, in particular, if the number of
components is treated as fixed: the estimators of the parameigrs. ., a; are
weighted means of the observations. For each observation, the weights sum up to 1
[see Redner and Walker (1984)], which means that at least one of these parameters
can become arbitrarily large if a single extreme point is added to a dataset.

There are some ideas in the literature to overcome the robustness problems of
Normal mixtures. The software MCLUST [Fraley and Raftery (1998)] allows the
addition of a mixture component accounting for “noise,” modeled as a uniform
distribution on the convex hull (the range in one dimension, respectively) of the
data. The software EMMIX [Peel and McLachlan (2000)] can be used to fit a
mixture of z-distributions instead of Normals. Further, it has been proposed to
estimate the component parameters by more robust estimators [Campbell (1984),
McLachlan and Basford (1988) and Kharin (1996), page 275], in particular, by
Huber's (1964, 1981) M-estimators corresponding to ML-estimation for a mixture
of Huber’s least favorable distributions [Huber (1964)].

While a clear gain of stability can be demonstrated for these methods in various
examples [see, e.g., Banfield and Raftery (1993) and McLachlan and Peel (2000),
page 231 ff.], there is a lack of theoretical justification of their robustness. Only
Kharin [(1996), page 272 ff.] obtained some results for fixetHe showed that
under certain assumptions on the speed of convergence of the proportion of
contamination to 0 witlk — oo, Huber’'s M-estimation is asymptotically superior
to NMML. In the present paper, mixtures of a class of location—scale models
are treated including the aforementioned distributions. The addition of a “noise”
component is also investigated.

Up to now there is no agreement about adequate robustness measures for
cluster analysis. In a model-based cluster analysis, the clusters are characterized
by the parameters of their mixture components. For fixeé@n influence
function [Hampel (1974)] and a breakdown point [Hampel (1971) and Donoho
and Huber (1983)] for these parameters can easily be defined. The “addition
breakdown point” is the minimal proportion of points to be added to an original
dataset so that the parameter estimator for the new dataset deviates as far as
possible from the value obtained from the original dataset. However, there are
some particular issues in cluster analysis. Partitioning methods may possess a
bounded influence function and the minimal possible breakdown point at the same
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time. The breakdown point may depend strongly on the constellation of the data
points [Garcia-Escudero and Gordaliza (1999)]. One may distinguish between
breakdown of a single cluster and breakdown of all clusters [Gallegos (2003)],
and breakdown could be characterized by means of the classification of the points
instead of the estimated parameters [Kharin (1996), page 49]. The breakdown
conceptsinthe literature cited above only apply to a fixed number of components

If s is estimated, there are data constellations “on the border” between two different
numbers of components, leading to different numbers of parameters to estimate.

The outline of the paper is as follows. In Section 2, the techniques treated in this
paper and their underlying models are introduced.

In Section 3, robustness measures and breakdown points in terms of parameters
(Definition 3.1 for fixeds, Definition 3.2 for estimatesl) as well as of classification
(Definition 3.4) are defined.

In Section 4, results about the parameter breakdown behavior of the mixture-
based clustering techniques are derived. It is shown that all discussed techniques
have a breakdown point of/(n + r) for r < s of the mixture components in
the case of fixed (Theorem 4.4). A better breakdown behavior can be attained
by maximizing a kind of “improper likelihood” where “noise” is modeled by an
improper uniform distribution on the real line (Theorem 4.11). For the case of
estimateds, using an information criterion [Akaike (1974) and Schwarz (1978)],

a breakdown point larger than/& + 1) can be attained for all considered
methods. They all are able to isolate gross outliers as new mixture components
on their own and are therefore very stable against extreme outliers. However,
breakdown can happen because additional points inside the area of the estimated
mixture components of the original data can lead to the estimation of a smaller
number of components (Theorems 4.13 arib4 Some numerical examples are
given, illustrating the relative stability of the methods and the nonequivalence
of parameter and classification breakdown and of addition and replacement
breakdown. Some data constellations turn out to be so stable that they lead to
an addition parameter breakdown point larger thah The paper is completed by
some concluding discussions.

2. Models and methods. The Normal mixture (1.1) belongs to the class of
mixtures of location—scale familieg, which can be defined as follows:

s 1 -
21) =37 fuj0,(x),  Wheref, ,(x) = ;f(x - a),
j=1

wheren is defined as in (1.1). Assume that

(2.2) f is symmetrical about,0
(2.3) f decreases monotonicly ¢, oo],
(2.4) f>0o0nR,

(2.5) f is continuous.
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Besides then (0, 1)-distribution, these assumptions are fulfilled, for example,
for the r,-distribution withv degrees of freedom and for Huber’s least favorable
distribution, used as a basis for mixture modeling in Peel and McLachlan (2000)
and McLachlan and Basford (1988), respectively.

The following properties will be referred to later. It follows from (2.2)—(2.4)
that, for given pointscy, ..., x, and a compact s&t = [a, b] x [, £] CR x RT
(this notation impliegt > 0 here),

(2.6) inf{ fa.c(x):1x €{x1,...,x,}, (a,0) € C} = fuin> 0.
For fixedx, lim,,_, » a,, = oo and arbitrary sequencés,,) <N, observe that

@7) M fur o) < lim min<if(0), if<x R am>> 0
m— 00 m— 00 Om 00

Om

as long a®,, > og > 0.

The addition of a uniform mixture componieon the range of the data is also
considered, which is the one-dimensional case of a suggestion by Banfield and
Raftery (1993). That is, for givefinin < xmax € R,

N
1(x € [xmin, Xmax])
(2.8) Je() =) 7 fajo; () + 70 =,
=1 T Xmax — ¥min
where: = (s, a1, ...,05,01, ..., 05, TTQ, TLy + vy TTs)y TQy + vy g > O,Z‘J'.:Onj =1

and1(A) is the indicator function for the stateme#t
The log-likelihood functions for the models (2.1) and (2.8) for given data
with minimum xmin,, and maximumxmax, (this notation is also used later), are

(2.9) Ly s(n,%Xn) :Zlog<znjfaj,aj(xi)>,
i=1  \j=1

n N
0
(2.20)  Luy@x) =, log(Z T fajo; (i) + —)
i=1 =1 Xmaxn — Xmin,n
As can easily be seen by setting = x1, 01 — 0, L, ; can become arbitrarily
large fors > 1. Thus, to define a proper ML-estimator, the parameter space must
be suitably restricted. The easiest restriction is to spegify 0 and to demand

(2.11) oj > oo, j=1...,s.

This is used, for example, in DeSarbo and Cron (1988) and may easily be
implemented with the EM-algorithm [Dempster, Laird and Rubin (1977) and
Redner and Walker (1984); see Lemma 2.1], the most popular routine to compute
mixture ML-estimators. A drawback of this restriction is that the resulting
ML-estimators are no longer scale equivariant because the scale of the data can be
made smaller thasp by multiplication with a constant. The alternative restriction

(2.12) min  o;/ox>c
Jk=1,...s
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for fixed ¢ € (0,1] leads to properly defined, scale-equivariant, consistent
ML-estimators for the Normal casg = ¢p 1 without noise [Hathaway (1985)].
This includes the popular simplificatiosy = --- = o5, which corresponds to
k-means clustering and is the one-dimensional case of some of the covariance pa-
rameterizations implemented in MCLUST [Fraley and Raftery (1998)]. However,
unlessc = 1, the computation is not straightforward [Hathaway (1986)]. Further-
more, the restriction (2.12) cannot be applied to the model (2.8), because the log-
likelihood function may be unbounded; see Lemma A.1. For the case of fixed
Corollary 4.5 says that estimation based on (2.12) does not yield better breakdown
properties than its counterpart using (2.11). Therefore, the restriction (2.11) is used
for all other results. Guidelines for the choicesgfandc are given in Section A.1.
For results about consistency of local maximizers of the log-likelihood function,
see Redner and Walker (1984).

The following lemma summarizes some useful properties of the maximum like-
lihood estimators, which follow from the derivations of Redner and Walker (1984).

NOTATION. Let 0; = (aj,0)), j=1,...,5, 8 = (b1,...,65) denote the
location and scale parameters pfand ¢, respectivelyg*, n*, ¢* by analogy.
The parameters included i, ¢* will be denoted by *, a7, 71 and so on, and by
analogy forf}, Z, . ...

LEMMA 2.1. For givenn, let

_ njfaj,dj(xi)
Zi:lnkfak,dk (X,‘) '

(2.13) Dij

A maximizer of

(2.14) > |: > pijlog nj*i| +Y Y pijlog Jar o7 (xi)

j=1lLi=1 j=1li=1

over n* leads to an improvement df, ; unlessy itself attains the maximum
of (2.14).
For given¢ in (2.10),the same statements hold with

njfllj,dj(-xi)

Y 31 Tk fag,0 (Xi) + 70/ (Xmaxn — Xmin,n)

Dij j=1...,s,

(2.15)
ﬂo/(xmaxn - xmin,n)
Y 31 Tk fay,00 (Xi) + 70/ (Xmaxn — Xmin,n) '

pPio=

In (2.14),the first sum starts at = 0.
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For any global maximizer, as well as¢ of L,  for given xn, the following
conditions hold unde2.11)for j =1,...,s with p;;, i =1,.

1 n
(2.16) = ;Zpij’
i=1
217) (aj, o) =arg maij(aj.‘,oj.‘)
- n 1 X — aj-‘
=argmaxy _ p;j Iog(—*f< — ))
i-1 9 9

In case 0f(2.10),property(2.16)holds for j = 0 as well

Note that (2.13) defines the so-called E-step, and maximization of (2.14) defines
the so-called M-step of the EM-algorithm, where the two steps are alternately
carried out.

LEMMA 2.2. Under(2.11),with

C = [Xmin,n, Xmaxn] X |:00, %/ ]
’ S ((*maxn — *min,n)/00)
andmq,..., 7 >0,
(2.18) VO*¢ C* 30 € C*:Lys(n) > Lys(n™).

Proofs are given in Section A.2.
Note thatL, s is continuous [cf. (2.5)] and a global maximizer has to lie
in C* x [0, 1]° because of (2.18). Therefore, we have following result.

COROLLARY 2.3. Under the restrictior{2.11),there exists gnot necessarily
uniqug global maximum oL, ; with arguments irC* x [0, 1]°.

For NMML and (2.12), this is shown by Hathaway (1985). Defipg, =
argmaxL, ; and ¢, ¢ analogously. In the case of nonuniquenegs, can be
defined as an arbitrary maximizer, for example, the lexicographically smallest one.
The p;;-values from (2.13) and (2.15), respectively, can be interpreted as the a
posteriori probabilities that a point had been generated by compong¢ntnder
the a priori probabilityr; for componentj with parameters;, o;. These values
can be used to classify the points and to generate a clustering by

(2.19) [(x;) = argmaxp;;, i=1,...,n
J
where the ML-estimator is plugged into the definitionpf.

All theorems derived in the present paper will hold for any of the maximizers.
For ease of notatior,, ; and¢, ; will be treated as well defined in the following.
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Note that, fors > 1, nonuniqueness always occurs due to “label switching” of the
mixture components. Further, for ease of notation, it is not assumed, in general,
thatz; >0V j orthatall(a;, ;) are pairwise distinct.

Consider now the number of mixture componengsN as unknown. The most
popular method to estimate is the use of information-based criteria such as
AIC [Akaike (1974)] and BIC [Schwarz (1978)]. The latter is implemented in
MCLUST. EMMIX computes both. The estimatgy for the correct order of the
model is defined as, = arg max C(s), where

C(s)=AIC(s) =2L, s(ny.s) —2k oOF

C(s) =BIC(s) = 2Ly s(1n,s) — klogn,

where k denotes the number of free parameters, thakis; 3s — 1 for (2.1)

andk = 3s for (2.8). Under assumptions satisfied under (2.11) but not under (2.12)
for the models discussed here (compare Lemma A.1), Lindsay [(1995), page 22]
shows that the number of distinct points in the dataset is an upper bound for the
maximization ofL, s(n,.s) overs, and therefore for the maximization 6f(s)

as well. Thus, only a finite humber of values forhave to be investigated to
maximize C(s) and this means that (again not necessarily uniqgue) maximizers
exist.

While the AIC is known to overestimakeasymptotically [see, e.g., Bozdogan
(1994)], the BIC is shown at least in some restricted situations to be consistent
in the mixture setup [Keribin (2000)]. I mainly consider the BIC here. Further
suggestions to estimate which are more difficult to analyze with respect to the
breakdown properties, are given, for example, by Bozdogan (1994) and Celeux
and Soromenho (1996). EMMIX also allows the estimation wf a bootstrapped
likelihood ratio test [McLachlan (1987)].

(2.20)

3. Breakdown measures for cluster analysis. The classical meaning of
“addition breakdown” for finite samples is that an estimator can be driven
arbitrarily far away from its original value by addition of unfortunate data points,
usually by gross outliers. For “replacement breakdown points”, points from the
original sample are replaced [Donoho and Huber (1983)]. Zhang and Li (1998)
and Zuo (2001) derive relations between these two concepts. In the present paper,
addition breakdown is considered. Breakdown means that estimators that can take
values on the whole range ®” can leave every compact set. If the range of
values of a parameter is bounded, breakdown means that the addition of points can
take the estimator arbitrarily close to the bound, for example, a scale parameter
to 0. Such a definition is relatively easily applied to the estimation of mixture
components, but it cannot be used to compare the robustness of mixture estimators
with other methods of cluster analysis.

Therefore, the more familiar parameter breakdown point will be defined first.
Then, a breakdown definition in terms of the classification of points to clusters is
proposed.

A “parameter breakdown” can be understood in two ways. A situation where at
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least one of the mixture components explodes is defined as breakdown in Garcia-
Escudero and Gordaliza (1999). That is, breakdown occurs if the whole parameter
vector leaves all compact sets [not including scales of 0 under (2.12)]. In contrast,
Gallegos (2003) defines breakdown in cluster analysis as a situation atere
clusters explode simultaneously. Intermediate situations may be of interest in
practice, especially if a researcher tries to prevent the breakdown of a single cluster
by specifying the number of clusters to be larger than expected, so that additional
clusters can catch the outliers. This is discussed (but not recommended—in
agreement with the results given here) by Peel and McLachlan (2000). The
definition given next is flexible enough to account for all mentioned situations.

DEFINITION 3.1. Let(E,),en be a sequence of estimatorsdh model (2.1)
or of ¢ in model (2.8) onR” for fixeds € N. Letr <=, X, = (x1,...,x,) be a
dataset, where

(3.1) n=E,X,) = 7}, j=1,...,s.
Ther-components parameter breakdown paht,, is defined as

i 8 . .
Br’n(En,xn)=m|n{—:3]1<...<jr
8 n+g

V D = [1tmin, 1] X C, min > 0,
C CR x RT compac8X,.+o = (x1, ..., Xnig),

ﬁ:En—i—g(Xn—&—g):(ﬁ'j’&ja&j)¢D’j=jl7---ajr}-

The proportionss; are defined not to break down if they are bounded
away from O, which implies that they are bounded away from ¥ i 1.
Assumption (3.1) is necessary for the definition to make sefge; 0 would
imply that the corresponding location and scale parameters could be chosen
arbitrarily large without adding any point. Condition (3.1) may be violated for
ML-estimators in situations where is not much smaller tham, but these
situations are usually not of interest in cluster analysis. In particular, (3.1) does
not hold if s exceeds the number of distingt see Lindsay [(1995), page 23].

The situation oftg — 0 in model (2.8) is not defined as breakdown, because
the noise componentis not considered as an object of interest in itself in this setup.
In the case of unknown, considerations are restricted to the case of one-

component breakdown. Breakdown robustness means that neithesahtktire
components estimated fog, vanishes, nor that any of their scale and location
parameters explodes to under addition of points. It is, however, allowed that the
new dataset yields more thamixture components and that the additional mixture
components have arbitrary parameters. This implies that, if the outliers form a
cluster on their own, their component can simply be added without breakdown.
Further, breakdown of the proportions; to 0 is no longer of interest when
estimatings according to the AIC or BIC, because if some is small enough,
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componentj can be simply left out, and the other proportions can be updated to
sum up to 1. This solution with— 1 clusters leads approximately to the same log-
likelihood and will be preferred due to the penalty on the number of components:

DEFINITION 3.2. Let(E,),cn be a sequence of estimatorsiah model (2.1)
or of ¢ in model (2.8) onR"”, wheres € N is estimated as well. Lex, =
(x1,...,x,) be adataset. Lat be the estimated number of component&pfx;,).
Theparameter breakdown poimif £, is defined as

8
n—+

B, (E,, X,) = rrl,in { :VC CR* x (R")* compact
g

EIxn—i-g =(x1,---, xn—i—g)’ ﬁ = En+g(xn+g) :

pairwise distinctjy, .. ., js do not exist,

such tha(ajl, v Ay, Oy ...,O’js*) € C}.

This implies especially that breakdown occurs whenéver*.

Now, the classification breakdown is defined. A mappifygs called a general
clustering method (GCM) if it maps a set of entitigs = {x1,...,x,} t0 a
collection of subset$Cy, ..., Ci} of x,,. A special case are partitioning methods
whereC; N C; = @ for i # j <, Ujizl Cs = X,. An ML-mixture estimator
induces a partition by (2.19) an@; = {x; :{(x;) = j}, given a rule to break ties in
the Dij-

If E, is a GCM andx, . is generated by adding points tox,, £, ¢(Xu4¢)
induces a clustering ax),, which is denoted by (X,4¢). Its clusters are denoted
by Ci,...,CkL. If E, is a partitioning methodE; (X,4¢) is a partition as well.
Note thats* may be smaller thanwhenE,, produces clusters for all. Assume
in the following thatE,, is a partitioning method. The resulting definition may be
tentatively applied to other clustering methods as well.

As will be illustrated in Remark 4.18, different clusters of the same data may
have a different stability. Thus, it makes sense to define robustness with respect to
the individual clusters. This requires a measure for the similarity between a cluster
of Ex(X,+¢) and a cluster off,(x,), that is, between two subsetsand D of
some finite set. The following proposal equals 0 only for disjoint sets and 1 only
for equal sets:

2|C N D

IC|+ DI’

The definition of (addition) breakdown is based on the similarity of a cluster
C € E,(X,) to its most similar cluster itE}; (X,4,). A similarity betweenC and a
partition E,, is defined by

y*(C, Ex(x,)) = min y(C, D).
DeE,(Xn)

y(C,D)=
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How small shouldy* be to say that breakdown @ has occurred? The usual
choice in robust statistics would be the worst possible value. In the present
setup, this value depends on the dataset and on the clustering method. For
example, ifn =12 and|C| = 6, the minimum fory*(C, E;;(X,+¢)) is 1/4. It

is attained by buildings* = 6 clusters with two points each, one of which is

in C. Buts < 6 may be fixed, and this would result in a larger minimum. Even
under estimated the minimum may be larger. For example, if the points lie
on the real line and the clustering method produces only connected clusters, we
gety*(C, E;(X,+¢)) = 2/7. In general, the worst possible value may be difficult

to compute and sometimes only attainable by tricky combinatorics, while one
would judge a cluster as “broken down” already in much simpler constellations
of E;(X,+¢). | propose

(B2) y*<Z=y(x.yh{x)=y(C,C) ifC1CC, |C1=]Cl/2

as the breakdown condition motivated by the following lemma, which means that
under this condition every cluster can break down, at least in the absence of further
subtle restrictions on the possible clusterings.

LEMMA 3.3. Let E,(X,) > C be a partition with|E, (x,)| > 2. Let § C N
be the set of possible cluster numbers containing at least one elermebt Let
F = {F partition onx, : |F| € 8}. Then3aF € F :y*(C, F) < 2/3, where2/3 is
the smallest value for this to hold

DEFINITION 3.4. Let(E,),en be a sequence of GCM's. Thassification
breakdown poinbf a clusterC € E, (x,,) is defined as

c i 8 . _ Lk * 2
Bn(E,,,xn,C)_rryn - g.EIxn+g_(x1,...,xn+g).y (C, En(xn+g))§§ )

Ther-clusters classification breakdown powit £, atx,, is

) . 8
B;(Enaxn) = nyn { m :Elxn—i—g = (xla .. -,xn-i—g), C17 sy Cr € En(xn)
o . " N 2 .
pairwise distincty *(C;, E;; (Xp+4)) < 3i= 1,...,r¢.

REMARK 3.5. At leastr > 1 clusters of E,(x,) have to break down
if |Ey(Xq+g)] =5 —r. Forr =1, the reason is that there must Dec E; (X,4,)
such that there are at least two member&pfx,,), C1 andC», say, for whichD
minimizes y (Cj, D) over E;(X,1¢). Without loss of generality]|Cy N D| <
|C2 N DJ. SinceC1N C2 =@, we gety(C1, D) < |D|/(|D]|/2+ |D]). The same
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argument yields for > 1 thaty(C;, D) < 2/3 for at leasty — 1 clustersC;
if D e E;(X,1¢) is the most similar cluster fay clustersC; € E, (X,).

Note that parameter breakdown does not imply classification breakdown and
vice versa (cf. Remarks 4.10 and 4.18).

4. Breakdown results.

4.1. Breakdown points for fixed This section starts with three lemmas which
characterize the behavior of the estimators for a sequence of datasets where
there ares > h > 2 groups of points in every dataset, each group having a fixed
range, but with the distances between the groups converging. tm this case,
eventually there exists a mixture component corresponding to each group, all
mixture components correspond to one of the groups and the maximum of the
log-likelihood can be obtained from the maxima considering the groups alone;
that is, all groups are fitted separately.

LEMMA 4.1. LetX,, = (x1u, ..., Xum) € R" be a sequence of datasets with
meNandO=ng<ni<---<np,=n,h>1.LetDy={1,...,n1}, Dy =
{n1+1,...,n2},...,Dp={np_1+1,...,n,}. Assume further that

db < oo:max max |xj, — Xjm| < b Vm,
i,j€Dy

lim min Xim — Xim| = 00.
m—>00k7él,ieDk,jeDz| im = Xjml

Lets > h be fixedn,, =argmax, L, ;(n, X,»). The parameters of,, are called
Tlms -+ - Tsm» A1y @nd so on all results hold forg,, from maximizing(2.10) as
well. Without loss of generalitassumery,, < x2, < --+ < xu,. Thenfor mge N
large enough

30 <d < 00, Tmin > 0, 00 < Omax < 00 :Vm > my,
(41) k=1... h3jre{l,....s}:ajm € [Xm_14m —d, Xnm +d],
T jem = Tmins O jm € [00, Omax]-
LEMMA 4.2. In the situation of Lemmad.1,assume further
(4.2) Iamin>0:Vji=1...,5,meN:imjy, > mmin.
Then

(43) Vm>mo,j=1,...,s3kefl,....h}:ajm € [Xm_1+1m — d, Xnym +d].

(44) 3050’max<oovm >m0,j=1,...,s:0'jm E[UO,Umax].
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LEMMA 4.3. Under the assumptions of Lemmd,,

(4.5) Vke{l... h}: lim_ > Tjm ==,
ajme[x(nk_l+l)m _daxnkm+d]

m
m—00

Ln,s (nm , Xnm)

(4.6)

h
| Di|
- mnax Z[maXLDquk(n,ykm)JrIDkIIog—] —0,
Zzzlqk=s k=1 n n

whereyi, = (X _1+Dms - - Xmm)s k=1,..., h.

In particular,r < s added outliers let mixture components break down if the
differences between them tenddo.

THEOREM 4.4. Letx, e R", s > 1. Letn, ; be a global maximizer 02.9).
Assumé2.2)-2.5).Forr=1,...,5s — 1,

(47) Br,n(nn,s, Xp) <

n+r

Equality in (4.7) could be proven for datasets whefe— 0 can be prevented
for j =1,...,s and any sequence of setsradidded points, but conditions for this
are hard to derive.

Under the restriction (2.12), convergence @f-parameters to 0 implies
breakdown according to Definition 3.1. Thus, to prevent breakdown, an effective
lower bound for ther; of the nonbreaking components has to exist. This means
that all o; have to be bounded from below, independentlyxpfi, ..., x4/,
because (2.12) forces al} to O if only one implodes. Therefore, the result carries
over.

COROLLARY 4.5. Theorem4.4 holds as well under the restrictiof2.12)
instead of(2.11).

REMARK 4.6. The situation for = s is a bit more complicated, because
here the choice of the basic distributighmatters. Assume that the proportion
of outliers in the distorted dataset is smaller thgf2.1While s — 1 mixture
components can be broken down bgutliers, there remains at least one mixture
component for which the original points own a majority of the weights used for the
estimation of the parameters. If the parameters of such a component are estimated
by a nonrobust ML-estimator such as the Normal one,sthecomponent will
break down as well, that is, und¢r= ¢,

B ,Xn) < .
s,n(nn,s n)_n+s

The breakdown point for the joint ML-estimator of location and scale for a
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single location—scale model based on thelistribution was shown to be greater
than or equal A(v + 1) by Tyler (1994), ignoring the possible breakdown of the
scale to 0, which is prevented here because of (2.11). Suppose that points are
added so that their proportion is smaller thatfil+ 1). Mixture ML-estimation

with s components leads to the existence of at least one component such that
the parameters are estimated by a weighdikelihood according to (2.17) with
weight proportion smaller thar/v + 1) for the added points. Thus,

1
B ',X >—7
s,n(nn,s n) > v+ 1

where f (x) = g(1+ x2/v)(=vtD/2 ,, > 1, 4 > 0 being the norming constant.

The approach via adding a noise component does not lead to a better breakdown
behavior, because a single outlier can make the density value of the noise
component arbitrarily small.

COROLLARY 4.7. Theorem4.4 and Remark4.6 hold as well for global
maximizers 0{2.10).

ExaMPLE 4.8. While the breakdown point for all considered approaches is
the same for < s, it may be of interest to determine how large an outlier has to be
to cause breakdown of the methods. The following definition is used to generate
reproducible datasets.

DEFINITION 4.9, & 2,(1/(n+1)),....® 2,(n/(n+1)) is called an
(a,0%)- Normal standard dataséNSD) with n points, whered,, > denotes the
c.d.f. of the Normal distribution with parameterso 2.

Consider a dataset of 50 points, consisting of0al)-NSD with 25 points
combined with &5, 1)-NSD with 25 points (see Figure 1) and= 2. For Normal
mixtures,z,-mixtures with . > 1 and Normal mixtures with noise component,
the ML-estimators always result in components corresponding almost exactly to

O O QOUOOOIITINILOCO O Q 0 0 Q0OCONINEIIIITINOOOOQO O O

O O COCOOOTEIEIINTOCO00 O GRoRRdeRte O O OCCOTIIIIIIIGN00 & O

\ T T T \
-2 0 2 4 6

Fic. 1. Above: ‘Standard example dataset25 points (0, 1)-NSD combined witi25 points
(5, 1)-NSD Below: Stars denotd.3 additional equidistant points betweér8 and 3.2.
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the two NSD'’s undetg = 0.025 (see Section A.1). How large does an additional
outlier have to be chosen so that the 50 original points fall into one single cluster
and the second mixture component fits only the outlier? For Normal mixtures,
breakdown begins with an additional point at about 15.2. For a mixture of
t3-distributions the outlier has to lie at about 8@Qmixtures need the outlier at
about 38 x 10° and a Normal mixture with an additional noise component breaks
down with an additional point at8 x 10’. These values depend ep.

REMARK 4.10. Theorem 4.4 and Corollary 4.7 carry over to the classi-
fication breakdown point. This follows becauserifoutliers are added, tend-
ing to oo and with the distance between them convergingoto as well,
Lemma 4.2 yields thap;; — 0 for the original points =1,...,n and j satis-
fying aj, € [x44¢ —d, X444 +d] for someg € {1,...,r}. Thus, at mosk — r
clusters remain for the classification of the original points, which yields break-
down of r clusters; compare Remark 3.5. In contrast, the arguments leading to
Remark 4.6 (Normal case) do not carry over because the additioa-efoutliers
as above certainly causes all mean parameters to explode, but one cluster usually
remains containing all the original points. Therefore, an original cluster containing
more than half of the points does not break down in the sense of classification.

4.2. Alternatives for fixeds. The results given above indicate that the
considered mixture methods are generally not breakdown robust forsfixefirst
proposal for the construction of estimators with better breakdown behavior is based
on the optimization of a target function for only a part of the data, say, optimally
selected 50% or 80% of the points. The methods of trimedeans [Garcia-
Escudero and Gordaliza (1999)] and clustering based on minimum covariance
determinant estimators [Rocke and Woodruff (2000) and Gallegos (2003)] use
this principle. Both methods, however, assume a partition model as opposed to
the mixture model. Such an assumption may be useful for clustering, but yields
biased parameter estimators [Bryant and Williamson (1986)]. Weighted likelihood
as proposed by Markatou (2000) might be an alternative for the mixture model.
One of the estimators treated in the previous section might be used after removing
outliers by the nearest neighbor clutter removal procedure (NNC) of Byers and
Raftery (1998). However, this procedure is based on mixture estimation as well
(though not of location—scale type), and arguments analogous to those given above
will lead to similar breakdown properties. As a simple example, consider a dataset
consisting of a(0, 1)-NSD with 25 points, a5, 1)-NSD with 25 points and an
outlier at 50. The outlier at 50 is classified as “clutter” by NNC, but if another
outlier ashuge as 189is added, NNC classifies 50 as a nonoutlier.

Another alternative can be constructed by modifying the uniform noise
approach. The problem of this approach is that the noise component could be
affected by outliers as well, as was shown in the previous section. This can be
prevented by choosing the density constant for the noise component as fixed in
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advance, leading to ML-estimation for a mixture where some improper distribution
component is added to model the noise. That is, an estirgatosf the mean and
variance parameters of the nonnoisy mixture components and of all the proportions
is defined as the maximizer of

n N

(4.8) Ly s(§,%n) =Z|OQ(Z ”jfaj,aj(xi) +770b>,

i=1 j=1
whereb > 0. The choice ob is discussed in Section A.1. Fé§y ;, the breakdown
point depends on the datasef. Breakdown can only occur if additional
observations allow the nonoutliers to be fitted by fewer thaomponents, and
this means that a relatively good solution fok s components must exist even
for x,,. This is formalized in the following theorem, where only the breakdown of
a single mixture componem , (¢, s, X,) iS considered.

THEOREM4.11. LetL, =L, s(&ns, Xn), Xn € R". Leté =&, ; and fmax=
f(©O)/og>b.If

n
MaxLy,, < Zlog( -

ij 7} fo, (xi) + <no + g)b)

4.9) i=1 j=1
) ¢ .
+g |09(7To + —)b + (n + g)log — glog fmax
n n+g
then
(410) Bl,n(gn,sw Xn) > L

n+g'

EXAMPLE 4.12. Consider the dataset of 50 points shown in Figure,¢,

b = 0.0117 andog = 0.025 (cf. Section A.1). This results ih, 1 = —1197.
Neither the optimal solution far = 1 nor the one fos = 2 classifies any point

as noise. The right-hand side of (4.9) equal$117 for ¢ =1 and —1224

for ¢ = 2. Thus, the breakdown point is greater thafbll Empirically, the
addition of three extreme outliers at value 50, say, leads to a breakdown, namely
to the classification of one of the two original components as noise and to the
interpretation of the outliers as the second normal component. Two outliers do not
suffice. Equation (4.10) is somewhat conservative. This stems from the exclusion
of the breakdown of a proportion parameter to 0, which is irrelevant for this
example.

A more stable data constellation with two clusters is obtained when a
(50, 1)-NSD of 25 points is added to th@, 1)-NSD of the same size. The optimal
solution for one cluster classifies one of the two NSD’s as noise and the other
one as the only cluster, while the optimal solution for two clusters again does not
classify any point as noise. Equation (4.9) leads to a minimal breakdown point of
8/58 for the two-cluster solution. At least 11 outliers (at 500, say) are needed for
empirical breakdown.
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4.3. Unknowns. The treatment of the number of componen&s unknown
is favorable for robustness against outliers, because outliers can be fitted by
additional mixture components. Generally, for large enough outliers the addition
of a new mixture component for each outlier yields a better log-likelihood than
any essential change of the original misdicomponents. Thus, gross outliers are
almost harmless, except that they let the estimated number of components grow.

Breakdown may occur, however, because additional points inside the range of
the original data may lead to a a solution with< s clusters. Equation (4.11) of
Theorem 4.13 is sufficient (but rather conservative) for preventing this. Breakdown
can also occur due to gross outliers alone, simply because the number of outliers
becomes so large that the BIC penalty, which depends,as increased by so
much that the whole original dataset implodes into fewer tharusters. The
conditions for this are given in (4.13) for BIC, while it cannot happen for AIC
because its penalty does not dependion

THEOREM4.13. Lett, = (s, n,,5) be a maximizer of BIOf

(4.12) rrn<|£1[Lns — Ly, — %(Sg +3s — 3r +2n)log(n + g) + nlogn] > 0,

then
(4.12) By (T, X,) > —0—.
n+g
If
(4.13) Min[L,,s — Ly, — (s —r)log(n + ¢)] <0,
then
(414) B, (ty, Xp) < L
n+g

Note thatL, s — L, , > 3/2(s — r)logn always holds by definition of BIC.
Sufficient conditions for breakdown because of “inliers” depend on the parameters
of certain suboptimal solutions fer< s mixture components fox,,. They may be
hard to derive and are presumably too complicated to be of practical use.

ExXAMPLE 4.14. Consider again the combination of@& 1)-NSD with 25
points and &5, 1)-NSD with 25 points,f = ¢ andog chosen as in Example 4.12.
The difference in (4.11) is .37 for g = 1 and —7.56 for ¢ = 2; that is, the
breakdown point is larger thary31. Many more points are empirically needed.
Thirteen additional points, equally spaced between 1.8 and 3.2, lead to a final
estimation of only one mixture component (compare Figure 1). It may be possible
to find a constellation with fewer points where one component fits better than two
or more components, but | did not find any. Breakdown because of gross outliers
according to (4.13) needs more than 650,000 additional points!
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A mixture of the(0, 1)-NSD with 25 points with g50, 1)-NSD of size 25 leads
to a lower breakdown bound of 1@2. For estimated, even a breakdown point
larger than 12 is possible, because new mixture components can be opened for
additional points. This may even happen empirically for a mixturéopi)-NSD
and (50, 1)-NSD, because breakdown by addition of gross outliers is impossible
unless their number is huge, and breakdown by addition of “inliers” is difficult.
For a(0, 0.001)-NSD of 25 points and &.00,0000.001)-NSD of 25 points, even
the conservative lower breakdown bound ig 588> 1/2.

The choice of thes-distribution instead of the Normal leads to slightly better
breakdown behavior. The mixture of a 25 poift-1)-NSD and a 25 point-
(5, 1)-NSD yields a lower breakdown bound of58, and empirically the addition
of the 13 inliers mentioned above does not lead to breakdown of one of the
two components, but to the choice of three mixture components by the BIC.
Replacement of th€b, 1)-NSD by a(50, 1)-NSD again gives a small improvement
of the lower bound to 133.

REMARK 4.15. The possible breakdown point larger thai2 1s a conse-
guence of using the addition breakdown definition. A properly defined replace-
ment breakdown point can never be larger than the portion of points in the small-
est cluster, because this cluster must be driven to break down if all of its points are
suitably replaced. Thiillustrates that theorrepondence between addition and re-
placement breakdown as established by Zuo (2001) may fail in more complicated
setups.

The addition of a noise component again does not change the breakdown
behavior.

THEOREM4.16. Under fmax> 1/(Xmaxn — Xmin.n), Theoren#.13also holds
for global maximizers of BlQefined so thaf2.10)is maximized for every fixed

EXAMPLE 4.17. The discussed data examples of two components with
25 points each do not lead to different empirical breakdown behavior with and
without an estimated noise component according to (2.10), because no point of
the original mixture components is classified as noise by the solutions for two
Normal components. In the case of@ 1)-NSD of 45 points and &5, 1)-NSD
of 5 points, the solution with one Normal component, classifying the points from
the smaller NSD as noise, is better than any solution with two components. That is,
no second mixture component exists which could break down. The same holds for
t1-mixtures (all points form the only component), while NMML shows almost the
same behavior in Example 4.14: there are two mixture components corresponding
to the two NSD’s which can be joined by 12 equidistant points between 1.55
and 3.55. Equation (4.12) evaluates again t611 More examples are given in
Hennig (2003).
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REMARK 4.18. While parameter breakdown due to the loss of a mixture
component implies classification breakdown of at least one cluster, classification
breakdown may occur with fewer additional points than parameter breakdown.
Consider again th€0, 1)-NSD of 45 points plus thg5, 1)-NSD of 5 points
and NMML. The smaller cluster breaks down by the addition of six points, namely
two points each exactly at the smallest and the two largest points @.theNSD.

This leads to the estimation of five clusters, namely the orig{@al)-NSD,

three clusters of three identical points each, and the remaining two points of the
(5, 1)-NSD. The fifth cluster is most similar to the original one wjth= % <2,

while no parameter breakdown occurs. Thus, an arbitrarily large classification

breakdown point is not possible even for very well separated clusters, because
not only their separation, but also their size matters. As in Section 4.2, the number

of additional points required depends @n

5. Discussion. It has been shown that none of the discussed mixture model
estimators is breakdown robust when the number of componrédstassumed as
known and fixed. An improvement can be achieved by adding an improper uniform
distribution as an additional mixture component.

The more robust way of estimating mixture parameters is the simultaneous
estimation of the number of mixture componentsBreakdown of mixture
components may rather arise from the addition of points between the estimated
mixture components of the original dataset than from gross outliers. It may be
controversial if this is really a robustness problem. A sensible clustering method
should be expected to reduce the estimated number of clusters if the gap between
the clusters is filled with points, as long as their number is not too small. Compare
Figure 1, where the NMML estimate o= 1 and ther1-mixture estimate of = 3
may both seem to be acceptable. In such cases, the empirical breakdown point, or
the more easily computable but conservative breakdown bound (4.12), may not be
used to rule out one of the methods, but can rather be interpreted as a measure of
the stability of the dataset with respect to clustering.

While including the estimation of leads to theoretically satisfying breakdown
behavior, robustness problems remain, in practice, because the global optimum
of the log-likelihood has to be found. Consider, for example, a dataset of 1000
points, consisting of three well-separated clusters of 300 points each and 100 ex-
tremely scattered outliers. The best solution requires 103 clusters. Even for one-
dimensional data, however, the EM-algorithm will be very slow for a large number
of clusters, and there will be typically lots of local optima. Therefore, the maxi-
mum number of fitted components will often be much smaller than the maximum
possible number of outliers and the results for fixegemain relevant. The use
of an improper noise component or, if extremely huge outliers are ruled out, the
proper noise component armixtures will clearly be superior to Normal mixtures
with s estimated but restricted to be small.
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The comparison of the robustness characteristics of various cluster analysis
methods is an important topic and a first attempt is made this paper to define a
classification breakdown point. It should not be the last word on the subject. Davies
and Gather (2002) argue that a reasonable concept of a breakdown point should
be linked to a sufficiently rich equivariance structure to enable nontrivial upper
bounds for the breakdown point. This does not hold for the concepts presented
here, and it should be kept in mind that breakdown point definitions as those given
here do not rule out meaningless estimators such as constants. The breakdown
point should not be seen as the only important measure to judge the methods, but
must be complemented by the consideration of their further properties.

In some situations with low breakdown point in mixture modeling, additional
outliers do not cause any substantial change unless they are huge (cf. Example 4.8,
NNC in Section 4.2). More sensible measures than the breakdown point may be
needed here.

Neither MCLUST nor EMMIX is able to exactly reproduce the results given
here. Both do not allow the specification of a lower scale bound. MCLUST
produces an error if the EM-iteration leads to a sequence of variance parameters
converging to 0. This implies, in particular, that no single point can be isolated
as its own mixture component. But such an isolation is crucial for the desirable
breakdown behavior of the methods with estimatedEMMIX terminates the
iteration when the log-likelihood does not seem to converge. The preliminary
iteration results, including one-point-components, are reported, but solutions with
clear positive variances are favored. Thus, the current implementations of the
Normal mixture estimation with estimatedare essentially nonrobust. Addition
of a noise component andmixtures perform better under outliers of moderate
size, but they, too, are not robust against very extreme outliers. The results given
here do not favor one of these two approaches over the other, and | think that the
implementation of a lower bound for the smallest covariance eigenvalue is more
important an issue than the decision between the current implementations.

Note that both packages enable the use of stronger scale restrictions (equivalent
to equal variances for all mixture components in the one-dimensional case), which
should have roughly the same robustness characteristics for estimatethe
methods considered here. However, in practice such restrictions are often not
justified.

APPENDIX

A.1l. Choice of the tuning parameters og and b. For the choice oby, the
following strategy is proposed. As a “calibration benchmark,” form a dataset
with n points by adding an,-outlier to a (0, 1)-NSD (recall Definition 4.9)
with » — 1 points. Davies and Gather (1993) defiredutliers” (with @ > 0 but
very small) with respect to an underlying model as points from a region of low
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density, chosen so that the probability of the occurrence of an outlier is equal
to « under that model. For a standard Normal distribution, for example, the points
outside[®~1(%), ®~1(1 — $)] are thex-outliers. Fora, =1 — (1 — p)¥/", the
probability of the occurrence of at least oag-outlier amongr i.i.d. points is
equal top. Takep = 0.95, say.

Consider NMML with estimated under (2.11) (this seems to lead to reasonable
values for all methods discussed in the present paper).cd.et op for this
particular setup. Choos& so thatC (1) = C(2) according to (2.20). This can
be carried out in a unique way becaubgi(n, 1) does not depend oty (as
long ascp is smaller than the sample variance) abglo(n, 2) increases with
decreasingo, because this enlarges the parameter spacegonall enough, the
two-component solution will consist of one component matching approximately
the ML-estimator for the NSDy» will approximately equal the outlier ang = g,
so that the increase ib, 2(7,.2) becomes strict.

Now useog = coomax, Wherea2,, is the largest variance such that a data
subset with this variance can be considered as a “cluster” with respect to the
given application. At least, if the mixture model is used as a tool for cluster
analysis, points of a cluster should belong together in some sense, and, with
regard to a particular application, it can usually be said that points above a certain
variation can no longer be considered as “belonging together.” Therefore, in most
applications it is possible to choosgax in an interpretable manner, while this
does not work fowyg directly.

The rationale is that a sensible choicesgfshould lead to the estimation of the
dataset as one component, if it does not contain any outlier in the sense of Davies
and Gather (1993). If theth point is an outlier, it should be fitted by a new mixture
component. The reader is referred to Hennig (2003) for a more detailed discussion.

Given omayx, the improper density valug for maximization of (4.8) can be
chosen as the density value at the 0.025-quantilg gf .., so that at least 95% of
the points generated from a “cluster-generating” mixture component have a larger
density value for their own parent distribution than for the noise component. In all
examplesrmax = 5 has been used, which leadsstp= 0.025,6 = 0.0117.

Note that the theory in Section 4 assurag®s constant over, so that it does
not directly apply to the suggestion given here.

Under (2.12)¢ = ¢o can be used because of scale equivariance, avoiding the
specification obmax. However, (2.12) does not properly generalize to fitting of a
noise component and estimation of the number of components (the latter can be
done by the choice of a suitable upper boundpn

LEMMA A.1l. The following objective functions are unbounded from above
under the restrictior{2.12):

1. the log-likelihood functior§2.10)with fixeds;
2. the AIC and BIC of mod€P.1)with unknowrs € N.
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PrROOF Consider an arbitrary dataset, ..., x,,. For (2.10) choose1 = x1,
w1 > 0,01 — 0, g > 0. This implies that the summand fe§ converges tao
while all others are bounded from below by @9/ (Xmax, — Xmin.»))- This proves
part (1). For part (2) choose=n, a1 = x1, ...,a53 = x,, 01 =--- =05 — 0. Thus,
L, s — oo, and the same holds for AIC and BICU]

A.2. Proofs.

PROOF OFLEMMA 2.2. For any fixecbj.‘, the maximizera; of (2.17) lies
betweentmax, andxmin, because of (2.2) and (2.3). Now show that

oo f(0)

S ((xmaxn — xmin,n)/O'O).

O'jf

By a]’." = 0y,

" 1 i —da; 1 — Xmi
S0 =Y pilog _f(.Xl a; ) > n;log _f<Xmaxn Xmin,n )
l.Zzl 00 00 00 00

For arbitraryo]’.",
Sj(aj,o7) <nm;(log f(0) —logo;).
Therefore,

0./ (0)

f((xmax,n - xmin,n)/UO)

Xmaxn — Xmin,n
0]

1
logf(O)—IogajzlogU—Of( ):mjs

aslong asiz; > 0, proving (2.18). O

PROOF OFLEMMA 3.3. Recall (3.2). For givel, F can always be chosen
to containCy, ..., C,, r > 2, with C € |J;_, C; such that|C;| < |C|/2 Vi for
even|C|. For odd|C|, C1 € F with |C1 N C| = (|IC|+1)/2 and|C1\ C| > 1
can be constructed such that(C, F)= y(C, C1) < 2/3. On the other hand,
VEeF:y*(C,F)>2/3ifx,=CU{x}and8§={2}. O

PROOF OF LEMMA 4.1. Note first that in case of maximizing (2.10) the
density of the noise component (max.+¢ — Xmin.n+¢) CONverges to 0, so that
all arguments, including those used in the proofs of Lemmas 4.2 and 4.3, hold for
this case too.

Assume w.l.o.g. that alk;,,, j =1,...,s, are outsidgx; — d, x,, + d] for
arbitraryd < oo andm large enough unless;,, \ 0 oro;, / oo at least for a
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subsequence a@t € N. Consider

ni s
Ln,s(nm’ Xnm) = Z Iog(z njmfajm,crjm (xi)>
i=1  \j=1

+ > Iog(z n‘,-mfa_,-m,g_,-m(xz'))

i=ni+1 j=1

The first sum converges teco for m — oo because of (2.7), and the second sum
is bounded from above b — n1) log(f(0)/00), thatis,L, (1., Xum) — —00.

In contrast, for,, With dxm = Xu,, Gkm = 00, Fkm = 3, k=1, ..., h,
h
X, — X o b
Loy sG> Xam) = 3 mi log S (Gongn = Xonprvm)/00) o f(b/o0)
hoo hoo

k=1

Hence, form large enoughy,, cannot be ML. Since it should be Mld, has to
exist so that (4.1) holds for larger than some:g. [

PROOF OFLEMMA 4.2.

Proof of (4.3). Suppose that (4.3) does not hold. Without loss of generality
[the order of thez; does not matter and a suitable subsequend®,pf,cn can
always be found] assume

lim min{|x — ayn|:x € {x1n, ..., Xnm}} = 00.
m— o0

Due to (2.7),

if(ix"’" _al’") >0 Vi
o1

O1m m

With (2.6) and (4.1),

> 1 b+2d )
anmfajm,o_,‘m(xi) > dmin = Tmin f( ) > 0, i=1,...,n.

=2 Omax 00

Thus, for arbitrarily smalt > 0 andm large enough,

Ln,s(nm7 Xnm) < Z IOg(Z njmfajm,ajm (xi)) + I’l(lOg(dmin +é&)— Iogdmin)7
i=1 =2

and logdmin + €) — logdmin \( O for ¢ \ 0. Thus,L,, s can be increased far
small enough by replacement @f4,,,, a1, o1,) bY (7t1,4, X1, 00) in contradiction
to n,, being ML.
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Proof of (4.4) by analogy tq4.3). Suppose that w.l.0.g3,, — oo. Then
if(ixim - “1’“) -0 Vi
O1m O1m

and replacement dafry,,,, a1, o1,) BY (T, X1, 00) increases the log-likelihood.
O

PROOF OFLEMMA 4.3.
Proof of (4.5). Considek € {1, ..., h}. Let Sk =[x _1+1m — d, Xuum +d].
With Lemma 2.2,

njmfgjm o‘jm(-xi)
Z n]m - Z Z Z[ 17Tlmfa1m Olm (xl)

ajm €Sy aijSk i=1

Fora;, € Sy andm — oo,

Tim fajm,o_im (xi)

Z;:]_ TTim falm,Ulm (-xi)

—~0 fori¢ Dy,

while, fori € Dy,

njmfajm,ajm(xi) njmfajm,ajm(xi)

— 0.
Z?:l nlmfaz,,,,alm (-xi) Zajmesk nlnzfalm,alm (-xi)

This yleldsza e, Tim = |Di|/n [atleast one of the j,, in this sum is bounded
away from O by (4.1)].

Proof of (4.6). Letny,, =argmax, Lip,|.q(m,Yim), q €N,

h
| Dy |
Lgygum = Z(LDH ax (Mkmg;.) + 1D | log —)
k=1

Note thatL,, s (1,,) > maxen ;. Ly,...q,m Can be proved by choice gfaccord-

ingtorm; = (Djl/M)Tjmg;s @j = @jmg;» Of = Ojmg;, J =1, ..., h. Further, for
m large enough and arbitrarily smalt- 0,

h
(Al) Ln,s(nm) =< Z Z |09< Z ﬂjmfajm,ajm(xi)) +e,

k=lieDy ajm€Sk

because, fox;, i € Dy, the sum ovet;,, € S is bounded away from 0 as shown
in the proof of Lemma 4.1, while the sum ovef,, € [x@,_1+1m — d, Xnm + d],
[ # k, vanishes fom — oo. Further, find

Z IOg( Z njnzfajm,ajm(xi)> — | Dy | Iog( Z njm) = Lle\,q(nkmq),

ieDy ajm €Sy ajm €Sk
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whereg = |{a, € Sk}|. Now (4.6) follows from (4.5). O

PROOF OFTHEOREM4.4. LetX(trym = (X1, .+, Xy X(tDms - - - s X(ntrym) »
m e Nw.lo.g. Letxy <--- <Xx,, X(u4iym =X, +km, k=1,...,r. This satisfies
the assumptions of Lemma 4.1 far=r 4+ 1, so that the location parameters
for r components have to convergexowith xg,+1)m, - - ., X(u4rym. O

PROOF OFTHEOREM 4.11. LetX, 4, = (x1,...,Xp1g). LOUEF =&, 4, s =
arg max Lytgs(,Xnsg). FOrr <s,

n r S
Lng,s §Z|09<Z7T;f97(xi)+ > 7 for (xi) + mo )+g|09fmax-
i=1 j=1 j=r+1
Assume that the parameter estimatorssof r (i.e., at least one) mixture
components leave a compact sbt of the form D = [mmin, 1] x C, C C

R x RT compact,mmin > 0. Let the mixture components be ordered such that
(n;‘,a;‘,o;‘) e Donly for j =1,...,r <s. From (2.6),2;:1n;‘f9;f(xi) >

¥ Tmin fmin, While Z§:r+1ﬂ;f97 (x;) becomes arbitrarily small fab large enough

by (2.7). Thus, for arbitrary > 0 andD large enough,

n r
Lyigs < Z|OQ<Z7T;]C.97(X,‘) +776kb) + g 109 fmax+ ¢
i=1 j=1
(A.2)
<maxLy,, +glog fmax+ ¢

However,é could be defined bytg = (nmo+ g)/(n +g), #; = (n/(n + &)},
aj=aj,6;=o0j,j=1,...,s5. Therefore,

Ln+g,s > ZlOg(Z n‘/fg_i(x,-) + <7TO + g)b)

n

i=1 j=1
8 n
+g Iog[<7'ro + —)b} + (n + g) log
n n+g
= maxLy,, > > Iog(Z 7 fo; (xi) + (rro + %)b)
i=1 j=1
g n
+g|og[<no+—)b} + (n + g)log — glog fmax— e.
n n+g

This contradicts (4.9) by — 0. O

PROOF OFTHEOREM 4.13. Add pointsy, 41, ..., Xy4g t0 X,. Let Cp (s, )
be the value of BIC for mixture components and paramefgrapplied to the
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datasetx,,, m > n. Let C,,(s) be its maximum. With the same arguments as
those leading to (A.2), construct for arbitrary- 0 a suitably large compact

R x R™, containing the location and scale parameters of all mixture components
of T = (s, n) = (s, ny.s), and assume that*, a]’.") € C for only r < s components

of t* =argmax ; C,14(5, 7). We get

Cnyg(s™) <2) |09<Z ﬂffe;‘(xi))
(A.3) =1 \j=1 '

+ 2g10g fmax+ & — (8" — 1) log(n + g),

and, by takings =s + g, 7, =n/(n+g)m;, j=1,...,8, Asqy1 =+ =Ms4q =
1/(”‘*‘3);9‘/':Qj,j:1,---,5‘,&s—‘,-k:xn+ka5's+k:(701k:1,---,g,

Crpg(s™) =23 :log<§ g, (x»)
i=1 j=1 n+g
(A.4)

+ 2glog

fma; (3(s+g) — 1) log(n + g).

By combination,

Zlog(anfmxi)) Z'og<22n  for <xl>>—
i=1 j=1 k=17

i=1 j=1

3 *
<glog(n+g) — —(s — (s +8))log(n + g)

+nlog<an>

k=1

—nlog

1
< 5(5g+3s —3r+2n)log(n + g) —nlogn.

Under (4.11) this cannot happen for arbitrarily snaall
A sufficient condition for breakdown can be derived by explicit contamination.
Lety =x,411="-- = x,4¢. For fixeds, it follows from Lemma 4.3 that

)
+8

This cannot be maximized by* = s > s + 1 because the penalty anis
larger forn + g points than forn points ands* — 1 with parameters maximiz-
ing L, s«—1(n,X,) must already be a better choice tharfor n points unless

. N n
M s @) = 2( Ly -1+ 810G (a0 + nlog ——+

—Bs—Dlogn+ g).
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s* <s 4 1. It follows that the existence @f< s with
2L,s— (3(s+1) —1)log(n +g) <2L,, — (3(r +1) —1)log(n + g)

suffices for breakdown of at least one component, which is equivalent to (4.13).
O

PROOF OFTHEOREM4.16. Let
1 1
d=——— d* =

, .
Xmaxn — Xmin,n Xmaxn+g — Xmin,n+g

Replace (A.3) by

Crtg(s™) < ZZ|09<Z 77 for (xi) +7T§d*>
(A.5) i=1 j=1 '

+ 2g 109 fmax+ & — (8s* — 1) log(n + g),

and (A.4) by
Core 6™ = 23 l0g( 3"~ fo, () + ——rod
n §s) = i Jo:\Xi
v i=1 ’ —nts 778i n+g 0
4 2g10g 1™ _ (3(s + g) — 1)log(n + g).
n—+g

Equation (4.12) follows frond > d* in (A.5). [

Lemma 4.3 holds as well for maximizers of (2.10), and therefore (4.14) carries
over as well.

Acknowledgments. | thank a referee and Vanessa Didelez for helpful com-
ments.
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