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Abstract

The effects of interactions between bubbles of different sizes during bubble growth
in a polymeric foam are investigated. Two models are used: a two-dimensional sim-
ulation in which both the effects of gas diffusion through the polymer and bubble
interactions through fluid stresses are included, and a three-dimensional model in
which bubbles are assumed to interact only through direct competition for gas, and
diffusion of gas into the bubbles is instantaneous.

In the two-dimensional model, two different bubble sizes are used in a hexagonal
array. For slow gas diffusion, the additional polymer stresses have little effect on
the final bubble size distribution. For faster gas diffusion the growth occurs in
two phases, just as was found in earlier work for isolated bubbles: an initial rapid
viscous phase and a later phase controlled by the rate of polymer relaxation. In this
later phase, polymers in the windows between neighbouring bubbles become highly
stretched and these regions of high stress determine the dynamics of the growth.

In the three-dimensional model we consider the effects of rheology on a pair of
different-sized spherical bubbles, interacting only through competition for available
gas. Viscoelastic effects result in a wider distribution of bubble volumes than would
be found for a Newtonian fluid.
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1 Introduction

Polymer foams are used in a wide variety of industrial applications, from car
parts to insulation. One major method of manufacture is injection moulding,
in which thermoplastic foam products are produced by injecting polymer that
has been pressurised to enable it to absorb a blowing agent, and heated to a
temperature above the glass transition temperature to allow moulding. Foam-
ing results from a sudden reduction in pressure. After foaming is complete,
the part is cooled at which point the polymer solidifies.

In this process, the product will be defective if a single large bubble spans a
very large region of the mould, or if there is a significant variation in the foam
density in different regions of the mould. For this reason, it is necessary to
investigate the effect of various physical parameters on the size distribution of
bubbles.

Much of the previous work in this area, including ours, has used the cell model
to investigate individual gas bubbles, spherical because of their isolation, grow-
ing in either a Newtonian [1, 4, 3, 16, 17, 7] or viscoelastic [19, 20, 21, 8, 2, 13,
12, 6] fluid. A few authors [15, 11] have investigated more realistic geometries
using Newtonian fluid models.

In Everitt, Harlen & Wilson [5], we investigated the expansion of foams con-
sisting of identical gas bubbles. Using a two-dimensional model with hexagonal
cells we were able to ascertain how the presence of neighbouring bubbles affects
the expansion of the foam and the stresses in the polymeric fluid. However, be-
cause the bubbles were identical this work provided no insight into the effects
of competition between bubbles for a limited supply of gas.

Solving the coupled problem of gas diffusion and bubble expansion in a ran-
dom distribution of bubbles in three dimensions is very difficult and so we con-
sider two simplified models. In the first model we extend the two-dimensional,
hexagonal, arrangement of bubbles studied in [5] to bubbles of two differ-
ent sizes in order to investigate the effects of viscoelasticity and gas diffusion
when bubbles are in close proximity to one another. In the second we consider
a three-dimensional system in which two spherical bubbles of different sizes
expand in a fluid in which the gas diffusion is effectively instantaneous. We
examine the effect of viscoelasticity on the evolution of the bubble volume
ratio.
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2 Governing Equations

The flow of an incompressible polymeric fluid with velocity field u may be
described by the equations of conservation of mass:

∇ · u = 0, (1)

and momentum, in the absence of inertia:

0 = −∇p+∇ · σ, (2)

where p is the pressure within the fluid, and σ is the fluid extra stress tensor,
determined as a function of the flow history by the constitutive equation.

We assume that the expansion rate is sufficiently small that inertia may be
neglected. This is justified provided the Reynolds number is sufficiently small,
and an analysis using physical parameters for the growth of an isolated bubble
was given in [6], predicting a Reynolds number of around 10−13. In a disordered
array of bubbles, rapid rearrangement events may result in fast motion for
which inertia is not negligible; we will not consider such events here.

We will model our fluid as an Oldroyd-B fluid, for which the stress is given by

σ = 2µE +G(A− I), (3)

E = 1
2
(∇u+ (∇u)T ), (4)

5

A= −1

τ
(A− I), (5)

where
5

A=
∂A

∂t
+ u · ∇A−A · ∇u− (∇u)T ·A (6)

is the upper convected derivative of the orientation tensor.

On the boundary between the fluid and the bubble, a stress balance normal
to the surface (using normal vector n) gives the boundary condition on σ:

−pn+ σ · n = −pgn+ Sn∇ · n, (7)

where S is the surface tension coefficient and pg the gas pressure in the bubble.

We model a situation analogous to injection moulding, in which gas is dissolved
in the polymer solution and can diffuse into the bubbles. The expansion of
bubbles in our fluid will be driven by an excess of gas, which is present in the
fluid with a concentration c(x, t). The gas diffuses through the liquid obeying
the advection-diffusion equation:

Dc

Dt
= D∇2c (8)
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in which D is the diffusion coefficient.

For a bubble of total volume V (t), the mass conservation equation governing
the quantity n of gas in this bubble is

dn

dt
= D

∫

bubble surface
∇c · n ds

and if we incorporate the gas law, this gives us an equation governing the
pressure within the bubble:

d(pgV )

dt
= RTD

∫

bubble surface
∇c · n ds (9)

in which R is the gas constant and T the temperature.

On the surface of each bubble, Henry’s law governing the thermodynamics of
the bubble interface states that

c = Hpg (10)

where H is the Henry’s law constant. This constant controls the concentra-
tion of gas in the liquid at the bubble-liquid interface for a given bubble gas
pressure. Henry’s law is valid for dilute solutions where the gas concentrations
are below 1%. The typical values of H and pg0, the initial gas pressure in the
bubble, that we shall use, give an initial concentration of 0.46% (assuming
a liquid density of around 1000kgmol−1 and the molar mass of the gas as
0.044kgm−3, corresponding to carbon dioxide).

2.1 Dimensionless form of the equations

We shall consider systems in which the gas concentration in the liquid is ini-
tially uniform. Henry’s law (10) then forces the gas pressure in all the bubbles
in the system to be instantaneously equal, with a value which we denote pg0.
We use this value to make the gas concentration in the fluid dimensionless by
scaling with pg0/RT . The system is not in equilibrium at time t = 0 as the
bubble pressure does not balance the surface tension, causing the bubbles and
hence the system to expand against atmospheric pressure, pa at infinity. In
all our simulations pg0 is chosen to be larger than the surface tension of the
smaller bubbles so that both bubbles expand.

We make all times dimensionless with the fluid relaxation time, τ , and lengths
dimensionless with R0, the initial radius of the largest bubble.

We scale all pressures (in both liquid and gas) using the difference from pa,
atmospheric pressure, relative to the initial difference pg0−pa between the bub-
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ble gas pressure and the external pressure, so that the dimensionless pressure
variables are

P =
(p− pa)

(pg0 − pa)
, Pg =

(pg − pa)

(pg0 − pa)
.

The non-dimensionalisation used here is the same as in reference [5].

Our governing equations, with all quantities dimensionless, become:

∇ · u = 0, (11)

0 = −De∇P +∇ · [2(1− β)E + β(A− I)] , (12)
5

A= −(A− I), (13)

Dc

Dt
= N∇2c, (14)

and
d

dt

(

(pa + (pg0 − pa)Pg)V

pg0

)

= N
∫

bubble surface
∇c · n ds. (15)

We have introduced three dimensionless quantities: the Deborah number, De,
the viscosity ratio β and the dimensionless diffusivity N . These are defined
fully in table 1, along with the values these groups take in the results presented
here; in table 2 we present the values we have used for the physical parameters
from which they are derived.

Table 1
Dimensionless groups arising in the dimensionless equations of section 2.1

De =
(pg0 − pa)τ

(µ+Gτ)
Deborah number: Ratio of the bubble growth rate
at the zero-shear-rate viscosity to the polymer re-
laxation rate

1.8–9

β =
Gτ

(µ+Gτ)
Viscosity ratio: Proportion of zero-shear-rate vis-
cosity contributed by polymer

0–0.8

N =
Dτ

R2
0

Timescale ratio: Ratio of the polymer relaxation
time to a typical gas diffusion time

0.1–∞

Γ =
R0(µ+Gτ)

Sτ
Capillary number: ratio of viscous force (based on
zero-shear-rate viscosity) to surface tension

∞

Φ = RTH Dimensionless solubility of the gas in the liquid 0.32

The boundary conditions at the liquid-bubble interface become:

−DePn+ [2(1− β)E + β(A− I)] · n = −DePgn+
1

Γ
n∇ · n (16)

and

c = Φ
(pa + (pg0 − pa)Pg)

pg0
. (17)
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Table 2
Physical parameters

Parameter Value Units

Gas constant, R 8.3 Jmol−1K−1

Temperature, T 370 K

Henry’s law constant, H 10.5 10−5molN−1m−1

Elastic modulus, G 0–10 105Nm−2

Polymer relaxation time, τ 1 s

Solvent viscosity, µ 0.2–1 105Nsm−2

Diffusivity, D 0.1–∞ 10−12m2 s−1

Initial radius of large bubble, R0 1 10−6m

Surface tension coefficient, S 0 Nm−1

Pressure outside the fluid, pa 1 105Nm−2

Initial bubble gas pressure, pg0 10 105Nm−2

Two further dimensionless variables have been introduced here: Γ, the capil-
lary number, and Φ, which is a dimensionless representation of the solubility
of the gas in the liquid. These are also defined in table 1.

3 Bidisperse hexagonal array of bubbles

In reference [5] we investigated the growth of identical bubbles in a two-
dimensional hexagonal array. One of the principal observations of this work
was that, at high Deborah number, the large elastic stresses generated in the
edges between bubbles control the second stage of bubble growth, where the
bubble pressure is balanced by the elastic stress. However, since all the bub-
bles were identical, symmetry arguments guaranteed that each bubble would
absorb exactly its share of the available gas, so the only effect of competition
between bubbles for limited gas supply was a global reduction in growth rate
as the gas supply ran down.

In this paper, we extend the two-dimensional simulation method to consider
bubbles of different sizes. In the earlier work, a periodic unit containing 1/12
of a single bubble was sufficient. Here, by effectively tripling the size of our
computational domain, we can extend the scope to systems in which there
are two different initial bubble sizes, one occurring twice as frequently as
the other – see figure 1. Throughout this section, we will refer to the less
frequently occurring bubble as bubble 1 and the more frequently occurring
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bubble as bubble 2. In cases where the initial sizes of bubbles 1 and 2 are
equal we reproduce the results of the simulations in reference [5].

bubble 1

bubble 2

A B

C

D
E

Fig. 1. Diagram showing the two dimensional arrangement of bubbles.

3.1 Governing Equations and Boundary Conditions

We assume that the bubbles are initially circular with a uniform initial gas
concentration profile in the liquid so that the initial gas pressures in the bub-
bles are equal. We also assume that the polymers in the liquid are unstretched
at t = 0. In a foaming process bubbles nucleate at different times produc-
ing bubbles of different sizes. Nucleation is a highly complex process and has
been the subject of much investigation [10, 14, 18]. Here, we do not attempt
to model the nucleation process, but rather we introduce bubbles of different
initial sizes to imitate the effect of bubbles having nucleated at different times.
Thus, our initial conditions (in terms of dimensionless variables) are:

Pg1 = Pg2 = 1; c = Φ; A = I; u = 0.

The subscripts 1 refer to quantities in bubble 1 and subscripts 2 refer to those
in bubble 2. The system at t = 0 is not in equilibrium, because of the different
effects of surface tension on bubbles of different sizes.

The evolution of the system is governed by equations (11–15). Since we now
have two different bubbles interacting within our periodic element of fluid,
we must pay attention to the boundary conditions on both bubbles. The gas
conservation equation (15), integrated over time, becomes
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(pa + (pg0 − pa)Pg1)

pg0
ab1 = a

(0)
b1 + 12N

∫

t

∫

DE
∇c · n ds dt,

(pa + (pg0 − pa)Pg2)

pg0
ab2 = a

(0)
b2 + 6N

∫

t

∫

BC
∇c · n ds dt.

where ab1 and ab2 are the dimensionless areas of bubbles 1 and 2 respectively.
Since we have used the radius of the larger bubble as our lengthscale, this
bubble has initial area π.

The boundary conditions at the bubble-liquid interfaces become ∇c · n = 0
on the straight edges AB, CD and AE of figure 1, and

c = Φ
(pg0 − pa)Pg1 + pa

pg0
on DE, (18)

c = Φ
(pg0 − pa)Pg2 + pa

pg0
on BC, (19)

−DePn+ (2(1− β)E + β(A− I)) · n

= −DePg1n+
1

Γ
n∇ · n on DE, (20)

−DePn+ (2(1− β)E + β(A− I)) · n

= −DePg2n+
1

Γ
n∇ · n on BC. (21)

Finally, we consider a virtual work argument in which we consider the work
done by the fluid stress, bubble gas pressures, ambient pressure and surface
tension in changing the bubble areas an infinitesimal amount. This gives the
following dimensionless equation relating the expansion rate of the system to
the gas pressure differences:

∫

Af

σ : E dAf =
DePg1
12

dab1
dt

+
DePg2

6

dab2
dt
− 1

Γ

(

dC1

dt
+

dC2

dt

)

, (22)

in which Af is the fluid area, C1 is the length of the bubble interface DE and
C2 the length of the interface BC.

3.2 Calculation Method and Geometry

Following the method described in [5], we base our calculations on the original
split Eulerian-Lagrangian scheme introduced by Harlen [9]. The equations are
solved on triangular finite elements that move and deform with the fluid. At
each time step, an estimate of the global expansion rate L̇/L (where L is the
linear dimension of our triangular periodic region) is used to solve the mass

8



and momentum equations, and repeated iteration using (22) gives the true
expansion rate. The gas diffusion is solved using the same finite elements,
and the configuration tensor A is then found by solving equation (13) in the
Lagrangian frame where the upper convected derivative reduces to an ordinary
time derivative. The full details of this calculation are given in [5]. The only
differences to the calculation here are the slight modifications required to take
account of the presence of the two different bubbles.

In all the results we shall present here, the larger bubble has initial radius 1
(as prescribed by our nondimensionalisation), the smaller bubble has initial
radius 1/2, and the initial bubble centre-to-centre distance is 3. This means
that when the more frequent bubble is the larger, the initial area concentration
of gas is π/6

√
3 ≈ 0.3, and when the less frequent bubble is larger, the initial

gas fraction is π/9
√
3 ≈ 0.2.

3.3 Results and Discussion

For a system identical to this one but with monodisperse bubbles, we found in
earlier work [6, 5] that the rate of diffusion of gas through the liquid phase and
the proportion of the zero-shear-rate viscosity from the polymer, β, affect the
dynamics of the expansion and the shape, but not the final size, of the bubble.
The extension of the two-dimensional hexagonal geometry to include bubbles
of two different sizes now allows us to investigate the effects of diffusivity and
viscoelasticity on the relative sizes of the bubbles as well as the shape of the
gas-liquid interface.

When bubbles are identical, surface tension acts to limit the final bubble
size by modifying the equilibrium gas pressure and imposes a circular bubble-
liquid interface at long times (or circular arcs connected by black films). When
bubbles of different sizes are present, the phenomenon of Ostwald ripening

occurs. If there were no interaction between bubbles the final gas pressure
difference in a circular bubble of dimensionless radius R would be, from (20)
or (21),

Pg∞De = 1/(ΓR).

Thus, small bubbles would have a larger final gas pressure than large bubbles.
However, if the gas can diffuse through the liquid then the gas concentration
profile becomes uniform throughout the liquid so that all the bubbles must
have the same gas pressure. As the concentration of gas in the liquid falls,
the pressure in the small bubbles becomes lower than the critical pressure
required to maintain their size. Gas now diffuses into the large bubbles from
the smaller ones causing them to shrink in size and ultimately disappear.

For large capillary number the timescale associated with the late, surface
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tension driven, phase of the expansion is much larger than the timescales as-
sociated with both the gas diffusion and the viscous, or viscoelastic, expansion
and so the system expands to a quasi-equilibrium state before Ostwald ripen-
ing occurs causing the smaller bubble to shrink to zero. We will pay most
attention to this first stage of bubble development, since in a real polymeric
foam, the system would be quenched in some way before ripening occurs. Thus
henceforth we will only consider the limit of high capillary number Γ→∞.

We begin by considering the expansion of bubbles in a Newtonian fluid, β = 0,
and consider the effects of gas diffusivity. At early times, the bubbles are small
and do not feel each other’s presence, so we can model them as circular gas
regions surrounded by an annular fluid region. The spherical analogy of this
model was discussed in detail in [5]; here we simply note that when there is
no surface tension (infinite capillary number) the conservation of momentum
equation (12) becomes

De
ȧb
ab

X

X + ab
= Pg (23)

where X is the dimensionless liquid area around the bubble in question. It is
not obvious a priori how a finite volume of fluid should be partitioned between
bubbles of different sizes to determine X; we discuss this problem further in
section 4.2. Since we are looking at early times, the bubble area, ab, increases
as

ab = a
(0)
b



1 +
1

De



1 +
a

(0)
b

X



 t



+O(t2). (24)

We can see that the initial growth rate is larger for bubbles with a larger
value of a

(0)
b /X. Consequently, if we were to assume that each bubble feels

all the fluid around it, so that X is equal for all bubbles, we would expect
the larger bubbles to expand faster, resulting in a widening of the bubble size
distribution as the foam expands. The observations, however, are not quite
so straightforward. In figures 2 and 3 we plot the evolution of bubble area
ratio (the ratio of the larger bubble area to the smaller) against time for
various different values of the diffusivity N . In both of these figures (and all
the other results we show for a Newtonian fluid) we assume a nominal polymer
relaxation time in order to define our dimensionless diffusion parameter and
Deborah number. In fact the dynamics are affected not by N and De in this
case, but only by the ratio between them, which is the Péclet number:

Pe =
De

N
=

R2
0(pg0 − pa)

D(µ+Gτ)
.

In figure 2, which is for the case in which the more frequent bubble, bubble 2,
is the larger, we see that at early times the bubble area ratio increases from 4,
indicating that the bubble area distribution widens as the simple assumption
for X predicts. However, in figure 3, in which the less frequent bubble, bubble
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Fig. 2. Evolution of bubble area ratio for bubbles in a ratio of one small to two large
bubbles for a Newtonian fluid with β = 0, Γ =∞ and Φ = 0.32. The solid line is for
fast diffusion Pe = 0.9, the dashed line a moderate value Pe = 1.8 and the dotted
line, Pe = 9. The initial bubble area ratio is a
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Fig. 3. Evolution of bubble area ratio for bubbles in a ratio of one large to two small
bubbles for a Newtonian fluid with β = 0, Γ =∞ and Φ = 0.32. The solid line is for
fast diffusion Pe = 0.9, the dashed line a moderate value Pe = 1.8 and the dotted
line, Pe = 9. The initial bubble area ratio is a

(0)
b1 /a

(0)
b2 = 4.

1, is the larger, for early times the bubble area ratio decreases, indicating a
narrowing of the area distribution. The reason for this discrepancy is that
our näıve assumption took no account of the bubble frequency. The more
frequent bubble feels a smaller area of liquid, allowing it to have a larger
initial growth rate (relative to its size) than the less frequent bubble. Thus
the area distribution widens if the more frequent bubble is larger, and narrows
if it is smaller.
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After the initial phase, diffusion becomes important. Higher diffusivity causes
the big bubbles to grow larger relative to the little ones, essentially because
they have a larger surface over which to draw in gas from the liquid. We can see
that, in both figures 2 and 3, the final bubble area ratio is larger if diffusivity
is high than if it is small.

Once viscoelasticity is introduced into the system, there are three timescales:
the polymer relaxation time, the characteristic bubble growth time and the
gas diffusion time. These provide the two dimensionless parameters N and De.
We begin by considering the case of slow diffusion, N ¿ 1. The expansion
takes place in three stages, just as for an isolated bubble [6]. In the initial
expansion phase, the bubbles respond to their initial gas pressure, resisted
by the solvent viscosity. The initial growth is faster for viscoelastic fluids as
the solvent viscosity is lower (for the same zero-shear-rate viscosity). In the
second phase, polymer stresses become important, and the bubble growth rate
in a viscoelastic fluid is restricted relative to growth in a Newtonian fluid. The
final expansion phase is governed by the slow diffusion timescale: growth is
slow and the polymer stresses relax.

In figure 4 we show the bubble areas for the slow-diffusion case, in the con-
figuration of two large to one small bubble. The final bubble sizes are very
similar for the different cases, indicating that for slow diffusion, the presence
of viscoelasticity has little effect on the final bubble size distribution at these
volume fractions.
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Fig. 4. Growth of the bubbles when diffusion is slow, N = 0.1. Here there are two
large bubbles for each small bubble, De = 9, Φ = 0.32 and the capillary number
is high, Γ → ∞. The solid line is for a Newtonian fluid β = 0, the dashed line for
β = 1/2 and the dotted line, β = 4/5.

If the bubble volume fraction were much smaller, so that the bubbles had
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little hydrodynamic interaction, we would expect to see a difference in the
second phase, when polymer stresses are important. The higher curvature of
the smaller bubbles means that the force from the polymer stress in the liquid
surrounding the bubbles restricts the size of the small bubble more than the
larger ones, resulting in a wider distribution of bubble sizes in viscoelastic
liquids compared to Newtonian fluids.

We now look at the case of fast diffusion, N À 1. The gas available in the
liquid is quickly made available to the bubbles resulting in a growth rate which
is limited by the fluid stresses on the bubble surface. The expansion is divided
into two phases, just as for the case of isolated bubbles [6]: an initial, relatively
rapid, viscous phase and a phase controlled by the rate of polymer relaxation.
In the latter stage the polymers are extended along the direction of the bubble
surfaces, and in particular the windows between neighbouring bubbles, where
local stretch has been most rapid, contain very highly stretched polymers
and hence very large elastic stresses (much larger than those seen in the slow
diffusion case).

We begin with the case of two large bubbles for every small bubble, for which
the Newtonian results were given in figure 2. In figure 5 we show the evolution
of the bubble area ratio at a diffusivity of N = 10 for three different values of
β.
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Fig. 5. Evolution of bubble area ratio for bubbles in a ratio of one small to two
large bubbles when diffusivity is high, N = 10. In all curves De = 9, Φ = 0.32; the
solid line is β = 0, the dashed line β = 1/2 and the dotted line β = 4/5. The initial

bubble area ratio is a
(0)
b2 /a

(0)
b1 = 4.

For the two curves corresponding to viscoelastic fluids with β 6= 0, the expan-
sion can be split into three phases. In the first, the polymers are unstretched
and essentially all our fluids behave as a Newtonian liquid. The effective vis-
cosity at these very early times is not the zero-shear rate viscosity µ + Gτ
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but the solvent viscosity alone, µ, so for the same value of De the viscoelastic
fluid responds faster. In this very early stage, just as for the Newtonian fluid,
the majority bubble expands faster: in this case, as the majority bubble is the
larger, the bubble area ratio initially increases.

In the second phase of the expansion, the polymer stresses become important.
The highest stresses are in the thinnest window between different bubbles,
which is the window between two large bubbles. This elastic stress both re-
stricts the expansion of the large bubbles (shown schematically in figure 6)
and also pulls the liquid from the region surrounding the small bubble. This
results in the bubble size distribution narrowing as the expansion continues.

Fig. 6. Schematic diagram showing bubbles in a ratio of two large to one small
bubble. Here the large bubbles constrain one another’s growth leaving the smaller
bubbles in relative isolation.

In the final phase of growth, the supply of gas is running down, the expansion
slows, and the polymer stresses relax. As there is little gas remaining in the
liquid, diffusion is again the limiting process (even though it is fast) and the
large bubbles grow faster due to their larger surface, leading to a slight increase
in the bubble area ratio.

The most important of these phases is the second phase, in which elastic
stresses govern the growth and narrow the area distribution, and so the final
bubble area ratio is smaller for a viscoelastic liquid than a Newtonian in this
geometry.

In figure 7 we show the bubble gas pressures for the late stage of this expansion.
Here we see that, in the second phase of the expansion, when the polymer
stresses build up, the gas pressures in the bubbles in viscoelastic fluids become
larger than those in the Newtonian fluid. As the gas supply runs down, towards
the end of the expansion, Henry’s law guarantees that the gas pressure in the
two bubbles will be the same.
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Fig. 7. Comparison of the dimensionless bubble gas pressures Pg for bubbles in the
ratio of two large to one small bubble between Newtonian liquids and viscoelastic
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curves: viscoelastic liquid, β = 1/2; and upper curves: viscoelastic liquid, β = 4/5.

We now consider the alternative geometry, in which the smaller bubble is
more frequent than the large bubble. In figure 8 we show the evolution of the
bubble area ratio at N = 10 and De = 9, for three different values of β. Here,
as for the Newtonian case of figure 3, initially the bubble distribution narrows
as the smaller bubbles, being more frequent, are resisted by less fluid. In this
early stage, the effective viscosity is µ rather than the zero-shear-rate viscosity
µ + Gτ , so the growth (and the reduction in bubble area ratio) is faster for
the viscoelastic fluids, which have a smaller value of µ.

Once elastic stresses become important at later times, the highest stresses are
again between the large bubbles. However, each small bubble is now trapped
between three large bubbles (illustrated schematically in figure 9), and the ef-
fect of these large stresses is to limit the growth of the small bubble, widening
the area distribution. In figure 8, we see that the initial Newtonian expansion
dominates for these parameter values, resulting in an area distribution which
is narrower for viscoelastic fluids than for a Newtonian fluid. However, if we
compare instead liquids having the same value of µ, the results are rather
different. In figure 10 we compare the evolution of the bubble area ratio for
three different scenarios having the same values of µ, N and pg0− pa, but dif-
ferent values of β. This means that in our nondimensionalisation the Deborah
number is different for the three sets of results.

In figure 10 we see that, if the solvent viscosity µ is the same for the three
fluids, the rôle of the second phase of the expansion, in which the growth of
the small bubble is restricted and the size distribution widens, becomes more
apparent. Now the early-time behaviour of the three systems is the same, and
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Fig. 8. Evolution of bubble area ratio for bubbles in a ratio of one large to two small
bubbles when diffusivity is high, N = 10. In all curves De = 9, Φ = 0.32; the solid
line is β = 0, the dashed line β = 1/2 and the dotted line β = 4/5. The initial

bubble area ratio is a
(0)
b1 /a

(0)
b2 = 4.

Fig. 9. Schematic diagram showing bubbles in a ratio of one large to two small bub-
bles. The expanded section illustrates how three large bubbles restrict the growth
of a small bubble as time progresses.

the effect of viscoelasticity is to widen the bubble size distribution.

In both of these configurations, the expansion in the viscous phase is much
faster than for low diffusivity, resulting in higher polymer stresses. The win-
dows between neighbouring large bubbles are thinner, and those between large
and small bubbles are thicker, than in the low-diffusion case.

In summary, when diffusivity is low, we find that the presence of viscoelastic-
ity results in a wider distribution of bubble sizes than would be found with an
equivalent Newtonian fluid; and when diffusion is fast, the geometric arrange-
ment of our bubbles determines whether the size distribution is made wider
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Fig. 10. Evolution of bubble area ratio for bubbles in a ratio of one large to two small
bubbles when diffusivity is high, N = 10. The solvent viscosity µ = 105Nsm−2 is
the same for all curves, as is the initial pressure difference pg0 − pa = 9× 105Nm−2.
The solid line is β = 0, De = 9; the dashed line is β = 1/2, De = 4.5; and the
dotted line is β = 4/5, De = 1.8. The initial bubble area ratio is a

(0)
b1 /a

(0)
b2 = 4.

or narrower by viscoelastic stresses.

To conclude this section, in figures 11 and 12 we compare snapshots of part of
the developing foam in each configuration of bubbles, at a moderate diffusivity
value N = 1 and with viscoelasticity β = 1/2. The ratio of initial bubble radii
here is 2 (as in all the figures in this section) and the grey scale shows the
elastic stress difference in the liquid, plotted as the difference in the eigenvalues
of A. In either configuration the majority bubble is pulled into a triangular
shape.

4 Foam of isolated spherical bubbles with instant diffusion

In the previous section we saw that, where diffusion was fast relative to the
polymer relaxation time and the viscous growth time, the geometrical con-
straints imposed by the two-dimensional hexagonal bubble arrangement had
significant effects on the bubble dynamics. In order to relax these geometrical
constraints, in this section we consider bubbles in three dimensions which are
isolated as far as the fluid mechanics of the system is concerned, but which
interact through direct competition for a limited supply of available gas.

In order to make analytical progress on this problem, we consider the case
where diffusion is instantaneous and so the concentration of gas in the liquid
is uniform throughout, and thus by Henry’s law all bubbles must have the
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(a) t = 0. (b) t = 0.2. (c) t = 0.4. (d) t = 0.5.

(e) t = 1.0. (f) t = 2.0. (g) t = 5.0.

Fig. 11. Snapshots of the developing foam for a configuration of two large to one
small bubble. Here De = 4.5, β = 0.5, Φ = 0.32, N = 1 and we are in the
high-capillary number limit Γ → ∞. The grey scale indicates the magnitude of
the difference in the eigenvalues of A, and contours are in intervals of 2.
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(a) t = 0. (b) t = 0.2. (c) t = 0.4.

(d) t = 0.5. (e) t = 1.0.

(f) t = 2.0. (g) t = 5.0.

Fig. 12. Snapshots of the developing foam for a configuration of one large to two
small bubbles. Here De = 4.5, β = 0.5, Φ = 0.32, N = 1 and we are in the
high-capillary number limit Γ→ ∞. The grey scale indicates the magnitude of the
difference in the eigenvalues of A, and contours are in intervals of 2.
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same gas pressure at any instant in time. Furthermore we assume that the
bubbles are sufficiently far apart that the bubbles do not interact through fluid
motion but only through the concentration of available gas. This simplifies the
equations of motion considerably, as the bubbles remain spherical. We will
compare the results of this simple approximation to the full two-dimensional
simulations of section 3.

As mentioned in section 3, we will not attempt to model nucleation here. In
our model we shall consider two bubbles of differing sizes to represent bubbles
that nucleate at different times. The initial bubble volumes are treated as
input parameters. Since the bubbles are sufficiently far apart that they do not
interact hydrodynamically, we assume that each bubble is working against an
infinite fluid domain (although gas conservation will be carried out in a finite
domain).

4.1 Governing Equations

We are considering here the case in which diffusion of the gas driving the foam
expansion is instantaneous, so we cannot use (14) to calculate the supply of
gas. The fast diffusion means that the gas concentration, c, must be uniform
throughout the fluid at all times. Consequently both bubbles, regardless of
radius, must have the same gas pressure pg = c/H through Henry’s law. We
are using dimensional quantities here.

In order to restrict the supply of gas, we assume that both the bubbles are
contained in a limited volume of fluid, 4πX/3, so that the available gas in
the fluid is 4πcX/3. Nonetheless, the bubble expansion will be resisted by an
infinite volume of fluid.

If we write the volume of each bubble as 4πVbi/3 then the gas law gives the
gas in a single bubble as 4pgπVbi/3RT , where R is the gas constant and T
temperature. The total gas in the bubbles and the fluid is constant in time,
and conservation of gas is expressed as

pg[Vb1 + Vb2 +RTHX] = pg0[V
(0)
b1 + V

(0)
b2 +RTHX], (25)

where V
(0)
bi is the initial value of the volume Vbi.

Converting to dimensionless variables, we obtain

(pa + (pg0 − pa)Pg)(vb1 + vb2) = pg0(v
(0)
b1 + v

(0)
b2 ) + Φ(pg0 − pa)(1− Pg)X, (26)

in which lengths were scaled with R0, the initial radius of the larger bubble,
as before. We will take bubble 1 to be the larger bubble and note that this
gives v

(0)
b1 = 1.
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In the neighbourhood of each bubble, the flow is locally radial and spherically
symmetric, so the equation of mass conservation (11) gives

ur =
R2Ṙ

r2
, (27)

where ur is the component of u in the radial direction, R is the radius of the
bubble, and r is a general radial coordinate. Due to the spherical symmetry,
the angular orientation tensor components Aθθ and Aφφ are equal, and p, Arr

and Aθθ depend on r and t only. The radial component of the momentum
equation (12) gives

0 = −De
∂P

∂r
+

1

r2

∂

∂r

(

r2σrr
)

− 2σθθ
r

(28)

in which σ is the Oldroyd-B extra stress:

σ = 2(1− β)E + β(E − I). (29)

Evaluating the derivative of σrr and rearranging allows us to write

De
∂P

∂r
=

∂σrr
∂r

+
2(σrr − σθθ)

r
. (30)

It is convenient to transform from the radial co-ordinate r to a Lagrangian
volume co-ordinate x such that r3 = vb + x where (4/3)πvb is the bubble
volume. At the bubble surface, x = 0,

−DeP + σrr = −DePg +
2

Γ
v
−1/3
b (31)

while as x → ∞, P → 0. Integrating (30) across the fluid layer and using
these boundary conditions gives:

0 = DePg +
2

3

∫ ∞

0

σrr − σθθ
x+ vb

dx− 2

Γ
v
−1/3
b . (32)

In this spherically symmetric flow, the constitutive equation for an Oldroyd
B fluid (29) gives

σrr − σθθ = −2(1− β)
v̇b

x+ vb
+ β(Arr − Aθθ)

and so the integrated momentum equation (32) becomes

4

3
(1− β)

v̇b
vb

= DePg +
2

3
β
∫ ∞

0

Arr − Aθθ

x+ vb
dx− 2

Γ
v
−1/3
b . (33)

Equation (13) gives expressions for Arr and Aθθ which can then be subtracted
to give an equation for the first normal stretch difference. Due to the coordinate
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transformation the stretch at any position in the fluid can be followed in the
Lagrangian frame giving

∂Arr

∂t
= − 4v̇b

3(x+ vb)
Arr − (Arr − 1) (34)

∂(Arr − Aθθ)

∂t
=

2v̇b
3(x+ vb)

[(Arr − Aθθ)− 3Arr]− (Arr − Aθθ). (35)

Initially Arr = 1 and Arr − Aθθ = 0 everywhere.

The expansion of the bubbles in this section is governed by the momentum
equation (33) for each bubble, the evolution equations (34)–(35) for the orien-
tation tensor A around each bubble, and the gas conservation equation (26)
globally. Initially we have Pg = 1.

4.2 Competition between two bubbles

For a Newtonian fluid in the limit of infinite capillary number the expansion
rate, v̇b/vb, from equation (33) simplifies to

4

3

v̇b
vb

= PgDe.

This expansion rate is independent of the size of the bubble, thus the ratio of
bubble volumes remains constant in time. In a viscoelastic liquid the increasing
polymer stretch difference reduces the growth rate from that of a Newtonian
fluid of equal solvent viscosity. However, the smaller bubble is affected to a
larger extent than large bubbles due to the 1/(x+vb) term in the elastic stress
in equation (33), resulting in a wider distribution of final bubble volumes. We
saw this effect in the hexagonal array at low diffusivities, where the higher
surface curvature of the small bubbles made the elastic stresses more restrictive
of bubble growth.

Since the total amount of gas in our system is fixed, the sum of the bub-
ble volumes for long times is known before the simulation begins. Thus we
can gain most information about the behaviour of the system by looking at
the ratio of bubble volumes. In figure 13 we plot the relative final bubble ra-
tio, (vb2/vb1)/(v

(0)
b2 /v

(0)
b1 ) as a function of initial volume ratio for two bubbles

in a viscoelastic liquid at infinite capillary number. We see that viscoelastic-
ity widens the distribution of bubble sizes compared to a Newtonian liquid,
with the widening effect more dramatic for more extreme initial bubble vol-
ume ratios. However, at finite capillary number this will only persist provided
the system is quenched before surface tension eliminates the smaller bubble
through Ostwald ripening.
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Fig. 13. The effect of viscoelasticity on the final bubble volume ratio as a function
of initial volume ratio in the limit of large capillary number. The function shown is
the final bubble volume ratio divided by the initial bubble volume ratio. The solvent
viscosity µ and relaxation time τ are the same for the three curves, and Φ = 0.32
throughout. Solid line: Newtonian liquid, β = 0, De = 9 (here the final volume
ratio equals the initial volume ratio); dashed line: viscoelastic liquid with β = 5/6,
De = 1.5; dotted line: viscoelastic liquid with β = 10/11, De = 0.82.

Finally, in figure 14 we attempt a direct comparison between our two models.
We take a high value of the diffusivity (N = 500) in the full two-dimensional
simulation of the hexagonal array, and make a comparison with the limit of in-
finite diffusion for perfectly circular bubbles, analogous to the spherical model
we have used in this section. Here the bubbles expand in an infinite fluid do-
main but in the hexagonal array there is a specific quantity of fluid between
the bubbles. In order to make a direct comparison in figure 14 we use the
standard geometry of section 3 for the case when the larger bubble is less fre-
quent, giving an initial bubble area fraction of π/9

√
3; when the larger bubble

is more frequent, we now use an initial bubble centre-to-centre distance of
√
15

to maintain this initial bubble area fraction. For the spherical model, we need
to partition the finite volume of fluid between the two bubbles. In figure 14 we
compare the hexagonal simulation for bubbles in both configurations with the
circular approximation with fluid partitioned either (a) proportional to the
initial bubble areas; or (b) proportional to the initial bubble circumferences
(or radii). In the former partitioning, the problem is self-similar and so the
bubble area ratio does not change with time.

Since the results of the full two-dimensional simulation depend on the relative
number density of large bubbles to small bubbles, we would not expect to see
quantitative predictions from these circular approximations: but we can see
that partitioning by bubble area gives the nearer prediction, and that the true
result for the final bubble areas lies between our two approximations.
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Fig. 14. Comparison, for a Newtonian fluid β = 0, of the full two-dimensional sim-
ulation at high diffusivity (Pe = 0.018) with approximations assuming perfectly
circular bubbles and partitioning fluid so that: thick dashed line – fluid area par-
titioned proportional to the initial bubble area; thin dashed line – fluid area parti-
tioned proportional to the initial bubble circumference. In the 2D simulations, the
thick solid curves are for two small bubbles to one large bubble, and the thin solid
curves for two large bubbles to one small bubble. The upper curves are the area
of the large bubble, the lower the area of the small bubble. Φ = 0.32. Initially the
large bubble has area π and the small bubble, π/4.

5 Conclusions

We have used two approximations to model the effects of competition and
interaction between bubbles on their growth rates, final sizes and shapes.

Using a full two-dimensional finite-element simulation, we considered a bidis-
perse hexagonal array of bubbles in which one bubble size occurred twice as
frequently as the other. At low rates of diffusion the interfaces between the
bubbles remained relatively thick and the bubbles themselves remained ap-
proximately circular for much of the expansion process. When viscoelasticity
was added to this system, the dynamics of the growth were different but there
was little change in the final bubble size distribution. This is in contrast to
the case when bubbles are very far apart, in which the higher curvature of
the small bubbles means that their growth is inhibited more than for the large
bubbles, so the bubble size distribution is widened by the addition of viscoelas-
ticity. This mechanism is essentially the same as that of Ostwald ripening, in
which surface tension exerts a stronger effect on smaller bubbles causing them
to shrink and eventually disappear.

However, for moderate to high rates of diffusion, when the elastic stresses
(rather than available gas) limit the bubble growth, the interfaces between
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neighbouring bubble becomes thin and highly stretched. In this case the geo-
metrical arrangement of bubbles is critical, as the highest stresses occur near
the edges of the larger bubbles. If the small bubble is more frequent than the
large, each small bubble becomes “trapped” in a triangular region between
three large bubbles and its growth is inhibited; on the other hand if the large
bubble is the more frequent, the large bubbles inhibit one another’s growth
and the stresses in the borders between them draw fluid away from the small
bubble, enhancing its growth.

As a comparison, we considered a fast-diffusion system in three dimensions
in which two bubbles compete directly for the available volume of gas, but
each expands in isolation, so that the bubbles remain spherical. We illustrated
how, in the same way as for the low-diffusion case of our hexagonal system,
viscoelastic stresses have a larger effect on smaller bubbles, widening the final
bubble size distribution relative to that for the same bubbles growing in a
Newtonian fluid. A direct comparison between the two models shows only
qualitative agreement: thus although we cannot use this simpler computation
for quantitative prediction, we can have confidence that the conclusions we
draw from it are justified.

The systems we have considered here are a first attempt to model polydisperse
foaming polymer systems. The assumptions we have made are rather restric-
tive: in a disordered system we would expect to see a polydisperse (rather
than bidisperse) bubble size distribution, and there is the possibility of fast
rearrangement events in which inertia may play a part. Nonetheless, we have
shown that for a wide range of conditions, viscoelasticity widens the bubble
size distribution. Under the conditions where this does not apply, for fast
diffusion with closely-packed bubbles, we have shown that the critical factor
in determining the bubble growth rate is the regions of high polymer stress
between the largest bubbles in the system.
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