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Abstract

The dilation-free semi-staggered finite volume method presented in Int. J. Numer. Meth. Fluids

49 (2005) 959-974 has been extended for the numerical solution of viscoelastic fluid flows on all-
quadrilateral(2D)/hexahedral(3D) meshes. The velocity components are defined at element node
points, while the pressure term and the extra stress tensor are defined at element centroids. The
continuity equation is satisfied exactly within each element. An upwind least square method is
employed for the calculation of the extra stresses at control volume faces in order to maintain stability
for hyperbolic constitutive equations. The time stepping algorithm used decouples the calculation of
the extra stresses from the evaluation of the velocity and pressure fields by solving a generalised Stokes
problem. The resulting linear systems are solved using the GMRES method provided by the PETSc
library with an ILU(k) preconditioner obtained from the HYPRE library. We apply the method to
both two and three dimensional flow of an Oldroyd-B fluid past a confined circular cylinder in a
channel with blockage ratio 0.5.

Keywords: Viscoelastic Fluid Flow; Finite Volume; Unstructured Methods; Three Dimensional;
Iterative Methods

1 INTRODUCTION

Over the past decades, significant progress has been achieved in the numerical solution of viscoelastic
fluid flows. Nevertheless, viscoelastic flow simulations still remain a challenging task in term of accuracy,
stability, convergence and required computer power. In this work we attempt to tackle these issues by
extending our semi-staggered dilation-free finite volume method [27] to viscoelastic fluid flows.

Recently, finite volume methods have been widely used for viscoelastic fluid flows. Yoo and Na [32]
solved planar contraction flow of an Oldroyd-B fluid on a non-uniform staggered grid using the SIMPLER
algorithm. Sasmal [28] presented an upwind finite volume algorithm based on the stream function–
vorticity approach in the Elastic Viscous Split Stress (EVSS) form with fully staggered flow variables
to solve the UCM model in an axisymmetric contraction flow. Dou and Phan-Thien [8] implemented
an unstructured finite volume method based on the SIMPLER algorithm with the EVSS formulation
for a simplified PTT constitutive model on triangular meshes with collocated flow variables along with
an equal order interpolation. Oliveira et al. [22] developed a collocated finite volume method on non-
orthogonal grids; the velocity-stress-pressure decoupling was removed by using an interpolation similar
to that of Rhie and Chow [24]. Mompean and Deville [20] and Xue et al. [31] used a fully staggered
finite volume method to simulate three dimensional planar contraction flow. Wapperom and Webster
[34] used a second-order hybrid scheme which uses a finite element method for the mass-momentum
balance equations and a finite volume method for the hyperbolic stress equations. In the present paper
we employ a semi-staggered finite volume method on all-hexahedral elements. The main advantage of this
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semi-staggered approach is that it has a better coupling compared to the collocated approach while being
able to treat complex configurations unlike the fully staggered approach. Furthermore, the summation
of the continuity equation within each element can be exactly reduced to the domain boundary, which is
important for global mass conservation. But the most appealing feature of the method is that it leads to
a very simple algorithm consistent with the boundary and initial conditions required by the viscoelastic
fluid flow equations.

In earlier finite volume works (Yoo and Na [32] and Sasmal [28]) first-order upwind approximations
were used for the convective terms of the stress constitutive equation, which tends to cause severe nu-
merical diffusion whenever the flow is not aligned with the grid orientation. The use of higher-order
approximations was reported by Mompean and Deville [20], Oliveira et al. [22] and Alves et al. [1]. Mom-
pean and Deville [20] used a quadratic upstream interpolation (QUICK) scheme [18] to study the flow of
the Oldroyd-B fluid in 3D domains. Oliveira et al. [22] applied a second-order linear upwind differencing
scheme to two-dimensional Poiseuille entry flow and the flow around a confined cylinder for the UCM
fluid. In a later study, Alves et al. [1] implemented high resolution interpolation schemes MINMOD and
SMART in order to improve stability and accuracy. In the present work a least square upwind interpola-
tion scheme is employed. Although it is widely used for the computation of turbulent flows [4, 2] as far as
we are aware this is the first time it has been used for viscoelastic fluid flow calculations. As indicated by
Anderson and Bonhaus [2], the use of a least square procedure for evaluating the gradient term in order
to extrapolate variables to the boundaries of the control volumes is far superior to the use of gradients
calculated with Green’s theorem on highly stretched meshes. In addition, this least square procedure for
evaluating the gradient term does not require the construction of a dual control volume, which is rather
difficult in 3D.

As in the work of Caola et al. [7], we use a time-splitting technique which decouples solution of
a generalised Stokes problem from the calculation of the extra stresses. This is used to step the time-
dependent equations in time until a steady state is reached. Although this decoupling limits the allowable
time step, both steps can be solved efficiently by using preconditioned Krylov subspace methods. A
preconditioned generalised minimum residual (GMRES) method [26] was first applied to steady state
viscoelastic fluid flow calculations by Fortin and Fortin [12] for calculation of the stick-slip problem.
Baaijens [3] devised a block preconditioner with GMRES and applied it to the DEVSS/DG discretisation
for axisymmetric contraction flow of a UCM fluid using a fully coupled Newton’s method. However,
these iterative solvers for steady state viscoelastic flow calculations suffer from poor robustness and
large memory requirements as the size of the problem increases. Therefore they are unsuitable for 3D
simulations. On the other hand, high resolution 2D numerical results have been presented in the literature
using time-dependent simulations. Caola et al. [7] presented numerical results for up to 751,110 degrees of
freedom for Oldroyd-B flow past a confined cylinder. Recently, Kim et al. [17] have presented numerical
results for up to 1,362,480 degrees of freedom using an adaptive incomplete LU (AILU) preconditioner
with variable reordering.

In our problem there is a zero block resulting from the divergence-free constraint. We use an upper
triangular right preconditioner which results in a scaled discrete Laplacian instead of a zero block in
the original system, which is more physical than the AILU preconditioner. Unfortunately, this leads
to a significant increase in the number of non-zero elements following the matrix-matrix multiplication.
However, the new system may be efficiently preconditioned using incomplete LU (ILU) preconditioner.
The implementation of the preconditioned Krylov subspace algorithm was carried out using the PETSc
[5] software package developed at Sandia National Laboratories. The preconditioning uses the ILU(k)
preconditioner [15] provided by the HYPRE library [10], a high performance preconditioning package
developed at Lawrence Livermore National Laboratory, which we access through the PETSc library. The
use of these highly efficient libraries allows us to present numerical results for up to 2,961,143 degrees of
freedom on a single processor for the 3D Oldroyd-B flow past a confined cylinder. This is even larger
than the previously reported 2D results in the literature, which require less memory due to smaller matrix
bandwidth in 2D.

The method presented here is tested by solving the classical benchmark problem of the flow past a
confined circular cylinder in a channel. In both two and three dimensional calculations, the blockage ratio
is set to 0.5. In three dimensional calculations the spanwise aspect ratio is set to 2.5. In the literature,
the problem of viscoelastic flow past a confined circular cylinder has been studied by many researchers
[1, 7, 8, 11, 14, 17, 23] and to date all numerical simulations of this problem have been limited to two
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dimensions. The current paper represents, as far as we are aware, the first numerical 3D viscoelastic fluid
flow calculations for a confined circular cylinder in a channel. These full 3D numerical simulations are
necessary in order to capture the true nature of the flow patterns. In this paper we present numerical
results up to a Weissenberg number of 1.2. However, both 2D and 3D results failed to converge at higher
Weissenberg numbers due to the classical high Weissenberg number problem (HWNP), and the converged
2D numerical results beyond We = 0.7 indicate that the solutions are far from mesh convergence in a
small region in the wake of the cylinder. Although the recent log conformation of Hulsen et al. [14] seems
to remove the convergence problem, the authors reported that they could not find any sign of convergence
for stress in the wake beyond some rather small Weissenberg number (order 1). In our 3D calculations at
moderately large Weissenberg numbers we observe the emergence of corner vortices at the wall-cylinder
junction. In addition, the distance between the streamtraces downstream of the cylinder is no longer
uniform close to the side walls. These observations are in accord with the experimental results of Shiang
et al. [29] and McKinley et al. [19].

The paper is structured as follows: In Section 2 we describe our semi-staggered finite volume method
with the iterative method for the solution of the resulting system of algebraic equations. In Section
3 the proposed method is applied to the well-known problem of the 2D/3D flow of Oldroyd-B fluid
past a circular cylinder in a channel. The numerical results are presented for a sequence of viscoelastic
calculations with increasing Weissenberg number. Conclusions are presented in Section 4.

2 MATHEMATICAL and NUMERICAL FORMULATION

The governing equations for three dimensional unsteady flow of an incompressible and isothermal Oldroyd-
B fluid can be written in dimensionless form as follows: the continuity equation

−∇ · u = 0, (1)

the momentum equations

Re

[

∂u

∂t
+ (u · ∇)u

]

+ ∇p = β∇2
u + ∇ · T, (2)

and the constitutive equation for the Oldroyd-B model

We

[

∂T

∂t
+ (u · ∇)T − (∇u)⊤ · T − T · ∇u

]

= (1 − β)(∇u + ∇u
⊤) − T. (3)

In these equations u represents the velocity vector, p is the pressure and T is the extra stress tensor.
The dimensionless parameters are the Reynolds number Re, the Weissenberg number We and the vis-
cosity ratio β. Integrating the differential equations (1) and (3) over a quadrilateral(2D)/hexahedral(3D)
element Ωe with boundary ∂Ωe gives

−

∮

∂Ωe

n · u dS = 0, (4)

We

[
∫

Ωe

(

∂T

∂t
− (∇u)⊤ · T − T · ∇u

)

dV +

∮

∂Ωe

(n · u)T dS

]

= (1 − β)

∮

∂Ωe

[un + nu] dS −

∫

Ωe

T dV, (5)

and integrating the differential equation (2) over an arbitrary irregular dual control volume Ωd with
boundary ∂Ωd gives

Re

[
∫

Ωd

∂u

∂t
dV +

∮

∂Ωd

(n · u)u dS

]

+

∮

∂Ωd

pn dS − β

∮

∂Ωd

n · ∇u dS −

∮

∂Ωd

n · TdS = 0. (6)

Here n represents the outward normal unit vector. For the remainder of this section we restrict ourselves
to the discretisation of 2D flows; the extension to 3D is straightforward. Fig. 1 illustrates typical four
node quadrilateral elements with a dual finite volume constructed by connecting the centroids ci of the
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elements which share a common vertex. The discrete contribution computed by connecting the element
centroids c1 and c2 for the momentum equation is given by

Re

[

u
n+1
P + u

n+1
1 + u

n+1
2

3∆t
−

u
n
P + u

n
1 + u

n
2

3∆t

]

VP12 + Re

[

n12 ·

(

u
n
1 + u

n
2

2

)] (

u
n+1
1 + u

n+1
2

2

)

S12

+ n12

(

pn+1
1 + pn+1

2

2

)

S12 − βn12 ·

(

∇u
n+1
1 + ∇u

n+1
2

2

)

S12 − n12 ·

(

T
n+1
1 + T

n+1
2

2

)

S12, (7)

where VP12 is the area between the points P , c1 and c2 and S12 is the length between the points c1 and c2.
The other contributions are calculated in a similar way. The velocity vector at the element centroids ci is
computed from the element vertex values using simple averages and the gradient of velocity components
∇u are calculated from Green’s Theorem:

∇ui =
1

V

∮

∂Ωe

nu dS, (8)

where the line integral on the right-hand side of equation (8) is evaluated using the mid-point rule on each
of the element faces. The continuity equation is integrated in a similar manner within each element. The
constitutive equation is integrated within each element assuming that the extra stresses Ti and velocity
gradients ∇ui are constant:

We





T
n+1
i − T

n
i

∆t
V +

4
∑

f=1

(n · un)Tn+1
f S − (∇u

n
i )⊤ · Tn+1

i V − T
n+1
i · ∇u

n
i V





= (1 − β)(∇u
n
i + (∇u

n
i )⊤)V − T

n
i V. (9)

where Tf is the value of the extra stress at the segment/face centres of the quadrilateral/hexahedral
elements. In equation (9) the right hand side relates the Newtonian viscous stress to the extra stress
tensor and therefore they should be evaluated at the same time level. In order to extrapolate the extra
stresses to the boundaries of the finite volume elements a second-order upwind least square interpolation
is used. Any component of the extra stress tensor φ may be extrapolated to the boundaries of the finite
volume elements using a Taylor series expansion about the cell centres:

φface = φcell + ∇φ · r, (10)

where ∇φ represents the gradient of extra stress components at the cell centres and r is the vector
extending from the cell centre to the control volume face centres. A least square procedure is used to
compute ∇φ using the neighbouring element cell centre values. For example, each neighbouring cell centre
value may be expressed as

φi = φ0 + φx(xi − x0) + φy(yi − y0), (11)

This leads to










x1 − x0 y1 − y0

x2 − x0 y2 − y0

...
...

xN − x0 yN − y0











[

φx

φy

]

=











φ1 − φ0

φ2 − φ0

...
φN − φ0











. (12)

This overdetermined system of linear equations may be solved in a least square sense using the normal
equation approach, in which both sides are multiplied by the transpose. The modified system is solved
using QR factorisation provided by the Intel Math Kernel Library in order to avoid the numerical diffi-
culties associated with solving linear systems with near rank deficiency for highly stretched meshes. The
use of this least square approximation for the gradient term in computing the convective term results in
the same coefficients as computed from a second-order linear upwind interpolation on uniform Cartesian
meshes. Therefore, our approximation is second-order (like the second-order linear upwind interpolation).

4



The time-dependent finite volume discretisation of the above equations leads to a linear system of
equations of the form





Aττ Aτu 0
Auτ Auu Aup

0 Apu 0









τ
u
p



 =





b1

b2

0



 . (13)

which needs to be solved for the new flow variables (at time level n + 1) at each time step. Although
the system matrix of (13) is indefinite due to the zero diagonal block resulting from the divergence-free
constraint, recent results indicate that this system is similar to that arising in saddle point problems
[6, 25], and that the indefiniteness of the problem does not represent a particular difficulty. We did not
consider the EVSS formulation in this paper due to the significant increase in the number of unknowns
in 3D.

In practice, the solution of equation (13) does not converge very quickly and it is rather difficult to
construct robust preconditioners for the whole coupled system. Therefore, we decouple the system by
using a time-splitting technique which decouples the calculation of extra stresses from the evaluation
of the velocity and pressure fields by solving a generalised Stokes problem. However, due to the zero
diagonal block resulting from the divergence-free constraint, an ILU(k) type preconditioner cannot be
used directly for the saddle point problem. Here, we consider an upper triangular right preconditioner in
order to avoid problems arising from the zero block. The modified system becomes

[

Auu Aup

Apu 0

] [

I −Aup

0 I

] [

q1

q2

]

=

[

Auu Aup − AuuAup

Apu −ApuAup

] [

q1

q2

]

=

[

b2 − Auττ
0

]

. (14)

and the zero block is replaced with ApuAup, which is a scaled discrete Laplacian. Unfortunately, this
leads to a significant increase in the number of non-zero elements due to the matrix-matrix multiplication.
However, the new system may be solved efficiently by using preconditioned Krylov subspace methods.
The implementation of the preconditioned Krylov subspace algorithm and the matrix-matrix multiplica-
tions were carried out using the PETSc [5] software package developed at Sandia National Laboratories.
Although there are several Krylov subspace algorithms readily available in the PETSc library, we only
employ the GMRES algorithm [26] for the problems presented in this paper, due to its stability. The
Krylov subspace dimension is set to 100 for all cases. The preconditioning uses the ILU(k) precondi-
tioner [15] provided by the HYPRE library [10], a high performance preconditioning package developed
at Lawrence Livermore National Laboratory, which we access through the PETSc library. In the current
calculations we could afford to use ILU(4) or above in the 2D cases, but for the 3D cases we could only
afford to use ILU(0) due to the large memory requirement in 3D. The block preconditioners given in
[9, 3, 27] are not considered here because of the significant increase in the number of inner iterations
for convergence at the problem sizes given here. In addition, we did not use the filtering matrix of [27]
because when we use right preconditioner for equations (14) and set the relative residual to 10−8 or lower,
we observe the disappearance of pressure oscillations even for problems with a singular pressure field such
as the lid-driven cavity problem of [27].

3 NUMERICAL EXPERIMENTS

In this section the proposed method is applied to the well-known 2D/3D flow past a circular cylinder in
a channel. The numerical results presented here are obtained using Euler implicit time stepping as given
in Section 2, on a single Itanium2 1.3Ghz/3MB cache processor available on an SGI Altix 3700 parallel
machine.

3.1 Two dimensional numerical results

The problem of two-dimensional viscoelastic flow past a confined circular cylinder is an attractive bench-
mark problem and has been studied by many researchers [1, 7, 8, 11, 14, 17, 23]. For this flow we consider a
circular cylinder of radius R positioned symmetrically between two parallel plates separated by a distance
2H. The blockage ratio R/H is set to 0.5 and the lengths of the regions upstream and downstream of the
cylinder are chosen to be 12R. The dimensionless parameters are the Reynolds number Re = 〈v〉R/η, the
Weissenberg number We = λ〈v〉/R and the viscosity ratio β = ηs/η. The physical parameters are the
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density ρ, the average velocity 〈v〉, the relaxation time λ, the zero-shear-rate viscosity of the fluid η and
the solvent viscosity ηs. The viscosity ratio β is chosen to be 0.59 throughout this paper, which is the
value used in the benchmarks for the Oldroyd-B fluid. In this work, fully developed velocity boundary
conditions are imposed at the inlet boundary and natural (traction-free) boundary conditions are imposed
at the outlet boundary. No-slip boundary conditions are imposed on all solid walls. The extra stresses are
computed everywhere within the computational domain and their boundary conditions are introduced
through their fluxes, using the analytical values at the inlet boundary.

In the present work three different meshes are employed: coarse mesh M1 with 6031 node points and
5824 elements, medium mesh M2 with 21735 node points and 21320 elements, and fine mesh M3 with
70312 node points and 69519 elements. Each of meshes M2 and M3 is generated by doubling the number
of mesh points on the cylinder from the previous one. As may be seen in Fig. 2, the mesh is highly
stretched on the cylinder surface, on the walls and in the wake behind the cylinder in order to resolve
very strong stress gradients. The details of the mesh characteristics are given in Table I. In order to
validate our code, this flow of an Oldroyd-B fluid past a confined circular cylinder is solved on meshes
M1 to M3 for several different Weissenberg numbers, and contours of the extra stress component Txx

and pressure are presented in Fig. 3 and Fig. 4 at We = 0.7. Even though we have an equal order
interpolation for both the velocity and pressure, the pressure field is remarkable smooth and free from
checkerboard pressure oscillations. The mesh convergence of the stress component Txx on the cylinder
surface and along the centre line in the wake is presented in Fig. 5 and the extreme values of Txx on the
cylinder surface and along the centre line in the wake are provided in Table II as a function of Weissenberg
number. As seen in Fig. 5, mesh convergence is obvious at We = 0.6 and the mesh convergence trend
is observed at We = 0.7. However there is no sign of mesh converge at higher Weissenberg numbers.
In addition, the configuration tensor is no longer positive definite at We = 0.9. In the literature there
are also large discrepancies for the stresses in the wake region; some researchers have suggested that
there may be some numerical artifacts beyond We = 0.7. In Fig. 6 the stress component Txx on the
cylinder surface and along the centre line in the wake are compared with the results of Fan et al [11]
and Alves et al. [1] at a Weissenberg number of 0.7. These extreme values of Txx are compared with the
other results available in the literature in Table III. The results of Fan et al. [11] were obtained using a
Galerkin/least-squares hp finite element method; Alves et al. [1] used a collocated high resolution finite
volume method. The comparison shows good agreement bearing in mind the fact that the tangential
mesh spacing on the cylinder surface behind the cylinder is approximately 5 times larger than the value
used in the work of [1]. Therefore, we could expect even better agreement with further mesh refinement in
the cylinder wake. In addition, a second-order linear upwind interpolation scheme for the convection term
is implemented in order to compare its accuracy with the current least square interpolation scheme. The
comparison is given in Fig. 7 for the benchmark problem of the Oldroyd-B fluid past a confined cylinder
at We = 0.7. The computed results are indistinguable from one another. This should be expected since
the use of this least square approximation for the gradient term in computing the convective term results
the same coefficients as computed from the linear upwind interpolation on uniform Cartesian meshes. On
coarser meshes the least square approximation gives smoother results than the linear upwind interpolation
scheme. Although the convergence of the drag coefficient with mesh refinement is not considered to be a
very good indicator of accuracy, the value for the steady state drag coefficients are tabulated in Table IV
and compared with several other results available in the literature in Fig. 8. The present results indicate
good agreement particularly with the results of Hulsen et al. [14], Fan et al. [11], Alves et al. [1] and
Kim et al. [17]. All the present calculations are started from Stokes flow and stepped in time with a time
step of 0.005 until all RMS values drop less than 10−8. The calculations up to a Weissenberg number
of 0.8 converge monotonically to steady state. However, the calculations at We = 0.9 show oscillations
in the RMS values during convergence to steady state. We believe that these oscillations are related
to non-physical oscillations in Txx as seen in Fig. 5 at We = 0.9. Although Oliveira and Miranda [21]
have recently showed a small time-periodic separation bubble behind the cylinder at a Deborah number
of 1.3 for the FENE-CR model with L2 = 144, we did not observe any similar flow structures for the
Oldroyd-B fluid; our calculations beyond a Weissenberg number of 0.9 did not converge to any steady or
time-periodic state on any of the meshes.
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3.2 Three dimensional numerical results

Full 3D numerical simulations are carried out for the flow of an Oldroyd-B fluid past a confined circular
cylinder in a rectangular channel of depth 2W . The aspect ratio of the channel cross section is chosen
to be W/H = 2.5, which is taken computationally as large as possible in order to reduce the side wall
effects and ensure that the flow within the channel is approximately 2D. The dimensionless parameters,
Reynolds number and Weissenberg number, are defined based on the cylinder radius R and the average
velocity in the channel symmetry plane 〈v〉 as in the 2D case, rather than a volumetric average. This
will allow us a better comparison between 2D and 3D results at the channel symmetry plane, since both
flows have the same inflow velocity profiles. Should the volumetric mass flow in the channel be required,
it can be calculated from the inflow velocity profile imposed at the inflow boundary:

u(y, z) = 1.6136

∞
∑

k=1,3,5,...

(−1)(k−1)/2

[

1 −
cosh (kπz/2H)

cosh (kπW/2H)

] [

cos (kπy/2H)

k3

]

; v(y, z) = w(y, z) = 0.

(15)
The maximum inlet velocity is 1.5 and the average volumetric mass flow is 0.7798. At the outflow the
boundary conditions are set to zero derivative:

∂u

∂x
=

∂v

∂x
=

∂w

∂x
= 0. (16)

The extra stresses are computed within each element as in 2D and their boundary conditions are intro-
duced through the analytical values for their fluxes at the inflow boundary.

In Fig. 9 we give a coarse computational mesh for these 3D simulations, which is created by sweeping
the two dimensional cross-section of the coarse mesh M1 in the third dimension with 51 nonuniform
node points. These 2D planes are highly stretched close to the side walls. The present calculations are
carried out within the whole mesh without any use of symmetry since nonsymmetric 3D solutions may
exist in viscoelastic fluid flows and these solutions can be extremely sensitive to geometric imperfections
[30]. By introducing a small asymmetry into our mesh we hope to perturb these flows with infinitesimal
asymmetric disturbances. A sequence of viscoelastic flow simulations is carried out for the flow of an
Oldroyd-B fluid past a circular cylinder in a rectangular channel, with increasing Weissenberg number.
As elastic effects in the flow become increasingly important, we observe a significant shift from the fore/aft
symmetry of the equivalent creeping flow of a Newtonian fluid. In Fig. 10 the change in the velocity field
may be seen from the velocity profiles in the z = 0 plane at x = 0, x = ±1.5R and x = ±3R at
Weissenberg numbers of 0.0, 0.7 and 1.2. The flow near the junction with the side wall, both upstream
and downstream of the cylinder, is highly three dimensional and there is a significant spanwise velocity
component even for creeping flow of a Newtonian fluid at We = 0.0. As the Weissenberg number is
increased these three dimensional effects become more predominant in the flow. The distance between
the streamtraces is no longer uniform in the wake of the cylinder and they become more parallel to
the side plates just downstream of the cylinder. Even though the flow upstream of the cylinder is not
significantly changed at these low Weissenberg numbers, we observe a slight change in the streamtrace
direction, being toward the centre of the channel rather than the side walls. These observations are in
accord with the experimental results of Shiang et al. [29]. In addition, the 3D velocity profiles shown in
Fig. 10 are very similar to velocity profiles measured by Verhelst and Nieuwstadt [33]. Although we cannot
make a one-to-one comparison due to the different aspect ratio (W/H = 8), viscosity ratio (β = 0.73)
and Deborah number (De = 1.42) used in their experiment, it is particularly remarkable that a local
maximum in the u-velocity profile at the centre line (y = 0) is captured at We = 1.2 as in Fig. 19 of
[33] at x = 1.5R, just behind the cylinder. This is not seen in the two-dimensional numerical simulations
of Oliveira and Miranda [21] with the FENE-CR model. The three dimensional effects may also be seen
from the computed contour surfaces of stress component Txx and isobaric surfaces in Fig. 11 and Fig. 12,
respectively. The computed contour surfaces of Txx show that the cylinder wake is gradually extended
downstream with increasing Weissenberg number. As the wake region develops behind the cylinder along
the channel symmetry line the fluids within the viscoelastic boundary layer next to the cylinder surface
move slightly slower, leading to higher extreme values of velocity outside the boundary layer, as may be
seen from Fig. 10. However, this also leads to a decrease in Txx on the cylinder surface following the initial
increase during startup. From the isobaric surfaces, a significant spanwise pressure gradient is observed
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along the x = ±R line on the cylinder surface, particularly close to the end-wall junctions. The pressure
difference between ±10R on the channel centre line indicates a pressure drop of 52.44, 49.40 and 50.08 at
Weissenberg numbers of 0.0, 0.7 and 1.2, respectively. This trend is similar to what has been established
in the confined circular cylinder drag coefficient with Weissenberg number. In Fig. 13 we compare the
extreme values of the stress component Txx on the cylinder surface and along the centre line in the wake
with the two dimensional calculations on the same mesh M1. The comparison shows a 24.58% reduction
in the extreme value of Txx on the cylinder surface and a 43.66% reduction in the extreme value along the
channel centre line in the wake. As one of referees pointed out the main reason for this difference is the
definition of Weissenberg number based on average velocity in the channel symmetry plane, rather than
a volumetric average, which would in this case have given a value of We = 0.55 rather than We = 0.7.
We also observed good agreement for Txx contours between our two-dimensional simulations at We = 0.9
and three-dimensional simulations at We = 1.2 where both flows have very close average mass flow rates.

Although the calculations at lower Weissenberg numbers converged monotonically and all the RMS
values dropped to less than 10−4, the calculation at We = 2.0 diverged after several months of computa-
tion, due to the HWNP. As time goes to infinity the wake region region behind the cylinder gets thinner
and thinner and the position of the extreme value of Txx approaches the cylinder surface. This high
gradient region leads to oscillations in extra stress tensor (as in Fig. 5 at We = 0.9) and eventually leads
to divergence of the solution, similar to what is observed in 2D. However, during this initial monotonic
convergence (before any oscillations are seen in the extra stress tensor) we observe several interesting flow
phenomena which are entirely absent at the lower Weissenberg numbers. From the streamtraces presented
in Fig. 14 in the planes z = ±4.99R, we observe the emergence of a corner vortex on the upstream side of
the wall-cylinder junction, as in the experimental work of Shiang et al. [29]. In addition, the streamtraces
start to merge close to the downstream wall-cylinder junction as shown in Fig. 15. This may possibly be
the mechanism of a three dimensional instability such as that characterised in the previous investigations
of McKinley et al. [19] and Shiang et al. [29]. However, we have not observed a three dimensional cellular
structure within the flow. We believe that the instabilities observed in experiment are related to periodic
oscillations in the w-velocity confined to a very small region just behind the cylinder, causing the merging
of streamtraces. Additionally, the high curvature of the streamtraces in the third dimension, along the
centre plane in the wake, may be relevant to three-dimensional viscoelastic instabilities.

More work is necessary, including the use of more refined meshes before any conclusion can be made
on three dimensional instabilities in viscoelastic flow past a cylinder in a channel.

4 CONCLUSIONS

We have presented a new unstructured semi-staggered dilation-free finite volume method for the solution
of viscoelastic fluid flow calculations on all-hexahedral elements. The time stepping algorithm used
decouples the solution of the hyperbolic constitutive equation from the solution of the generalised Stokes
problem. The use of the highly efficient PETSc and HYPRE libraries allows us to solve the 3D viscoelastic
fluid flow around a confined circular cylinder on a single processor. However, the numerical results at
high Weissenberg numbers did not converge due to the classical HWNP. The present simulations provide
significant information about the 3D structure within the flow. Our numerical results indicate that the
computed velocity and extra stresses are significantly different from those of 2D simulations, even on the
vertical symmetry plane. In future work we will introduce adaptive local mesh refinement to refine the
mesh only where necessary, allowing very accurate solutions at minimum cost, in order to study mesh
convergence in the wake of the cylinder.
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Mesh Number of Nodes Number of Elements Total DOF ∆rmin/R ∆Smin/R ∆Smax/R

M1 6031 5824 35358 0.0133 0.0117 0.0785
M2 21735 21320 128750 0.0062 0.0056 0.0392
M3 70312 69519 418700 0.0031 0.0029 0.0196

Table 1: Description of quadrilateral meshes used in the present work. ∆rmin is the minimum normal
mesh spacing and ∆Smin and ∆Smax are the minimum and maximum tangential mesh spacing on the
cylinder surface.

Maximum value of Txx Maximum value of Txx

next to cylinder wall in the wake region
We M1 M2 M3 M1 M2 M3

0.5 77.52 78.96 79.71 8.38 8.84 8.98
0.6 91.72 92.97 93.73 14.26 16.08 16.97
0.7 104.99 105.80 106.53 23.82 29.73 33.86
0.8 116.88 116.96 117.78 38.67 55.06 70.42
0.9 126.84 126.24 126.94 61.51 103.53 159.82

Table 2: Convergence of maximum value of extra stress tensor component Txx at the cylinder wall and
in the wake region with mesh refinement (Oldroyd-B fluid).

Maximum value of Txx Maximum value of Txx

Authors at the cylinder wall in the wake region

Present (M3) 106.53 33.86
Fan et al. [11] 106.77 40.05

Owens et al. [23] 106.4 37.1
Alves et al. M60(WR) [1] 100.02 38.33

Kim et al. [17] 107.7 38.8

Table 3: Comparison of maximum value of extra stress tensor component Txx at the cylinder wall and in
the wake region at We = 0.7 (Oldroyd-B fluid).
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We M1 M2 M3 Hulsen et al. [14] Fan et al. [11] Owens et al. [23] Alves et al. [1] Kim et al. [17] Coala et al. [7]

0.0 132.067 132.293 132.344 132.358 132.36 132.357 132.354 132.384
0.1 130.035 130.294 130.349 130.363 130.36 130.355 130.359
0.2 126.263 126.553 126.613 126.626 126.62 126.632 126.622
0.3 122.829 123.122 123.180 123.193 123.19 123.210 123.118
0.4 120.271 120.535 120.581 120.596 120.59 120.607 120.589
0.5 118.593 118.792 118.818 118.836 118.83 118.827 118.838 118.824 118.763
0.6 117.672 117.774 117.771 117.792 117.78 117.775 117.787 117.774
0.7 117.386 117.358 117.320 117.340 117.32 117.291 117.323 117.315
0.8 117.639 117.449 117.371 117.373 117.36 117.237 117.357 117.351
0.9 118.363 117.992 117.880 117.787 117.80 117.503 117.851
1.0 − − − 118.501 118.49 118.030 118.518 117.783

Table 4: Comparison of the dimensionless drag coefficient for 2D flow past a confined circular cylinder in a channel (Oldroyd-B fluid).
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Figure 1: Two-dimensional unstructured mesh with a dual control volume surrounding a node P .

Figure 2: The computational coarse mesh M1 for the flow past a confined circular cylinder with 5824
elements and 6031 nodes.
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Figure 3: Computed steady state Txx contour plots at We = 0.7 on mesh M3 for an Oldroyd B fluid
(β = 0.59). The contour levels shown are 0, 1, 2, 4, 8, 12,16, 20, 24, 28, 32, 36 and 40.

Figure 4: Computed steady state pressure contour plots at We = 0.7 on mesh M3 for an Oldroyd B fluid
(β = 0.59). The difference between the contour levels is 2.5. The pressure field is smooth and free from
checkerboard oscillations.
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Figure 5: Convergence of Txx on the cylinder surface and in the cylinder wake for an Oldroyd B fluid
(β = 0.59) at We = 0.6, 0.7, 0.8 and 0.9. Mesh convergence is observed up to We = 0.7; at We = 0.9 we
can clearly see the effects of the high Weissenberg number problem.
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Figure 6: Comparison of Txx on the cylinder surface and in the cylinder wake at We = 0.7 for an Oldroyd
B fluid (β = 0.59).

x/R

T
xx

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-20

0

20

40

60

80

100

120

140

160

Least Square

Linear upwind

Figure 7: Comparison between least square and linear upwind interpolations for Txx on the cylinder
surface and in the cylinder wake at We = 0.7 on mesh M3 for an Oldroyd B fluid (β = 0.59).
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Figure 9: The computational coarse mesh for the flow past a confined circular cylinder in a rectangular
channel with 307581 nodes and 291200 hexahedral elements (R/H = 0.5 and W/H = 2.5).
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Figure 10: Comparison of the computed x-velocity component for 2D (left) and 3D (right) flow of an
Oldroyd-B fluid past a confined circular cylinder in a rectangular channel (β = 0.59).
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Figure 11: Computed 3D cell centre Txx contours at We = 0.7 (upper) and We = 1.2 (lower) for flow
of an Oldroyd-B fluid past a confined circular cylinder in a rectangular channel (β = 0.59). The contour
levels shown for each plot are 0.1, 2, 4 and 8. On the side walls the closed contours enclose region of high
stresses.
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Figure 12: Computed 3D cell centre pressure contours at We = 0.7 (upper) and We = 1.2 (lower) for
flow of an Oldroyd-B fluid past a confined circular cylinder in a rectangular channel (β = 0.59). The
difference between the pressure contour levels is 2.5.
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Figure 13: Comparison of 2D and 3D Txx on the cylinder surface and in the cylinder wake on the z = 0
symmetry plane for an Oldroyd B fluid at We = 0.7 (β = 0.59).
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Figure 14: Computed 2D streamtraces close to the side plates at z = ±4.99R for flow of an Oldroyd-B
fluid past a confined circular cylinder in a rectangular channel at We = 2.0 (β = 0.59). Transient, just
before onset of oscillations due to the HWNP.

Figure 15: Computed streamtrace plot at We = 2.0 for flow of an Oldroyd-B fluid past a confined circular
cylinder in a rectangular channel (β = 0.59). Transient, just before HWNP.
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