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Abstract

The present analysis investigates whether and to what degree quantifiable spatial attributes,
as expressed in plan representations, can capture elements related to the experience of
spatial identity.

Spatial identity is viewed as a constantly rearranging system of relations between discrete
singularities. It is proposed that the structure of this system is perceived, inter alia, through
its reflection in patterns of variable associations amongst constant spatial features. The
examination of such patterns could thus reveal aspects of spatial identity in terms of degrees
of differentiation and identification between discrete spatial unities.

By combining different methods of shape and spatial analysis it is attempted to quantify
spatial attributes, predominantly derived from plans, in order to illustrate patterns of
interrelations between spaces through an objective automated process.

Variability of methods aims at multileveled spatial descriptions, based on features related to
scalar, geometrical and topological attributes of plans.

The analysis focuses on the scale of the urban block as the basic modular unit for the
formation of urban configurations and the issue of spatial identity is perceived through
consistency and differentiation within and amongst urban neighbourhoods. The abstract
representation of spatial units enables the investigation of the structure of relations, from
which urban identity emerges, based on generic spatial attributes, detached from specific

expressions of architectural style.
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1. Introduction

The notion of urban identity is examined by analysing patterns of relations amongst
quantifiable spatial attributes as they are expressed in plan representations of building
blocks.

The main objective of the analysis is to investigate if and to what extend quantifiable
attributes of spatial representations can provide information about spatial qualities that are

non-discursive (Hillier, 1996) but essential to the experience of spatial identity.

1.1. Analytical decomposition:
the city through the urban block

Focusing on the scale of the urban block as the module of urban agglomerations, the
analysis attempts to reveal the degree and nature of relation between quantifiable scalar,
geometrical and topological spatial attributes, as they are expressed through plans, with the
identity of the corresponding spaces, experienced from the point of view of the dweller and

the passer-by.

The urban block is viewed, through its plan, as a configuration of built and open spaces
whose geometrical shape and topological interrelations determine to a great extend the
visual perception of urban environments, influencing spatial experience and defining local

particularities related to spatial identity.

The observation of the urban system through the modular element of the building block
serves merely analytical purposes and does not imply the reduction of the whole to a single
category of modules, since “a coherent system cannot be completely decomposed into
constituent parts. There exist many inequivalent decompositions based on different types of

units” (Salingaros, 2000).

1.2. Analytical recomposition:

urban identity as a system of relations between singularities

“A city is a network of paths, which are topologically deformable” (Salingaros, 1998).
According to this observation, the city is viewed as a continuous, heterogeneous and
indivisible system (Deleuze, 2005) whose identity emerges constantly from the

rearrangement of interrelations between discernible singularities.

10
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This system of interrelations could be abstractly described as a structure of bifurcating,
converging or diverging series of variations, in analogy to Leibniz's model of the world's
structure (Deleuze, 2005). According to this model, forces of identification and differentiation,
attraction and repulsion, within and amongst spatial unities are expressed through the law of
the series, defining the range and patterns of variation (texture) of the singular blocks and

the degrees of conversion or diversion between series.

Attractions within the series, related to the consistency of the neighbourhood, are associated
to spatial relations based on physical contiguity and continuity. Attractions amongst series,
expressed by their conversion (compossibility), are related to transpatial relations (Hillier and

Hanson, 1984) that act beyond spatial discontinuities.

1.3. The dataset:

a set of selected singularities

The specific dataset analysed here consists of selected actualised instances of the virtually
infinite and constantly fluctuating series of potential singularities representing each
neighbourhood (Cache, 1995). The groups of blocks under consideration only as a sample
represent the areas they belong to, since these do not constitute uniquely defined finite sets
of urban blocks, but temporary territories of identification and differentiation.

However, the law of the series is inherent in each singularity and thus could be derived from

a confined subset of the infinite series of variations.

The attempt to classify blocks according to a partial description of their attributes reflects the
intention do discern between compossible and incompossible series (Deleuze, 2005) in the
view to potentially extract and reconstruct the law governing them and through it to reveal
attributes of the series and its singularities that could not be directly derived from the initial
knowledge of the dataset. Ambiguities in the classification could indicate locations of
possible bifurcations, where converging series meet.

In this framework, the attempted classification of the block plans would illustrate an abstract

synchronous view of the structure of relations from which urban identity emerges.

It is not the measured attributes per se that reveal elements of spatial identity, but the belief
that they are governed by and reflect patterns in a structure of relations from which identity
emerges, renders these attributes partial indexes of degrees of differentiation and

identification between spatial unities.

However, the efficiency of these indexes is limited and their interpretation ambiguous, since

major issues concerning the formation and perception of spatial identity are not spatial or

11
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describable in spatial terms. Spatial identity is actualised and materialised through
construction but not fully described by it (Laskari, 2006). Every act of construction, mental or
material, actualises a new fold of the virtual characteristics of the locus, but does not capture

it in a static, structural way.

In this framework, the present analysis is based on a series of reductions and concessions
regarding the relation between urban identity and quantifiable attributes of spatial
representations. Despite these limitations, it is believed that such attributes do account for
the way in which the city is perceived and its identity experienced, reproduced and

propagated through space and time.

1.4. Structure of the thesis

The relation between quantifiable spatial attributes, inherent in plan representations, with the
experience of space and spatial identity, has been in the centre of focus of a wide range of
theoretical and practical investigations. A brief review of a confined selection of research
directions within the field summarises the main theoretical and methodological references of
the present analysis. These can be generally distinguished into spatial investigations
concerning the potential connection between patterns of human behaviour and patterns of
spatial constants within plan configurations and researches regarding the categorisation of
spaces based on comparisons between quantified features of the corresponding plans.
According to this distinction, both directions are related to the characterisation of
differentiated spatial identities according to quantifiable features of plan representations.
Specific methods and related implementations within an architectural context are further
analysed and discussed in the framework of the presentation of the methodology that was
followed in the present analysis.

A selection of plans representing urban building blocks belonging to different areas of Athens
and London have been analysed and compared at different levels, through established and
experimental methods of feature measurement.

Finally, the results from these measurements and comparisons were interpreted and
discussed in the view to investigate the potentials of the implemented methodology in terms
of possible connections between the quantification of plan attributes and issues of spatial

identity.

12



MSc AAC_Anna Laskari_Urban Identity through Quantifiable Spatial Attributes

2. A brief overview of the field

2.1. Quantifiable plan attributes and spatial experience

The relation between the experience of spatial identity and quantifiable spatial attributes has
been in the centre of interest of different fields of spatial analysis. Very extensive research in
the field is being effected in space syntax. According to Psarra and Grajewski (2001) the
description of spatial experience is the main focus of “space syntax”, a theory and a method
for measuring spatial properties and relating them to patterns of movement and social
function. Layouts are described as permeability patterns held amongst “convex spaces” and
“axial lines”. “The major thrust of space syntax has been to describe space and movement
as a dimension of social copresence” (Peponis et al, 1997, p.764). The initial aim of space
syntax was to “show how order in space originates in social life, and therefore to pinpoint the
ways in which society already pervades those patterns of space that need to be described
and analysed” (Hillier and Hanson, 1984, p.8). Space syntax has developed several methods
for the analysis and quantification of configurational attributes in relation to spatial
experience, the most prevalent of which are related to the representation of plans through
axial lines, defined as the longest lines that pass through convex spaces without intersecting
spatial boundaries (Hillier and Hanson, 1984, Peponis et al, 1997). These lines are related to
spatial experience, since they “correspond more closely to our intuition of space as a field of
movement” (Peponis et al, 1997, p.763). Space is considered through its syntactic

characteristics rather than the attributes of its shape (Figure 1).

Figure 1. Different mapping representations of town of G in France
(Hillier and Hanson, 1984, pp. 90, 91, 92, 100, 104)

a. conventional map, b. axial map, c. convex map, d.y-map, e. interface map

The way in which the structure of space and movement affect our exposure to the elements
of shape has been investigated through methods closely related to those implemented by
space syntax (Peponis et al, 1997, Peponis, 1997). Peponis et al have introduced a series of
methods regarding the quantification of plans in terms of informational stability and change in
relation to the moving subject (Figure 2). Spatial experience is thus directly linked to specific
characteristics of shape “bridging the gap between the changing nature of a spatial

environment and the constant nature of its shape” (Psarra and Grajewski, 2001, p.2).

13



MSc AAC_Anna Laskari_Urban Identity through Quantifiable Spatial Attributes

- 4
3 6
—c 7
(al) (a2) (al) (a2')
- R
- 9
=3 10
R
(bl) (b2) (bl’) (b2')
- 5
o 6
= 7
3 8
(ch (€2) (1) (')

Figure 2. E-spaces (Peponis et al, 1997, pp.774, 775)
Plans shaded according to the number of visible discontinuities from e-spaces: three pairs of theoretical

plans (left) and a simplified plan of Fallingwater by Frank Lloyd Wright (right).

Implementing elements from both directions described above, Psarra and Grajewski have
introduced a method for describing shape and shape complexity using local properties
(Psarra and Grajewski, 2001, Psarra, 2003). This method, which is analysed in detail further,
describes space through the attributes of the perimeter of its shape, as seen in plan, in terms
of connectivity. Spatial experience is related to the degree and rate of changes in visibility

from sequential locations along the perimeter (Figure 3).
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Figure 3. Connectivity values (Psarra and Grajewski, 2001, pp. 4, 12)
Plans shaded according to the distribution of connectivity values along the perimeter and mean
connectivity value: theoretical plans (left) and a simplified plan of Fallingwater by Frank Lloyd Wright
(right).

2.2. Quantifiable plan attributes and categorisation of spaces
The description of plan representations through syntactic attributes of the perimeter of

shapes has also been proposed by Gero and Park (1997, Park and Gero, 2000) and later
Gero and Jupp (2003, Jupp and Gero, 2003). According to Gero and Park (1997), this

14
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method moves away from numerical to symbolic descriptions that represent qualities rather
than quantities, describing “with classes of shapes as opposed to quantitative modelling
which describes individual shapes” (Gero and Park, 1997, p.829). According to this method,
shapes are represented and analysed through encoding the characteristics of intersections
of arcs (edges) at the vertices, combining semantics (Gero and Park, 1997) and graph
theory (Gero and Jupp, 2003). This method is not directly structured according to the
embodied experience of spaces represented by the shapes described, but it can be
associated to spatial perception through its relation to intuitive understanding of shape
semantics. These qualitative shape representations, called Q-codes (Figure 4), have been
used for the categorisation of plans, based on degrees of similarities between their codified
features and defined shape categories (Park and Gero, 2000). According to this method, the
quantification of qualitative, semantic features of shapes enables the classification of building

plans within a relative system of comparisons.
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Figure 4. Q-code semantics and semantic graphs (Gero and Jupp, 2003, p.8, Jupp and Gero, 2003, p.4)
Q-code semantics for primitive shapes (left), original drawing (centre) and semantic graph representation

of Farnsworth House (right).

Relative methods of classification of building plans according to the quantification of spatial
features have been implemented by Hanna both in an analytic and in a generative
framework (Figure 5). Measurements deriving from axial and boundary maps were used for
the representation and comparison of plans in high-dimensional space. Degrees of similarity
and differentiation have been measured either directly in high-dimensional space, through
the comparison between graph spectra corresponding to plans (Hanna, 2007a, b), or in two
dimensions, by reducing dimensionality through principal component analysis (Hanna, 2006,

2007c). Details about these methods are discussed in the section of methodology.
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Figure 5. Generation of spatial configurations according to learned configurational types
(Hanna 2006, p. 15, 2007b, p. 2018)
Supervised learning for the generation of two different types of abstract configurations:
linear and random (top) and different desk layouts produced by a Genetic Algorithm (bottom).

The approaches described above derive from various fields of spatial research and respond
to different questions concerning space analysis and generation. However, they share the
stand that the quantification of spatial attributes, as they are manifested in plan
representations, can be related to embodied spatial experience or to perceptive
categorisations of spatial character. In this sense, all approaches account for the perception

of spatial identity, as it is reflected in configurational characteristics of plans.

Most implementations of these methods investigate spatial unities either at the scale of
individual spaces and buildings or at urban scale. The consideration of the intermediate
scale of the urban building block, attempted here, examines the potential of generalisation of
such methods in a continuous range of scales of spatial organisation.

16
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3. Methodology

3.1 Definitions and specifications

3.1.1. The urban block

Since urban layouts are usually heterogeneous and complex, the boundaries of distinct
urban blocks can be ambiguous. In order to overcome this ambiguity, the block was
considered as the body of built and open spaces, surrounded by freely accessible public
passages and whose boundaries coincide with materialised or insinuated designations of
property limits.

Since the analysis focuses on the configuration of private open spaces and their relation to
public space and to surrounding buildings in terms of visibility and permeability, partitions
were omitted and adjacent built or open spaces were viewed as continuous. Since possible
boundaries between open spaces are much lower and lighter than the built volumes defining
the overall contour, buildings were considered as solid volumes and open spaces as their

negative void.

3.1.2. The study case

a. Selection criteria

The city of Athens, Greece, was selected as the main study case. Athens’ metropolitan
character and long turbulent history are reflected in an urban environment characterised by a
recognisable, unified and continuous identity that emerges from a multiplicity of
heterogeneous singularities and local particularities. It offers thus the framework for a multi-
levelled analysis, with the possibility to spread on different scales of spatial identifications
and differentiations.

In order to restrict and define further the specific framework of study, it was decided to focus
on the city centre, as it was considered to offer great diversity in terms of historical depth and
thus construction phases, social structuring and land uses.

Four different areas in the centre of Athens were selected according to the differentiation
amongst them and to their internal consistency, in order to enable the examination of the
possibility of relation between quantifiable spatial attributes and local identity. Internal
consistency refers to the perceptive character of each area rather than to homogeneity of
building block features, since the centre of Athens is characterised by great mixture of
buildings from various historical periods and architectural styles.

The selection of the neighbourhoods was mainly based on the general belief that, during the
building boom of the late fifties and early sixties (Philippidis, 1990, Aravantinos, 1997), the
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character of the Athenian urban environment shifted dramatically. Public opinion was
considered as an index of how spatial identity is experienced. Making the assumption that
the distribution and fluctuations of land values are at some degree a quantifiable expression
of public appreciation, the initial criteria for the selection of the areas were their distribution
on both sides of the historical threshold of the reconstruction period and the differentiation in

land values (Figure 6).
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Figure 6. Distribution of land values in the four selected areas of Athens
(source: Tables of Objective Values, published by the Greek Ministry of Economy and Economics)

b. Selected areas

According to these criteria, the selected areas were Mouseio, Kolonaki, Plaka and

Metaksourgeio (Figures 7, 8).

Mouseio, labelled as area A, is a highly integrated area, adjacent to the central and very
busy Omonoia square, highly mixed in terms of national and social composition and
characterised by predominantly modern constructions (Figure 7a).

Kolonaki, registered as area B, is a less integrated neighbourhood on the banks of mount
Lycabetus, also characterised by modern constructions. It is considered to be the traditional
bourgeois area of central Athens (Figure 7b).

Plaka, or area C, is part of the historical core of Athens, at the feet of the Acropolis. It is a
protected area of cultural heritage, characterised by many archaeological sites and low rising
buildings, prevailingly constructed before the beginnings of the twentieth century (Figure 7c).
Finally Metaksourgeio, labelled as area D, is an early-industrial area, situated along Peiraios
avenue, the main connection between Athens and the port of Piraeus. It was developed in
the nineteenth century in direct relation to the silk factory (“metaksourgeio” means silk
factory in Greek) that was functioning in the area. The neighbourhood has been scarcely

reconstructed (Figure 7d).
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a. Mouseio-Area_A b. Kolonaki-Area_B c. Plaka-Area_C d. Metaksourgeio-Area_D e. Bloomsbury-Area_L

Figure 7. Characteristic snapshots of the selected areas

Although Athens is the central focus of study, an area of London complements the dataset in
order to amplify the comparative possibilities of the analysis beyond the potentially restrictive
characteristics of a single city. With the intention to validate the measurements through the
comparison between areas with correspondent characteristics, it was decided to select an
area in central London with mixed land uses and variable construction phases. According to
these criteria, the area of Bloomsbury and Fitzrovia was considered suitable for the

requirements of the study. The selected area was labelled area L (Figures 7e, 8).

The dataset consists of twenty-five building blocks from each area (Figure 8).
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Figure 8. The study case: five urban areas.
General urban context (top), numbered building blocks (left) and aerial view (right)

(source of aerial photographs: Google Earth)

3.2. Measurement methods and previous implementations

3.2.1. Selection and measurement of plan features

In order to reinforce the validity of the results it was considered essential that more than one
methods of spatial analysis be implemented and their outcomes compared. In this
framework, methods used in distinct fields of spatial studies for the analysis of different
features were implemented in order to extract variable data about the blocks under

examination.
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A short overview of these methods accompanied by previous implementations is given in this
section whereas further details and specifications about the present application are available

in Appendix .

3.2.2. Conventional methods of Urbanism

Established methods of measurement and representation used in urban studies have been

largely implemented for the comparison between plans and the illustration of results.

The plans of the building blocks, forming the basis for all measurements, originated from

conventional topographical maps, detailed at the scale of 1:500.
A first set of measurements were derived from typical urban analysis maps. These can be
distinguished into quantities that refer to attributes accounting for building regulations and

measures that represent the existing situation (Figure 9).

area_C area_D

Figure 9. Regulations and existing situation.

Top: distribution of floor area factor

(source: Department of Urban Planning of the Municipality of Athens),

Bottom: existing building heights per plot

(source: Laboratory of Geographical Systems of Information of the Department of Urban and Regional

Planning of the School of Architecture at the National Technical University of Athens)
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3.2.3. Classification by principal components analysis

using axial graph spectra

Spatial representation and analysis through axial maps is used by space syntax in order to
illustrate and quantify connectivity relations in continuous spaces, it terms of unobstructed
sight lines.

An axial map is defined as the least set of straight lines which passes through each convex
space and makes all axial links (Hillier and Hanson, 1984, p.92).

Properties of axial maps have been shown to be related to spatial perception and therefore
to the experience of spatial identity. Their ability to represent both topological and
geometrical attributes of space contributes to their success in capturing multiple

configurational qualities.

Figure 10. Axial maps of two sample plans.
Reduced axial maps were generated for both open and built spaces,

including a zone of public open space around permeable blocks.

A method for mapping axial map representations of plans into high-dimensional feature
space was used in order to classify building block plans from different areas. The use of axial
graph spectra, or ordered set of eigenvalues, for the representation and generation of plans
(Figure 11) is discussed in details by Hanna (2007a,b). According to Hanna, “the spectra of
various graphs have been shown to be an effective representation of spaces, which can be

used to measure similarity of both global and local spatial structure” (Hanna, 2007a, p.12).
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Figure 11. Axial map spectra (Hanna 2007a, p.6, 2007b, p.216)
Axial maps, related spectra for different types of desk configurations (left)

and corresponding GA generated layouts with spectra (right)

As the comparison between high-dimensional data can be complicated, principal component
analysis (PCA) was implemented in order to reduce dimensionality and highlight
differentiations within the dataset. Principal component analysis is “an unsupervised
approach to finding the “right” features from the data. (...) It projects d-dimensional data onto
a lower dimensional subspace” ( Duda et al, 2001, p.568).

The method of classification of axial graph spectra through PCA has been used for the
description of different architectural styles through the definition of feature space archetypes
as well as for the classification of plans of different building types (Hanna 2006, 2007c)
(Figure 12).
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Figure 12. Classification of building plans through principal components analysis, using axial map spectra
(Hanna, 2007c, pp. 10, 11)

Example buildings plotted in feature space (previous page) and classification of building types:

the upper 20 plans represent museums and the lower 20 offices (this page)

It has been shown to be a method that enables the automated representation of plans within
a uniform feature space in a way that depicts degrees of differentiation without requiring
explicit description of the attributes compared. In this framework it was applied for the
classification of the building block plans (Figure 13).

The implementation was based on an algorithm written by Sean Hanna in Matlab.

The axial maps were generated using Depthmap software.

PCA was also used independently from the axial graph spectra, for the classification of the

plans according to all measured attributes. For this analysis, JMP software was used.

Component 3
Component 3

Component 2 Component 2

Figure 13. Plots of the sample’s axial graph spectra against the three first principal components.
Blocks from Athens (left) and from both Athens and London (right)
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3.2.4. Fractal dimension measurement through box-counting method

a. Fractal dimension in architecture

Fractal dimension is a measure of dimensionality of fractal structures. It accounts for the rate
of growth of the length of a fractal curve from one generation stage to the next (Bovill, 1996),
expressing the degree to which a fractal fills space as the scale of observation decreases.

There are many definitions and ways for calculating fractal dimension, all related to
mathematical fractals and thus referring to theoretical, infinitely self-similar structures.
However, architectural structures and their representations often have fractal properties that

can be approached through their estimated fractal dimensions.

The main characteristic of architectural structures that can be considered as a fractal
property is self-similarity. In this view, fractals have been used in architectural context in
different scales, for analytic or synthetic purposes.

At an urban scale, the analogy of fractal self-similarity has been used for the analysis and
simulation of urban configurations and growth (Figure 14), since “in terms of spatial
structure, cities distribute their resources in space in such a way that their networks of
distribution fill space efficiently, moving goods and people along dendritic networks which fill
space the most economically. These networks exist in the same form with the same space
filling properties at different scales and through different times in terms of city growth” (Batty,

2007, p.14). The fractal city has a structure that manifests itself in the same morphology at

different scales (Batty and Longley, 1994).

Figure 14. Fractal simulation of the urban growth of Cardiff (Batty and Longley, 1994)

At the building scale, fractal geometry has been used as a design tool (Bovill, 1996, 2000) as
well as an analytical means for the approach of architectural analogies and rhythms (Figure
15). Fractal dimension in particular has been viewed as an indicator of complexity of building
plans and elevations (Lorenz, 2002, Bovill, 1996, 2000) (Figure 15).
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Figure 15. Fractal rhythm and fractal dimension in architectural analysis (Bovill, 1996)
Analysis of the plan of Willits House by Frank Lloyd Wright based on fractal rhythm (top)

and box counting dimension of the elevation of Villa Savoye by Le Corbusier (bottom)

In the specific case of the building block plans, fractal dimension was used as an index of
complexity and self similarity of the contours of open and built spaces. The amount and
scale of meandering of the spaces constituting the blocks affect the visual permeability of
open spaces and the way they are perceived from the street or through the windows of

adjacent buildings in terms of visual depth and layering.

b. Box-counting

The method used for the calculation of fractal dimension of the plans counts the Minkowski-
Bouligand dimension, more commonly referred to as box-counting dimension. This method
can be used for calculating the fractal dimension of images rather than of single fractal
curves. It enables thus the measurement of composite objects that are constituted by a
multitude of disconnected fractal structures. In this way, it was possible to measure the
dimension of each plan as a whole instead of measuring each contour separately. Of course,
the resulting measurements correspond to the image of the plan and not to the building block

itself.
For the measurement of fractal dimension in the framework of the present analysis, an

algorithm was written in Processing (Appendix Ill), based on the description of the box-

counting method.
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Practically, the box counting method is based on a repetitive process of laying a grid of
constantly decreasing scale over the image under measurement. At each grid scale, the
number of cells that contain parts of the structure is counted and the fractal dimension is

given by the comparison between scales (Figure 16, Table III)

Pl B R B o

stage N log(N) 1/s log(1/s)  log(Ni)-log(Ni-1) log(1/si)-log(1/si-1) dimension

1 13 1.11394335 5 0.69897
2 40 1.60205999 10 1 0.488116639 0.301029996 1.621488377
3 115 2.06069784 20 1.30103 0.458637849 0.301029996 1.523561956
4 313 2.49554434 40 1.60205999 0.434846497 0.301029996 1.444528796
5 905 2.95664858 80| 1.90308999 0.461104242 0.301029996 1.531755135
6 2627 3.41946007 160 2.20411998 0.462811494 0.301029996 1.537426503
slope:D=
1.531752153

Figure 16. Box-counting in Processing
Example of fractal dimension measurement for block plan BO10

3.2.5. Connectivity as alocal shape property

The experience of open spaces within the building blocks is directly related to the way they
are gradually revealed to visual perception. As aforementioned, there are several methods
for measuring and analysing visual properties of space, based on the assumption that the
received visual information and spatial experience changes according to the observer's
position in space (Psarra and Grajewski, 2001). Some methods analyse this sequential
nature of spatial experience and others combine separate visual instances into a
synchronous view.

The method implemented here, introduced and developed by Psarra and Grajewski (2001),
offers a combination of local and global, sequential and synchronous approaches of visual
experience, and is based on the description of syntactic properties of shape perimeter
(Figure 17, Table IV).

Approaching shape from its perimeter, this method was considered to be suitable for the
specific analysis, since the open spaces within the building blocks are initially and often
uniquely experienced through their perimeter, either from the edges adjacent to streets or

through the windows of the facades of the surrounding buildings.
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Figure 17. Connectivity measurements in Processing
Example of measurements for block plan B010. Calculation of convex lines (centre) and graph of local

properties for the central open space (top) and total measurements for the whole plan (bottom)

Measurement
According to Psarra and Grajewski, this method explores ways of comparing shapes of

different geometry without relying on traditional notions of geometrical order, by quantifying

their convexity in terms of distribution of connectivity along the perimeter.
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Originally, it has been implemented using a GIS based computer programme. For the
present implementation, an algorithm was written in Processing, based on the description of
the method (Appendix III).

In order to calculate connectivity, the perimeter of the shape is subdivided into segments of
equal length. From the subdivisions a complete graph is derived for the shape, where all
points subdividing the perimeter are connected to each other. The number of connections
that lie completely within the perimeter is calculated for each point. The ratio of such
connections from each subdivision to their total number represents the mean connectivity

value for each location on the perimeter of the shape.

a. Global properties

a.l. Mean connectivity value (mcv)

The average of connectivity values for all perimeter segments gives the mean connectivity
value (mcv) for the shape as a whole.

This quantity is an index of the convexity of the shape, meaning that higher values suggest a
more convex shape, consisting prevailingly of areas that expand along two axes.
Experimental observations support the assumption that mcv captures global configurational
characteristics of the shape, related to its degree of occlusion and to the relations of the

parts to the whole in terms of symmetry and regularity (Figure 18).
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Figure 18. Distribution of connectivity along the perimeter and mean connectivity for different degrees

of occlusion and symmetry (Psarra and Grajewski, 2001, p.4)

b. Local properties

The measurement of mean connectivity value for each location along the perimeter enables
the contemplation of the shape’s behaviour in terms of stability and change at a local scale
by plotting connectivity values on a graph (Figure 17). “The x-axis corresponds to the
number of cells (subdivisions) and hence captures perimeter length. The y-axis maps
connectivity values” (Psarra and Grajewski, 2001, p.6). Two quantities, v-value and h-value,
are extracted form the graph, corresponding to changes along the two axes. These are
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calculated using standard deviation, a measure that indicates how much on average a set of

values differs from a mean.

b.1. v-value: vertical standard deviation
V-value represents the level of differentiation in connectivity amongst perimeter locations

and is calculated as the standard deviation of all connectivity values from mean connectivity.

High v-values suggest high degrees of dispersion or differentiation amongst perimeter

locations, produced by the combination of convex and non convex shapes of different sizes.

Low v-values suggest stability of connectivity values along the perimeter. This can be
caused either by simple, symmetrical convex shapes with high connectivity values all along

the perimeter or by very meandering shapes with equally distributed low connectivity.

b.2. h-value: horizontal standard deviation

H-value reflects the level of differentiation in the rate of transformation of connectivity values
along subsequent perimeter sections and is measured as the standard deviation of all
distances between subsequent nodes, defined by the points of intersection of the graph with

the horizontal line representing mean connectivity.

High h-values account for variable rates of differentiation of connectivity that characterise

uneven, asymmetrical shapes.

Low h-values correspond to even rates of differentiation that can be related either to
symmetrical, rhythmic shapes or to very meandering contours where distances between

rises and falls of connectivity are similarly short.

b.3. Mean horizontal value (mhv)

Besides these two quantities, v-value and h-value, the use of which is proposed by Psarra
and Grajewski, it was considered useful to take into account one more measure, the average
distance between subsequent points of mean connectivity value. Mean differentiation along

the x axis (mhv) accounts for the pace of connectivity changes.
High mean distances along the x axis correspond to low rates of differentiation, accounting
for shapes that are characterised by smooth changes or long perimeter segments with stable

visibility.

Low mean distances reflect high rates of change due to frequent and large variations in

connectivity.
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3.3. Combination of methods

3.3.1. Categories of measurements

Each of the methods described produces measurements that capture different attributes of
spatial configurations. The final output from all methods is expressed through scalar
quantities, but these often derive from processes that take into account geometrical and
topological attributes of the plans under analysis and thus at some degree reflect these
features. According to the focus of each process, the quantities measured for the analysis of

the blocks could be distinguished into scalar, geometrical and topological.

a. Scalar quantities
The quantities involved in traditional urban analysis can be considered as scalar, since they
don’t describe geometrical or topological characteristics of the plans, but relations between

quantities.

b. Geometrical measures

The measurement of fractal dimension accounts for geometrical attributes of the plans, as it
refers to self-similarity and metric proportions of the parts in relation to the whole. It has been
noticed that topologically identical objects can have different fractal dimensions (Lorenz,
2002, p.31).

C. Syntactic-topological measures

The other methods, connectivity measurements and spectral analysis of axial graphs, focus
on syntactic properties of the plans. The results of these methods are affected both by the
geometry and topology of the configurations under measurement, but what is measured is
essentially the relations between locations of the plans, both at a local and at a global level.

In this sense, these methods can be considered as prevailingly topological.

3.3.2. Combinatorial analysis

This distinction shows that each method can only partially describe the plans. The

comparative combination of measurements deriving from different methods enables a more

spherical contemplation of the dataset and at the same time allows the examination of the

suitability of the selected methods.
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Scales of analysis

In order to arrive to conclusions about relations between plans, neighbourhoods and possibly
the two cities, but also about the suitability of the methods, the data was examined both at
the level of individual building blocks and at the level of the local area, through the analysis
of patterns occurring within each single measurement, by combinations of measurements in

pairs and by the simultaneous consideration of the whole set of measurements.

a. Single quantities

At the scale of individual blocks, for each measurement, plans from all areas with unusual
values, either high or low, were pointed out. This was a way for validating and comparing the
methods, since the extreme cases are indicative of the nature of captured features. The
convergence of extreme values towards the same plan illustrates high differentiation of the
specific block.

Furthermore, plans from all areas that have visual similarities were compared in order to
confirm whether their similarity is reflected in the measurements.

At the scale of the neighbourhood, comparisons were attempted according to the patterns of
distribution, range, variation, mean and extreme values for each quantity.

Measurements were also illustrated in maps with different shadings for different ranges of

values in order to distinguish possible patterns of distribution in space.

b. Pairs of quantities

The different quantities were combined into pairs and the corresponding measurements
plotted in scatter graphs.

At the level of individual blocks, extreme outliers and their behaviour in relation to other
quantities were noted, similarly to the analysis of single measurements.

At the scale of the neighbourhood, the patterns of distribution as they appear in the scatter
graphs were examined. It was attempted to distinguish general tendencies within the same
area and to compare with trends in other areas in order to reveal relations of identification

and differentiation between neighbourhoods.

C. Set of quantities

Finally, the patterns produced by the distribution of values in all quantities were investigated
by combining all measurements through principal components analysis.

The simultaneous view of the dataset enabled the comparison of relations within and

between neighbourhoods over all measured attributes.
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3.4. Limitations of methodology

The main issue that this analysis attempts to approach is whether and to what degree
quantifiable attributes of spatial representations, and specifically plans, can capture elements
related to the experience of spatial identity. There are important limitations inherent in the
question itself, as major issues concerning the formation and perception of spatial identity
are not even spatial, let alone be captured in a plan. However, it has been proved that some
aspects of spatial experience are indeed related to spatial layout, being influenced by it and
reflected in it. The focus might thus be shifted to the validity of objective measurement of

these aspects, since they are usually related to non-discursive spatial attributes.

Another level of limitations is imposed by the dataset under analysis. First of all it cannot be
proved if possible conclusions are generalisable or if they correspond uniquely to the specific
dataset. Nevertheless, the selection of highly heterogeneous areas and the relatively large
number of data reduce the risk of specificity. Besides, the existence of universal limits for
values of building features, deriving from universal constraints (Steadman, 1998), supports
the possibly generalisable character of such measures.

The dataset itself is not equidistributed, since the samples from Athens are more complete
than those from London in terms of number of areas, amount of information and personal
experience. Some measurements, regarding building regulations, land values and building
heights were available only in the case of Athens.

Furthermore, in the case of Athens, different data were extracted from maps of different

periods, resulting to certain inconsistencies.

Further limitations are entailed by the methods of measurement per se. Principal component
analysis produces results that cannot be explicitly interpreted, since the “components” don't
correspond to distinct measures. It is thus impossible to evaluate the importance of
information that has been discarded through the process of dimensionality reduction.
Additionally, the method of PCA might not be the most suitable for classifying the data, since
it aims at the greatest differentiation within the whole dataset. “Although PCA finds
components that are useful for representing data, there is no reason to assume that these
components must be useful for discriminating between data of different classes. If we pool all
of the samples, the directions that are discarded by PCA might be exactly the directions that
are needed for distinguishing between classes” (Duda et al, 2001, p.117). This means that
PCA might be ideal for illustrating differentiation between all individual plans, but in order to
classify the different areas, other methods of unsupervised learning could have been
implemented. Multiple discriminant analysis (MDA) could have been more suitable, since it
seeks a projection that best separates the data (Duda et al, 2001). The implementation of
supervised techniques was not considered, since the aim was to illustrate in the simplest

way innate, unmediated relations between unlabelled plans.
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Fractal dimension measurement through box-counting is very sensitive to the properties of
the image, but limitations deriving from this fact were minimised as much as possible through
the thorough preparation of the plans.

Connectivity measurements can produce ambiguous results, since the values are not linearly
related to convexity and complexity. Low values account for both very simple and very

complex shapes.

Lastly, the set of specific selected methods is not necessarily the most suitable for the
description of the dataset.

An additional measurement that would capture visual permeability of the blocks from the
street by measuring mean connectivity of edges adjacent to public space (Figure 19), was
not finally implemented for the whole dataset, due to time restrictions. This and other
quantities would possibly contribute to a more complete representation of the dataset.
However the fact that the selected set of methods covers different categories of spatial
attributes, and the observation of occasional information overlap between certain

measurements, enforces its adequacy.

Considering these limitations, it could be claimed that the selected methods are not
individually sufficient for the purpose of the analysis. However, their combination and the

size of the dataset might balance out possible mistakes and insufficiencies to some degree.

Figure 19. Visual permeability from the street.
Example of measurement for block plan A003. Total mcv=18.347, street mcv=19.124.
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4, Results and possible interpretations

A brief overview of the results and possible interpretations is presented in this section.
Detailed descriptions of the most representative graphs and further findings and

interpretations are given in Appendix II.

4.1, Single quantities

4.1.1. Individual plan scale

Looking at the highest and lowest values in each neighbourhood and for each quantity,
certain correspondences between measurements were revealed. An interpretation of the

plans was attempted through the combination between corresponding values.

From the observation of the most intensively differentiated plans it was made clear that there
is some correspondence between the measurements deriving from the different methods.
Their relative magnitudes are not related in a constant way, since in some cases different
quantities correlated whereas in others they exhibited opposite trends, but their extreme
values repetitively converged towards the same plans. From the examination of the specific
examples, it can be claimed that fractal dimension is strongly related to connectivity values,
which is a logical result since both measures reflect attributes related to differentiation,
repetition and complexity. However their relation is variable, as different combinations of

maximum and minimum values were noticed (Figure 20).
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Figure 20. Comparison between fractal dimension and mean connectivity values within each area.

Extreme values (numbered blocks) often coincide in variable relations.

Some relation of these quantities with scalar measures referring to total area, ratio of built
space, number and total perimeter of open spaces was observed. In many cases a
combination of low fractal dimension, high connectivity, high ratio of built space and low total
area and perimeter of voids appeared. However, this might derive from the limitations
imposed by small building plots rather than reveal an intrinsic relation between these
quantities, since small plots only allow for few and small regularly shaped openings in order

to maximise exploitable built area.

The PCA classification of the axial graph spectra was shown to distinguish as highly
differentiated plans with high values of total area, perimeter and number of open spaces.
High correlation was noticed between the principal components and measurements
regarding numbers of built and open spaces (Figure 21). These measures are all scalar,
related to the size and geometry of space rather than topological relations. This might derive
from the fact that larger plans, incorporating greater numbers of distinct elements, have the
possibility of more diverse configurations than smaller ones (Steadman, 1998), exhibiting
thus a wider range of differentiation, or it might just mean that the spectra of the axial graphs

are more affected by global metric transformation than local topological relations.
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Figure 21. Spectral analysis and scalar attributes.
Outliers in the plots deriving from the principal component analysis of axial graph spectra (circled, right)

present repetitively extreme values in scalar attributes (left).

The consistency of the measurements was also validated by comparing the values
corresponding to plans that present visual similarities (Figure 22).

A number of comparisons demonstrated that similar plans have analogous values in most of
the quantities, observation that supports the consistency of the methods implemented for the

measurements.

block No| block plan mcv| v-value h-value mhv| fractal d.|total area built ratio block No block plan mcv|  v-value h-value mhyv| fractal d. total area built ratio

A003 18.35 8.275 5.405 2.5 1.454 873556 059 |A004 33.47| 12.2) 92905 8333 1.378 18336 0.93

A007 16.77| 8.137 5.848 45454 1.447 598355 0.71| |A009 4 33.38) 12.5/ 4.165 3.846| 1.381 1468.15 0.938

C018 A 284455 10.77 4.91 2.943 1.427 3478.17 0.69 AOZS‘ 46.91 12.05 7534 10.837| 1.375 1020.78| 0.917

Figure 22. Similar values for visually similar plans

4.1.2. Neighbourhood scale

For each quantity measured, the values of the blocks from different areas were compared
amongst them. In all cases the ranges of values corresponding to the various
neighbourhoods overlapped. This showed that the distinct character of each area cannot be
directly connected to single measurements. However, differences in the distribution and
range of values could reflect some general characteristics. In this framework, the values of

each area were sorted from low to high and plotted into graphs.
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a. Fractal dimension

In the case of fractal dimension, the ordered graphs distinguished clearly between
neighbourhoods (Figure 23).

The differences might be too small to categorise the neighbourhoods, however the general
ranking correlates with the visual impression from the local maps.

The relatively lower general ranking and limit of complexity in the modern areas might be
related to their limited historical span, to their massive construction during the building boom
of the ‘50-'60 and to consistency in building regulations and techniques from the time of their
construction up to now. On the other hand, the higher limit of complexity in the older areas
could be reflecting the gradual and perpetual processes that forged them throughout the
centuries. Especially area C, in the core of the historic centre of Athens, presents not only
the highest maximum value of fractal dimension, but also the widest range of variations. This
is possibly due to the copresence of elements from all historical phases, from early antiquity
until now, and to the intensively deformed street grid that leads to more variable block

shapes (Steadman, 1998), both characteristics deriving from the historical depth of the area.

fractal dimension: ordered graphs
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Figure 23. Fractal dimension: ordered graphs and total values for each area
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b. Connectivity

The ordered graphs of mean connectivity values (mcv) show exactly the same overall
ranking as fractal dimension for the areas within Athens (Figure 24). London has clearly
higher connectivity than all the areas of Athens, reflecting greater regularity in the shapes of
open spaces, deriving possibly from a more organised, all-encompassing design and
building process.

Mean horizontal differentiation (mhv), v-value and h-value produced a different ranking
(Figure 24), possibly related to higher degrees of differentiation (high v- and h-values)
combined with smooth changes in visibility (high mhv) for the older areas of Athens in
contrast to more repetitive and regular configurations in the modern neighbourhoods.
According to these observations, it could be said that fractal dimension and mean
connectivity converge towards ranking the different areas in terms of global complexity and
fragmentation, whereas mhv, v-value and h-value converge towards distinguishing between
areas according to local differentiation and rhythm.
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Figure 24. Connectivity: ordered graphs of the various connectivity values for each area

C. Scalar attributes of open spaces

Values concerning the characteristics of open spaces reveal that, in Athens, although the
older areas have few open spaces, they actually exhibit a more open character, allowing
their yards to be visible from public space (Figure 25). On the contrary, the two modern
areas have isolated openings, mainly serving the purpose of light-wells. Large open spaces

in area A correspond to empty sites rather than courtyards. These differences reflect
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historical changes in the social role of open space, namely the shift from open space as a
locus for social encounters to open space as building infrastructure.
The London area reflects a different lifestyle, having many small open spaces, divided

almost equally into enclosed yards and street-facing openings, mainly light-shafts.
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Figure 25. Attributes of open spaces
Ordered graphs of various measurements regarding open spaces of the building blocks
for each area (top)
Typical open spaces (bottom):
area A: central residual void, area B: the balcony is the only private open space visible from the street,

area C: visible courtyards, area D: occasionally visible courtyards, area L: typical “cours anglaise”
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The above observations show that, although each single measurement is not sufficient for
differentiating between the neighbourhoods or comparing blocks, the relative distribution of
values was shown to have captured particularities of the areas that are usually not
considered as directly related to spatial attributes, such as historical depth and social

practices.

4.2. Pairs of quantities

Quantities corresponding to different categories of attributes (scalar, geometric, topological)
were combined in pairs in order to illustrate complementary features inherent in the plans.
Additionally, quantities that in the previous level of analysis were shown to be related to each
other were also paired up.

These pairs of quantities were plotted together in scatter graphs, through which both the
relation between the quantities themselves and general tendencies within different
neighbourhoods were investigated. In most cases the overall impression was rather mixed,
with groups of points corresponding to plans from different areas overlapping. However,
when considering each area as a unity, differences in the slopes of the regression lines that
best describe the points of each neighbourhood revealed differences in the overall behaviour

of the distinct sets.

4.2.1. Individual plan scale

The relation between different values in the case of individual blocks derived from the

analysis of extreme values in individual quantities that was discussed above.

4.2.2. Neighbourhood scale

a. Connectivity graphs

As observed through the ordered graphs, mcv exhibits a similar overall distribution to that of

fractal dimension and different from that of mhv, v- and h-values.

By plotting mean connectivity against v-values, h-values and mhv respectively, an interesting

pattern emerged through positive correlation of values in all areas of Athens and negative for

London, showing opposite trends for the two cities at a global scale (Figure 26).

43



MSc AAC_Anna Laskari_Urban Identity through Quantifiable Spatial Attributes

v-value
h-value
_mhv _
.

5y
. 5 e ®area A

Marea B

area_C
area_D

®area_L

mcv mcv mev

Figure 26. Connectivity scatter-plots: Opposite tendencies between Athens and London

This fundamental difference might reflect the different processes that have prevailed in the
formation of the two cities.

In Athens, urban construction has been mobilised locally and is characterised by bottom-up
processes. The building blocks have not been designed as a whole but are the result of
independent, uncoordinated local actions. Open spaces as they appear in the plans were
formed from the aggregation of residual areas (Philippidis, 1990) and thus their overall
shapes are differentiated and unequally distributed.

In London, the equal distribution of similar open spaces is often the result of global
processes. Many blocks were designed and built as a whole, showing consistency in their

layout.

Although the consistent behaviour of the areas of Athens shows some homogeneity, when
each neighbourhood was observed individually, some different trends were captured,
revealing fluctuations in the degree of correlation between the measured attributes according

to local particularities.

Mhv, v- and h-values correlate well amongst them in all cases (Figure 27), showing that in all
areas, highly differentiated open spaces present arrhythmic, smooth changes in connectivity.
This high correlation might signify that the descriptions given by the three quantities possibly

overlap, making the consideration of all redundant for the representation of the plans.
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Figure 27. Correlation between h-, v- and mh- connectivity values.

H- v- values correlation=0.76, h- mh- values correlation=0.82 and v- mh- values correlation=0.7
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b. Geometrical - topological quantities
Fractal dimension - connectivity graphs

The ordered graphs revealed similar overall distributions for fractal dimension and mean
connectivity values. However, by plotting these quantities together, it was observed that they
exhibit slightly opposite trends of development (Figure 28, top left). In most cases, higher
fractal dimension corresponded to lower connectivity values and vice versa, since both

quantities are associated to fragmentation but in an inversed proportional relation.

The plots of fractal dimension against v-, h- and mh- values revealed some diversions
(Figure 28, top right, bottom), reflecting local particularities regarding differentiations in the

relation between rhythm, scale and topological associations of subshapes.
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Figure 28. Relation between fractal dimension and the various connectivity values

c. Geometrical-scalar quantities
Fractal dimension - normalised height variance graph

The relation of differentiation in the horizontal and vertical plane, reflected in the plan and
elevations respectively, was illustrated through the comparison between fractal dimension
and height variance (Figure 29 left).

Fractal dimension accounts for the fluctuations of the overall contour, as seen in plan, and
height variance reflects oscillations along the skyline. By plotting these quantities together,

various relations were revealed, prevailingly related to the proportion of low, older building
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within higher, modern constructions. These concern only the areas within Athens, since, as

aforementioned, information regarding building heights was not made available in the case

of London.
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d. Scalar-topological quantities

Number and perimeter of open spaces - connectivity values

The graphs representing the relation between the number and perimeter of open spaces
against connectivity values mcv, mhv, v- and h- values all exhibit an overall triangular
distribution (Figure 29 right, Table Il). This shows that in cases with fewer openings, and thus
generally shorter total perimeter, the range of variation in all connectivity values is greater.
As more open spaces aggregate in the same block, connectivity values converge towards
the mean. It could be claimed that as a general trend, higher numbers and total perimeters of
openings have a stabilising effect on visibility and its rates of change both at a global and at
a local scale.

Between the areas of Athens different trends account again for local characteristics, such as
connected courtyards in the older areas in contrast to isolated light-wells in the modern

blocks.

These and similar observations, deriving from the various measurements and their relational
comparison, revealed that the combination of different quantities in pairs might not be
sufficient for the distinction between neighbourhoods or for the description of their particular
character, but general trends that reflect specific relations between spatial attributes can be
studied. These relations characterise each area as a heterogeneous but indiscernible whole

and represent intrinsic tendencies associated with abstract expressions of spatial identity.

This level of analysis, where each area is uniquely defined through the specific set of blocks

constituting it, does not allow the classification of unlabelled examples. It reckons each area
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through a complete, finite set of given elements and attempts to reveal if and to what degree
quantifiable attributes of specific singularities reflect the law that governs the whole set, the
whole series of variations (Deleuze, 2005) that constitutes the neighbourhood, or the city.
The system of identifications and differentiations that was structured through the
comparative analysis of single or pairs of quantifiable spatial attributes is totally self-
referential and relational. All observations are meaningful within the specific context of given
singularities and their finite interrelations and any generalisations can only be based on the
assumption of universality of specific attributes (Steadman, 1998).

In order to view this system of relations within a wider context, a more global structure
should be formed, within which the character of each singularity, as reflected in the values
given by the measurements, and its location within the system would be uniquely related. In
this system, unlabeled singularities would be identified according to their absolute location
within the structure.

4.3. Set of quantities

Principal component analysis

In this framework, it was attempted to combine all measured attributes of the blocks in a
high-dimensional structure, where each block would be represented as a uniquely defined
point. The representation of such a structure was made possible through the implementation
of principal component analysis. It should be noted that even though in the high-dimensional
structure each block is uniquely represented, independently from the other blocks, in the

reduced feature space the location of each point depends on the composition of the set.

Since the data provided for Athens was more complete than in the case of London, it was
decided to analyse both Athens independently, based on the complete set of measures, and
in combination with London, using reduced data.

By plotting all measurements regarding the four areas of Athens and projecting them on the
two principal components, a clear distinction between areas was observed (Figure 30). Apart
from some exceptions, there was a division between older and modern areas.

Although the points corresponding to areas C and D were scattered upon one half of the
plot, areas A and B were separated into two clusters. Points that might appear misclassified
correspond in almost all cases to blocks ambiguously located at the boundaries of their
neighbourhood (Figure 30, bottom).

Particularly, in the case of blocks from area C that appear to cluster clearly with area A, it
was noted that they are subject to building regulations standing for modern areas (Figure 30,
top right). This might signify that the PCA classified correctly blocks that were erroneously

considered as belonging to a specific neighbourhood.
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Figure 30. PCA classification for the areas of Athens.

Clustering of different neighbourhoods (top left) and misclassified blocks (hnumbered).

However, the introduction of the data regarding the area of London altered the interrelations
within the system, resulting to a redistribution of the points representing the blocks (Figure
31). When plotting the system against three principal components, this redistribution led to
the formation of two composite clusters with some overlap between them. The first cluster
incorporated areas A, C and D, whereas the second cluster consisted of areas B and L. The
introduction of London simultaneously intensified the differentiation of area B and the internal
attractive forces within the rest of Athens, reflecting the comparative nature of relations. The
new distribution indicates that, on one hand, differences between areas A, C and D were
weaker than the overall differentiation from London and on the other hand similarities

between area B and London were more intense than similarities within the city of Athens.
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The formation of two clusters might reflect the different processes that generated the areas
in each. Of course these processes are specific to the unique circumstances characterising
each locus, but they could be very generally distinguished into prevailingly global or mainly
local. In this framework, the cluster consisting of areas B and L could be claimed to be
characterised by global forces of formation whereas the cluster including the rest of the
areas could be related to local actions.

It is true that neighbourhood B is the most thoroughly designed area of the Athenian sample,
having been a privileged bourgeois location since the nineteenth century. This top-down
process of formation might abstractly relate area B to London, where global decisions seem
to have prevailed over local actions of spatial administration and control.

On the contrary, the other three areas were grown out of local actions and initiatives, through
the conflict and equilibration of personal interests and small scale revendications. Even in
the case of area A, which was massively rebuilt during the construction boom, the forces of
schematisation were largely localised, with the main driving force of construction being
private investment (Philippidis, 1990, Karydis, 2006).
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Figure 31. PCA classification of the whole dataset

Because of the alteration of interrelations between the blocks according to the composition
of the dataset and considering the unequal proportion of data concerning the two cities, the
area of London was compared with each area of Athens separately. In accordance to the
overall plot, area B presented the least differentiation. However, despite the overlap, a
general tendency of the blocks belonging to the same area to cluster was observed (Figure
32b). The distinction between clusters was clearer in the plots of the rest of the Athenian
neighbourhoods against the London sample and consistency was noticed in the
misclassified blocks from London (Figure 32a, c, d). The repetitive misclassification of the

same blocks might indicate that, given the particularities of the specific sample and the
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measurements used, these blocks presented more differentiation from the rest of the sample
they belong to than from each of the other samples. It is indicative that these blocks don't

belong to the misclassified cases in the comparison between areas B and L.

Based on these observations, it could be claimed that, given wide enough amounts and
variance of information on quantifiable spatial attributes, it is possible to distinguish between
spatial unities based on their degrees of identification and differentiation. The relative
distances between points representing blocks account for the degree of variability, with
similar blocks naturally falling closer together and highly differentiated cases being plotted far
apart.

From the quantitative description of disconnected singularities, patterns of attraction and
repulsion emerged that reflect both the unity and continuity of local identity, as it is formed
through locally contiguous heterogeneous particularities, and the translocal relations
between spatially discontinuous elements.
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Figure 32. PCA of the area in London and each of the areas in Athens
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5. Discussion

Through the combination of different methods of shape and spatial analysis it was attempted
to examine patterns of distribution and interrelation between various quantifiable attributes
inherent in spatial representations, in order to illustrate complex relations of identification and

differentiation between spatial unities.

These methods were selected based on their different approaches to processes of spatial
experience and were shown to complement each other in the description of spatial
configurations and their interrelations, since they reflect related but distinct aspects of
layouts, regarding scalar, geometrical and topological attributes. However, constant high

correlation between specific quantities might reflect some redundancy in the measurements.

The examination of each quantity individually, led to the conclusion that even though a single
measurement might be insufficient for the description of space and spatial interrelations,
when applied to a labelled population, the range and distribution of values can reveal general
relations between sets of spatial unities. It also revealed relations and correspondences
between the quantities themselves, indicating the convergence of results deriving from
different methods.

These interrelations were examined in more detail through the scatter graphs of pairs of
quantities. The overall degree of correlation between the quantities represented by the two
axes indicated the general character of their association. The examination of patterns
produced by the clustering or dispersal of points corresponding to block plans belonging to
the same neighbourhood and of differences in the slopes of the regression lines best
describing these points, revealed comparable general tendencies within each
neighbourhood, illustrating degrees of differentiation or accordance.

The overall structure of these convergences and divergences between different areas, based
on degrees of identification and differentiation between individual blocks along all measured
quantities, was approached through the three-dimensional representation of the high-

dimensional plotting of all measurements.

All three different scales of analysis have shown that the measurement of quantifiable spatial
attributes, as they are expressed through plan representations, might lead to the detection of
degrees of differentiation between spatial unities that account for local particularities not
directly related to the specific quantity. Such particularities regard the historical layering of
construction periods coexisting in each area, elements connected to social practices such as
the role of private open space as a locus for social interaction, the particular social, historical
and political circumstances that formulated processes of construction, leading to the
prevalence of global or local forces or the local and translocal propagation of spatial models

related to social identity.
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It could thus be claimed that configurational features manifest in plan representations, that
by their own only partially reflect elements relevant to spatial identity, when used for the
quantification and comparison between a population of plans, they can be used as indexes
of relations that expand over the confined significance of the feature per se. It is not the
measured attributes that reveal elements of spatial identity, but the way in which this identity
has shaped and is reflected in the specific spatial configurations exhibiting the features

under measurement.

However, the comparison between plans according to quantifiable spatial attributes can only
account for relative degrees of differentiation in an abstract, quantitative manner and further
interpretation of these relations requires specific domain knowledge.

According to this observation, the analysis of a population of plans according to quantifiable
spatial attributes would result to an abstract illustration of the structure of attractive and
repulsive forces between individual plans, in terms of degrees of identification and
differentiation.

At the first two levels of analysis, where quantities were examined individually or in pairs, the
plans were labelled. In this case, general tendencies within the neighbourhoods were viewed
as resultants of the internal forces within predefined sets of plans and relations between
these resultants illustrated the relations amongst the corresponding neighbourhoods. At this
level, local forces prevailed over translocal relations as each area was defined as a discrete
unity and as such compared to other unities.

At the third level of analysis, where all quantities were considered simultaneously, the blocks
were unlabelled and the structure of the field of forces emerged from the innate relations of
every plan with every other. The fact that plans corresponding to the same areas naturally
clustered together indicated that, as a general trend, local forces of identification indeed
prevailed over transpatial (Hillier and Hanson, 1984) attractions. However, the effect of
transpatial relations was also manifest, driving individual plans to cluster with blocks from
different physical locations. The presence of transpatial relations was intensified with the
introduction of the plans from London in the system that shifted the whole relational structure
in an unpredictable way, fortifying simultaneously local attractions within three areas of

Athens and transpatial attractions between the fourth area of Athens and London.
This reveals the relative nature of the system, proving that it is highly self-referential and thus

accounts as an index of degrees of differentiation between a specific set of plans rather than

an objective general measure. Any generalisation of conclusions might thus be disputable.
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6. Conclusion

The combination between different methods of shape and spatial analysis enabled the
quantification of a range of spatial attributes regarding scalar, geometrical and topological
features inherent in plans of urban blocks. The analysis of the resulting values at different
levels of observation led to the gradual structuration of a system of forces reflecting spatial
and transpatial relations according to degrees of identification and differentiation between
spatial unities.

This system, accounting for the distribution of non-discursive spatial characteristics related to
the perception of space, could be viewed as an abstract map of intensities through which
spatial identity is experienced. Spatial identity cannot be explicitly described through
quantifiable spatial attributes as represented in plans, but its continuity, indivisibility and
heterogeneity can be abstractly perceived through the field of forces constantly rearranging

the singularities from which it emerges.

The investigation of the correspondence between closely related groups of plans and the
relevant values and distributions in specific measures could possibly lead to the extraction of
general rules that could inform design processes in the direction of reproducing elements of
spatial identity independently from the repetition of specific morphological, configurational
and technical characteristics. Spatial identity could thus be preserved through space and

time detached from the replication of established configurations and architectural styles.
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Appendix |

1. Sources

Various data about the building blocks was collected from different sources. It was sought

that all data sources be associated to official institutions.

a. Athens

Maps regarding building regulations, available only for the sample from Athens, were
obtained by the Department of Urban Planning of the Municipality of Athens (Aie0Buvon
MoAeodopiag Afuou ABnvaiwv).

Maps illustrating the existing situation in Athens were granted from the archive of the
Laboratory of Geographical Systems of Information (EpyacTrpio ewypa@IiKwy ZuaTnUATWY
MAnpogopiwv) of the Department of Urban and Regional Planning of the School of
Architecture at the National Technical University of Athens.

Land values of the blocks, used for the selection of the areas, were extracted from “Tables of
objective Values” for defined urban zones (MNivakeg Tipwv AvTikelgeviKwy AgIwv), published
by the Ministry of Economy and Economics of Greece (Ymoupyeio Oikovopiag kai
Oikovopikwy, [evikh AiguBuvon Anupooiag [Mepiouciag kar EBvikwv KAnpodotnudatwy,
AletBuvon Texvikwv YTnpeoiwv Kal 2téyaong, TuApa Avtikeigevikou [poadiopicuol

®doporoyntéag Aiag AKIVATWY).

b. London

All data concerning London was extracted by maps available through EDINA, the JISC (Joint
Information System Committee) national academic data centre, based at the University of

Edinburgh.

Aerial photographs of both cities were captured using Google Earth.
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2. Details about methods of measurements and specifications

for the present implementation

In this section, further details about the methods of measurement implemented in the
present analysis and resulting quantities are given, together with specifications regarding
adjustments and developments that were carried out in order to address the particular

requirements of the specific implementation.

2.1. Conventional methods of Urbanism

A first set of measurements were derived from typical urban analysis maps. These can be
distinguished into quantities that refer to attributes accounting for building regulations and

measures that represent the existing situation.

2.1.a. Quantities related to building regulations
The quantities that describe building regulations are the following:
e Limit of maximum height, given in meters and number of stories.
e Limit of maximum ratio of built and open area given as a percentage to the surface
of the building plot. This ratio, in the case of Athens, is set to 70% for all areas, but
100% is not rare for constructions preceding chronologically the application of the
specific regulation.

e Limit of maximum total floor area factor given as the ratio of total floor area to site

area.

Figure 33. Regulations in the areas of Athens (source: Department of Urban Planning of the Municipality of Athens)

Maximum heights (top) and maximum floor area factor (bottom)
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The values related to building regulations are not necessarily informative about the existing
situation, since in most areas the majority of buildings were built before the implementation
of the latest updated regulations ('73, '80), but at some extend they reveal the official view of
or desirable perspective for the particular areas, being thus an indicator of their perceived
character and intended future transformations.

Nevertheless, in the case of the protected area C, building regulations in general correspond

to the existing situation, as they were formulated based on it and in the view of preserving it.

2.1.b. Quantities describing the existing situation
A second category of measurements, widely used in established urban analysis methods,
describes the existing situation and regards quantitative attributes of the blocks.
o Existing heights (only for Athens) were given for every plot in storey numbers. From
these, mean storey number and height variance were measured for each block.
e Total area and actual ratio of built and open area were derived from the
topographical map. The map also provided evidence about the shapes and general

layout of the blocks.
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built ratio mean height
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Figure 34. Existing situation

Ratio of built surface (left) and mean height in numbers of levels (right)
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2.2. Classification by principal components analysis using axial graph spectra

Axial maps were generated for all spaces constituting each block, both built and open, using
Depthmap software. A zone of open space around the outer contour of the blocks was
considered as belonging to them, in order to capture differences between blocks with totally
built perimeter and blocks whose open spaces are visible from the street (Figure 10). First
“all-line maps” were generated, including all lines that may be drawn through the open space
of the plan by connecting two convex corners, one convex and one reflex corner such that
the line can be extended through open space past the reflex corner, or two reflex corners
such that the line can be extended through open space past both of them (Turner, 2004).
These were then reduced into “fewest line maps (subsets)” by keeping the minimum number
of lines that complete all topological loops and fully observe the whole system (Turner,
2004). For each reduced axial map a connectivity matrix was produced, depicting
intersections between all couples of lines in the axial map. In other words, the axial maps
were transcribed into graphs (Hillier and Hanson, 1984, p.93) and those into connectivity
matrices. According to Hanna “for any graph with a set of nodes V and a set of edges E, the
most straightforward way of representing the graph in matrix form is to use the adjacency
matrix A, a [V| x |V| matrix defined by A(i,j) =1 if (i,j) € E or 0 otherwise” (Hanna, 2007a, p.4).

In the framework of the specific implementation, lines of the axial map were considered to
intersect themselves, or nodes of the axial graph to be self-connected, since, according to
Hanna (2007a), the assumption of not self-connected nodes, that is diag(A) = 0 for the
adjacency matrix, would effectively remove nodes which have no other connections from the

graph entirely.

The matrices corresponding to different spaces constituting each block were combined into a
single matrix, accounting for the connectivity of the whole block. These matrices were used
for the generation of the spectrum, or ordered set of eigenvalues, of the graphs representing
each block. “This spectrum is useful as a representation of the graph because it is invariant
under all permutations of the original matrix, and therefore identical for all isomorphic
graphs” (Hanna, 2007a, p.4).

In this way, a high dimensional feature vector was produced, that enabled the plotting of
each block as a single point in high dimensional space with each value in the spectrum on a
different axis.

According to Hanna (2007a), the spectra of axial graphs were seen to capture both local and
global patterns of spatial arrangement, since local changes of configurational patterns affect
both the values in the spectrum and their distribution. Furthermore, the spectra of various
graphs “constitute a reliable metric of plans, in that similar plans have spectral vectors that
fall close together in a high dimensional space, while very different plans fall farther apart”
(Hanna, 2007a, p.12).
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After the spectra of all block plans were calculated, principal component analysis (PCA)
depicted the three dimensions in which the whole data set was more likely to vary. These
dimensions, the principal components, correspond to the eigenvectors with the highest
eigenvalues and were used for the plotting of the data set in a three dimensional space. The
process by which PCA determined the principal components can be understood
geometrically “if we picture the data points x1, x2,..., xn as forming a d-dimensional,
hyperellipsoidally shaped cloud. Then the eigenvectors of the scatter matrix are the principal
axes of that hyperellipsoid. PCA reduces the dimensionality of feature space by restricting
attention to those directions along which the scatter of the cloud is greatest” (Duda et al,
2001, p.117).

Thus, reduction of dimensionality was succeeded, preserving the most essential features of
the data set. According to Hanna, “the dimensions of this new feature space are strictly
computational, and are meaningful only in a statistical sense, rather than in the sense that
they could be easily described” (Hanna, 2006, p.8).

Nevertheless, the relative distance between the plotted data points in the reduced feature
space is an index of similarity and differentiation. In this view, this method was implemented
in the case of the building block plans in order to capture intensities of relations rather than

compare explicitly specified spatial attributes.
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2.3. Fractal dimension measurement through box-counting method

2.3.1. Range of fractal dimension

In the case of fractals that extend in two dimensions, the fractal dimension is a float between

one, the Euclidian dimension of the line, and two, the Euclidian dimension of the surface.

2.3.2. Self-similarity and self-affinity

As mentioned, the most significant fractal characteristic of architectural structures is self-
similarity.

The term self-similarity, when referring to architectural or other non-mathematical fractal
structures, signifies self-affinity, since self-similarity induces precise regularity in scalar
transformations. “Any structure is self-similar if it has undergone a transformation in which
the proportions of the structure have all been modified by the same scaling factor. (...) If a
transformation reduces an object unequally in one or another way, then the transformation is
referred to as a self-affine transformation. (...) Self affinity is called statistical self-similarity”
(Lorenz, 2002, p.10).

2.3.3. The meaning of fractal dimension in an architectural context

Fractal dimension was used as an indicator of complexity, fragmentation and coexistence of
different scales within the plans of the building blocks.

According to Lorenz, “visually the fractal dimension is the expression of the degree of
roughness, which means how much texture an object has” (Lorenz, 2002, p.23).

These attributes are directly connected to spatial perception, since they affect the experience
of repetition and differentiation. “Fractal geometry is able to describe complex forms, finding
out their underlying order and regularity.(...) The fractal dimension is a measurable
characteristic of order, with low dimensions near one, and surprise, with higher dimensions
up to two” (Lorenz, 2002, pp.55, 50).

2.3.4. Box-counting dimension — The algorithm

The method used in the present analysis for the calculation of fractal dimension counts the
Minkowski-Bouligand dimension or packing dimension, more commonly referred to as box-
counting dimension.

The box-counting method calculates the changes of the number of boxes of a grid that are
needed to cover the structure under measurement as the size of the boxes decreases
(Appendix 11).
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If N(¢) is the number of boxes of side length € required to cover the structure, the box-
counting dimension is defined as
Db=lim (log N(g)/log (1/¢)

e—0

Graphically, the box-counting dimension is measured by representing the resulting relation
between the cells that contain the structure against the whole grid at each scale through a
log-log graph. The gradient of the line represents the fractal dimension of the image.

A simplest calculation, given the fact that the graph is often not linear, takes as total fractal
dimension of an image the average of the distinct dimensions given by the comparison
between scales. The formula for the calculation of the fractal dimension between two scales

is the following:

Db=[log(Ni)-log(Ni-1)]/[log(1/si)-log(1/si-1)]

Where Ni is the number of boxes in iteration i that contain part of the structure and

1/si is the number of boxes in each row or column of the grid in iteration i (Figure 16).

2.3.5. Restrictions

The implementation of this method entails certain restrictions and difficulties that are related
mainly to the facts that the structure under measurement is not fractal in a mathematical
sense and that the analysed object is the image of the structure and not the structure itself.
Both facts are related to issues of scale and to the amount of detail that can be taken into
account. Another series of problems derive from the nature of the method, as the structure is

analysed through its relation to a distinct element, the grid.

a. Scale
Fractal dimension is scale independent. “If we analyse the structure on different scales, we
will always find the same basic elements. Fractal dimension also expresses the connection

between these different scales” (Lorenz, 2002, p.23).

However, this is true only for mathematical fractals. Non mathematical fractals can exhibit
self-similar characteristics down to a certain scale of detail. Beyond this range of scale the
structure is reduced to straight lines and its fractal dimension decreases to one. This
threshold sets the lowest limit above which fractal dimension measurement is meaningful.
This is true for all methods of measurement. In the case of box counting, this threshold can
be easily defined since the image of the fractal structure has a predefined scale that

expresses the amount of detail it includes. In other words, the scale of the plan or image
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defines the limits within which the measurement can provide information about the fractal

dimension of the real object.

This sensitivity to scale renders the method of box-counting affected by the quality and
display characteristics of the image, meaning that different lineweights, shadings and
positionings can lead to different measurements. The results for the same object vary
according to its representation. For example, measuring the same plan we got a value of
Db=1,548 for an image of the contour and a value of Db=1,802 for a shaded, solid plan

(Figure 35).

stage N log(N) 1/s log(1/s) log(Ni)-log(Ni-1) log(1/si)-log(1/si-1) dimension

1 15 1.17609126 5 0.698970004
2 44 1.64345268 10 1 0.467361417 0.301029996 1.552541023
3 150 2.17609126 20 1.301029996 0.532638583 0.301029996 1.769387072
4 546 2.73719264 40 1.602059991 0.561101384 0.301029996 1.86393845
5 2023 3.30599588 80 1.903089987 0.56880324 0.301029996 1.889523464
6 7732 3.88829185 160 2.204119983 0.582295963 0.301029996 1.934345318
slope:D=
1.801947065

T T

stage N log(N) 1ls log(1/s) log(Ni)-log(Ni-1) log(1/si)-log(1/si-1) dimension
1 15 1.17609126 5 0.698970004

2 43 1.63346846 10 1 0.457377197 0.301029996 1.519374159

3 120 2.07918125 20 1.301029996 0.44571279 0.301029996 1.480625841

4 339 2.5301997 40 1.602059991 0.451018452 0.301029996 1.498250868

5 992 2.99651167 80 1.903089987 0.466311974 0.301029996 1.549054847

6 3206 3.50596352 160 2.204119983 0.509451846 0.301029996 1.6923624

slope:D=

1.547933623

Figure 35. Effect of different rendering of the plan on fractal dimension

In order to have consistency in the measurements throughout the data set, it was sought that
all plans be at the same scale, independently from their relative sizes. For each of the two
cities, block plans were extracted from the same map in order to assure consistency in the
amount of detail, since different maps of the same scale may differ in this aspect.
Unfortunately, it was impossible to get exactly the same map for Athens and London, but
using maps of the same scale (1:500) at least minimised differentiations in the overall range
of values.

All plans were plotted with the same line weight and rendered into images of the same

resolution. Because the sizes of the plans varied considerably, two canvas sizes were
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selected, of 800*800 and 1280*1280 pixels respectively, without altering the scale of the

plans. This was managed by increasing or decreasing the area around the plan as required.

Even though the images were carefully prepared, there were cases where pixels of the
background were mistaken by the algorithm for parts of the plan and were included in the
measurement (e.g. block A019, Table IIl). Nevertheless, because of the size of the data set

and the scarcity of similar errors it is believed that such cases didn’t affect the results.

b. Range of box sizes

The fact that box-counting method is scale dependent is directly related to the comparison
between different grid sizes. The selection of the grid scales depends directly on the scale of
the image and the detail included in it. There is thus a lowest and upper limit of grid sizes

within the range of which measurements are consistent.

“In general too small box-sizes would mean that every difference caused by the preparation
for the computer is also taken into consideration. In consequence the thickness of a line of
the image should represent the absolute lowest limit size for the box-counting method”. If the
line is thicker than the finest box scale, “the dimension of this line on the lower scale
increases approaching two, though a line is one dimensional in Euclidian sense. This and
the fact that below this scale no more detail can be picked up, are the reasons why the
lowest box-size should be bigger than the thickness of the lines” (Lorenz, 2002, p.63).

On the other hand, the largest box-size can be as large as the image itself. But this extreme

can be eliminated, because the result would always be one.

Usually the largest scale is set to one fourth of the width or height of the image and the size
decreases by the factor of two from scale to scale, so that the outer boundary of the grid and

the relative position of the boxes remain constant throughout the process.

The box sizes that were selected for the specific implementation derived from the above
suggestions and from the preset size of the images, as the divisions, representing numbers
of pixels, had to be integers. “If the relative position of the boxes and their size do not
change, the number of boxes at the basis is not important, that means that the "white” area
around the image can be small or big-the results are the same”(Lorenz, 2002, p.119). In
other words, since all plans had the same scale and image resolution, it was the boxes’ size

that affected the results and not their number.

According to these restrictions the frame of the grid was divided sequentially in boxes of 160,
80, 40, 20, 10 and 5 pixels side-length. These sizes defined the number of boxes in each
case. For the smaller blocks, represented in images of 800*800 pixels, the numbers of

subdivisions of the grid in the different iterations were 5, 10,20,40,80 and 160, whereas for
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the large plans of 1280*1280 pixels they were 8,16,32,64,128 and 256. In both cases the
grid decreases by the factor of two between iterations (e.g. blocks L018 and L019, Table III).

c. Starting points and orientation

Since all images were of the same scale and resolution, if the relative position of the image
did not change throughout the different scales, the position and rotation of the plan didn't
affect the results considerably. For the same block plan the fractal dimension was measured
Db=1,548 for the actual orientation of the plan and Db=1,558 for a rotation of the plan so that
its main axes be parallel to the grid axes (Figure 36). Even though the values were very
similar, it was considered more suitable to keep the real orientation of the plans, as given in

the overall city maps.

B

= ¥

stage N log(N) 1ls log(1/s) log(Ni)-log(Ni-1) log(1/si)-log(1/si-1) dimension|
1 15 1.17609126 5 0.698970004 |

2 46 1.66275783 10 1 0.486666573 0.301029996 1.61667136

3 109 2.0374265 20 1.301029996 0.374668666 0.301029996 1.244622369|

4 344 2.53655844 40 1.602059991 0.499131945 0.301029996 1.65808043|

5 1064 3.02694163 80 1.903089987 0.490383185 0.301029996 1.629017681|

6 3306 3.51930285 160 2.204119983 0.492361221 0.301029996 1.635588574 |
slope:D=

1.556796083

F T

stage N log(N) 1/s log(1/s) log(Ni)-log(Ni-1) log(1/si)-log(1/si-1) dimension

1 15 1.17609126 5 0.698970004
2 43 1.63346846 10 1 0.457377197 0.301029996 1.519374159
3 120 2.07918125 20 1.301029996 0.44571279 0.301029996 1.480625841
4 339 2.5301997 40 1.602059991 0.451018452 0.301029996 1.498250868
5 992 2.99651167 80 1.903089987 0.466311974 0.301029996 1.549054847
6 3206 3.50596352 160 2.204119983 0.509451846 0.301029996 1.6923624
slope:D=
1.547933623

Figure 36. Effect of plan orientation on fractal dimension
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2.4. Connectivity as a local shape property

There are several methods for measuring connectivity of spaces, mostly based on visual
attributes of space.

Apart from axial maps, that reflect patterns of visual connections within space through the
representation of unobstructed sight lines between plan vertices, space syntax also uses
isovists and visibility graphs for the examination of spatial properties in relation to visual
perception. Isovists, first described by Benedict, are defined as polygon shapes visible from
a vantage point in space (Benedict, 1979). Related to these, the visibility graphs display the
unobstructed sight lines between points of a grid laid over the plan, capturing thus a
synchronous view of visual perception from different locations.

Other methods are based on the calculation of the amount and distribution of visual
information available at each point within space, relating visual information to spatial

elements regarding corners, edges and surfaces (Peponis et al, 1997) (Figure 2).

As aforementioned, the method used in the framework of the present analysis, introduced
and developed by Psarra and Grajewski (2001), measures local characteristics of shape
perimeter. The description of shape is thus based purely on the syntactic properties of its
perimeter (Psarra and Grajewski, 2001, Psarra, 2003). These local properties refer to the
number of connections of each perimeter location to every other, accounting thus for the
convexity of space. “By measuring local properties of shapes expressed as a structure of
connectivity connections we may begin to understand how simple configurations behave.
Furthermore, if we consider shapes as enclosing space, it is interesting to know how local
properties of perimeter articulation can account for spatial experience as a sequential
process” (Psarra and Grajewski, 2001, p.2).

In other words, this method quantifies the convexity of shapes in terms of distribution of

connectivity along the perimeter.

2.4.1. Convexity

The formal mathematical definition of convexity is that no tangent drawn on the perimeter
passes through the space at any point (Hillier and Hanson, 1984, p.97). This means that in a
convex shape any two points along the perimeter can be joined together by lines that belong
entirely to its area, without crossing its boundaries or being outside the shape.

The lines that lie completely within the shape are thus considered as indicators of convexity.
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2.4.2. The algorithm

Originally, this method has been implemented using a GIS based computer programme. For
the present implementation, an algorithm was written in Processing, based on the
description of the method (Appendix III).

In order to calculate connectivity, the perimeter of the shape is subdivided into segments of
theoretically equal length. In most implemented examples though, the segments are of
approximately equal length as the different lengths of edges would only allow exact
subdivisions defined by their least common multiple. The user defines the length of the
desired subdivision and the algorithm calculates the closest possible subdivision for each
edge.

From the subdivisions a complete graph is derived for the shape, where all points
subdividing the perimeter are connected to each other. In order to calculate the number of
lines that lie within the shape, first the lines that intersect at least one of the edges of the
perimeter are depicted by detecting line to line intersection. The total number of connections
for a perimeter subdivided by n points is n*(n-1)/2. If the number of intersecting lines is
subtracted from this total of connections, the remaining lines are the ones that lie completely
within or outside the shape. The calculation of the number of lines outside the perimeter is
based on the assumption that in order to define the location of a non intersecting line in
relation to the shape it is sufficient to determine whether one point on the line lies within or
outside the perimeter. The location of a point in relation to a planar shape, indicating whether
the point lies within or outside the shape, can be defined by calculating the number of
intersections of the perimeter by a projection of the point on the shape. Practically, an infinite
line starts at the point under consideration and if the number of its intersections with the
perimeter is even, then the point lies outside the perimeter; if it is odd, then the point belongs
to the shape. Finally, the number of lines that lie outside the perimeter are subtracted from
the non-intersecting lines and the percentage of this new number against the number of total
connections is calculated. This quota represents the mean connectivity value for each
location on the perimeter of the shape. The average of connectivity values for all perimeter

segments gives the mean connectivity value (mcv) for the shape as a whole.

In the case of connections between points belonging to the same edge, these are
considered as lines within the shape, since straight edges materialised in space are
experienced as continuous elements and don't produce changes in visibility in the way that
corners do. Of course, continuous boundaries do affect the way space is perceived, but
considering them as obstacles and thus counting them as not laying within the perimeter
would result in the impossibility of existence of absolutely convex shapes, expressed by

100% connectivity.
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This method has been initially used for the analysis of simple shapes that presented no
discontinuities such as wholes or internal sub-shapes and the measurements referred to a
single continuous perimeter line (Psarra and Grajewski, 2001). In the first implementation of
the method for the measurement of building plans by Psarra and Grajewski, internal
separations were omitted in order to simplify the problem. Later, more complex shapes were
analysed, including limited discontinuities representing spatial partitions, but combinations of
separate shapes haven't been attempted (Figure 37). According to Psarra, “in more complex

shapes the quantification of these concepts is not yet properly addressed” (Psarra, 2003,
p.1).
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Figure 37. Connectivity measurements of single plans without internal partitions (Psarra, 2003, p.10)

In the case of the building block plans analysed here, each block consists of more than one
shapes that might additionally contain secondary shapes within their perimeter and the
method had to be expanded in order to encompass the particularities of the shapes under
consideration.

The problem of combined measurement of multiple shapes was dealt with by processing
each individual perimeter separately and calculating its contribution to the overall
configuration based on the relative length of the given perimeter in comparison to the total
perimeter length of the shapes constituting the block plan. This method led to a single value
for each block and allowed the comparison between blocks as consistent entities.

In the case of composite shapes, where the perimeter under consideration enclosed
secondary shapes, the latter were considered as visual obstacles that occlude parts of the
perimeter as viewed from certain locations. In this case, the obstructing shape was not
measured as part of the perimeter of the surrounding shape, but the connectivity lines that
intersected it were considered discontinuous and thus measured as intersecting, hon convex
lines (Figure 38).
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Figure 38. Connectivity of perimeter with internal obstacles

Example of measurements for block AO01

2.4.3. Measures

a. Global properties

a.l. Mean connectivity value (mcv)

The main suggestion is that “each perimeter location has a mean connectivity value (mcv)
defined as the percentage of locations it is connected to without crossing a boundary or
falling outside the area of the shape” (Psarra and Grajewski, 2001, p.3).

As aforementioned, the calculation of mean connectivity value for the shape as a whole
reflects how convex the shape is. Experiments with transformations of simple shapes have
shown that metric changes in the proportions of shapes and symmetry seem fundamental as
they determine the configurational properties of shapes. It has also been noted that there is
a slight increase in the values from symmetric to asymmetric arrangements (Psarra and
Grajewski, 2001, pp.4,5) (Figure 18).

These experimental observations support the assumption that mcv is a measure that
captures global configurational characteristics of the shape, related to its degree of occlusion

and to the relations of the parts to the whole in terms of symmetry and irregularity.

b. Local properties

The graphical representation of connectivity values corresponding to each perimeter
segment is the basis for further quantifying patterns of information stability and change

(Figure 17). These patterns can be studied both in relation to the perimeter as a whole and

to the succession of segments along its course.
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b.1. v-value: vertical standard deviation

The level of differentiation amongst values on the y axis is calculated using standard
deviation, a measure that indicates how much on average a set of values differ from the
mean value (mcv). Vertical standard deviation, referred to as v-value, stands for the degree
of differentiation amongst perimeter locations of a perimeter as a whole. “As the levels of
occlusion, generated by reflex angles are strengthened, shapes move away from
undifferentiated configurations [and causes v-value to rise]. However, further increase of
occlusion creates a large number of locations with much lower and equally distributed

connectivity values [causing v-value to decrease]” (Psarra and Grajewski, 2001, p.8).

b.2. h-value: horizontal standard deviation

The level of differentiation in the rate of transformation of connectivity values along
subsequent perimeter sections is measured by calculating the standard deviation of all
distances between subsequent nodes, defined by the points of intersection of the graph
curve with the horizontal line of the mean connectivity value. To overcome metric distances
in perimeter length we relativise by dividing nodal distances with the total number of
perimeter cells (Psarra and Grajewski, 2001, p.8).

H-value captures the rates of change of connectivity values. The smaller the difference
amongst all nodal distances is, the more identical the rates of change between subsequent

locations of high and lower connectivity values.

The above three measures, proposed by Psarra and Grajewski, “can capture three
characteristics in shapes. Mean connectivity value can account for the level of occlusion or
break up in a configuration. The higher this value the less occluded the space is. V-value
expresses the balance between the parts and the whole. High values represent a
configuration in which a dominant shape is balanced against subsidiary shapes attached to
it. Finally, h-value stands for the level of repetition or rhythm characterising the linear
progression along individual sides. The higher the h-value the less repetitive a pattern is”
(Psarra and Grajewski, 2001, p.13).

Two more measurements deriving from this method were proposed in the framework of the
present implementation, one regarding the rate of changes in connectivity and the other

accounting from permeability of the block from the street.

c. Mean differentiation rate (mhv)

This quantity is the analogous of mean connectivity for the other axis and reflects the rate of
differentiation for the perimeter as a whole. If h-value represents the differentiation of rates of
connectivity changes along the perimeter, mean differentiation along the x axis (mhv)

accounts for the pace of these changes.
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d. Visibility from the street

As aforementioned, this method has been previously used for the analysis of cohesive,
continuous spaces in which all edges of the perimeter can be considered to contribute
equally to the way they are perceived. In these cases the attributes of the perimeter are
relevant to spatial experience because of its property to enclose space. However, in the case
of the building blocks, all edges are not equivalent in their influence upon visual perception,
since some of them are formed by surfaces of adjacent buildings and others are open to the
public realm of the street. It is obvious that edges along the street are more likely to be
offered as vantage locations for visual contemplation of these spaces. It was thus attempted
to quantify visual accessibility to open spaces of each building block as a whole through the
measurement of mean connectivity value for the edges that are open towards the street
(Figures 19, 39). This measurement could capture the visual permeability of each block, a
feature that was experientially considered as a very important element of differentiation
between neighbourhoods in the example of Athens.

Unfortunately, due to time limitations, this quantity was only measured for a part of the

dataset and thus couldn’t be used for the comparison between the whole set of plans.

¥

A P
%

A005 — A003

Figure 39. Connectivity in terms of visibility from the street
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Appendix Il

1. Results

In this section detailed descriptions of the most representative results are given,

accompanied by possible interpretations.

1.1. Single quantities

1.1.1. Individual plan scale

a. Extreme values

Looking at the highest and lowest values in each neighbourhood and for each quantity,
certain correspondences between measurements were revealed. An interpretation of the
plans was attempted through the combination between corresponding values.

The following observations can be confirmed through Table I, presenting all measurements

for all blocks and significant values for each area.

In area A, blocks A016 and A021 have fractal dimensions that approximate the lowest value
for the area, reflecting low self-similarity and low fragmentation. They are constituted by
large areas of built and void spaces, distributed without apparent rhythm. These
characteristics are captured in their connectivity values, with A0O21 being totally convex
(mcv=100, v-value=0, h-value=0) and A016 exhibiting the maximum v-value and mean
differentiation rate (mhv) in the area as well as relatively high mcv and h-value. The
extremely high v-value accounts for the asymmetric, non rhythmic distribution of sub-areas
within the plan and the maximal mhv reflects stability in connectivity and low fragmentation,
all of which were captured by the fractal dimension. AO04 appears to also have the highest
ratio of built area combined with the smallest total area and the shortest perimeter of open

space.

Blocks A001, A012 and A015 have the highest fractal dimensions in the area with AO01
being very fragmented, a characteristic which is also reflected in the fact that it has the
lowest mean connectivity value, and A012 and A015 exhibiting self-similarity in terms of
different scales of meandering. In the case of A0O0O1 fragmentation is present in the vertical
dimension as well, as it is the block with the highest height variance.

A003, the block with the largest total area and perimeter of open space is an extreme outlier

in the PCA classification.
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Blocks B001 and B004 combine the lowest fractal dimensions and v-values with the highest
mc- values. These values are caused by the random perforation of large built areas by small
convex shapes. High mcv is produced by the combination of these small voids, while low fd
and v-value reveal stability and lack of rhythm in the plan. BOO1 combines these
characteristics with the highest ratio of built area and the smallest total area, whereas B004
presents the shortest perimeter of open space.

B017 has the highest fd, combined with the lowest ratio of built space, reflecting the
fragmentation of built area in the specific block. B0O10, which also has very high fd, presents
the lowest h-value and mhv, due to the high degree of equally distributed meandering of the

contour.

C001, C011 and C024 are the blocks with the lowest fd in area C. CO11 and C024 are
simple configurations of single buildings laid out in a courtyard in an asymmetric, highly
differentiated plan, resulting to high v- and h-values. C011 combines the maximum v- and h-
values with the lowest ratio of built space. C001 presents the highest mean height, being at
the boundary of the protected historic area.

The maximum fd belongs to C012 and CO025, two very different configurations. C012 is a
fragmented layout with many different scales of meandering, viewed as levels of self-
similarity, and minimum mean height. C025 is expressed through a single self-similar
contour of built space that defines highly convex, differentiated areas, combined with the
smallest total area. These properties are reflected in high mc-, v- and h- values and
maximum mhv, caused by high and stable convexity. This combination of high h-value and
mhv shows that frequent changes in visibility are not necessarily large or sudden.

C019 is another extreme in the neighbourhood, having a totally convex open space with the
shortest perimeter, combined with the maximum ratio of built space. The small area of the
plot only allowed for minimum openings of rectangular shapes.

C016 and C021, outliers in the PCA classification, are characterised by maximum number of

openings and total area for C016 and maximum perimeter of open spaces for C021.

In area D, the block with the lowest overall measurements is D015, a juxtaposition of
buildings along one side of a public square. The simplicity of the building layout in
combination with the existence of the square result in the lowest fd, private open space
perimeter, ratio of built space and mean height.

On the other hand, D006, D007 and D008 form a group of blocks, clustered in space, that
are characterised by high fd, due to their complex self-similar contour. Although these blocks
exhibit fragmentation, this is produced almost by a simple meandering contour. D007 has the
highest v- and h-values, due to its intense differentiation, combined with minimum height
variance. D006 has the maximum total area and number of open spaces whereas D008,

also picked by the PCA, has the longest perimeter of open spaces.
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LO07 and LO17, blocks characterised by compact built areas perforated by small convex
openings, have the low fd combined with high mcv as a result of the aggregation of partial
convex open spaces asymmetrically scattered within robust built spaces. L010, although
similar to LOO7 and LO17, presenting the highest mcv, v-value, built ratio and minimum
perimeter of open spaces, has a higher fractal dimension, probably due to the more rhythmic
configuration of its voids.

LO11 exhibits the minimum mean connectivity together with maximum v- and h-values and a
high fd, as a result of the unique proportions of its central void. L025, an outlier in the PCA
classification, has the maximum fd and perimeter length of open spaces, reflecting the high
fragmentation due to many differentiated openings. Another block distinguished by the PCA,

L019, combines the maximum total area and number of open spaces.

b. Axial map spectra

The analysis based on the axial map spectra of the plans was carried out both for Athens
alone and for Athens and London in combination and was compared to each of the other
measurements (Figure 40).

In both cases, the first principal component showed high negative correlation with the
number of isolated open spaces (-0.847 for Athens and -0.9 for both cities) and total number
open spaces (-0.714 for Athens and -0.779 for both cities). The second component in the
case of Athens and the third for both cities correlated in opposite ways with the number of
built spaces (0.62 and -0.667 respectively).

These correlations agree with the observations based on extreme values (Figures 21, 41)
and converge towards the conclusion that the axial graph spectra reflect mostly scalar

attributes of spatial configurations.

Athens Athens+London
Correlations Correlations

spectrum 1 spectrum 2 spectrum 3 spectrum 1 spectrum 2 spectrum 3
mcv -0,1266  -0,3078 0,0482 mcv -0,1405  -0,2306 0,2872
mhv 0,0419 -0,0529  -0,0736 mhv -0,0457  -0,0074 0,0388
v-value 0,1128 0,0613 0,0668 v-value 0,0462 0,1659 0,0523
h-value 0,1385 0,0529  -0,0682 h-value 0,0828 0,0607 -0,0218
void perimeter -0,3736 0,5321 -0,2771 void perimeter -0,5809 0,3116 -0,3585
void number -0,7174 0,1603  -0,0435 void number -0,7794 0,1614 0,0375
fractal dimension -0,1490 0,3370 -0,1713 fractal dimension -0,2001 0,1686 -0,3607
total area -0,3528 0,4046 -0,2099 total area -0,4572 0,2060 -0,3976
footprint -0,1794  -0,4929 0,0884 footprint -0,1741 -0,3425 0,2945
buildings -0,1420 0,3739  -0,2557 buildings -0,3851 0,1889  -0,2523
builtNo 0,0975 0,6232  -0,3930 builtNo 0,1228 0,3057 -0,6674
open voidNo 0,1200 0,3238  -0,1638 open voidNo 0,0829 0,2288  -0,3518
isolated voidNo -0,8472  -0,0081 0,0447 isolated voidNo  -0,9011 -0,0082 0,0361
contour vertices 0,0669 0,3319 -0,0995 contour vertices  0,0640 0,2012 -0,2449
mean height -0,2002 -0,2864 0,1360
norm. height variance -0,1810 0,0732 0,0080
land value -0,4767 -0,0092 -0,0701
floor area factor -0,2405 -0,2407 0,1351

Figure 40. Correlations of the three principal components of the spectral analysis with all quantities
Above: Table of correlation values
Next page: Comparative scatter-graphs of the three principal components of

the spectral analysis against all quantities
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x:component_1 x:component_2 x:component_3
y:all quantities y:all quantities y:all quantities

Athens Athenst+London  Athens Athens+London  Athens Athens+London
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Figure 41. Similarities between spectral analysis (top, bottom right)

and principal component analysis of scalar quantities (bottom left)

C.

Correspondence of values of visually similar blocks

Component 1

The consistency of the measurements was also validated by comparing the values

corresponding to plans that present visual similarities (Figures 22, 42).

block No block plan mcv  v-value h-value mhv fractal d. total area built ratio| | block No block plan mcv  v-value h-value mhv fractal d. total area built ratio
7
A003 5 18.35 8.275 5.405 2.5 1.454 873556 059 |C017 tJ 33608 13.32 4.52 5.556 1.421 25938 0.757
A007 16.77 8.137 5.848 45454 1.447 508355 0.71||L001 x 5028 11.29 4.9 6.28 1.438 451036 0.8
A block No block plan mcv  v-value h-value mhv fractal d. total area built ratio
C018 28.4455 10.77 4.91 2.943 1.427 347817 0.69 m
A024 49052 11.23 7.205 724 1.483 288242 0768
block No block plan mcv  v-value h-value mhv fractal d. total area built ratio
4 L012 :‘ 724 10.88 6.918 917 1.478 3467.97 0635
A004 33.47 122 9205 8333 1.378 18336 0.93| [biockNo  block plan mev. v-value  h-value mhv fractal d. total area built ratio
A009 4 33.38 125 4165 3.846 1.381 146815 0.938| |A021 ‘ 100 0 0 0 1368 61345 0.987
A025‘ 4691 12.05 7534 10.837 1.375 102078 0.917| |C019 , 100 0 0 0 1463 590.08 0.967

Figure 42. Similar values for similar plans
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1.1.2. Neighbourhood scale

a. Fractal dimension

The overall change of fractal dimension within all areas is smooth, with only exception the
sudden rise towards the maximum value of area C (Figure 23). This general distribution
agrees with the ranking given by mean values, according to which area A has the lowest
overall value (mean fd=1.45), followed by areas B and C (1.49), whereas area D has the
highest dimension (1.54). The area of London lies between areas A and B (1.46). The
differences might be too small to categorise the neighbourhoods, however the general
ranking correlates with the visual impression of the local maps. Area A is expressed through
simple layouts and incorporates less variability than the other areas. On the other extreme,
area D is the most fragmented and complex area, exhibiting layouts that are often
unintelligible for the passer-by.

In terms of extreme values, all areas have very similar bottom limit of fractal dimension (1.35
for areas A, B, C, L and 1.43 for area D), making it a universal measure for the dataset. On
the other hand, maximum values vary considerably, with lower values for the two modern
areas A and B (1.54, 1.55 respectively), higher values for the older areas C and D (1.67,

1.62) and the area of London in between (1.58).

b. Connectivity

The ordered graphs of mean connectivity values (mcv) show exactly the same overall
ranking for the areas within Athens apart from a sudden rise at the higher extreme for areas
B and C (Figure 24). London has clearly higher connectivity than all the areas of Athens.
Mean horizontal differentiation (mhv), v-value and h-value produced a different ranking, with
area B exhibiting the lowest overall values, followed by areas A, C and finally D and London

fluctuating between A and C.

c. Scalar attributes of open spaces

Mean values concerning the characteristics of open spaces (Figure 25) reveal that, the
number and total perimeter of open spaces within each block agree on low values for area A,
followed by area C. Higher values correspond to areas D and B. London has considerably
higher values in both quantities, possibly due to the numerous and very characteristic “cours
anglaises” (typical light-shafts along the facades). However, this ranking does not reflect the
openness of the neighbourhoods, since mean values of the ratio of openings accessible from
the street show a clear difference between the old and the modern areas, with London closer

to area D.
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d. Scalar attributes of blocks

The examination of building heights and total footprints (Figure 43) reveals low density in the
older and high density in the modern neighbourhoods, with lowest values for the historical
centre and higher for area A. It should be noted that in areas A and B, footprints exceed the
regulations, due to the fact that more buildings were constructed before the juridical
decrease of permissible footprint in '73. London exhibits high ratios of built area, identical to
area A.

Area C presents the largest variation in terms of total area and more irregular block shapes,
due to the distortion of the street grid in the historical centre, whereas area B has the largest
blocks and D the most regular ones. London is second highest both in total area and
regularity of shapes, fact that could be related to top-down processes of design and
construction. It was also observed that in areas D and L sizes were not equally distributed
within the corresponding range, but some sizes were repeated, producing groups of equal

sizes, corresponding to different preset spans of the street grid.
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Figure 43. Ordered graphs of metric attributes of blocks
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1.2. Pairs of quantities

The following observations can be confirmed through Table Il, presenting scatter plots and

correlation values for all pairs of measurements.

1.2.1. Neighbourhood scale

a. Connectivity graphs

In all areas of Athens mcv correlated with v-, h- and mh- values (Figure 26), with connectivity
rising in parallel with the other values, whereas in London higher mcv values corresponded
to lower v-, h- and mh- values. This means that, as a general trend, in Athens, as the open
spaces within the blocks become more convex, their connectivity changes smoothly and they
exhibit more differentiation by incorporating secondary yards of different sizes and shapes.
In London, as voids become more convex, they get more regular or similar to each other.
The main cluster of area A is distributed along a steep regression line, reflecting more
intense differentiations in shape combinations as the open spaces get more convex. In area
B there is still correlation, but as convexity increases, slightly lower v-values account for the
stabilising effect produced by the aggregation of smaller regular voids. Areas C and D exhibit
higher v-values, almost independently from changes in connectivity, revealing higher
differentiation in all scales of complexity and size.

Mhv, v- and h-values correlate well amongst them in all cases (Figure 27). The overall
correlation between v- and h-value is 0.76, between mhv and v-value it is 0.7 and between

mhv and h-value correlation is 0.82 (Table II).

b. Geometrical-topological quantities
Fractal dimension-connectivity graphs

In most cases, higher fractal dimension corresponded to lower connectivity values and vice
versa, since both quantities are associated to fragmentation but in a reversed relation
(Figure 28). The only exception is the case of area D, where slight rises in fractal dimension
were related to more convex spaces. This might reflect the particular configurational
characteristic of this area that was already mentioned, regarding the formation of the blocks
by the meandering of almost a single contour line. This line might exhibit high self-similarity
and simultaneously surround convex open spaces, producing the slight but unusual

correlation between the two quantities.
The plots of fractal dimension against v-, h- and mh- values revealed some interesting

diversions, reflecting local particularities regarding differentiations in the relation between

rhythm, scale and topological relations of subshapes (Figure 28, Table Il). For most
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neighbourhoods the general trend is identical in the three graphs, with the exception of area
C that changes behaviour in the case of mhv.

Areas B, C and L present proportional distribution along both axes, showing positive
correlation between fractal dimension and v-, h- and mh values. This means that in these
areas, self similarity is connected to differentiation in terms of rhythm, scale and topological
relations of subshapes.

Area B exhibits a constant opposite trend, with self similarity being associated to the
equalising effect of intense meandering.

Area C flips from positive correlation between fractal dimension and mean differentiation to
negative correlation in the other two graphs, reflecting the fact that meandering can lead to
frequent but small alterations in visibility without crossing the line of mean connectivity and

thus without reducing mhv proportionally to the other measures.

C. Geometrical-scalar quantities

Fractal dimension- normalised height variance graph
Height variance was calculated as the ratio of different storey numbers distributed within the
total area of the block and normalised by dividing by mean storey height.
Area A exhibits correlation between the two measures, reflecting configurations
characterised by proportional variations along the horizontal and vertical plane (Figure 29,
Table II).
In the plots of areas C and D, regression lines almost parallel to the x axis show
independence of the two quantities, as in the older neighbourhoods, low heights entail
consistently low height variance and high variation in plan layouts produces large ranges of
fractal dimension values.
Area B on the other hand, presents a very slight inversed correlation within very dispersed
results. Great dispersion along the axis representing height variance might correspond to the
copresence of very homogeneous blocks, consisting of modern buildings with identical
heights, and mixed blocks incorporating buildings from different periods. Negative correlation
might reflect the fact that blocks consisting of uniquely modern constructions present high
fractal dimensions, because of self similarity of the contour of the central residual voids and
the perforation of the built body by light-wells, combined with homogeneity in heights which

results to low, often zero, height variances.

Number and perimeter of open spaces - fractal dimension
It was observed that the number and total perimeter of open spaces correlated well (c=0.72)
(Table II), showing that longer perimeters are due to greater numbers of average sized
openings rather than to single large openings. This relation is especially intense in the case

of London, probably because of the number of “cours anglaises”.
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By plotting fractal dimension against these two related quantities (Table II), an expected
slight correlation was observed, since all measures are related to fragmentation. This
proportional relation was clear in the case of London, with fractal dimension increasing
because of further perforation of the built body. However, in Athens this phenomenon was
found to be weaker, since fractal dimension here, as shown before, seems to relate more to

self-similarity of single contours than to fragmentation.

d. Scalar-topological quantities
Number and perimeter of open spaces - connectivity values

The graphs representing the relation between the number and perimeter of open spaces
against connectivity values mcv, mhv, v- and h- values all exhibit an overall triangular
distribution (Figure 29, Table II).

In most of these graphs, the points representing the area of London are largely scattered
and usually the boundaries of the triangle are formed prevailingly by this area. This
distribution reveals high variation in the degrees of differentiation and regularity in blocks

with few openings as opposed to the equalising effect of greater numbers of voids.
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1.3. Set of quantities

Principal component analysis

1.3.1. PCA of all block plans

a. Athens

By plotting all measurements regarding the four areas of Athens and projecting them on the
two principal components, a clear distinction between areas was observed (Figure 30). Apart
from some exceptions, there was a division between older and modern areas, with areas C

and D occupying the upper right half of the plot and areas A and B on the lower left half.

Points that might appear misclassified correspond in almost all cases to blocks ambiguously
located at the boundaries of their neighbourhood.

Blocks C001, C007, C017, C018 and C019, that appear to cluster clearly with area A, all
belong to the boundaries of area C as it was defined. Interestingly, it was noted that all these
blocks, apart from C007, are subject to building regulations standing for modern areas. This
might signify that the PCA classified correctly blocks that were erroneously considered as
belonging to a specific neighbourhood.

Blocks from area B that have been plotted within other areas (B001, BO03, B004 and B019
are within the cluster of area A whereas B002 has crossed the line between old and modern
areas) also belong to the boundaries of the neighbourhood and are characterised by being
adjacent to the only two irregular street-lines of the area.

Finally, blocks A001, A002 and AOO03 that have been plotted within area B again were shown

to belong to the boundaries of area A.

b. Athens and London
The introduction of the data regarding the area of London altered the interrelations within the

system without however altering dramatically the principal components (Figure 44).

Specifically, in the PCA representing only the sample from Athens, from the positions of the
vectors of the different quantities it can be observed that the first principal component
correlated well with geometrical and scalar quantities, namely fractal dimension, the number
of buildings in each block, the perimeter and number of open spaces and the number of
accessible open spaces, whereas the second and third components were related to
connectivity values. Specifically, the second component correlated with mhv, v- and h —

values and the third with mcv.

81



MSc AAC_Anna Laskari_Urban Identity through Quantifiable Spatial Attributes

With the incorporation of the London data in the system, the first component correlated with
scalar attributes regarding again the number of buildings and open spaces and the total
perimeter of open spaces and the second and third component stayed related to connectivity

values in the same manner as in the case of Athens.

This might signify that differentiations both within Athens and between the two cities depend
more on geometrical and scalar rather than topological variations. However, the different
positioning of the main clusters in the two plots reflects differences in the significance of the
various quantities. In the case of the two cities, the fact that the two main clusters are
separated along the x-axis demonstrates the prevalence of the first component, and thus of
scalar quantities, not only in the differentiation of the whole dataset but also in the clustering
of different areas. In the case of Athens, although the same quantities are the most
significant in the differentiation of the whole, the almost horizontal separation of the two
major clusters and the gap separating area B from the old neighbourhoods demonstrate the
importance of the second component in the clustering of the blocks in areas.

This difference between the two plots might suggest that differentiations between areas
within Athens are mostly due to topological variations, whereas the differences between the

two cities depend predominantly on scalar characteristics of spatial configurations.
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Figure 44. Principal components. Athens (left), Athens and London (right).
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1.3.2. Neighbourhood scale

Comparison between the two cities

When area B was plotted with the sample from London, blocks B001, BO02, BO03, B0O04 and
B019 were misclassified again, verifying their intense differentiation from the rest of the
sample from area B (Figure 32b).

Area A was better distinguished from area L when plotted against principal components 1
and 3 rather than 1 and 2 (Figure 45), showing that in the specific case, the attributes along
which the blocks of the two neighbourhoods are better distributed are not the most significant
in distinguishing between them. In all other cases these attributes coincided, reflecting the

intensity of intrinsic attractions within each area.

In the comparison between the London sample and areas A, C and D (Figure 32a, c, d)
blocks L0O11, L020 and L022 were repetitively misclassified, reflecting possibly the intense
differentiation of these blocks from the rest of the London area and their constant attraction
to Athens. Blocks A021 and C019, both detected as extreme cases in previous levels of
analysis, were misclassified, supporting the convergence between different methods of

measurement.
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Figure 45. Classification of areas A and L.

Plot against components 1 and 3 (left) and 1 and 2 (right)
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2. Tables

This section includes tables presenting the results from various measurements.
Table |
Values for all quantities and all block plans and overall values for each area (minimum,

maximum, average, range and variance of values fro each quantity)

Table Il
Scatter plots and correlation values for all pairs of quantities for the whole dataset

Table Il

Fractal dimension measurement for the whole dataset, Processing

Table IV

Connectivity measurements for a sample of plans from each area, Processing

Table V
Photographic snapshots of the areas under analysis
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13 [ ° 10
1+ o
o 9] 5 o 8-
£ kA i
H g k] Fs{oe
i 3 2 §‘4. 2 4 ° o
2 H 3 =1
| set e e ) 2-| .
ek — X 1 comesmsn e © .
B 0o 5 1‘0 ' 1‘5 ' Z‘D ' Z‘S 30 ' 35 25 ’ 3‘47 ’ 5 ' 1‘0 1‘5 ' 2‘0 ' 2‘5 ' 3‘0 35 ° K; ' g ' 1‘0 15 ' 2‘0 2‘5 3‘V 35
isolated voidNo isolated voidNo isolated voidNo. isolated voidNo
(c )
mev mhv  v-value  h-value void perimeter void numberfractal dimension total area footprint buildings builtNo open voidNo isolated voidNo
mev 1,0000  0,3084 -0,0292  0,1773 -0,1496 0,3548 -0,1880  -0,3259  0,2482 0,0611  -0,3726 0,0699 0,2119
mhv 0,3084 1,0000 0,6979 0,8194 -0,0401 0,1387 0,2695 -0,2646 -0,0629  0,0785 -0,1058 0,3788 0,0718
v-value -0,0292 0,6979 1,0000 0,7620 0,0282 0,0642 0,1440 -0,2179 -0,3514  -0,0029 -0,0568 0,3349 -0,0739
h-value 01773  0,8194 0,7620 1,0000 -0,1225 -0,0229 0,1120  -0,3190 -0,3057 -0,0643  -0,0031 0,3406 -0,0927
void perimeter -0,1496  -0,0401 0,0282  -0,1225 1,0000 0,7222 0,4508 07476  -0,1672  0,6330 0,2956 0,3325 05777
void number 0,3548  0,1387 0,0642  -0,0229 0,7222 1,0000 0,2070 0,4337 0,1024 06159  -0,1338 0,1462 0,8144
fractal dimension  -0,1880 0,2695 0,1440 0,1120 0,4508 0,2070 1,0000 0,1940  -0,1212 0,3706 0,3032 0,4661 0,2084
total area -0,3259  -0,2646  -0,2179  -0,3190 0,7476 0,4337 0,1940 1,0000 -0,0150 0,4568 0,2685 0,0741 0,5212
footprint 02482 -0,0629 -0,3514  -0,3057 -0,1672 0,1024 -0,1212  -0,0150  1,0000 0,0875  -0,4159 -0,1904 0,2242
buildings 0,0611 0,0785 -0,0029 -0,0643 0,6330 0,6159 03706 04568  0,0875 1,0000 0,2271 0,4464 0,4173
builtNo -0,3726  -0,1058  -0,0568  -0,0031 0,2956 -0,1338 0,3032 0,2685  -0,4159 0,2271 1,0000 0,2944 -0,1776
open voidNo 0,0699  0,3788 0,3349 0,3406 0,3325 0,1462 0,4661 0,0741  -0,1904  0,4464 0,2944 1,0000 -0,0973
isolated voidNo 0.2119 00718  -0,0739  -0,0927 0.5777 0.8144 0.2084 0.5212 0.2242 04173  -0,1776 -0,0973 1,0000
Table Il

Scatter plots and correlation values for all pairs of quantities for the whole dataset
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block stage_1 stage_2 stage_3 stage_4 stage_5 stage_6 fractal dimension
A001 1.531
A002 1.497

1.454

1.378

1.354

1.468

A007 1.447

1.46

1.381

1.434

1.506

1.539
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block stage_1 stage_2 stage_3 stage_4 stage_5 stage_6 fractal dimension
e s 2 e B
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Cc006 1.453
& | &

co007 1.426
Ty

Cc008 1.523
Ly &y

Cc009 1.491
5% 9
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Cco013 1.483
Co014 1.561
C015 1.501
C016 1.478
co17 1.421
Cco18 1.427
co019 1.463
C020 1.531
co021 1.575
C022 1.565
C023 1.483
C024 1.348
C025 1.674
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block stage_1 stage_2 stage_3 stage_4 stage_5 stage_6 fractal dimension
H #2222

D001 1.555

D002 1.58

D003 ® > 1.574

D004 1.492

D005 1.478

1.593

1.618

1.622

1.577

1.508

1.518

1.491
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1.439
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1.412
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L013 1.461
LO14 1.381
LO15 1.509
L016 1.495
L017 1.385
LO18 1.448
L019 1.506
L020 1.423
L021 1.431
L022 1.392
L023 1.499
L024 1.518
L025 1.583
Table Ill

Fractal dimension measurement from Processing 109
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> Loo3voido *

L001void0 | *

3 0
2 mcv mhv v-value  h-value mcv mhv v-value h-value
1 L0071 59.28 6.275 11.3 4.9 L003 | 558 4.33 7.68 3.54
r SSeani " HM ,‘W\l -
Fal W

34

mcv mhv v-value h-value
L004 69.35 9993 1.7 6.9

BE, IHW.

W=
ok
e

L001void2 |

L004void1

L001void3 |

/V/\v/\\\//\*/

1

g t mcv mhv v-value  h-value
L006 | 5249 4513 742 4.91

A | N ——A
“ /%W u”vﬁvmu B o E \/ Y -

=7

L004void2

#3

o

‘?‘z(;t‘)* =

LoO6void1 L004voidd

Table IV

Connectivity measurements from Processing for a sample of plans from each area
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PR izt
area_C: Plaka

area_L: Bloomsbury-Fitzrovia

Table V

Photographic snapshots of the areas under analysis
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Appendix Il

Code snaps

This section includes details of the programs written in Processing for the measurement of

fractal dimension and connectivity values, accompanied by brief explanations.

1. Box-counting dimension

The plan is imported into Processing as a black and white .jpg image. In order to count the
grid boxes that contain parts of the structure, the algorithm looks at the brightness of each
pixel in each grid cell. If a pixel that is not white is found (brightness not 255) then the
corresponding cell is counted as containing part of the structure and the search continues to

the next cell. This process is repeated at each iteration, for different grid scales.

for (int m=0; m<grid.length; m++)
{
for (int n=0; n<grid.length;n++)
{
side=width/d;
grid[m][n]=new Grid(m*side, n*side, side);
for (int a=m*side; a<(m+1)*side; a++)
{
if (jumper)
{
jumper=false;
break;
}
for (int b=n*side; b<(n+1)*side; b++)
{
col=buffer.get(a,b);
br=brightness(col);
if (br!=255)
{
grid[m][n].value=0;
jumper=true;
break;

}

else
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{
grid[m][n].value=1,;
}
}
}
if (grid[m][n].value==0)
{
grid[m][n].colour=0;
boxcount[i]++;

}

The decision to detect white instead of black colour was based on the fact that, because of
the format of the plan (image, not vector graphics), lines could appear discontinuous at

smaller scales.

2. Connectivity values

The plan is imported into processing as arrays of coordinates of its vertices, extracted

through a text parser from a .dxf file.

a. * dxf parser

for (int i=0; i<(contents.length)-4; i++)

{
String trimmed=contents][i].trim();
String trimmed2=contents[i+4].trim();
if (trimmed.equals("VERTEX")&& trimmed2.equals("SELECTION"))
{

total_vertices++;

}

}

x = new float [total_vertices];
y = new float [total_vertices];
int count_a=0;
for (int i=0; i<contents.length-4; i++)
{
String trimmed=contentsl[i].trim();
String trimmed2=contents[i+4].trim();
if (trimmed.equals("VERTEX")&& trimmed2.equals("SELECTION"))
{

String thisline_X=contents[i+6].trim();
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X[count_a] = float(thisline_X.trim());
String thisline_Y=contents[i+8].trim();
y[count_a] = float(thisline_Y.trim());

count_a++;

b. Subdivision of perimeter edges

for (int i=0; i<x.length-1; i++)
{
side_length[i] = dist(x[i], y[i], x[i+1], y[i+1]);
}

for (int i=0; i<x.length-1; i++)

{
division[i]=round (side_length[i]/d_length);
}

for (int i=0; i<x.length-1; i++)
{
for(int j=0; j<division[i]; j++)
{
float la=lerp(x[i],x[i+1],j/float(division[i]));
float lo=lerp(y[i],y[i+1],j/float(division[i]));
if (a<div)
{
x_d[a]=la;

y_da]=lo;
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c. Detection of line to line intersection

boolean lintersection=false;

void intersection (float x1,float y1,float x2,float y2,float x3,float y3,float x4,float y4)
{

float ua=(((x4-x3)*(y1-y3))-((y4-y3)*(x1-x3)))/(((y4-y3)*(x2-x1))-((x4-x3)*(y2-y1)));
float ub=(((x2-x1)*(y1-y3))-((y2-y1)*(x1-x3)))/(((y4-y3)*(x2-x1))-((x4-x3)*(y2-y1)));
lintersection=false;

if( 1(((y4-y3)*(x2-x1)-(x4-x3)*(y2-y1))==0) && ua>0 && ua<l && ub>0 && ub<l)
{

lintersection=true;

}
}

d. Mean connectivity count
Step 1: find the connections that don’t intersect the perimeter.
The algorithm looks at each connection in relation to each perimeter edge. If the current

connection is found to intersect an edge, the search continues to the next connection.

for (int j=0; j<div; j++)

{
if (i'=))
{
for (int k=1; k<x.length; k++)
{

intersect=false;

intersection(x_d[i],y_d[il,x_d[jl,y_d[i],x[k-11,y[k-11,x[K],y[K]);
if (lintersection==true)
{

intersections[i]++;

intersect=true;

break;

}
}

if (intersect==false)

{

no_intersect[i]++;

}
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Step 2: from the connections that don’t intersect the perimeter find those that lie outside the

shape.
A line is drawn from the middle of each non-intersecting connection towards the four
directions (x, y, -X, -y) and the number of intersections with the perimeter determines

whether the point (and thus the connection) is inside or outside the shape.

x_mid=((x_d[i]+x_d[j])/2);
y_mid=((y_d[i]+y_d[i])/2);
X_midb=x_mid+width;

y_midb=y_mid;
.../Isimilarly for the other directions...

for (int m=1; m<x.length; m++)

{
intersection(x_mid,y_mid,x_midb,y_midb,x[m-1],y[m-1],x[m],y[m]);
if (lintersection==true)
{

counter++;

}

.../[similarly for the other directions...

}
if (counter%2==0 && counterb%2==0 && counterc%2==0 && counterd%2==0)

{
outside[i]++;

}

e. H-value count
In order to calculate horizontal standard deviation, the points that have mean connectivity

value need to be determined:

mean=float(total_inside)/float(div);

la=0;

for (int i=0; i<div-1; i++)

{
if ((inside[i]>=mean && inside [i+1]<=mean)||(inside[i]<=mean && inside [i+1]>=mean))
{

if (la<div-1)

{
h_point[la]=1+i+((inside[i]-mean)/(inside[i]-inside[i+1]));
la++;

}

}...
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cd-rom

The cd-rom includes a .pdf document of the thesis along with two programs in Processing,
one for calculating the fractal dimension of .jpg images and one for measuring connectivity

values of .dxf drawings.
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