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Abstract. We formally specify the interpretation stage in a dual state
space human-computer interaction cycle. This is done by extending / re-
organising our previous cognitive architecture. In particular, we focus on
shape related aspects of the interpretation process associated with device
input prompts. A cash-point example illustrates our approach. Using the
SAL model checking environment, we show how the extended cognitive
architecture facilitates detection of prompt-shape induced human error.
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1 Introduction

Interactive systems combine human and computer actors. Their correctness de-
pends on the behaviour of both. It is reasonable, and useful, to say that humans
behave rationally: entering interactions with goals and domain knowledge likely
to help them achieve their goals. Whole classes of persistent, systematic user
errors may occur due to modelable cognitive causes [1]. Often opportunities for
making such errors can be reduced with good design [2]. A methodology for
detecting designs that allow users, when behaving in a rational way, to make
systematic errors will improve such systems.

We previously [3] developed a generic formal cognitive model from abstract
cognitive principles, such as entering an interaction with knowledge of the task’s
subsidiary goals, showing its utility for detecting some systematic user error. Here
we describe a development of it. The cognitive architecture previously identified
device signals with user perception of them: a gross simplification of the complex
process which involves perception, interpretation and evaluation. Similarly, user
actions were identified with their corresponding device input. Such simplifica-
tions can hide design flaws. We address this problem by separating the user and
the device state spaces. We also structure the underlying state space of the cogni-
tive architecture to distinguish input signals (originating from user perception),
output signals (consequences of user actions) and internal state (user memory).
The formal version of our generic user model, module User, is outlined in Sect. 2.
Our restructuring introduces intermediate entities, interpretation and effect, re-
lating the now distinct state spaces (see Fig. 1) described in detail in Sect. 3.
The effect is an abstract view of how user actions are translated into device
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Fig. 1. The cycle of interaction.

commands. The importance of such translation is evident in interactive systems
involving voice or gesture recognition of user inputs. More detailed modelling of
this is left to future work. The interpretation is an abstract view of the pathways
from device signals and environment objects to the user decision of what they
could mean. Blandford and Young [4] also separate user and device descriptions.
An important difference (apart from the degree of formality) is our explicit in-
clusion of the interpretation and effect stages within the cycle of interaction. To
illustrate the utility of the changes, we focus here on one use: modelling how the
shape (form, size, etc.) of a device prompt affects user (mis)understanding. The
shape of a device prompt may restrict or structure the type of information that
a user is required to provide.

Dillon [5] argued that the shape concept assumes both spatial and semantic
characteristics. He found that, as well as using spatial cues, individuals recognise
and respond to content and meaning when interpreting requirements. During an
interaction there is an inter-coupling of spatial and semantic components of
memory. It is therefore likely that the interpretation of a device prompt relies
on both spatial and semantic cues. A device prompt may incorporate both of
these cue types: e.g. a user may be required to use several different passwords
depending on the service required. A fixed digit entry field can act as both a
spatial and semantic cue. The location of the password entry field (spatial cue)
may correspond to the specific service required, while the size of the entry field
(both a spatial and semantic cue) may correspond to the required length of the
password and hence inform the user of which password is required (if passwords
are of different lengths). Semantic cues are hints based on meaning that help
users understand requirements. Dillon and Shaap [6] found that experienced
users could better process these semantics, while novices had to rely solely on
spatial cues. However, not all semantic cues are based on knowledge of the sys-
tem. For example, a user with no knowledge of the system can still use the size
of the entry field as a semantic cue as it only requires knowledge of passwords.

Information appears to be processed automatically without conscious ef-
fort [7]. When cognitive operations are underspecified (e.g., when multiple inputs
are possible), humans tend to default to high frequency responses. (frequency
biasing). The largest single class of action slip errors are due to strong habit intru-



sions that have structural (spatial) and contextual (semantic) elements in com-
mon with planned actions [1]. Detecting cases where device prompt shape can
be misunderstood may enable certain types of action slip errors to be avoided.

There are several approaches to formal reasoning about usability. One is to
focus on a formal specification of the user interface [8, 9]. Most commonly this
approach relies on model-checking tools; investigations include whether a given
event can occur or whether properties hold of all states. An alternative is for-
mal user modelling, as here. It involves writing formal specifications of both the
computer system and the user, then reasoning about their conjoint behaviour.
Both device and user are considered as equally central components of the system
and modelled as part of the analysis. Duke and Duce [10] formally reason about
HCI this way; their approach is well suited to reasoning about interaction that,
for example, combines the use of speech and gesture. However, their framework
lacks tool support, which would make it difficult to apply in practice. Bowman
and Faconti [11] formally specify a cognitive architecture using the process cal-
culus LOTOS, analysing its properties using temporal logic. These approaches
are more detailed than ours, which abstracts above cognitive processes. Moher
and Dirda [12] use Petri net modelling to reason about users’ mental models
and their changing expectations over the course of an interaction; this approach
supports reasoning about learning to use a new computer system but focuses on
changes in user belief states rather than analysis of desirable properties.

Rushby et al [13] focus specifically on mode errors and the ability of pilots
to track mode changes. They formalise plausible mental models of systems and
analyse them using the Murφ state exploration tool. However, the mental mod-
els are essentially abstracted system models; they do not rely upon structure
provided by cognitive principles. Neither do they model user interpretation.

Campos and Doherty [14] use perception mappings to specify mental models;
no formal model of user behaviour is developed. Instead, they reason about the
properties of representations of information in the interface. Also, perception in
their approach seems to be always deterministic. Bredereke and Lankenau [15]
reason about user perception of reality using a refinement based approach. Per-
ception is expressed as a relation from environment events to mental events that
could in principle be lossy, corresponding to physical or psychological reasons for
an operator not observing all interface events of a system. However, the authors
note that in practice they use the relation to rename events and so it is not lossy.
This contrasts with our work which explicitly considers imperfect user interpre-
tation. Cerone et al’s [16] CSP model of an air traffic control system includes
controller behaviour. A model checker was used to look for new behaviourial pat-
terns, overlooked by the analysis of experimental data. The classification stage
of the interaction cycle of their model is similar to our user interpretation.

2 The Cognitive Architecture in SAL

Our cognitive architecture is a higher-order logic formalisation of abstract prin-
ciples of cognition and specifies cognitively plausible behaviour [17]. The archi-



Table 1. A fragment of the SAL language

x:T x has type T

x’ = e the new value of x is that of the expression e

{x:T | p} a subset of T such that the predicate p holds
a[i] the i-th element of the array a

r.x the field x of the array r

r WITH .x := e the record r with the field x replaced by the value of e
g → upd if g is true then update according to upd

c [] d non-deterministic choice between c and d

[](i:T): ci non-deterministic choice between the ci where i is in range T

tecture specifies possible user behaviour (traces of actions) that can be justified
in terms of specific results from the cognitive sciences. Real users can act outside
this behaviour, about which the architecture says nothing. Its predictive power
is bounded by the situations where people act according to the principles speci-
fied. The architecture allows one to investigate what happens if a person acts in
such plausible ways. The behaviour defined is neither “correct” or “incorrect”. It
could be either depending on the environment and task in question. We do not
attempt to model underlying neural architecture nor the higher level cognitive
architecture such as information processing. Instead our model is an abstract
specification, intended for ease of reasoning.

Our previous formalisation of the cognitive architecture was developed in
a theorem prover. The new version is based on the SAL model checking en-
vironment [18]. It provides a higher-order specification language and tools for
analysing state machines specified as parametrised modules and composed either
synchronously or asynchronously. The SAL notation we use is given in Table 1.

We rely upon cognitive principles that give a knowledge level description in
the terms of Newell [19]. Their focus is on the goals and knowledge of a user. In
this section, we discuss the principles and the way they are modelled.

Non-determinism In any situation, any one of several cognitively plausible
behaviours might be taken. It cannot be assumed that any specific plausible
behaviour will be the one that a person will follow. The SAL specification is
a transition system. Non-determinism is represented by the non-deterministic
choice, [], between the named guarded commands (i.e. transitions). Each de-
scribes an action that a user could plausibly make. For example, in the following,
ReactCommit is the name of a family of transitions indexed by i:ReactRange.

TRANSITION

([](i:GoalRange): GoalCommit:..) [] ([](i:GoalRange): GoalTrans:..)
[] ([](i:ReactRange): ReactCommit:..) [] ([](i:ReactRange): ReactTrans:..)
[] Exit:..[] Abort:..[] Idle:..

Mental versus physical actions A user commits to taking an action in a way
that cannot be revoked after a certain point. Once a signal has been sent from
the brain to the motor system to take an action, it cannot be stopped even if
the person becomes aware that it is wrong before the action is taken. Therefore,



we model both physical and mental actions. Each physical action modelled is
associated with an internal mental action that commits to taking it. In the SAL
specification, this is reflected by the pairings of guarded commands: GoalCom-
mit – GoalTrans and ReactCommit – ReactTrans. The first of the pair models
committing to an action, the second actually doing it (see below).

User goals A user enters an interaction with knowledge of the task and,
in particular, task dependent sub-goals that must be discharged. These sub-
goals might concern information that must be communicated to the device or
items (such as credit cards) that must be inserted into the device. Given the
opportunity, people may attempt to discharge any such goal, even when the
device is prompting for a different action. We model such knowledge as user goals
which represent a pre-determined partial plan that has arisen from knowledge
of the task in hand, independent of the environment in which that task will be
accomplished. No fixed order is assumed over how user goals will be discharged.

To see how this is modelled in SAL consider the following guarded command
GoalTrans for doing a user action that has been committed to:

gcommit[i] = committed → gcommit′[i] = done; gcommitted′ = FALSE;
GoalTransition(i)

The left-hand side of → is the guard of this command. It says that the rule
will only activate if the associated action has already been committed to, as
indicated by the i-th element of the local variable array gcommit holding value
committed. If the rule is then non-deterministically chosen to fire, this value
will be changed to done and the boolean variable gcommitted is set to false to
indicate there are now no commitments to physical actions outstanding and the
user model can select another goal. GoalTransition(i) defines the state update
transitions associated with this particular action i.

User goals are modelled as an array goals which is a parameter of the User

module. The user model state space consists of three parts: input variable in, out-
put variable out, local variable (memory) mem; environment is modelled by global
variable env. All of these are specified using type variables and are instantiated
for each concrete interactive system. Each goal is specified by a record with the
fields grd, tout, tmem and tenv. The grd field is discussed below. The remaining
fields are relations from old to new states that describe how two components
of the user model state, outputs out and memory mem, and environment env are
updated by discharging this goal. These relations, provided when the generic
user model is instantiated, are used to specify GoalTransition(i) as follows:

out’ ∈ {x:Out | goals[i].tout(in,out,mem)(x)};
mem’ ∈ {x:Memory | goals[i].tmem(in,mem)(x)};
env’ ∈ {x:Env | goals[i].tenv(in,mem,env)(x) ∧ possessions}

The update of env must also satisfy a generic relation, possessions. It specifies
universal physical constraints on possessions, linking the events of taking and
giving up a possession with the corresponding increase or decrease in the number
of objects possessed. This number is modelled as an environment component.

If the guarded command for committing to a user goal (given below) fires, it
switches the commit flag for goal i to committed allowing the above rule to become



active. The predicate grd, extracted from the goals parameter, specifies when
there are opportunities to discharge this user goal. Because we assign done to
the corresponding element of the array gcommit in the GoalTrans command, once
fired the command below will not execute again. If the user model discharges a
goal, without some additional reason such as a prompt, it will not do so again.
gcommit[i] = ready ∧ NOT(gcommitted ∨ rcommited)
∧ finished = notf ∧ goals[i].grd(in, mem, env)

→ gcommit′[i] = committed;
gcommitted′ = TRUE

Reactive behaviour A user may react to an external stimulus, doing the action
suggested by the stimulus. For example, if a flashing light comes on a user might,
if the light is noticed, react by inserting coins in an adjacent slot. Reactive
actions are modelled in the same way as user goals but on different variables,
e.g. parameter react of the User module rather than goals. ReactTransition(i) is
specified in the same way as GoalTransition(i). The array element rcommit[i]

is reassigned ready rather than done, once the corresponding action has been
executed, as reactive actions, if prompted, may be repeated.

Goal based task completion Users intermittently, but persistently, terminate
interactions as soon as their perceived goal has been achieved [2], even if sub-
sidiary tasks generated in achieving the main goal have not been completed. A
cash-point example is a person walking away with the cash but leaving the card.

In the SAL specification, a condition that the user perceives as the main
goal of the interaction is represented by a parameter PerceivedGoal of the User

module. Goal based completion is then modelled as the guarded command Exit,
which simply states that, once the predicate PerceivedGoal becomes true and
there are no commitments to user goals and/or reactive actions, the user may
complete the interaction. This action may still not be taken because the choice
between enabled guarded commands is non-deterministic. Task completion is
modelled by setting the local variable finished to ok:

PerceivedGoal(in, mem) ∧ finished = notf

∧ NOT(gcommitted ∨ rcommitted)
→ finished′ = ok

No-option based task termination If there is no apparent action that a person
can take that will help complete the task then the person may terminate the
interaction. For example, if, on a ticket machine, the user wishes to buy a weekly
season ticket, but the options presented include nothing about season tickets,
then the person might give up, assuming the goal is not achievable.

In the SAL specification, the no-option condition is expressed as the negation
of predicates EnabledGoals and EnabledReact. Note that, in such a situation, a
possible action that a person could take is to wait. However, they will only do so
given some cognitively plausible reason such as a displayed “please wait”. The
waiting conditions are represented in the User module by predicate parameter
Wait. If Wait is false, finished is set to abort in the guarded command Abort.

3 Formal Specification of User Interpretation for an ATM

The separation of user and device state spaces means connectors are required
to compose the user and device models (recall Fig. 1). If the state spaces of
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Fig. 2. ATM specification as finite state machine

both models precisely match, these connectors are simply identity mappings.
This would yield essentially the same situation as with the shared state space.
However, the separated state spaces open up new possibilities for specifying
more complex connectors. These allow the formal modelling of the interpretation
processes that are occurring in the interaction between the user and the device.

In this section, we consider the user interpretation part of a specific interac-
tive system. Considering such concrete examples will help us to develop in the
future an abstract model (as with the user model itself) of user interpretation.
We start by specifying the machine and user models of this system.

We use here the task of topping-up a mobile phone based on a real ATM. A
finite state machine specification of this device is given in Fig. 2. False machine
outputs are omitted. The actual SAL specification, module ATM, is a straightfor-
ward translation of this diagram. Since our focus is the top-up task, we omit
the specification of other services provided (this corresponds to the diagram’s
STOP state). Also, as we are illustrating the modelling of user interpretation, in
this paper we abstract the authentication process by assuming that PIN enter-
ing/verification is a part of the card insertion step.

According to our specification, the ATM initially prompts users to insert a
card. Once this is done, the machine provides several touch screen menu options.
We assume (and specify in the user model later on) that the user chooses the
top-up option. The machine then displays a new menu with several options to
select the top-up value; the user can choose any. In response, the machine dis-
plays an input box and asks for a phone number. The user interpretation of this
request is discussed in detail below. For now it suffices to know that the inter-
pretation can result in two actions: entering a phone number, or entering some
other number (we assume the machine can distinguish these two alternatives).
In the former case, a receipt is issued and the card is released; in the latter,
the machine displays an error message and again prompts for a phone number.
The transactions related to the actual top-up process take time. Thus a “please
wait” message is displayed during processing. Finally, the machine returns to
the initial state once the released card is removed.



The input and output components of the device state space are relevant to
the discussion of user interpretation. The input variables of our specification are
CardInserted, TopUp, OtherService, AmountSelected, PhoneNumber, OtherNumber,
and CardRemoved (Fig. 2). The output variables are CardMessage, SelectMessage,
AmountMessage, Inbox, ErrorMessage, PleaseWait, IssueReceipt, and ReleaseCard.
These variables are booleans, except Inbox. It is a record consisting of two fields:
option and size. The former specifies whether the request to enter a phone
number is displayed, the latter is the size of the input box.

The generic user model User was described in Sect. 2. To analyse our interac-
tive system, we now instantiate that model for the concrete task of topping-up
a mobile phone. We start by specifying the state space of our user model.

In general, it is plausible to assume that the specific details of an ATM spec-
ification might be unavailable at the time the concrete user model is developed.
Even if they are, it could be preferable to specify the user state space in more
cognitive terms, not constraining oneself by the existing device specification.
First, we consider user perceptions which are represented in the User module by
the input variable in. We assume that the user is able to perceive the following
signals from the machine: InsertCard, SelectService, SelectAmount, RemoveCard,
WaitMessage, and ErrorMessage (their names should be self-explanatory). The
user can also perceive the shape of the input box, InboxShape. People usually
know their phone numbers, however, they might also have another (different)
number on their top-up cards. It is cognitively plausible that the user may be
uncertain which number is requested. This confusion is represented in the user
model by two distinct components, EnterPhoneNumber and EnterCardNumber. Fi-
nally, the user evaluates the state of the machine deciding whether the requested
service has been received, modelled by ServiceReceived. These components form
a record, In, which is used to instantiate the corresponding type variable in User.

Next, we specify state space components related to the actions users might
take. These correspond to the ATM inputs in Fig. 2 and are: CardInserted, TopUp,
OtherService, AmountSelected, PhoneNumber, OtherNumber, and CardRemoved. Like
the user inputs above, these components form a record, Out. For this paper,
the memory component of the User module, Mem, is kept simple. We assume the
user remembers only the actions taken in the previous step. Mem is therefore the
same record type as Out. Finally, user actions can both affect and be restricted
by the environment of our system; we thus have a record type, Env. It includes
counters, BankCards and PhoneCards, for the user possessions (cards); values (the
balances of the corresponding accounts) of these possessions, BankBalance and
PhoneBalance; and the sizes, SizePhone and SizeCard, of the card numbers.

We assume that user knowledge of ATM transactions includes the need to
(1) provide a payment card, (2) communicate that the top-up option is required
and (3) communicate the top-up value. This knowledge is specified as user goals
(elements of array goals) instantiated by giving the action guard and the update
to the output component. For the insert-card goal, the guard is that the person
perceives an InsertCard signal and has a bank card. The output action is to set
CardInserted to true (Default is a record with all its fields set to false so asserts
that nothing else is done). We omit the memory and environment updates:



grd := λ(in,mem,env): in.InsertCard ∧ env.BankCards > 0

tout := λ(in,out0,mem): λ(out): out = Default WITH .CardInserted := TRUE

Choosing to top-up and communicating the top-up value are modelled similarly.
We assume that the user can reactively respond to device prompts by attend-

ing to either spatial or semantic cues (or both) and enter the phone number. This
may happen only when the machine state is interpreted as signalling to enter the
number by in.EnterPhoneNumber. The number must also not have been entered,
as indicated by the memory, in the previous step, unless the person sees an error
message requesting that repetition. Formally, the action is specified as follows:

grd := λ(in,mem,env): in.EnterPhoneNumber ∧
(NOT(mem.PhoneNumber) ∨ ErrorMessage)

tout :=λ(in,out0,mem): λ(out): out = Default WITH .NumberEntered := TRUE

However, as discussed earlier, it is plausible that a prompt for the phone number
can be misinterpreted as that for the number on the top-up card instead (a
semantic cue). The corresponding reactive action is analogous to the one above.
Finally, the user can respond to the prompt for taking back their card:

grd := λ(in,mem,env): in.RemoveCard ∧ NOT(mem.CardRemoved)

tout := λ(in,out0,mem): λ(out): out = Default WITH .CardRemoved := TRUE

Goal and wait predicates are the last parameters used to instantiate the User

module. We assume that the user considers receiving the requested service as the
main goal of the interaction. We also assume that seeing a “please wait” message
is the only condition when the user, perceiving no options to act, does not
terminate the interaction. The two predicates are specified in SAL as follows:

PerceivedGoal = λ(in,mem): in.ServiceReceived

Wait = λ(in,mem): in.WaitMessage

Finally, the ATM user model, ATMuser, is defined by instantiating the generic
user model with the parameters (goals, reactive actions, perceived goal and wait
conditon) just defined.

So far we have specified an ATM and have developed a formal model of
its user. The state spaces of the two specifications are distinct. This closely
corresponds to reality, since the state of an ATM and the user interpretation of
it are not necessarily identical. The changing machine state is first attended to
then interpreted by the user. Next we formally specify this interpretation, thus
providing a connector for separate state spaces. The specification is written as
a new SAL module, interpretation. The module, being a connector, has input
variables that are the output variables of ATM, and output variable that is the
record in, the input (perception) component of the User module.

We model user interpretation (below) by the SAL definition construct which
allows one to describe system invariants. Intuitively, this means that the left-
hand side of an equation is updated whenever the value of the right-hand side
changes. Here, we assume that the user model directly perceives some of the ATM
signals such as prompts for inserting a card, selecting amount, a wait message,
etc. Consequently, the first seven conjuncts in the definition are simple renamings
of the appropriate fields in the record in to the corresponding variables in ATM.
Below we discuss in more detail the omitted parts of the final three conjuncts.
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DEFINITION in ∈ {x:In |

x.WaitMessage = PleaseWait ∧ x.ErrorMessage = ErrorMessage ∧
x.InsertCard = CardMessage ∧ x.SelectService = SelectMessage ∧
x.SelectAmount = AmountMessage ∧ x.RemoveCard = ReleaseCard ∧
x.ServiceReceived = IssueReceipt ∧ x.InboxShape = . . . ∧
definition of x.EnterPhoneNumber, x.EnterCardNumber }

As explained earlier, the field ServiceReceived corresponds to the active goal
in our user model. The definition above identifies it with the machine action issu-
ing a receipt. Of course, getting a receipt could not plausibly be the actual user
goal, a better candidate for which is to have the mobile phone account increased
by the desired amount. The latter, however, is impossible to observe directly, so,
with this machine, getting a receipt is the best available approximation.

In this paper, we consider what influence the shape of a machine prompt
can have on user interpretation of it. For this, we use input boxes displayed by
ATMs (see Fig. 3). There could be many aspects of the shape to investigate; for
simplicity, the shape of an input box is modelled as its size in our case studies. In
general, however, it could represent any relevant aspect of shape. The definition
below identifies shape with size; the condition Inbox.option ensures that this
identification occurs only when an input box is displayed, otherwise, the user
model does not perceive the box at all, as represented by the shape value 0:

x.InboxShape = IF Inbox.option THEN Inbox.size ELSE 0 ENDIF

The penultimate conjunct in the definition illustrates how shape can affect
user interpretation of machine prompts. We present it in four parts below. The
first part (conjunct) specifies the situation when there is nothing in the machine
state that could be interpreted by the user model as a prompt, or spatial cue, for
entering a phone number or the number on a top-up card. This happens when
the shape of the input box (possibly not displayed at all) matches neither of the
numbers the user could consider as relevant to the prompt:

x.InboxShape 6= env.SizePhone ∧ Inbox.size 6= env.SizeCard

⇒ NOT(x.EnterPhoneNumber) ∧ NOT(x.EnterCardNumber)

When the shape (size) of the displayed input box matches the phone number
and is different from the number on the card, we assume that the user model
interprets this as a prompt, or semantic cue, for entering the phone number:

x.InboxShape = env.SizePhone ∧ Inbox.size 6= env.SizeCard

⇒ x.EnterPhoneNumber ∧ NOT(x.EnterCardNumber)



Analogously, the user model can interpret the machine state as a prompt for
the number on the top-up card:

x.InboxShape 6= env.SizePhone ∧ Inbox.size = env.SizeCard

⇒ NOT(x.EnterPhoneNumber) ∧ x.EnterCardNumber

Finally, the user can be confused as to which of the two numbers is requested.
This may happen when the shape of the displayed box matches both numbers.
We assume that the result of user interpretation in this case is non-deterministic,
but only one interpretation is allowed (here XOR is exclusive-or):

x.InboxShape = env.SizePhone ∧ Inbox.size = env.SizeCard

⇒ x.EnterPhoneNumber XOR x.EnterCardNumber

Now we have specified all the components of our interactive system. The
whole system, system, is modelled in SAL as their parallel composition:

(ATMuser [] ATM [] environment) || (interpretation || effect)

Here, [] denotes asynchronous (interleaving) composition, whereas || denotes
synchronous composition. For brevity, we have not presented the specifications
of the effect and environment modules. Informally, the effect module specifies
how user actions from ATMuser are translated into the machine commands; in
other words, how the output component out is connected to the ATM inputs. In
our case study, the translation is simple renaming, analogous to those given in
the definition of in above. The environment module contains no transitions; it
simply defines constants such as the size of the phone and top-up card numbers.

4 Verification of Interactive Systems

We now present verification examples, focussing on the system aspects influ-
encing user interpretation. We first introduce system properties to verify. Our
approach is concerned with two kinds of correctness properties. Firstly, we want
to be sure that, in any possible system behaviour, the user’s main goal of interac-
tion is eventually achieved. Given our model’s state space, this is written in SAL
as the assertion (where F means ‘eventually’): F(PerceivedGoal(in,mem)). Second,
in achieving a goal, subsidiary tasks are often generated that the user must com-
plete to complete the task associated with their goal. If the completion of these
subsidiary tasks is represented as a predicate, SecondaryGoal, the required condi-
tion is specified as: G(PerceivedGoal(in,mem) ⇒ F(SecondaryGoal(in,mem,env)))

(where G means ‘always’). This states that the secondary goal is always eventu-
ally achieved once the perceived goal has been achieved. Often secondary goals
can be expressed as interaction invariants [3] which state that some property of
the model state, that was perturbed to achieve the main goal, is restored.

In the first example, the ATM design’s displayed input box has shape (size)
larger than strictly needed and it (incorrectly) matches the top-up card number
but not the correct but shorter phone number. Our first attempt is to verify that
the user model eventually achieves the perceived goal of getting a receipt. Unfor-
tunately, the desired property is not true, and the SAL model checker produces



a counterexample which shows both the trace of system states and the actions
taken by the user model and the machine. The analysis of the counterexample
indicates that the user model loops on entering the top-up card number. Fur-
ther analysis reveals that this looping is due to the user (mis)interpreting the
ATM prompt for entering the phone number as that for the card number. This
misinterpretation is caused by the shape of the input box, which matches the
card number. Of course, this does not mean that every real ATM user is prone
to such misinterpretation or would loop forever. However, the assumptions on
which our specification of user interpretation is based are cognitively plausible
and this is a systematic consequence of them. Therefore, some users are liable
to make this error and changes in the ATM design are advisable.

Next, we consider a modified ATM design in which the shape of the dis-
played box matches the phone number. We assume here that the shape of the
card number is different. Now the first correctness property, the user eventu-
ally achieving the perceived goal, is satisfied by the interactive system. We thus
proceed with the verification of the second property that the user eventually
achieves the secondary goal. This is expressed as an interaction invariant, which
states that the total value of the user possessions (the balance of the account
associated with the payment card plus the top-up card balance) is eventually
restored to the initial value. Unfortunately, the verification of this property fails.
The counterexample produced indicates that the failure is caused by the user
model finishing the transaction as soon as a receipt is issued. Detecting this type
of user error, a post-completion error, with its underlying causes and possible
remedies, has been discussed in our earlier papers [3]. Here, we just note that
such errors could be eliminated by modifying the ATM from Fig. 2 so that a
receipt is issued only when the user has removed the card.

Finally, consider the case when the phone and card number both match the
shape of the displayed box. The verification of the first correctness property
fails. The counterexample produced is as in the first example (when only the
card number matched the displayed box). Further analysis reveals that, unlike
in that example, the user model can now achieve the perceived goal. Within the
SAL environment, this is verified using the assertion EF(PerceivedGoal(in,mem)),
where the operator EF states that there is a path such that the corresponding
formula is eventually true. This indicates that both user interpretations of the
machine prompt are possible, which can lead to the confusion of real ATM users.

5 Summary and Further Work

We have presented a refined version of our cognitive architecture. The state space
of the formal user model has been separated from that of the device. This both
required and facilitated the abstract modelling of user interpretation of device
outputs. We presented a simple case study. It illustrates how such abstract mod-
els can be used within our verification approach to detect problems in interactive
systems related to shape induced confusion over device signal meaning. Our ab-
stract model is a simplification of cognitive interpretation, and clearly not every



user of such a device will experience the problems our approach reveals. How-
ever, since the abstraction is cognitively plausible, a strong potential for user
confusion is there, and a substantial number of users might experience it.

As SAL provides support for higher-order specifications, the cognitive ar-
chitecture remains generic, and is instantiated to verify any specific interactive
system. Besides the major restructuring described here, the treatment of the
underlying state space is simplified in the SAL version where simple variables
are used instead of the history functions of the original. Since theorem provers
are better for reasoning about abstract properties than concrete ones as here,
the ideal is to have an integrated theorem prover/model checker framework. Be-
ing developed as a framework for combining various verification tools, including
the PVS theorem prover, SAL is a very promising environment for the future
development of our verification methodology.

For simple systems as considered here, mechanical verification is unnecessary.
The problems detected could be identified by examining the specification of user
interpretation. Still, writing a formal specification helps to identify problems,
and our framework provides structure to the specification process. Moreover,
a combination of several user interpretation pathways would lead to complex
specifications, requiring mechanical verification. Finally, the verification of spe-
cific systems is only a part of a larger verification framework where the formal
specification of user interpretation could be combined with, say, design rules to
reason about general properties of interactive systems using a theorem prover.

Our cognitive model was not developed directly from a complete psycho-
logical theory. Rather an exploratory approach was taken, starting with simple
principles of cognition such as non-determinism, goal-based termination and re-
active behaviour. However, even the small number of principles is rich enough
for plausible erroneous behaviour to emerge that was not directly expected [3].

Other aspects of user interpretation remain to be investigated. An ability to
combine information in-the-world with knowledge in-the-head allows individuals
to make interpretations. Mandler [20], amongst others, argues that knowledge
can be accessed directly or indirectly. When interaction relies on novel associa-
tions it is likely to demand more direct attention. However, frequent and familiar
interactions use indirect knowledge that involves interpretation. Further work
needs to identify when user interpretations are made, what types of spatial and
semantic cues are used (see Dillon [5]), and if these can be modelled.

The user interpretation errors detected occur for systematic reasons. A generic
model of user interpretation can capture these systematic reasons, thus helping
to eliminate errors they cause. While the cognitive architecture is generic, the
specification of user interpretation currently is not. It must be written for each
specific system from scratch. Considering other aspects of user interpretation
will facilitate the development of a generic interpretation model. Finally, we will
also investigate the formal modelling of effect, the counterpart of user interpre-
tation. It is especially relevant for multimedia based interactive systems. We
expect that our changes to and reorganisation of the model will facilitate such
modelling, as evidenced by the aspect of user interpretation considered here.
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