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INTRODUCTION 
enable multistage routing and sorting networks to be 
realised in a compact and lugged p h a r  optic form. 

Several standard interconnection patterns exist but 
perhaps the most useful is the perfect shuffle ( P S )  since 
multiple identical copies can be cascaded in multistage 
interconnection networks for use in sorting of optical 
telecommunication signals, for example. This is not the 
case for the crossover interconnection network where 
each stage differs. Perfect shuffles also can be used in 
algorithms to perform fast Fourier transforms, 
polynomial evaluation and matrix transposition 
(Stone(1)). The optical implementation of a perfect 
shuffle has numerous benefits (Lohmann (2)). not least 
that data may be arranged in a 2-D fashion and the 
whole array shuffled in one operation (Lin et al (3)). 
This operation may be carried out between two arrays of 
multi quantum well (MQW) modulators (Parry et al 
(4)), with the modulators and the optical interconnect 
element all arranged in the same plane (so called 
planar-optics, Jahns et al (5 ) ) .  Crossover networks 
have recently been demonstrated optically in planar- 
optic configurations (Song et a1 (6))  The planar-optic 
configuration has the advantage that the optical paths 
are folded into a compact and rugged structure and the 
various components are kept in good alignment. 
Moreover, the alignment can be performed 
lithographically so high accuracy and reproducibility 
can be achieved. This makes the planar optic type of 
interconnect ideal for interconnecting VLSI or WSI 
circuits. Interconnects performed electronically are 
beginning to reach their limits as the chips are 
progressively increasing in size and speed. One problem 
is that of distribution of the same clock signal to several 
points on the wafer surface at the same instant. This has 
been addressed by the development of novel, self- 
focusing Fresnel-Dammann gratings, and Fresnel 
computer generated hologram fanout and focusing 
elements which have been demonstrated in a slanted 
axis, multiple reflection, planar optic configuration 
(Godwin et al (7)). In this paper we concentrate on the 
task of transferring data from one part of the chip to 
another in an optical bus i.e. transfer of an image. 
Moreover, we require the optical interconnection to 
interchange the pixels between the input and the output 
in order to perform a perfect shuffle operation. This will 
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THE 2-D PERFECT SHUFFLE 

The perfect shuffle was originally defined to act upon 
1-D data (1). such that the data are divided into two, 
and the two halves perfectly interleaved, in analogy 
with shuffling a pack of cards (fig.1). If the data are 
given addresses, numbered sequentially in binary, it can 
be seen from fig.1 that the perfect shuffle operation 
corresponds to a barrel roll of the address bits (ie the 
data at address abcd goes to address bcda, where a, b, c, 
d are the address bits, and can be 1 or 0). In order to use 
the advantages of optical interconnection, however, 
these 1-D data sets must be mapped into two 
dimensions (2). (In an electronic circuit this could be a 
hard-wired mapping.) This is not a unique operation, 
and there are many possible mapping schemes. The 
implementation of a perfect shuffle in 2-D may also be 
defined in many different ways, and the choice of 2-D 
shuffle must be made compatible with the mapping 
scheme chosen. In this paper we consider two such 
mapping schemes, and their corresponding 2-D perfect 
shuffle operations. 

The first mapping scheme we consider was proposed by 
Stirk et a1 (8), who termed the corresponding shuffle a 
folded perfect shuffle. The mapping scheme is a simple 
one, and allows all of the algorithms designed for 1-D 
data to be used in 2-D. The 1-D data is Mitten along 
rows of a 2-D matrix, a new row being started when the 
previous one is full (see fig.2). This corresponds to the 
mapping of the I-D address, [abcd], to the 2-D address, 
[ab,cd] [row address, column address]. The required 
2-D perfect shuffle must therefore move the data at 
address [ab,cd] to address m,da], and this operation 
may also be Seen in fig.2. 

The second mapping scheme was described by Taylor 
(9). and takes [abcd] into [ac,bd] (extending to larger 
addresses such that [abcdef ...I -+ [ace ..., bdf ... 1). This 
mapping scheme may be seen in fig.3. The 
corresponding 2-D perfect shuffle comprises perfect 
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therefore refer to this type of 2-D shuffle as a double 
perfect shuffle): 

[abcd] + I-D IO 2-0 mapping + 
[ac,bd] + double PS + 
[ca,db] + 2 - 0  IO I-D mapping + [cdab] 

[abcd] + 1-D PS + 
[bcda] + I-D PS + [cdab] 

This has the advantage that, in routing networks for 
instance (provided that &port switching modules are 
used), only half the number of interconnection stages 
are required. The effect of a double perfect shuffle 
operation could be performed optically by cascading 
two sets of optical hardware for performing a I-D 
perfect shuffle. However, if this can be done using a 
single stage of special optical hardware it will lead to 
more compact and more efficient systems. It is worth 
noting that the reverse is not possible; special double 
perfect shuffle optical hardware cannot be used to 
perform a 1-D perfect shuffle. For such a shuffle it is 
necessary to develop special compact optical hardware 
to perform a folded perfect shuffle since this has the 
effect of a single 1-D perfect shuffle. It can be seen, 
therefore, that there is a requirement for the 
implementation of different 2-D perfect shuffles in 
optical hardware. 

HOLOGRAPHIC IMPLEMENTATION 

If we have a regular. nxn, square array of small pixels 
(figA), on a pitch of d, we can get a perfect shuffled 
arrangement of these signals by copying the array four 
times and superimposing the copies. The first step is to 
copy and superimpose the array such that the four 
quadrants of the array overlap perfectly (fig.5). This 
happens when the centres of the copies are placed at the 
comers of a square, having the same orientation as the 
array, and of side ndn. The second step is to shift the 
centres of each of the copies by d/4 in both the x- and 
y-directions (ie, diagonally by d/242). The sense of 
these final shifts, as applied to each of the copies, 
determines the type of perfect shuffle. A maximum of 
24 different shuffles may be formed by shifting the 
centres in different ways (there are four centres, each of 
which may be shifted in one of four directions, but a 
given shift direction may only be used once -this gives 
a total of 4 x 3 x 2 x 1 = 24 possible combinations). For 
instance, the folded perfect shuffle (fig.6a) is achieved 
by moving the centres of the top right and bottom left 
arrays apart along the diagonal joining them, and the 
centres of the top left and bottom right together. The 
double perfect shuffle (fig.6b) is formed by pushing all 
of the centres together along the diagonals (note that the 
centres move by d/4 parallel to the square edge, and so 
the centre spacing decreases by d/2. 

From the above considerations it is possible to see that a 
perfect shuffle may be formed by using a 1:4 fanout 

hologram (Carey et a1 (IO)). This is a lenslike element, 
but with four foci instead of one. If it is used to image 
an array of spots, four copy arrays will appear, the 
centres of which will coincide with the hologram's four 
focal spots. If the distance between these spots is 
chosen according to steps one and two above, a perfect 
shuffle results. Two holograms were chosen for this 
work. One produced a rhombic array of four spots, and 
can be used to perform a folded perfect shuffle, whilst 
the other gave a square array of four spots and could be 
used to perform a double perfect shuffle. 

GENERATION OF THE HOLOGRAMS 

The holograms were designed to operate at 30'. in the 
planar optic configurations shown in fig.7. They were 
generated by calculating the Fresnel interference 
pattern, at the hologram plane, between waves diverging 
from a point source as a reference, and waves 
converging to an array of four spots (with the spacing 
calculated to produce the desired perfect shuffle). The 
interference pattern can be represented by the following 
equation (Kawai and Kohga (1 1)): 

where &$ is the phase difference between reference and 
image waves, x and y are coordinates in the hologram 
plane, and all 0s represent phases in the hologram plane; 

is the phase of the reference beam, Q0 is the phase of 
the image array taken as a whole, and the Qi are the 
phases of the individual light spots, i, in the image (i 
runs from 1-4 in this case). The hologram is stored as a 
binary pattern such that, when cos &$ 2 0, 1 is stored, 
and when cos &$ < 0.0 is stored. The hologram can be 
manufactured as a phase grating such that. on replay, a 
1 represents a K phase delay, and 0 a 0 phase delay. 

Part of the computer generated hologram pattern that 
creates a rhombic array can be seen in fig.8a. and that 
for a square array can be seen in fig.8b. The arrays 
generated by these holograms when illuminated by a 
white light source (in the configuration of fig.7b) can be 
seen in fig.9. A perfect shuffle that has been generated 
holographically can be seen in fig.10. 

CONCLUSIONS 

We have described the design and experimental 
performance of two binary Fresnel holograms which. 
when illuminated by a point source, generate a square 
and a rhombic array of light spots respectively. The 
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square array hologram can be used to double perfect 
shuffle an input array, and the rhombic hologram 
performs a folded perfect shuffle. Depending upon the 
relative spacings of the holographic array and the array 
to be shuffled, 24 different shuffles can be performed. 
Their utility would depend upon the mapping of data 
from 1-D into 2-D, and the function that the particular 
perfect shuffle operation is designed to perform. The 
holograms were demonstrated operating at 30 degree 
oblique incidence in a planar optic configuration 
suitable for integration with VLSI or WSI circuits. 

Fresnel lens for planar optical perfect shuffle”, Optical 
computing topical meeting. Palm Springs, California, 
March 16-19. 1993 Technical digest series, volume 7, 
pp 291-294 

11. 
Appl. Phys.. 30, L2101-L2103 

Kawai. S .  and Kohga, Y.. 1991, Japanese J. of 

ACKNOWLEDGEMENTS 

This work was funded by the SERC through the UCL 
Optoelectronic Rolling Grant. Many thanks to Mark 
Abbott for computer hardware aid and to Rutherford 
Electron Beam Lithographic Facility for mask 
fabrication. 

REFERENCES 

1. Stone. S.H., 1971, IEEE Trans. Comput.. C-20. 
153-16 1 

2. Lohmann,A.W., 1986, Appl. Opt.. 25. 1543-IS49 

3. Lin, S-H., Krile, T.F. and Walkup. J.F., 1987. SPIE, 
152,209-216 

4. Parry. G., Whitehead, M., Stevens, P.. Rivers, A., 
Barnes. P., Atkinson, D., Roberts, J.S., Button, C., 
Woodbridge, K. and Roberts, C., 1991, Phvsica SC~~DQ,  
E, 210-214 

S. Jahns, J., Lee, Y.H., Burrus, C A .  and Jewel], J.L.. 
1992, Appl. Opt., 31,592-591 

6. Song, S. H., Lee, E. H., Carey, C. D., Selviah, D. R. 
and Midwinter, J. E., 1992, Optics Letters, U, No. 18. 
1253-1255 

7. Godwin. D. P., Selviah, D. R.. Carey, C. and 
Midwinter, J. E., 1993, “The self-focusing Fresnel- 
Dammann grating and Fresnel binary CGH for compact 
2-D light spot array generation”. IEE conference on 
Holographic Systems Components and Applications, 
Neuchatel 

8. Stirk, C.W., Athale, R.A. and Haney. M.W.. 1988. 
Appl. Opt., 27,202-203 

9. Taylor, M.G., 1990, Ph.D. Thesis. “Devices and 
Networks for Optical Switching”. University of 
London, UK 

10. Carey, C.D., Selviah, D.R., Midwinter, J.E.. Song. 
S.H. and Lee. E.H., 1993. “Four-foci slanted axis 



oo00 A - A m  
ooO1 B I oO01 
0010 c B 0010 
0011 D J 0011 
0100 E c 0100 
0101 F K 0101 
0110 G D 0110 
0111 H L 0111 
lo00 I E 1oO0 
1001 J M 1001 
1010 K F 1010 
1011 L N 1011 
1100 M G 1100 
1101 N 0 1101 
1110 0 H 1110 
1111 P - P 1111 

Figure 1: 1-D perfect shuffle 
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Figure 2: 1-D to 2-D mapping and shuffle for folded perfect shuffle 
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Figure 3: 1-D to 2-D mapping and shuffle for double perfect shuffle, 
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Figure 6a: Shifts required for a folded 
perfect shuffle 
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Figure 6b: Shifts required for a double 
perfect shuffle 
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Figure 7a: Planar-optic configuration for performing a perfect shuffle on an input array at 30' 
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Figure 7 b  Planar-optic configuration for testing a holographic fanout element at 30" 
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Figure 8: Part of the hologram pattems for the 2x2 array generators 
a) rhombic 
b) square 

a) b) 
Figure 9: Output of 2x2 array generators 
a) rhombic 
b) square 

Figure 10: Holographically 
generated perfect shuffle 


