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Abstract

We provide a simple model of sticky nominal debt contracts and fixed
rate debt that can easily be embedded in a dynamic general equilibrium
framework. Once linearised, the debt process increases the order of autore-
gressive dynamics in the system by one; thus potentially introducing more
complex adjustment processes.
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This paper presents a simple model of nominal debt contracting that

can be readily incorporated into a dynamic general equilibrium framework.

Our motivation for so doing is based on the following observations:

1. Collateralized nominal debt contracts are the norm in most countries

with reasonably stable in�ation

2. Adjustments to such contracts are relatively costly, and hence rela-

tively infrequent

3. Many such nominal contracts are written on a "�xed rate" basis

Although a number of papers examine dynamic general equilibrium mod-

els with nominal debt (e.g. Aoki et al (2002)) very little attention has been

paid to the stickiness of such contracts. Yet nominal debt stickiness is ar-

guably easier to understand than product price stickiness. A well-known

criticism of the standard model of product price stickiness is that the �menu

costs�that ultimately must generate stickiness are unlikely to be large. In

the case of debt contracts, in contrast, the costs of adjustment may well be

distinctly larger, since typically this will involve re-assessment of collateral

or other features of creditworthiness.

Of course, if the nature of debt contracts is to have �rst-order e¤ects,

some households face (or act as if they face) a binding credit constraint. A

comprehensive discussion of this issue can be found in Mankiw (2000).

1 Financial institutions

Financial institutions make loans to households based on nominal contracts.

We assume that debt contracts are sticky in nominal terms. To capture this

in a tractable way, we progress by analogy to Calvo�s (1983) model of the

aggregate price level. We assume a constant probability � that any given

debt contract will be adjusted in the next period, with complete adjustment

towards its optimal value if adjustment does take place.

The key point is that households facing a binding credit constraint will

always accept any new debt that �nancial institutions o¤er them. This

means that, at least in some neighborhood of a steady state in which the

credit constraint binds, we can model the level of debt as determined by

�nancial institutions.
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Following Kiyotaki and Moore (1997) we assume that lenders cannot

force borrowers to repay their debts unless they are secured. The optimal

value of debt is then given by some constant fraction (which we normalize

to unity) of households�collateral K. A �nancial institution faces costs in

deviating from this level. If it lends more than this level, part of the debt is

unsecured and it faces default risk on this unsecured portion. If it lends less,

the cost arises from foregone pro�t opportunities. We assume this cost, 
t,

is quadratic in the deviation of real debt from its optimal level1:


t+i =

�
Zt+1=Pt+i �Kt+i

Kt+i

�2
Kt+i (1)

where Zt+1 is the nominal value of a new debt contract set at time t which

will be in force from period t+ 1, and P is the price level.

When a �nancial institution is able to reset the value of its outstanding

contracts, it does so to minimize the cost of the debt deviating from its

optimal value over the expected contract period:

min
Zt+1

Et

1X
i=1

[� (1� �)]i
t+i (2)

where � is the �rm�s discount rate. The �rst-order condition is

1X
1

[� (1� �)]i 1

Pt+i

�
Zt+1=Pt+i �Kt+i

Kt+i

�
= 0 (3)

In what follows we assume Kt is constant. The steady state ratio of the

real value of a new contract2, ZR to collateral is then:

ZR

K
=
1� �(1��)

�2

1� �(1��)
�

(4)

where symbols without time subscripts indicate steady state values. If

steady state in�ation � is positive, this ratio is greater than unity. When

banks reset the debt they choose a value higher than current collateral to

make up for future in�ation. In what follows, we only consider a steady

1To continue the analogy with the Calvo model, compare this with Rotemberg�s (1987)
assumption of a quadratic cost of deviating from the optimal price.

2 In the steady state the nominal value of a contract and the price level will be growing
at the same rate hence their ratio, the real value of the contract, will be constant
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state with zero in�ation, in which case linearizing (3) gives

zt+1 � Etpt+1 = Et
�
[1�B (1)]F
B (F )

�t+1

�
(5)

where lower case letters denote log deviations from steady state, F is the

forward shift-operator (F ixt = xt+i) and B (F ) = 1 � � (1� �)F . This

condition gives the expected value of a new real debt contract at time t+ 1

in terms of the expected path of in�ation.

To develop the intuition behind this equation, assume that in�ation fol-

lows a �rst-order autoregressive process with positive persistence 3,

�t = ��t�1 + "t; � � 0 (6)

where 0 < � < 1 and "t is a white noise error. Then (5) can be rearranged

to give

zt+1 � Etpt+1 = ��t; � � 0 (7)

where � = � (1� �) �2 (1� � (1� �) �)�1 is increasing in �. If in�ation is

above its steady state value, the more persistent is in�ation, the higher the

real value of the contract chosen by �nancial institutions when they reset

the contract�s value in nominal terms since the faster it will be eroded.

2 Aggregate debt

At time t, a proportion � (1� �)i of �nancial institutions will have reset their
contracts at time at time t � i and have not had the opportunity to reset
them since. So we can sum over all contracts and all �nancial institutions

to obtain the real value of aggregate debt at the end of period t

Dt+1 =
�

Pt+1

1X
i=0

(1� �)i Zt+1�i (8)

3Of course, when embedded in a larger model, in�ation will in general be determined
endogenously; but AR(1) reduced forms for in�ation arise quite commonly when there is
some structural stickiness in the in�ation process (see, for example, Clarida et al, 1999;
Wright, 2004)
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Linearizing this gives

dt+1 + pt+1 =
A (1)

A (L)
zt+1 (9)

where A (L) = 1� (1� �)L and L is the lag operator (Lixt = xt�i).
Substituting for zt+1 from (5) gives:

�dt+1 + �t+1 = �Et

�
1

B (F )
�t+1

�
� �dt (10)

Again, the intuition behind this equation can clari�ed by assuming that

in�ation follows the AR(1) process in (6) We can then rewrite (10) as

�dt+1 + �t+1 = �Et�t+1 � �dt (11)

and with further rearrangement obtain

�dt+1 + �t+1 =

�
��+ �

C (L)

A (L)

�
�t (12)

where

� =
�

1� � (1� �) �

and C (L) = 1� ��L.
The left-hand side of (12) is the nominal value of debt issued during pe-

riod t. The �rst term in the square brackets on the right-hand side captures

the adjustment of new nominal debt contracts to the current deviation of

real debt from its optimal value (given by collateral). If, for example, in-

�ation was high at some point in the past, the impact of even a temporary

shock will, given the autoregressive process for in�ation, have a permanent

impact on the price level, and hence the average real value of debt will have

been reduced below the real value of underlying collateral (with the degree

of the reduction being greater, the more persistent is in�ation). As a result,

new debt contracts will involve a degree of catch-up, to bring debt back up

to collateral.

The second term in square brackets captures the impact of expected

future in�ation on the optimal value of the new contract. Given the assumed

AR(1) nature of in�ation, this will in turn be a function of the current

in�ation rate.
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3 Floating and �xed rates

The interest rate payable on debt can be either �oating or �xed. If some

proportion 	 of borrowers holds �xed rate debt, the average rate payable

by credit-constrained borrowers on outstanding debt will be

RDt = 	R
F
t + (1�	)Rt (13)

where Rt is the the short-term nominal interest rate4 and RFt the nominal

interest rate payable on �xed debt. Financial institutions will choose the

(fairly priced) �xed rate on a particular debt contract, Rzt , as the average of

expected nominal rates over the duration of the contract:

Rzt = Et

P1
i=1 (1� �)

iRt+iP1
i=1 (1� �)

i
(14)

= Et
A (1)

A (F )
Rt+1 (15)

The average �xed rate Rft payable by borrowers will then be

RFt = �Rzt + � (1� �)Rzt�1 + � (1� �)Rzt�2 + :::: (16)

= �

1X
i=0

((1� �)L)iRzt (17)

=
A (1)

A (L)
Rzt (18)

Linearizing around a steady state where R is constant so RD = RF gives

rDt = 	
A (1)

A (L)
rzt + (1�	) rt (19)

= Et

"
	

A (1)2

A (L)A (F )
F + (1�	)

#
rt (20)

The system for debt then consists of two endogenous variables rDt and

dt, two equations (10) and (20) which relate them to exogenous variables rt
and �t. We have introduced two new parameters, �, the probability of a

4We assume risk neutrality of �nancial institutions as a simplifying assumption. Any
spread between the central bank�s target rate and the �oating debt rate is also assumed
constant and normalised to zero.
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�nancial institution being able to reset its contract (the average length of

contracts being given by 1
1��) and 	, the proportion of debtors in �xed rate

schemes. It is straightforward to extend the model to allow for the average

length of �xed rate debt to be di¤erent from the average life of a �oating

rate contract.

4 Implications for System Dynamics

We can write our two additional equations in the general form

A(L)dt+1 = Et [G(L;F )�t] (21)

A(L)rDt = Et [H(L;F )rt] (22)

where

G(L;F ) =

�
�

B (F )
� 1
�
F (23)

H(L;F ) = 	
A (1)2

A (F )
F + (1�	)A (L) (24)

Both variables share the common �rst-order AR lag polynomial, A(L).

Sticky debt contracts thus increase the order of autoregressive dynamics

in the system by one. Without introducing undue additional complexity

to the model, this nonetheless raises the possibility of more �interesting�

dynamic adjustment processes than those which arise from most standard

dynamic general equilibrium models.
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