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Abstract 

 

The equations for the specification of the curvature of space-time are 

inherent in the general theory of relativity (GTR). However, despite its 

enormous success, there are a number of difficulties with GTR. Standard 

GTR is mathematically very complex, and it predicts the formation of black 

hole singularities. Here we reformulate the equations for gravitation by 

mathematically defining the equations for the curvature of space-time. We 

then translate this curvature back into equations for the force of gravity. By 

using the original equations for calculating the curvature of space-time 

used in GTR, we can translate the equations for gravitation, back into 

equations for a modified force of Newtonian gravity. Using worked 

examples, we show that such an adaptation of gravity, gives results which 

technically give the same results as GTR, in the mass range of the solar 

system. At the same time, an analysis of the data shows that with binary 

pulsars, the new equations can give improved results to GTR. In the case of 

high mass gravitational objects such as black holes, by using this advanced 

modified dynamic gravitation, AMDG, these equations also specifically 

resolve the difficulties of the formation of singularities.  
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Introduction: 
 

1. Introducing Post Newtonian Dynamics 

 

In 1915, Einstein published an equation which allowed the calculation for the 

advance in the perihelion of mercury (see Box 1, eq 1) [1]. In Einstein’s own words 

this equation was a “higher degree of approximation” of GTR [2].  The difference 

between this higher degree of approximation and full GR, in particular with regard 

to the curvature of the mass that is generating the gravitational field itself, is in the 

order of recurring terms of 2GM/Rc2. So in low mass density objects the difference is 

very small, but in high density mass objects, this term makes a significant difference.  

Moreover, it is at least in part, these additional terms that make the mathematics of 

GTR very complex. Indeed, it was actually the equation for the “higher degree of 

approximation” that Einstein used to calculate the advance in the perihelion of 

mercury in his paper on full general relativity [2].  This general relativistic term for 

the perihelion advance of Mercury, can also be calculated by the equivalent of the 

equation 1, given by Straumann (see Box 1 eq. 2) [3]: 

Box 1: Einstein’s Equation used to Calculate the Effects of GTR 

 

є  =              24
3     a2      (1) 

                 T2 c2 (1-e2) 

 

Straumannn’s Equivalent Equation  

∆φ  ≈  tan∆φ   =  6
 m2      (2)  
        L2 

 

where m = GM/c2, and a(1-e2) = L2/m, G is the gravitational constant and c is the speed of light,  a is the 

semi-major axis and e is the eccentricity., T is the time of revolution in seconds, є  is the amount  of the 

rotation of the orbital ellipse [1]. 
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Mathematically these equivalent equations give the same answers, but differed from 

that of Newton. The main clue at the time that Newton’s gravity may need to be 

modified, had been a slight advance in the perihelion of planet mercury by about 43 

arc seconds per century. The total perihelion shift per century, in the case of mercury 

was approx. 5600’’. Of this 5557’’ could be accounted for by using Newton’s formula, 

including some 530’’ from the effects of the other planets in the solar system. Now 

the remaining 43’’ advance in the perihelion in the orbit of mercury could be 

accounted for by this equation.  

General relativity also differed from Newton in the way gravity was 

described. In GTR gravity was described by the curvature of space-time, and it was 

necessary to translate the curvature of space into an initial volume reduction.  It is 

the Ricci curvature tensor that measures this volume change (Rab). We can relate the 

initial volume of this sphere, as being proportional to the mass enclosed in that 

sphere, represented by the energy-momentum tensor and its components, given by 

(Tab). This gave a provisional formula for general relativity (see Box2 , Eq 3). But, this 

effectively gave exactly the same answer as Newtonian gravity. Now that the volume 

in “flat-space-time” had been described, what was needed was to describe what 

happens when we start to additionally curve that space-time. This led to the addition 

of an extra term to the equation, specifically -½R gab. This means that in curved 

space-time the circumference and the radius will appear less than it would in flat 

space-time. Indeed when full general relativity was published the additional term for 

the equation for advanced perihelion of mercury (see Box 1), was translated into the 

additional term for the curvature of space-time, -½R gab (see Box 2,Eq 4).   

This term introduced another change from Newton in GTR, this is where 

what is known as the “pressures” in the material enter the equations for the 
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curvature of space-time. In this case the pressures represent an additional volume 

reduction, which occurs in the volume of the planet or star that is generating the 

gravitational field itself. This volume reduction is represented by the same additional 

gravitational term, in conventional general relativity -½R gab (Box 2, Eq 4). However, 

there is a difficulty in GTR with this part of the equation. If we squeeze enough mass 

into a small enough space, then space collapses upon itself and we seem to get a 

resulting mass of infinite density, known as a black hole singularity. This is also as a 

direct result of the term, -½Rgab, for the additional curvature of space-time. 

To further explain this, we can demonstrate what is meant by the additional 

curvature of space-time by using a (thought) experiment. Take a piece of paper and 

cut the piece of paper into a circle. Now to give the paper additional curvature, affix 

the piece of paper on to a spherical object. You will notice two things about the 

dimensions of the paper circle; first if we look from above the radius of the paper will 

appear smaller than it was when the paper was flat. Secondly the actual 

circumference of the paper will decrease compared to what it was when it was flat. 

This is similar to the additional radius and circumference reduction we see as part of 

standard general relativity. It is thus possible to view the extra curvature of space-

time as a diminution in the radius and in turn the circumference.  In GTR this 

additional curvature becomes infinite in high mass density object like black holes, 

resulting in the formation of singularities 

However, let us suppose that that the extra curvature of space-time is not 

seen in terms of extra curvature, but, as a straight line. In this case Nature does not 

“see” the diminution of the radius and in particular the circumference of a 

gravitating object, in terms of a curvature but in terms of a straight line, In this case, 

it is ∆φ that is the approximation (albeit a very good one), and it is tan∆φ, that 
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actually gives us the more correct answer (see Box 1, Eq 2). Moreover, in this case the 

difficulties with the formation of black hole singularities do not apply. Using this 

principle, in this paper we further develop a modification that can be applied to laws 

of gravity that translates the gravitational equations back into a post–Newtonian 

force. These modified equations, under appropriate mass density conditions are 

readily usable, and technically give exactly equivalent results to general relativity. †  

However, under high mass density conditions, such as with binary pulsars, a re-

analysis of the results, shows that modified gravitation gives improved results to that 

of GTR. In the case of black holes, these equations also resolve the difficulties of the 

formation of singularities.  

 

 

 

 

                                                           
† For worked examples see Appendix A 
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Methods: 
 
All mathematical calculations follow strict standard algebraic and standard 

mathematical rules. The equations presented for spherical coordinates and tensor 

calculus are the standard equations used in general relativity (see Box 1).  

 

Box 2 

GR, Four Dimensional Pythagoras 

  

Provisional General Relativity 

Rab = -4
G Tab         (3) 

   c4 

 

Final General Relativity  

Rab  - ½R gab = -8
G Tab        (4) 

     c4 

 

where G the gravitational constant, Rab the Ricci curvature tensor R the curvature scalar, T the energy-
momentum tensor and gab the metric tensor. 

The principle physics proofs are based upon standard physical formulae. The 

proofs offer a high degree of agreement with currently known values in GR. 

The paper also proposes observational experimental methods for the 

experimental verification of the findings, as listed in the conclusions. 
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Results 

2. Modified General Relativity 

 

In this paper, we address the question: what are the problems related to GTR, and 

can these be understood and resolved by an advanced modification of dynamic 

gravitation? Some authors have written on this subject but the answer remains 

obscure [4]. What is required, is to distil out the essential elements of Einstein’s 

general relativity. You may have noted in the introduction, that when Einstein was 

developing general relativity, there was a provisional equation, which effectively 

gave identical results to Newtonian physics (see Box 2, Eq. 3).  We explore the 

technique of reversing the process, with Einstein’s full general relativistic equation 

(see Box 2, Eq. 4). Specifically to translate the equations of general relativity back 

from describing curved space-time into describing a force. But any modification has 

to describe the force from the point of view of curved space-time, with the addition 

of an extra term for this curvature of space-time. 

 In general relativity the maths seems to dovetail exactly the way it should, so 

that both sides of the equation match. In doing so, the actual amount additional 

curvature to balance the equation, for the mass producing the gravitational field, 

actually dropped out from first principles (see Box 2, Eq 4). Thus this bit of general 

relativity is a direct result of Einstein’s equation. However, once we have performed 

the complex mathematics of general relativity we are able to get one straightforward 

equation, which gives answers which are very close to the original equations [5] for 

low masses, but differ significantly for higher mass objects (see Box 3).  We can 

calculate this (extra) curvature of the actual gravitating body, by using direct algebra.  
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Box 3. 

General Relativity, Standard Gravitational  (mass) radius reduction (r’) 

 

r’ =  GM        (5) 

         3c2 

 

where M is the  mass, c is the speed of light and G the gravitational constant [12]. 

 

This algebraic equation (Box 3) [5], gives the radius reduction of the actual 

gravitating mass. This bit of the equation is part of that which makes relativity 

different from Newton, so using this as a mathematical indicator, we may be able to 

transform the formula for full GTR back to a formula which effectively describes the 

curvature of space-time in terms of a force. 

Now we have come to the crucial question, is the decrease in the radius of the 

gravitating mass, itself related in any way to the decrease in the space-time around 

it?  If it is then, we can reduce the complex mathematics of general relativity, 

specifically relating to the space-time component, which affects the mass itself and 

the space-time of the orbiting object, down to a direct algebraic formula. We can then 

progress this work relating to gravity, directly into a formula for the force of gravity 

using these modified equations. 

A clue to this new approach to modified gravity came in 1991 and again in 

2004 [3,6].   The use of supercomputers allowed the calculation of the orbit of binary 

pulsars, using what was the so-called DD-model (for Damour and Deruelle) , in this 

instance the radiation damping, is equivalent to the algebraic formula given in Box 3 

[5].  This was compared to the formula for full general relativity (DDGR) [7,8]. In his 

most recent publication, whilst Straumann showed that there was no significant 

difference in these models, even at these very accurate levels of measurement, for 
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most parameters, there was a significant difference in the parameter which described 

the gravitational radiation damping. This is generally measured by the secular 

decrease in the pulsar orbital period, given by the term b [3]. Straumann compared 

the so called DD and DDGR model for PSR B 1534+12. In the DD model the 

“pressures” in the material can be represented by the equation which appears in the 

above Box 3, which is equivalent to the tan∆φ equation (see Box 1 eq, 2). The DDGR 

model is the full GR model equivalent to ∆φ (see box 1, eq 2).  

Using previously published data [9], Straumann showed that the results are 

strikingly similar for the majority of the parameters given, apart for the results for 

( b)obs. This represents the observed amount of slowing in the pulsar orbital period 

due to gravitational radiation damping, and is given by Damour and Deruelle’s 

equation (see Box 4) [7,8]. 

Box4 :  

Damour and Deruelle’s Equation (DD Model) 

 

  b =  - (192
/5) (m1m2G 5/3/ c 5 M 1/3) ( 2
/Pb) 5/3 f(e) 

 

Where b  is the secular decrease in the pulsar orbital period, Pb is the pulsar orbital period, G the 
gravitational constant , m1m2 the maasses of the binary pulsars, M is the total mass m1+m2, and the 
term f(e)= (1 + 73e2/24 +37 e4/96) (1-e2)—7/2, where e is the eccentricity [15,16]. 

In the DD model the expected result is given as -0.137  x 10-12 sec/sec, in the full 

DDGR model the expected result is -0.1924 x 10-12 sec/sec. If we calculate the 

observed secular decrease in the pulsar orbital period, using the data given then 

( b)obs  = -0.137 x10-12 sec/sec, in exact agreement with the DD model [3]. This 
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calculation for ( b)obs, would tend to favor Einstein’s original “higher level of 

approximation”, as being the more correct answer, over full GTR. 

Using Straumann’s earlier observations [6] the late Professor Paul Marmet 

was later able to reformulate the equation and theoretically develop this relation 

further in terms of a modification of Newton [10]. Importantly, the calculation of the 

change in the circumference and in turn the radius of the orbit of mercury, using  the 

reformulated equation (see Box 5), was very revealing because we find that it related 

in some way to the change in the radius of the actual gravitating mass (see Box 3). 

With this new result (see Box 5) and some relatively straightforward calculations we 

can work out the change in the circumference of the orbit of mercury and in turn the 

change in the perihelion of Mercury.  

Box 5 

Straumann’s Advance Perihelion of the orbit of Mercury 

 

∆φ =  6Q GMS        (6) 

          c2 a(1-e2) 

 

 

where ∆φ is the advance in the perihelion of mercury in radians, Ms is the mass of the Sun, c is the 
speed of light and G the gravitational constant. a(1-e2) = ℓ,  the semi latus rectum, where a is the semi 
major axis and e the eccentricity  [3]. 

 

First we divide the formula in Box 5, by 2Q to change radians to the circumference 

change. For a circular orbit the ratio of the change of the radius is exactly that of 

circumference.†  Now, very interestingly it turns out that this change in orbital space-

time radius does relate directly to our relativistic change in radius of the actual 

gravitating mass (see Box 3). 

                                                           
†
 For a elliptical orbit, to be precise, the change in the circumference, should be corrected by the 

formula for the ratio of the average radius of an ellipse compared to the radius of a circle, by the 
standard term (1-e2).  
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The clue to the realisation of modified gravity is that matter, as general 

relativity (and string theory) describes it, has effectively nine space components. This 

is perhaps not unexpected, because the standard tensor field is a rank 2, 3x3  tensor, 

(although in GR, the resultant 4x4 tensor is used for space-time together, there are 

only ten components).The answer is then all that is required, is to multiply the 

formula for the standard radius reduction of matter in general relativity (see Box 3), 

by a factor of 9. Interestingly, we get our algebraic conversion for the reduction in the 

orbital radius of the space itself (see Box 6).  Importantly, this gives exactly the same 

as the change in radius as calculated by Straumann [3].  

Box 6 

Relativistic Orbital (Space) Radius Reduction (R’) 

  

R’ =  3GM        (8)  

                       c2 

  

where M is the mass, c is the speed of light and G the gravitational constant, R’ is the 

relativistic space-time radius reduction. 

 

So in the range, where general relativity applies, then the answers are the same. This 

is the radius reduction equivalent of general relativity for the radius reduction of the 

surrounding space itself and gives answers that in very close agreement to general 

relativity for Mercury †. Indeed we can also do the same calculation for other planets 

and moons in the solar system. Importantly, this mathematical agreement with 

general relativity is not just a coincidence it is a constant relationship. We can by the 

same means also calculate, using worked examples, that the (average) radius of the 

orbit of the moon around the Earth is reduced by 1.323 cm compared to Newton’s 

                                                           
† For worked examples Appendix A. 
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gravity, which gives the same result as general relativity.†  For further proof, we can 

do the same calculation, for the change in the perihelion of the Earth around the Sun 

and we again, get exactly the same answer as general relativity, 3.84 arc sec per 

century.†  Recent evidence confirms that this is the same as the experimentally 

determined advance in the perihelion of Earth, 3.84’’ ± 0.1 arc sec/cy. [11]. A similar 

calculation may be performed for any gravitational body in this mass density range. 

Recent experiments have been able to estimate the advance in the perihelion of Mars, 

and we again get a result which agrees with general relativity and the experimental 

advance in the perihelion of Mars, 1.35 ± 0.1 arc sec/cy [11].  To calculate this with 

GR, would normally take an in depth knowledge of tensor calculus and reams of 

calculations. We can readily demonstrate worked examples using a few lines of 

algebra, which technically gives exactly the same answer as general relativity. †  

Now we can go on to develop an equation for the change in the force of 

gravitation by taking into account the extra curvature of space-time. Technically, this 

again gives answers that are no different than the equations for general relativity, 

technically giving exactly the same answer as general relativity does for bodies like 

the planet Mercury (see Box 5). The equation has just been derived from the 

translation of describing the curvature of space-time back into describing the 

effective force of gravity. Indeed, in this range of mass densities, we reproduce the 

effect that general relativity has on the curvature of space-time.  

The fact is that not only do the new advanced modified dynamic gravitation, 

AMDG, equations give the correct answer, but they do equate to general relativity - 

at the appropriate mass densities. The effect on the curvature of space-time in 

                                                           

 
† For worked examples see Appendix A 
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general relativity has just been directly translated back into an equation for the 

expression of the acceleration due to gravity. From that it is a straightforward matter 

to calculate the force due to gravity. The equivalence of AMDG and GTR, at this 

mass density, is based on the same principle that Einstein’s provisional formula for 

curvature equated to Newton’s formula (Box 1, Eq. 3).  

The beauty of this approach is that we can also solve these gravitational 

problems without resorting to highly complex mathematics. We can also get rid of 

the concept of singularities (except perhaps for the one that led to the big Bang).  This 

can be achieved using the same principal equation (see Box 7).  

Box 7: 

Modified General Relativity Force Equations (Fq) 

  

Fq =GMm [1 + 3GM/Rc2]2      (9) 
           R2 

 

For elliptical orbits  

 

Fq =GMm [1 + 3GM/ℓc2]2      (10) 
          R2 

 

where M is the  larger mass, m is the smaller mass, c is the speed of light and G the gravitational 
constant, R is the distance, (normally taken as the radius)  and   ℓ= a(1-e2), where a is the semi major axis 
and e is the eccentricity. 

 

Of course it is still possible to use the tensor calculus involved in GR, however, it is 

now possible to use the modified equivalent, but without the mathematical 

difficulties, and importantly this technically gives exactly the same answer as general 

relativity, where GTR applies. †  Specifically, with low and medium density masses, 

where GR has been thoroughly tested, then the answers agree very closely with GR. 

                                                           
† For worked examples see  Appendix A. 



 15 

A re-analysis, of the recent data for the binary pulsar data, PSR B 1534 + 12, tends to 

favour the DD model, which is equivalent to the tan∆φ equation, and in turn the 

modified equations for the force of gravity  presented in this paper (see Box 1 eq, 2). 

But accuracy and ease of use, is not the only criteria. Just as Einstein was able 

to resolve an astronomical anomaly using his formula, so should the modified 

formula be able to resolve a gravitational anomaly. The equivalence of modified 

dynamic gravity and GTR is based on the same principle that Einstein’s provisional 

formula for curvature effectively equated to Newton’s formula (Box 2, Eq. 3). So the 

principle difference between modified gravity and standard GTR, paradoxically 

enters the equations not on the small scale but on the large scale. That scale starts to 

be important in our treatment of objects with the mass of binary pulsars (as 

previously demonstrated) and in particular that of black holes. Firstly a black hole 

becomes an infinitely dense singularity in GTR. In GTR there is effectively an infinite 

force at the event horizon [12].  In modified general relativity, the force required 

would only be the normal force of gravity, multiplied by 6.25 (see Box 8).  

Box : 8 

Quintessence Force of Gravity at the Event Horizon 

 

Rs = 2GM/c2         (12) 

and  

Fq =GMm[1 + 3GM/ Rs c2]2       (9)  

         Rs 2 

 

Fq =GMm [1 + 3/2]2   =   Fq = GMm  x 6.25    (13) 
 Rs 2    Rs 2 

 

where M is the  larger mass, m is the smaller mass, c is the speed of light and G the gravitational 
constant, R is the distance, (normally taken as the radius) 
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In general relativity it is impossible to say what is beyond the event horizon. Using 

modified dynamic gravity, we can reasonably estimate the forces exerted at the event 

horizon and inside a black hole. Additionally the event horizon now describes the 

radius for the escape velocity of light.  Importantly, because it is now generally 

accepted that the speed of space-time itself is allowed to exceed the speed of light [19], 

then the presumed singularities that appeared in general relativity do not appear in 

modified dynamic gravity. 

More importantly using modified gravity we should be able to go further 

than GTR and Newton’s laws of gravity. The addition of an extra mathematical term, 

which takes into account the “pressures” in the gravitating mass then can be 

translated to make the correction for the radius of orbital objects (see Box 4). This in 

turn gives the equivalent formula to GTR (see Box 7) with low and medium density 

bodies.† With high mass density bodies, such as with binary pulsars, these equations 

show greater accuracy. Equally well these equations show how the force of gravity at 

the event horizon can be calculated (see Box 8).    

 

 

 

 

  

                                                           
† For a worked examples see Appendix A. 
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3: Conclusions and Discussion 
 

The principle findings in this paper are, that using an advanced modified dynamic 

gravitation,  we can formulate the equations for gravity and proceed to develop these 

equations in a way, which very closely agrees, with general relativity (where general 

relativity is applicable), yet greatly simplifies the calculations involved. By such 

means we can readily calculate the advance in the perihelion of mercury, to a very 

good degree of accuracy.† We can also by the same means, using a worked example, 

calculate that for instance, the radius of the orbit of the moon around the Earth is 

reduced by 1.323 cm, in keeping with standard GTR.† For further proof, we can do 

the same calculation, for the advance of the perihelion of the Earth around the Sun 

and we get the same answer as general relativity, 3.84 arc sec per century. † Indeed 

recent experimental evidence for the advance perihelion of Earth agrees with these 

findings, 3.84 ± 0.1 arc sec [11]. These results suggest a straight line correlation 

between modified and standard GR, for low and medium mass density gravitational 

bodies.  

A similar calculation may be performed for any gravitational body in this 

mass density range. For instance, with the advance in the perihelion of Venus, the 

results are again in general agreement with GR, although the inaccuracy in the 

experimental data cannot be used to confirm the result.  Additionally, recent 

experiments have been able to estimate the advance in the perihelion of Mars, and  

we again get a result which agrees very closely with general relativity 1.35 ± arc 

sec/cy,† and in particular this agrees with the experimental advance in the perihelion 

of Mars, 1.35 ± 0.1 arc sec/cy [11]. These results further confirm a straight line 

correlation between modified gravity and standard GTR, at these mass densities. 

                                                           
† For worked example see Appendix A 
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Where advanced modified dynamic gravity, AMDG, may improve upon 

standard GTR, is at higher mass densities, such as in binary pulsars. This is relevant 

particularly in the observation of the secular decrease in the pulsar orbital period of 

binary pulsar PSR B 1534 +12, given by the term b [3]. In the So called DD model 

(equivalent to the modified gravity presented here) the expected decreased result is 

given as: -0.137  x 10-12 sec/sec, in the DDGR model (equivalent to full GTR) the 

expected result is: -0.1924 x 10-12 sec/sec. However, if we calculate the observed 

result from the presented data, ( b)obs = -0.137 x10-12 sec/sec; it is in exact agreement 

with the DD model [3]. Indeed, the results of full GTR, overestimate this parameter by 

the factor predicted in this paper, specifically, 2GM/Rc2. Moreover, even if a putative 

correction to the observed result of ( b)GR  of  0.037 x10-12 is applied, which is 

subtracted to give: -0.174 x 10-12 sec/sec, this brings the result closer to the DDGR 

model, but still well short of the value of: -0.1924 x 10-12 sec/sec, predicted by 

DDGR[3].  In the DD model (equivalent to the modified gravity presented here) the 

expected result is exactly given as: ( b)obs = -0.137  x 10-12 sec/sec, and this very 

accurately agrees with the observed result without any correction factors.  This 

experimental data for ( b)obs, does tend to  favor Einstein’s original “higher level of 

approximation” as a more accurate representation of the experimental results, in 

particular with regards the gravitating mass itself.  

The corollary is that the difference between this “higher degree of 

approximation” and full GTR means that the formation of singularities, at the mass 

density of black holes, does not necessarily occur. It is also important to note that 

whilst advanced modified dynamic gravity AMDG, agrees very closely with GTR in 

the low and medium mass densities, it does not break down in high density 

gravitational objects. In high mass density objects, like black holes, the major 
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difficulty that arises is that infinite densities or “singularities” appear from the 

equations for GTR. One reason for the production of the singularities in general 

relativity is that in the equation for full GTR an extra term, which is in the order of 

recurring terms of 2GM/Rc
2
 is required. So in low mass density objects, the difference 

is very small, but in high density mass objects when the Schwarzschild radius is 

reached (see Box 9), this difference mathematically results in the formation of black 

hole singularities. In the model for modified gravity presented here, the 

Schwarzschild radius (Box 9) describes the event horizon, the horizon for the escape 

velocity of light, but it is not necessarily the “limit” for the formation of a infinitely 

dense singularity.  

Box 9 

Schwarzschild Radius Rs   

 

Rs  = 2GM        (14) 

                       c2 

where M is the  mass, c is the speed of light and G the gravitational constant. 

 

In modified gravitation, the problem of the singularity does not arise (see Box 8), and 

it is possible to begin to model the physics of what might be occurring inside the 

event horizon.  

In AMDG, we can calculate the effects of gravity at a particular radius and 

the same force law applies, whatever radius we choose. Equally well this force law 

applies as much for an observer, for instance, at the event horizon, as it does for a 

distant observer - both observers will determine the same force at any particular 

radius, so the laws of gravity are maintained for all observers.  From the point of 

view of observers at the event horizon and observers distant to the event horizon, 

they will both measure a total force that is 6.25 times greater than the standard 
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Newtonian force at the event horizon.  This means that the laws of gravity remain 

equal for all observers.  

Additionally, the other benefit of modified gravity is that it is relatively 

straight forward to use.  On the other hand GTR, is mathematically very difficult to 

use, indeed for many years only a few solutions were known explicitly because of the 

difficulty with the calculations. Notably, one of those was the Schwarzschild radius, 

the radius of a black hole (see Box 9). Only more recently with the advent of 

supercomputers has it been possible to derive more explicit answers. Even some of 

these answers give more theoretical than physical results. A lot of solutions have no 

real relevance to everyday physics. With modified gravity it is entirely possible to 

resolve these problems using equations (see Boxes 7 & 8) that greatly ease the 

mathematics involved (see worked examples, Appendix A).  

But ease of use, is not the only criteria. Just as GTR was able to resolve an 

astronomical anomaly, so should the advanced dynamic modified gravitational 

formula be able to resolve a gravitational anomaly. Indeed there are a number of 

anomalies in gravitational physics, which remain unsolved. Modified gravity 

predicts, as does standard GTR, an increase in the gravitational field (above that of 

Newton) around gravitating bodies, and this principle can be applied to these 

gravitational anomalies. One anomaly, which remains unresolved relates to the 

Pioneer 10 & 11, Galileo and Ulysses missions. In each case there appears to be an 

acceleration towards the Sun acting upon these probes of ~ 8 x 10-10 m/sec2.  At least 

some, if not all of this effect on gravity can be accounted for by dynamic modified 

gravity, from the known mass of the Sun and from the increased gravitational effects 

of this (and the close flybys of planets such as Jupiter and Saturn) on the trajectory of 

these probes. In GTR one can calculate these increased effects at a particular set of 
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coordinates. In modified dynamic gravity we can calculate the cumulative effects of 

this increased force of gravity, which allows us a good estimate of this effect. The 

results of more precise telemetry would be needed for accurate confirmation. 

 Equally this advanced modification of gravity may also help explain the 

apparent missing mass of the galaxy.  This missing mass may be due to the presence 

of dark matter, but a percentage may also be due to the gravitational effects 

described by modified gravity. Evidence suggests that MOND, by an increased effect 

of gravity, may explain the apparent behaviour of galaxies and galaxy clusters 

without invoking cold dark matter [13-16]. In addition to these possibilities some 

have suggested that the extra mass may be derived from remnant primordial black 

holes, but in that model an additional force of gravity, may be required to provide 

sufficient gravitational effects [17]. The effects of modified dynamic gravity in terms 

of interstellar distances is sufficient, in the presence of primordial black holes and/or 

relativistic neutrinos, to explain the missing mass of the galaxy. 

The additional importance of this work, is that we can obviate the very 

difficult mathematics of general relativity. We can then begin to explain such 

anomalies as the additional gravitational pull that Pioneer and Voyager are 

experiencing as they leave the solar system.  AMDG also resolves the problems 

related to the formation of singularities.  If we go back to using the force of gravity 

we no longer encounter this difficulty (see Box 8).  

Additionally, as regards the recently discovered dark energy [25, 26], by 

using the same principles of modified gravity, it may be possible to begin to define 

the properties, and the very nature of the field equations of dark energy.  Indeed, 

some of the most fundamental aspects of standard quantum physics might also be 

explained, by similarly using the concepts described here.  
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In this paper, overall it has been shown that modified gravity can explain the 

physical phenomena of gravity in a way which very closely agrees with general 

relativity (where GTR is applicable). Modified gravity predicts, as does standard GR, 

an increase in the gravitational field around gravitational bodies. As a result 

modified dynamic gravity using a cumulative model, can account for the anomalous 

gravity, which affects the Pioneer, Galileo and Ulysses space probes. Under high 

mass density conditions, such as with binary pulsars, a re-analysis of the results, 

shows that modified gravitation gives improved results to that of GTR. Modified 

gravity can additionally resolve the difficulties associated with the formation of 

singularities. Where GTR is applicable, not only does advanced modified general 

relativity AMDG, technically give exactly the same answers as general relativity †, but 

it does have that same inherent symmetry. 

 

 

 

 

                                                           
† For worked examples see  Appendix A. 
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Appendix 
 

1). Advance in the Perihelion of  Mercury (worked example). 

 

∆circ =   3GMs  =  7.987 x 10-8         

           c2 a(1-e2) 

 
multiplied by the no. of orbits in a century,    

 
=    3.316 x 10-5 

 
the ratio of circumference to arc second 

 
   = 360 x 3600 = 1.296  x 10

6 
 

calculated advance in the perihelion of  Mercury per century 
 
3.316  x 10-5 x  1.296  x 10

6  = 42.98 arc sec. 
 
 
Equivalent general relativistic value per century 
 
    = 42.98 arc sec 
 
 
Experimentally estimated advance in the perihelion of Earth per century [18]. 

    = 43 ± 0.1 arc sec 
 
 
 

where ∆circ is the change in circumference of the orbit of Mercury, G is the gravitational 
constant, Ms the mass of the Sun, c the speed of light, a is the semi major axis of Mercury ‘s 
orbit (in meters), e is the eccentricity. 

 
 
2). Reduction in the radius of the orbit of the Moon (worked example) 
 

 R’M =   3GME  =    1.323 cm       

                  c
2
 
 

 
Equivalent general relativistic value. 
 
     =    1.323 cm 
 
 
where R’M is the change in the radius of the orbit of Moon, G is the gravitational constant, ME 

the mass of the Earth, and  c the speed of light. 
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3). Advance in the Perihelion of Earth (worked example). 
 

∆circ =   3GMs  =  2.961 x 10-8         

           c
2
 a(1-e

2
)

 

 
in a century   =  2.961 x 10-6 
 
the ratio of circumference to arc second 

 
  = 360 x 3600 = 1.296  x 10

6 
 

calculated advance in the perihelion of Earth per century 
 

2.961 x 10-6 x  1.296  x 10
6  = 3.84 arc sec. 

 
 
Equivalent general relativistic value per century 
 
     = 3.84 arc sec 
 
 
Experimentally estimated advance in the perihelion of Earth per century [18]. 

     = 3.84 ± 0.1 arc sec 
 

where ∆circ is the change in circumference of the orbit of Earth, G is the gravitational constant, 
Ms the mass of the Sun, c the speed of light, a is the semi major axis of Earth ‘s orbit (in 
meters), e is the eccentricity. 
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4). Advance in the Perihelion of Mars (worked example). 
 

∆circ =   3GMs  =  1.9595 x 10-8         

           c
2
 a(1-e

2
)

 

 
multiplied by the no. of orbits in a century,    
 

=  1.0416 x 10-6 
 
the ratio of circumference to arc second 

 
  = 360 x 3600 = 1.296  x 106 
 

calculated advance in the perihelion of Mars per century 
 

1.0416 x 10-6 x  1.296  x 10
6  = 1.35 arc sec. 

 
 
Equivalent general relativistic value per century 
 
     = 1.35 arc sec 
 
 
Experimentally estimated advance in the perihelion of Mars per century [18]. 

     = 1.35 ± 0.1 arc sec 
 
 
 

where ∆circ is the change in circumference of the orbit of Mars, G is the gravitational constant, 
Ms the mass of the Sun, c the speed of light, a is the semi major axis of Mars orbit (in meters), 
e is the estimated eccentricity (0.0041988) - excluding the proportion of eccentricity that Jupiter produces 
on the Mars orbit. 
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