
Towards Flexible Service-aware Adaptation
Management in Ambient Networks

Lawrence Cheng, Kerry Jean, Roel Ocampo, Alex Galis
University College London, Electrical Engineering Department, Torrington Place, London, WC1E 7JE, UK.

e-mail: {l.cheng, kjean, r.ocampo, a.galis}gee.ucl.ac.uk

Abstract - Extending the current use of the
event-condition-action (ECA) logic of active databases for
defining self-adaptation policy has been suggested; key research
areas are adaptation policy definition, dynamic conflict detection
and resolution. However, developing service-aware
self-adaptation systems in heterogeneous and rapidly changing
wireless networks such as Ambient Networks (ANs) is a
challenging issue. This paper identifies that existing approaches
suffer from the lack of a flexible management system to handle
conflicting service adaptation policies; and often conflicting
policies are simply ignored, which results in situations in which
certain network conditions are not satisfied. In this paper, we
present the Ambient Virtual Pipe (AVP) platform, that uses an
Action Object Base (AOB) that enables flexible management of
potentially conflicting adaptation policies. Two conflict
resolution approaches, known as the AVP Action Prioritisation
approach and the AVP Composition approach, are also presented
and discussed.

1. INTRODUCTION
An Ambient Network (AN) [1]
nodes (known as AN nodes)
space, known as the Ambient
The ACS is a set of control
representations in AN [2].

Iis composed of a set of mobile
that share a common control
Control Space (ACS) (Fig. 1).
layer functions and resource

Fig. 1. Illustration ofthe Ambient Control Space (ACS)

The Ambient Network Interface (ANI) [7] connects ACSs of
different ANs. It is through the ANI that network composition
between ANs may negotiate (see later section). The Ambient
Resource Interface (ARI) [17] is located inside a node,
between the ACS and the connectivity layer that offers
resource control mechanisms. The Ambient Service Interface
(ASI) [18][19] is located between the ACS and the

applications on a node. It allows applications and services to
issue requests to the ACS concerning the establishment,
maintenance, and termination of end-to-end service
connectivity between functional instances connecting to the
ASI.
Given the dynamic and heterogeneous nature of AN, one of
the major challenges in AN is to develop a flexible
service-aware adaptation system - that is capable of realising
and self-adapting to the rapidly changing network
conditions - in order to support services at run-time. To
enhance flexibility, this self-adaptive system must provide an
interface i.e. the ASI that allows Service Providers (SPs) to
dynamically add new service adaptation policies for their new
services. By service adaptation policies, we mean a collection
of rules specifying the desired behaviour of a service [14] [15].
The support for dynamic inclusion of service adaptation
policies requires a flexible and manageable approach to policy
management. Furthermore, the adaptation system must
dynamically detect and resolve conflicts between
simultaneously triggered policy actions.
Our interest in this paper is to detect and resolve
application-layer conflicts i.e. conflicts between different
services; rather than conflicts between component or
hardware usage. We present in this paper the Ambient Virtual
Pipe (AVP) platform, that is a flexible approach to service
adaptation policy management. Potentially conflicting policy
actions are organised in a hierarchical structure for easy
inclusion of new policy actions, and easy detection and
resolution of conflicting policy actions. The AVP platform
adopts two flexible approaches towards policy conflict
resolution i.e. the AVP Action Prioritisation approach and the
AVP Composition approach. Lastly, we illustrate the enhanced
level of flexibility of our resolution approaches through a
scenario. As an initial attempt, the AVP platform handles
service adaptation conflicts on local nodes only, we aim to
address network-wide conflicts management as future work.

2. BACKGROUND
It was identified in [14][15][20][21][22] that the simple
event-condition-action (ECA) logic of active databases can be
used as the underlying technique for self-adaptation
management. Essentially, the ECA approach can be used to
express a policy rule: such as when an event happens, and as a
result the condition returns TRUE, an action will be taken
[20]. Based on the ECA approach, service adaptation policy
may be defined as a service-specific policy that contains a set

0-7803-9746-0/06/$20.00(2006 IEEE

of conditions and their corresponding actions. By conditions,
we mean a combination set of (network) events that are
pre-defined by the SPs, which are consistently being
monitored at system runtime. Once the conditions are reached,
the corresponding set of reactions i.e. the actions, will be
exercised.
Service-aware self-adaptation can be achieved through either
implementing service adaptation policies (i.e. conditions and
actions) into the service applications or the targeted systems
[8][9][10][11] i.e. an internalised approach; or relying on a
third party adaptation system that adapts accordingly by using
service-specific knowledge and policies that are provided and
defined by SPs [12][13][14] i.e. an externalised approach.
Internalised approaches generally require specific
self-adaptation code to be built into the applications
[8][9][10][11]. This approach may be more sophisticated and
self-contained, but at the expense of a higher development
cost (more complex coding structure) incurred by building
adaptation code into the applications, and a higher level of
difficulty to add new service adaptation policies at application
runtime [14]. Externalised approaches use a generalised
framework through which different SPs may specify their
service requirements and their service adaptation policies at
application runtime, which gives a higher level of flexibility;
but requires sophisticated techniques in the adaptation
platform to interpret the context of service adaptation policies
in order to detect and resolve potential conflicts between
policies.
It should be note that, conflicts between (potentially
conflicting) policy actions are created when the conflicting
policy actions are actually being executed simultaneously.
This is because, as we will discuss further in later section, all
policy actions of the same nature (when executed
simultaneously) are potentially conflicting. By the same
nature, we mean the service-specific adaptation policy actions
are of the same Service Type. For example, a SP that provides
a QoS-assured delivery service may have different policies
that use tc or DiffServ as its QoS controller respectively.
These policies are potentially conflicting (i.e. use different
technologies) but they would only cause problems if they
were executed simultaneously. Thus, we believe that to
enhance flexibility and dynamicity, conflict detection and
resolution should be done dynamically by the adaptation
platform at execution time, rather than requiring SPs to
pre-determine all potential conflicts between its policies in
advance (as required in [14]).

3. ADAPTATION POLICY MANAGEMENT

context information (context information would be used for
overlay re-configuration [3]), and uses a programmable
architecture [6] to support rapid supportive overlay creation
[3][16]. Due to space limitation and the scope of this paper,
we focus on the AVP's service-aware adaptation approaches.
Details of the AVP platform on rapid overlay creation and the
ContextWare architecture used by the AVP platform can be
found in [3][16] and [4][5] respectively.

3. 1 Assumptions

We assume SPs are capable of generating self-adaptation
policies by using their service-specific knowledge; also, SPs
must provide their own implementation i.e. the actual code of
their policy actions. The AVP platform is designed to be a
generic adaptation platform to support different types of
service-aware adaptations. As such, it cannot be made
responsible for defining, or creating the actual adaptation
code for service-specific adaptation policies on behalf of SPs.

3.2 Adaptation Policy Definition

We define a policy to be composed of two parts: a (set of)
condition(s) (CON), and the corresponding actions(s) (ACT).
Because the condition(s) are service-specific, in order to
maximise the level of flexibility for SPs to define their own
conditions, and at the same time allowing the AVP platform to
interpret the policies' context, the AVP platform requires the
SP to specify their conditions using common basic data
structures, relational and conditional operators e.g. >, >=, ==,
&&, ... etc. and in the form ofBOOLEAN conditions. A set
of conditions may be defined as one or more conditions
combined through the use of relational and conditional
operators. The pseudo code for an example set of conditions is
shown in below.

(CON_1 == CON_2) && CON_3

3.3 Action Object Base (AOB)

Root (1)
I

iblt Ntwos

ManagcrrLnt LExpe imetal Prvatc

itepiJseCs

S SP2 SnE

The AVP platform is a service-aware adaptive system that is
distributed on all AN nodes, and it is responsible for creating
virtual supportive overlays i.e. the AVPs in ANs, to support
self-adaptation operations of (other) services in ANs. Note
that the AVP platform follows an externalised adaptation
approach. This is because (as explained in earlier section)
externalised approaches provide a higher level of flexibility to
cope with dynamic inclusion of new policies. The AN ASI is
defined in the AVP platform as a set of open APIs to SPs,
through which SPs can dynamically specify service
adaptation policies when new services are launched, or when
network condition changes. Simultaneously triggered policies
are checked for conflicts at the time when they are executed,
and detected conflicts are resolved by the AVP platform
automatically prior to execution. In addition to support for
service-aware self-adaptation, the AVP platform uses a
ContextWare architecture [4][5] to monitor real-time network

QON .olformo

ncyCption
seDESI useTDE

rm rtDLS

Secun:ty

AuthenlticaLtion lIntegiit;y

useAES

Fig. 2. An example AOB

In order to enable flexible and manageable service adaptation
policy management, policy (or action) specification must be
managed in a manageable format. We propose to use a
tree-like data structure - known as the Action Object Base
(AOB) (Fig. 2) - in which each action is considered as an
action object that has an unique identification number i.e. an
Action Object ID (AOID). Action Objects are references to

adaptation code developed by SPs that are to be executed
when certain conditions are reached. AOIDs are organised in
a hierarchical structure to allow maximum flexibility for SPs
to define their own new actions (see later for discussion).
According to Fig. 2, an example AOID would be the
useTDES (use Triple DES) action defined by SPi

i.e. .1. 3.1.1.3.1.2. Note that each AOID is placed in the
AOB according to its Service Type. For example, useTDES iS
a action of the Encryption service of the security service
of sPi. As we will see in later sections, by categorising
actions based on their Service Type, we ease the action
conflict detection process.

Each SP must specify policy actions in their policies in the
form ofAOIDs according to the SP's AOB. Note that the AVP
platform does not allow opposite action to be specified in an

AOB. By opposite action, we mean the reverse action of an

already defined action. For example, useTDES is a defined
AOID in the above example AOB, the SP must not specify
doNotUseTDES as another AOID. This requirement is needed
to ease conflict detection (see later section). This requirement
does not limit the applicability of the AOB approach, because
- as will be discussed shortly - opposite action may be
specified in a policy using the NOT operator. An example
policy is shown below:

POLICY_1:
if CON 1 && CON_2;
EXE: AOID 1;
EXE: !AOID 2;

This policy basically says if condition 1 and 2 (i.e. CON_1 &&

CON_2) are met, execute action 1 (i.e. EXE: AOID 1), but do
not execute action 2 (i.e. EXE: !AOID_2). Note that the last
action is defined by using the NOT operator.
There are several advantages of using an AOB to store actions
as object references in a tree-like structure according to their
Service Types. Firstly, this approach provides a way for each
SP to uniquely allocate their actions according to the
corresponding AOID, and thus allows multiple SPs to define
their own actions in a way that is manageable by a third party
adaptation platform (such as the AVP platform). This
arrangement enables logical separations between different
SPs' policies. By logical separating different SPs'
service-specific adaptation policies, potential conflicts
between different services provided by different SPs are

avoided. Conflicts are created between actions defined by the
same SP only; thus our approach is more manageable.
Secondly, unlike the approach defined in [14], where action
(or policy) organisation is not addressed, with a structured
organisation such as an AOB, information on policies (or
actions) can be easily updated by editing only the relevant
subset of the tree (see later section on action prioritisation).
For example, SPi can easily add a new action (e.g. useRC4)
or other relevant information to its AOB as . 1 . 3. 1. 1. 3. 1. 4.
This means the AVP approach is more manageable. Lastly,
and more importantly, as we will see in later sections, this
hierarchical arrangement of actions allows the adaptation
system to quickly identify conflicts between adaptation
actions.
As described, the use of AOBs enables dynamic introduction
of adaptation policy actions; which in turn increases the
flexibility of the AVP platform because SPs may dynamically
add new adaptation policy actions to accommodate new

network conditions. However, one important issue in
self-adaptation is the detection of policy conflicts. Conflict

detection must be performed at system runtime in the AVP
platform because new policy actions may be added or
executed at system runtime. Next, we will present how the
AVP platform detects potential conflicts between
simultaneously triggered policy actions.

4. REAL-TIME CONFLICT DETECTION
4.1 Opposite Action Conflicts

One major cause of conflicts between policies is when two
opposite actions are executed at the same time, known in this
paper as Opposite Action Conflicts. For example, suppose a
SP is providing a secured AN service of which AN nodes may
communicate securely (i.e. through encrypted channels). The
AN is responsible for organising symmetric keys distribution
within the AN. Assume initially there are two AN nodes in
this AN, and both nodes support only DES. A policy
(POLICY 1) may specify "if the number of participating AN
nodes is less than or equal to five, use DES as the default
encryption algorithm" '. The pseudo code for POLICY_1 iS
listed below:

POLICY_1:
if (numberOfUsers <= 5);
EXE: useDES;

POLICY 2:
if (AES == 1 || TDES == 1)
EXE: !useDES;
EXE: useAES;

Suppose another two new nodes wish to join the AN. These
new nodes are determined to use a more secure encryption
service e.g. AES, TDES (Triple DES)... etc. If these new
nodes were to join the existing AN, the SP would have to add
and execute a new policy (POLICY 2) that, says, "if either
AES or TDES is available (or both), do not use DES as the
default encryption algorithm, but use AES". The new policy
POLICY 2 is shown above in pseudo code. If the conditions
defined in the two policies are reached at the same time -

which will be the case if the new nodes join the AN, and the
SP installs the new policy (POLICY 2) to the adaptation
system and tries to execute it - there will be a conflict between
the defined actions. A loop will be resulted (i.e. use DES, do
not use DES... etc.). As explained earlier, conflicts (between
policy actions) must be detected at system runtime to support
dynamic inclusion ofnew policies to achieve a higher level of
flexibility. The AVP platform detects opposite action detection
through the AOB regulations: recalling from previous sections,
opposite action cannot be specified in an AOB. Thus, an
Opposite Action Conflict can be easily detected if the
simultaneously triggered actions contain the same AOID, one
with a NOT operator but not the other.

4.2 Identical Service Type Action Conflicts

This type of conflict is created when two (or more) policies of
different conditions exercise different actions of the same
Service Type. Recalling from previous sections, AOIDs are
placed in an AOB according to their Service Types. The
useTDES action is of the Encryption service of the
Security service provided by SPi. As such, iftwo actions of
the same Service Type are executed at the same time, a
conflict may be resulted. The below example shows an

1 This is just an example to show conflicts between different policies of
opposite actions; this example does not replicate a real-life scenario. For
simplicity, we assume a weak(er) encryption algorithm is acceptable if the
number of participants is small.

Identical Service Type Action Conflict in pseudo code. Note
that the actions i.e. useDES and useTDES are of the same
Service Type (SP1.Security.Encryption). If the
conditions of the policies are met at the same time, conflicts
will be created between POLICY 1 and POLICY_2,
POLICY 1 and POLICY 3: should the AN use DES or TDES
as the default encryption algorithm?

POLICY_1:
if (numberOfUsers <= 5)
EXE: useDES;

POLICY_2:
if (TDES == 1)
EXE: useTDES;

POLICY_3:
if (numberOfUsers <= 5 || DES == 0)
EXE: useTDES;

Identical Service Type Action Conflicts can be easily
identified in the AVP system by detecting actions of the same
Service Type when policy actions are triggered. This is
because we have made the necessary provisioning in the AOB
definition that requires SPs to allocate their actions into
appropriate places in the AOB according to their Service
Types. When actions are simultaneously triggered, the AVP
platform checks to see whether the actions are different but of
the same Service Type. If they are different but of the same
Service Type, a conflict is detected.

5. CONFLICTS RESOLUTION
5.1 Existing Approaches

The first-in-first-to-execute approach [14] accepts the first
policy that was triggered, late comers were simply dropped.
This approach is simple to implement, but at the expense of
ignoring potentially more ideal policies that happen to be late
comers. The prioritisation approach used in [15][23] to
overcome conflicts between active database rules is a
potential candidate solution: each SP would be required to
prioritise its adaptation policies. Policies of lower priorities
would be rejected. In this case, this approach would have a
higher level of flexibility than the first-in-first-to-execute
approach, but at the expense of a higher overhead for policy
priority management (see later section).
Although both approaches are simple to implement, they have
significant drawbacks. The prioritisation approach creates a
scalable problem when SP creates and adds their new policies
of different priorities. This is because if the assigned priorities
of existing policies specified to the adaptation platforms are to
be reassigned (because a new conflicting policy with a
higher/lower priority is to be added, or the SP decided to
rearrange the priorities due to new policies... etc.), the
priorities of all existing policies specified by the SP to the
adaptation platform must also be updated. This is largely due
to a lack of an organised policy management system. As we
will see later, this scalable issue can be largely resolved if an
organised policy management structure i.e. AOB is used.
More importantly, under both approaches, "disqualified"
policies (either of lower priorities or simply arrive late) are
simply eliminated. If adaptation policies are generated and
executed in response to changes in network conditions,
ignoring policies by either of the approaches means there are
chances that the new network condition(s) would not
accommodated.
Beside overhead and performance, we believe it is also
important to realise and to enforce the actions of policies

when they are to be executed, rather than simply ignoring
them. As such, the AVP platform adapts a dual-technique
approach, that consists of action prioritisation and
composition respectively, which provides the necessary
provisioning for SPs to choose which technique to use
according to their preferences.

5.2 The A VP Action Prioritisation Approach

The AVP platform assigns priorities to policy actions with
respect to their Service Types through the use ofAOB in order
to resolve policy conflicts. Priorities are assigned to actions
by SPs. Note that the AOB requires all policy actions to be
categorised into the AOB according to their Service Types.
Thus, should a new action with a new priority is to be added,
and as a result, the priorities of the existing actions must be
updated accordingly; only the priorities of the actions of the
same Service Types as the new action i.e. a subset of AOB
would be updated. Unlike existing prioritisation approaches,
the AVP Action Prioritisation approach is more manageable
because there is no need for a global update on priorities of
all policy actions. Thus, scalability is enhanced.

5.3 The AVP Composition Approach

Although the AVP Action Prioritisation approach is quick to
deploy once action prioritisation is done, it may not be ideal
because some policies (of lower priorities) will be dropped.
Instead of dropping one ore more of the policies of lower
priority, the AVP platform is designed with a facility to
accommodate this kind of situation. This facility is known as
the composition function. Through composition, the AVP
platform resolves policy conflicts by creating a new AN to
support one (or more) of the conflicting policy(ies). When a
conflict between simultaneously policy actions is detected by
the AVP platform, the to-be-added policy (and the new joining
nodes) is ignored by members of the existing AN i.e. the new
nodes will not be able to join the existing AN. The AVP
platform on the joining nodes will begin the composition
process, which enables the new joining nodes themselves to
create a new AN to fulfil their own interest. In this case, the
interest of both the existing AN nodes (in the original AN)
and the new joining AN nodes (now in the new AN) are both
satisfied.
Composition is a process in AN in which the ACSs of two or
more AN nodes negotiate through the ANI, and results in a
single control space. The process ends with a settlement on a
Composition Agreement (CA) between all participating nodes.
Essentially, the SP must specify - for each of its service e.g.
the SP1. Security. Encryption service - a Composition
Agreement Template, which will be used between
participating nodes during CA negotiation. This template
defines the framework for the agreement to be established
between two (or more) AN nodes. This template specifies the
initial policy and roles to be applied in the final concrete
agreement. This template has two main distinct parts: a
generic part and a AN service-specific part. The generic part
consists of generic information such as Time-to-Live of the
CA, and room for the identifiers of the AN nodes involved in
the agreement in the form of signature (and corresponding
public key certificates). The AN specific part defines
management information that are required by the
corresponding AN ACS Functional Entity (FE) that is
involved, in this case the Overlay Support FE (OSFE) (Fig. 1).
In a simple example, for a security service, the AN
service-specific part of the new CA established between the
new joining AN nodes would contain essential security

overlay establishment information that are agreed between the
two new joining AN nodes such as key algorithm to be used,
the key, key size... etc., and most important the adaptation
policy. The composition process ends when an agreement on
the CA is reached. Once a CA is settled between the new
joining nodes, the AVP platform dynamically generate an AN
based on the criteria defined in this new CA. The AVP
platform uses a programmable approach [6] to rapidly
generate AN to suit network needs2. Rapid AN creation
through the AVP platform is outside the scope of this paper,
but details can be found in [16]. Fig. 3 summaries the
differences between the approaches.

Fig. 3. Different conflict resolution approaches

6. SCENARIO
Our scenario was demonstrated in [24] using three laptops. A
secure video delivery service is required by a set ofAN nodes.
We illustrate the differences between existing conflict
resolution approaches and the AVP Composition approach in
terms offlexibility i.e. to accommodate specific-service needs
when service adaptation policy conflicts are detected in a
dynamically changing wireless network.

6.1 Prototyping
WNer)e videc server:,,AOB

Node
AN2 (DI S)

Fig. 4. AN establishment

The initial AVP prototype is built in Java, and consists of an
Policy Interpreter (PI) that reads the policy inputs from the
SPs, and stores the policies in an AOB (in the form of a
Linked List). Each policy action defined in our example AOB
was assigned with a priority. As an initial prototyping, the
video server, AOB and the PI are located on one of the laptops
in ANI only (Fig. 4). The AN composition negotiation
components i.e. the OSFEs are distributed on each laptop (Fig.
4).

6.2 Scenario Description

Two AN nodes (i.e. node A and B) realise POLICY 1. We set
the policy action (uesDES) to a high(er) priority in our AOB.

POLICY_1:
if (numberOfUsers <= 5)
EXE: useDES;

Next, a new node (i.e. node C) that is capable of supporting
TDES wishes to share the same secured video delivery
service. It has a different policy (POLICY_2), in which its
action has a low(er) priority.

POLICY_2:
if (TDES == 1)
EXE: useTDES;

The PI on node B adds the new policy action entry to an
appropriate location in its AOB i.e. according to the action's
Service Type. The two actions (i.e. useDES and useTDES) are
triggered. The PI detects an Identical Service Type Action
Conflict.

6.3 Analysis

Service EzDaiinSPR
Availability A(I (DES) 1 AN (DES)

I~~ ~ ~ ~ ~ ~ ~ ~ IAN2 (T ES) zero-availabIlity FTI DES)
nzeverq existst

0 O =
Conflict i-solutiontl irne Conflict resolution1 timne

Fig. 5. Service availability under different approaches

Fig. 4 shows the resultant overlays establishment when the
AVP Composition approach completes. The service
availability under different approaches are shown in Fig. 5.
Note that we are not justifying the performance of the
approaches; but rather to highlight the differences between the
approaches in terms of flexibility i.e. to accommodate
different service needs in a changing network environment
according to new and conflicting service adaptation policies.
Our investigation suggests that the prioritisation approach is
much simpler to deploy, but at the expense of ignoring
policies that could be ideal and essential to accommodate
network changes, and new joining nodes will not be able to
enjoy the service. The AVP Composition approach is more
flexible because all policies i.e. all responses to changes in
network conditions are included, but at the expense of a
higher level of overhead for composition.
We believe both approaches are essential, and thus the AVP
platform supports both approaches. SPs may decide between
prioritisation and composition. One possible criteria (besides
flexibility or overhead) to be considered would be the number
of participants in the AN. If the AN consists of a small
number of participants, the SPs may prefer to follow the
prioritisation approach for quick conflict resolution, in this
case the AN would be less flexible, but only a limited number
of nodes would be affected. In contrast, the composition
approach may be more ideal for an AN that consists of a
large(r) number of participants.

7. CONCLUSION & FUTURE WORK
In a relatively more static, smaller scale, and possible
homogeneous network environment (e.g. a LAN), SPs may
define all policies in advance, and resolve all potential
conflicts at adaptation logic development time [8] [9] [10] [11].
However, because wireless networks such as ANs are
dynamically changing and composed of heterogeneous nodes,
there is a need to provision for new service adaptation policies
to be dynamically added to the adaptation system, and
conflicts between simultaneously triggered policy actions to
be detected and resolved at system run-time, in order to
support dynamic introduction of new services and adaptation

2 By rapid, we mean the AVP platform is capable of creating new (security)
overlay with -40% less in performance overhead than some traditional
approaches [16].

to new network environments
As explained in this paper, a manageable approach for
dynamically introducing and managing new service
adaptation policies, dynamic detection of conflicts between
simultaneously triggered policy actions, and flexible real-time
conflict resolution are made feasible through the AVP
platform. The AVP platform provides a novel and flexible
approach towards manageable self-adaptation policy
management by hierarchically organising potentially
conflicting policy actions according to their Service Types
through the use of AOB, in order to ease the process of
real-time conflict detection. Additionally, the AVP platform
provides two flexible approaches to overcome drawbacks of
existing policy conflict resolution mechanisms. i.e. the AVP
Action Prioritisation approach and the AVP Composition
approach. The AVP Action Prioritisation approach makes use
of the well organised structure of AOB for scalable
prioritisation assignation to policy actions. Our scenario
shows that the AVP Composition approach is flexible in the
sense that specific service needs due to conflicts created
between simultaneously triggered service adaptation policy
actions and changing network conditions are not ignored but
satisfied.
As part of our future work, we aim to complete development
on our prototype by the end of 2006, and perform evaluation
in scalability and efficiency. Currently, our approach handles
conflicts on local node only. We aim to develop our approach
further into a network-wide solution.

8. ACKNOWLEDGEMENT
This paper describes work undertaken in the context of the
Ambient Networks (Phase 2) - Information Society
Technologies project, which is partially funded by the
Commission of the European Union.

9. REFERENCES
[1] The Ambient Networks (AN) Project,

[2] F. Pittmann, et al., "Ambient Networking: Concepts and
Architecture", IST-2002-507134-AN/WP1 /D08,

[3] L. Cheng, A. Galis, R. Ocampo, K. Jean, "Self-Management
in Ambient Networks for Service Composition", Intellcomm
2005.
whee.ullac.k/- l P INELLCOMM 200

[4] R. Ocampo, L. Cheng, Z. Lai, A. Galis, "ContextWare
Support for Network and Service Composition and
Self-adaptation", EEE-MATA 2005.

[5] R. Giaffreda, et al., "Ambient Networks ContextWare",
IST-2002-507134-AN/WP6/D6-3, EU-IST Ambient Network
Proj ect,

[6] A. Galis, et al., "Programmable Networks for IP Service
Deployment", ISBN: 1-58053-745-6, June 2004, Artech
House Books.

[7] B. Ahlgren, L. Eggert, B. Ohlman, A. Schieder, "Ambient
Networks: Bridging Heterogeneous Network Domains",
PIMRC, the 16th Annual EEE International Symposium on
Personal Indoor and Mobile radio Communications, Berlin,
Germany, 2005.

Framework for Dynamic Adaptable Systems", ACM
Symposium on Applied Computing (ACM-SAC) 2004,
March 2004.

[9] B. Ensink, V. Adve, "Coordinating Adaptations in Distributed
Systems", 24th International Conference on Distributed
Systems and Networks (ICDCS) 2004, March 2004.

[10] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K. Gifford,
M. F. Kaashoek, "Rover: A Toolkit for Mobile Information
Access", 15th Symposium on Operating Systems Principles,
1995.

[11] B. D. Noble, M. Satyanarayanan, D. Narayanan, J.E. Tilton, J.
Flinn, K. R. Walker, "Agile Application-Aware Adaptation for
Mobility", 16thACM Symposium on Operating Systems
Principles, 1997.

[12] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, P.
Steenkiste, "Rainbow: Architecture-based Self-Adaptation
with reusable Infrastructure", EEE Computer, 37(10),
October 2004.

[13] W. E. Walsh, G Tesauro, J. 0. Kephart, R. Das, "Utility
Functions in Autonomic Systems", International Conference
on Autonomic Computing (ICAC) 2004, May 2004.

[14] A. C. Huang, P. Steenkiste, "Building Self-Adapting Services
Using Service-Specific Knowledge", 14th EEE International
Symposium on High-Performance Distributed Computing
(HPDC) 2005, July 2005.

[15] J. Chomicki, J. Lobo, S. Naqvi, "A Logic Programming
Approach to Conflict Resolution in Policy Management", 7th
International Conference on Principles ofKnowledge
Representation and Reasoning (KR 2000), April, 2000,

[16] L. Cheng, A. Galis, "Simple Key Exchange for Active
Networks", EEE-International Conference on Networks
(ICON) 2005,

[17] Ambient Network Consortium, "AN Framework
Architecture", IST-2002-507134-AN/WP1-D05,

[18] S. Schmid, F. Hartung, M. Kampmann, S. Herborn, J. Rey,
"SMART: Intelligent Multimedia Routing and Adaptation
based on Service Specific Overlay Networks", Eurescom
Summit, 2005.

[19] T. Petersen, et al., "SMART - Final Architectural Design",
IST-2002-507134-AN/WP5/D03,

htt://ww.mbentnetors.og~pblcations/D5_3_SMA

[20] N. Paton, 0. Diaz, "Active Database Systems",
ACM-Computing Surveys (CSUR), Volume 31, Issue 1,
March 1999, pp. 63-103.

[21] S. Ceri, P. Fraternali, "Designing Database Applications with
Objects and Rules: The IDEA Methodology", Addison
Wesley, 1st edition, June 1997, ISBN: 0201403692.

[22] R. Agrawal, R. Cochrane, B. Lindsay, "On Maintaining
Priorities in a Production Rule System", in proceedings of the
17th Conference on Very Large Databases, pp. 479-489, 1991.

[23] H. Jagadish, A. Mendelzon, I. Mumick, "Managing Conflicts
between Rules", ACM-SIGACT/SIGMOD 1996, pp.
192-201.

[24] L. Cheng, R. Ocampo, K. Jean, A. Galis, "P2P Context-aware
Management for Ambient Networks", demo presentation at
Wireless World Initiative Symposium (WWI 2005), Paris.

[8] J. W. Cangussu, K. Cooper, C. Li, "A Control Theory Based

