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Abstract

Can we still consider real crises and downturns as the effect of exogenous shocks?
We are strongly persuaded that, in order to have a better understanding of the
behaviour of the economy as a whole, the idea of capitalism as a self-sustained bal-
anced system should be abandoned.
This work addresses two main tasks. First, it attempts to retrace the seminal con-
tributions on endogenous business cycle theory, devoting particular attention to
Keynesian and Classical/Marxian models. Second, we develop a model able to en-
compass, at the same time, Keynesian and Marxian drivers of fluctuations. What
we obtain is an important interpretive puzzle. It emerges from the combined in-
teraction of a demand effect, which resembles a rudimentary first approximation of
an accelerator, and of a hysteresis effect in wage formation. The interesting result
provided by our model is the possibility to describe the business cycle movements
either by means of persistent harmonic oscillations, or of chaotic motions. These
two different paths are useful in order to grasp the behaviour of the system when
it is profit-led and when wage-led.
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1 Introduction

What is the most suitable representation of the economic system? Is it a constant
steady growth path, or rather a cyclical path, that provides a more appropriate de-
scription of the economic mechanism? What are the sources of fluctuations and
how business cycle and economic growth are influenced by income distribution?
These are the main questions we are going to address in this work. The simplistic
description of the economic behaviour provided by the mainstream Real Business
Cycle theory, according to which a steady growing output trend is disturbed by
exogenous supply-side shocks, is not able to take into account complexity, inter-
dependency and endogenous evolution as drivers of economic system. The Real
Business Cycle theory describes fluctuations as exogenous equilibrium phenomena.
Moving away from the neoclassical approach, in order to give some explanations to
the above questions, we are going to begin from theories that consider fluctuations
as an endogenous disequilibrium phenomenon. We devote particular attention to the-
ories influenced by Marxian and Keynesian approaches. Both authors have an
intrinsic attempt to describe booms, stagnations and downturns as direct conse-
quences of the nature of capitalism. Even though they find completely different
sources in business cycle, both highlight the instability of the system. The idea
that the economy is inherently unstable joins the theoretical approach of these two
economists. Along with Marx, the Schumpeterian theory is meant to account for
a process of growth systematically characterized by economic fluctuations, driven
by technical change and innovation, and pushed by competition. This approach
reveals a Marxian influence in describing competition as an inner struggle among
capitalist firms without however abandoning the notion that the system eventually
converges back to a Walrasian full-employment state. Conversely, the Keynesian
approach emphasizes the disequilibrium nature of capitalistic dynamics, driven by
endogenous fluctuations in demand.

A long tradition of economic theory has addressed economic phenomena as
equilibrium ones. The famous article by Frisch (1933) was taken as a revolution for
classical economics, since it shed some light on the dynamic properties of economic
systems. Notwithstanding, the static idea is still present: neoclassical theory stud-
ies economic growth as a moving equilibrium, comparing different optimal growth
paths that are due to different parameters values. Again an equilibrium approach
is used, even though in a temporal framework, with attention to the law of motions
of the system. A relaxation of the equilibrium approach allows for the emergence of
fluctuations. These latter arise as the system, which reflects agent decisions, takes
time in order to approach the equilibrium point. If a closed solution is admitted, it
describes the history of variables, starting from a given initial condition. Here we
stand with those who propose to go further, and explicitly study a full dynamic of
the economic system. Dynamic analysis is directed at analyzing the stability, reg-
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ularity and amplitude of oscillations. The study of equilibrium stability properties
is a sort of byproduct. Quoting Dosi (2012):

Such methodological imperative (Dynamic f irst) demands that the explana-
tion for why something exists, or why a variable takes the value it does, ought
to rest on a process account of how it became what it is. Loosely speaking,
that amounts to the theoretical imperative: provide the process story either by
formally writing down some dynamical systems, or telling a good qualitative
historical reconstruction (or, when possible, both). Putting it in terms of nega-
tive prescriptions: be extremely wary of any interpretation of what is observed
that runs just in terms of ex-post equilibrium rationalizations (“it has to be like
that, given rationality”).

Along with dynamics, nonlinearity is the other important element that character-
izes some endogenous fluctuations models. The limitation of linear analysis, often
used, is due to its inadequacy in representing persisting fluctuations, that are not
explosive nor damped. The idea of nonlinearity stems from the awareness that
economic system is a ‘complex evolving system’ (Arthur et al., 1997; Kirman, 2011).
In order to give a description of the behaviour of aggregate variables, nonlinear
dynamical systems allow for more realistic outcomes.

The Goodwin’s, Samuelson’s, Kaldor’s, Kalecki’s models belong to the family
of explicitly dynamic models. We present continuous and discrete time versions of
the aforementioned contributions. Then we first elaborate a discrete time version
of the Goodwin’s model. Its structural instability will push us toward a gener-
alised version, where we introduce, along with the ‘classical’ elements present in
the class-struggle model, a demand effect. It incorporates a Keynesian perspective
in explaining output growth rate. The model we provide bears some intuitions
about the behaviour of a system where a Classical and a Keynesian engine are
compared. In particular, we analyze what conditions determine a quasi-periodic
structure and what determine the emergence of a chaotic behaviour.
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2 Real business cycle theory

Before analyzing the theories that give an endogenous explanation to the business
cycle, we want to briefly summarize the typical ingredients and conclusions of the
neoclassical approach, that has been the dominant and leading theory in explaining
business cycle sources. Basically it describes output fluctuations as the outcome of
exogenous supply-side shocks. In this section we are going to describe in more
details, the historical background, the main features and the criticisms of the Real
Business Cycle theory, following the survey elaborated by Stadler (1994) and by King
et al. (1999).

2.1 Historical background and main features

According to Kaldor (1940) and Lucas (1977), although every cycle is significantly
different from each other, some general regularities arise (the so called ‘macro styl-
ized facts’): relevant coherence of output variations in different economic sectors
(multi-sector homogeneity in output movements), higher investment volatility than
output, consumption less volatile than output, less variability of capital stock than
output, pro-cyclical employment, anti-cyclical unemployment. The emergence of
these stylized facts pushed economist to believe that output fluctuations do not de-
pend on idiosyncratic shocks or on institutional factors. To explain fluctuations,
given the persistence of the mentioned stylized facts, a sort of unified story could
be constructed. In its seminal article, Frisch (1933) claimed stochastic shocks are the
impulse mechanism responsible for variables deviation from the mean. Depending
on their propagation, shocks can be more or less persistent in causing oscillations.
Productivity shocks are considered the most relevant impulse mechanism. Prefer-
ences and policy shocks have been considered having a minor relevance in produc-
ing cycles. Solow (1956) exerted a big influence on tracing productivity drifts as the
main source of output behaviour, becoming the reference point of the neoclassical
growth theory. Using a Cobb-Douglas aggregate production function, therefore as-
suming constant return to scale and perfect market competition, the output growth
rate is the sum of labour and capital growth rate (each one weighted by the factor
contribution coefficient) plus the so called Solow residual:

gy = αgk + (1− α)gl + z (1)

where z represents the total factor productivity, say, the exogenous productivity
component that determines output growth. Later on, the Real Business Cycle (RBC)
model assumes that the drift is instead an exogenous stochastic process. The dy-
namic evolution of the Solow residual is described by Prescott (1986) as a random
walk:

zt = zt−1 + εt (2)
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where ε is an independent, identically and normally distributed error. Describing
the Solow’s residual as a random walk implies the productivity shock to have a
random behaviour which produces continuous oscillations. The neoclassical growth
theory becomes a theory of business cycle as soon as the productivity shock is a ran-
dom walk. The random path of the shock is responsible for the random path of
output growth rate. Presuming to gain a scientific status, mainstream economic
theory attempted to micro-found the RBC: aggregate output fluctuations are the
result of the interactions among perfect rational maximizing agents. Being each
individual perfectly rational, characterized by a quasi-linear utility function that
respects the Gorman’s form, the aggregation process becomes quite trivial (being the
influence of income distribution avoided by the assumption of quasi-linear prefer-
ences): aggregate utility function is the simple sum of individual functions. The
outcome of the final aggregation process is a sort of ‘big individual’, endowed with
a ‘big income’ that shows the average characteristics (linear combination) of other
individuals. The basic assumptions used to micro-found macroeconomic models
are:

i a representative agent framework in terms of consumption (households) and
production (firms) units;

ii maximization of an objective function (production or utility function) under a
resource constraint (available technology or available income);

iii rational expectations and market clearing conditions; no problems of asymmet-
ric information are taken into account, at least in the initial versions;

iv propagation mechanisms for the productivity shocks that take several forms: a
rise in output, being the aim of agents smoothing consumption, could result in
a higher investment and capital stock; lags in investments can transfer current
shocks in the future; a rise in productivity, having a positive correlation with
wages, will determine an increase in wages, then, an increase in labour supply;
inventories can be used by firms in order to absorb changes in demand.

2.2 Critical aspects of RBC

The basic assumptions of the model constitute also its main drawbacks: the nature
of the shocks, the propagation mechanism, the possibility of accounting for reces-
sions and finally, the representative agent framework are the points we are going
to further discuss not as a strength but as a weakness of the model.

Nature of the shocks: the most widespread interpretation for the nature of the
shocks regards them as common shocks. They are assumed to propagate their ef-
fects in a multi-sector, horizontal way, influencing all the production factors at the
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same intensity, independently from capital utilisation or labour skills. Normally,
a productivity shock hits just a few sectors and not the entire economy. Multi-
sector models have not been explored, firstly because they would undermine the
hypothesis of representative firm. Secondly, modeling a multi-sector RBC frame-
work is more difficult than assuming a total factor productivity effect. Allowing
for a disaggregate model, where just some sectors are hit by productivity improve-
ment, implies a higher variability at a sectoral level in order to reproduce output
fluctuations. This happens because the variance of aggregate output across n sec-
tors is lower than the variance within each sector. An other possible interpretation
for the nature of the shocks is that they affect just the marginal efficiency of in-
vestment: only new capital goods are hit by productivity improvement. This kind
of explanation could be considered more close to a Keynesian, demand-led shock.
Empirical evidence shows that, even though investment in new capital goods is
just 7% of GNP on average, it accounts for 20% of cyclical output volatility (Green-
wood et al., 1992). Actually, investment specific shocks are very relevant in explain-
ing output fluctuations, but the difficulty in managing models with vintage capital
have been an obstacle in carrying on this research line. The typical example of
productivity shock provided by RBC theorists is the oil price peak, reached dur-
ing 1970s. Nonetheless, a variation in input prices cannot produce an upward or
downward shift of a presumed production function, but just a movement along the
existing frontier. Empirical evidence shows that energy price variations account for
a range between 8% and 18% of output variations (Kim et al., 1992). The fictitious
and ad hoc nature of productivity shocks creates ambiguity and misinterpretation
in the determination of the effective sources of output fluctuations.

Propagation mechanism: the aim that RBC should satisfy is reproducing output
variability. In order to obtain the serial output correlation, the model adds a ran-
dom walk error, responsible for output volatility. But, without the random walk
behaviour, a temporary productivity shock will produce non-autocorrelated varia-
tions. The RBC is unable to reproduce a serially correlated output with an uncorre-
lated shock: the output fluctuations entirely reflect the shock fluctuations, that are
artificially introduced into the model. Moreover, even though RBC models produce
cycles, they are quite different from the output trend registered in reality: output
trend is strongly positively correlated in the short run, but it is weakly negatively
correlated in the long run. Also the cyclical trend component seems to be mean-
reverted: this path is completely different from the one described by a random
walk.

Recession: as booms are considered the effect of positive productivity shocks, re-
cessions are considered the effect of negative productivity shocks: this interpreta-
tion is quite economically questionable. The institutional framework (legal direc-
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tive for environment protection or for labour safety) is responsible for slow output
growth, changing the production possibility set (Hansen et al., 1993). Recessions
can be seen as periods in which no new technology innovation occurs due to the
depressive impact of bureaucracy and legislation on output. Recessions could also
be considered as the effect of a mismatch between ex-ante resources allocations in
investment projects and ex-post profit realisations.

Representative agent and aggregation process: RBC models are constructed un-
der the hypothesis of perfectly rational agents. Consumption and production activ-
ities are described by means of utility and production functions. The hypothesis of
perfect rationality at the individual level allows for continuous functions at the ag-
gregate level: if each individual has a continuous function, the aggregate function
must be continuous too. Notwithstanding, Kirman (2011) has strongly pointed out
as a continuous aggregate demand/supply function could be the outcome of the
interaction process among discontinuous individual demand functions. Moreover,
the result of the representative agent is possible only if a perfect aggregation pro-
cess is possible. Indeed, the aggregation process performed as a convex combina-
tion is allowed only if a very restrictive hypothesis on preferences is over-imposed:
each agent should possess a preference relation characterized by a Gorman’s form.
Suppose the fictitious perfect aggregation has been performed, the Debreu-Mantel-
Sonnenschein theorem demonstrates that, at an aggregate level, only three proper-
ties of the individual demand functions are maintained: continuity, Walras’s Law,
homogeneity of degree zero. Nothing guarantees the uniqueness and stability of
the equilibrium point reached by the excess demand function. In addition, from the
original general equilibrium theory, no information is provided regarding the ad-
justment market mechanism that allows to reach the equilibrium. How do agents
change their demanded and supplied bundles according to price changes? The ad-
dition of the tatonnement mechanism tries to clarify what should be the behaviour
of the aggregate excess demand function: prices of those commodities that are sup-
plied in excess, should decrease; prices of those commodities that are demanded in
excess should increase. If nothing can be said about equilibrium stability, actually
there is no need to study what would be this equilibrium state. Quoting Kirman
(2011):

Yet, as we know from the well known result of Sonnenschein, Mantel and De-
breu, even with the typical rigorous restrictions on preferences, the equilibria
of economies are not necessarily stable under this adjustment process. This
is unfortunate since the tatonnement process requires little more information
than the Walrasian mechanism at equilibrium. Yet the lack of stability is of
great importance. If equilibria are not stable under plausible adjustment pro-
cess, then their intrinsic interest becomes very limited indeed. If we cannot be
sure that an economy will arrive at an equilibrium, why should we devote so
much time to studying these states?

13



The intertemporal substitution mechanism between labour and leisure is the trick
used in order to justify that unemployment is a voluntary phenomenon and the
economy is always on the labour supply curve (Mankiw, 1989). Individuals should
decrease their labour supply according to decreases in real wages or in interest
rate. Anyway, empirical evidence shows that elasticity between labour and rela-
tive prices is not so high: people slightly react to changes in productivity shocks.
Agents do not decide how much to work according to their expectations on future
changes in real wages. What Lucas considered the strength of this new model,
the micro-foundation procedure, revealed to be the main weakness: no empirical
evidence is recorded about the perfectly rational behaviour of agents (complete-
ness and transitivity), hence no scientific merit can be recognised to this kind of
micro-foundation process. On the other hand, even economies that display rules of
thumb or bounded rationality can have well-behaved aggregate demand/supply
functions. The hypothesis of perfect rationality, which is instrumental to operate a
maximization procedure and to aggregate individual preferences, is the artifact that
was introduced to give a scientific status to macroeconomics. Indeed, it is exactly
this fundamental assumption, being absolutely over-imposed and with no empiri-
cal track record, that makes non scientific mainstream macroeconomic theory. The
evolution of the RBC is the Dynamic Stochastic General Equilibrium model, where
along with the New Classical elements before mentioned, some New Keynesian
ingredients are added, such as imperfect information, sticky prices and market in-
completeness. DSGE models inherit all the unrealistic assumptions and method-
ologies used in RBC models: exogenous stochastic real shocks, perfect maximizing
agents, aggregate production/utility functions. Everything is modeled in a Wal-
rasian framework, where the so called Keynesian ingredients are market frictions
that, at the end, push the system toward a second best equilibrium. In this work
we take an alternative route in explaining business cycle movements and explore
instead endogenous factors driving fluctuations.
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3 Samuelson’s multiplier-accelerator model: the role of in-
vestment in output fluctuations

In this section we are going to discuss the multiplier-accelerator model proposed
by Samuelson (1939a). This work is one of the seminal paper in economic literature
that tries to describe how output volatility can be the result of investment variabil-
ity, embodying a strong Keynesian interpretation of business cycle. It models the
possibility to get output fluctuations in a linear framework. We analyse this con-
tribution because it is able to give a very simple but formalized representation of
endogenous business cycle fluctuations. Simplicity due to linearity is also its main
limitation: it makes impossible to produce persistent output oscillations.

3.1 The model

Firstly, Samuelson clarifies how the concept of the multiplier is not simply related
to the effect of government spending on output: the multiplier provides the ratio
of increased income over investment (private and public). He underlines how the
effect upon private investment was often disregarded. In order to fulfill this theo-
retical lack, he combines the accelerator and the multiplier effect.

Income is the sum of three different components:

i governmental deficit spending;

ii private consumption expenditure, induced by previous public expenditure;

iii induced private investment, assumed to be, according to the acceleration prin-
ciple, proportional to lagged increase in consumption.

An initial public expenditure of one dollar, a propensity to consume equal to one-
half and an accelerator-relation factor equal unity are assumed. Consumption in
current period is related to income increase in the previous period: at t1, aggregate
income increases by just one dollar. In the second period, t2, consumption increases
by one half the income in the previous period. Since Samuelson’s assumption is
that investment has a unity proportional relation to variation in consumption, in-
vestment increases of fifty cents. So basically, a public expenditure injection of 1
dollar in t1 will result in 1 dollar increase in t2 plus the new government expendi-
ture of 1 dollar in t2, reaching two dollars. By changing the value of the propensity
to consume and of the accelerator, the outcome of the model will be very different.
The more relevant aspect of this model is that, according to the values assigned to
the propensity to consume and to the accelerator coefficient, income can have an
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oscillatory behaviour. The model can be analytically represented as:

Yt = gt + Ct + It (3)

Ct = αYt−1 (4)

It = β(Ct − Ct−1) = αβ(Yt−1 −Yt−2) (5)

gt = 1 (6)

so that aggregate income will be:

Yt = 1 + α(1 + β)Yt−1 − αβYt−2 (7)

This equation means: if we have both t− 1 and t− 2 income we can obtain the level
of current income as a weighted sum of the two. Obviously, the result will depend
upon the weight of the two parameters. It is a non homogeneous linear second
order difference equation whose solution is:

Yt =
1

1− α
+ a1xt

1 + a2xt
2 (8)

where x1 and x2 are roots of the quadratic equation:

x2 − α(1 + β)x + αβ = 0 (9)

and a1 and a2 are constant coefficients.
The fixed point, the point reached when Yt = Yt−1 = Yt−2 is:

Y∗ =
1

1− α
(10)

In order the fixed point to be stable, three conditions must be simultaneously sat-
isfied (see Gandolfo (1996)):

1− α(1 + β) + αβ = 1− α > 0 (11)

1− αβ > 0 (12)

1 + α(1 + β) + αβ > 0 (13)

The first equation is always satisfied since, by assumption, propensity to consume
is less than one. Also the third one is satisfied, being the sum of three positive
components. The stability condition is established by the second inequality, so the
system will be stable if:

αβ < 1 (14)

or
α <

1
β

(15)
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Figure 1: Scenario A: Monotonic damping.
Source: Lorenz (1993)

Computing the discriminant we get:

∆ = α2(1 + β)2 − 4αβ (16)

so that ∆ Q 0 if α2(1 + β)2 − 4αβ Q 0, hence:

α Q
4β

(1 + β)2 (17)

The output bahaviour can be classified according to the values of the roots of the
characteristic equation (if they are real or complex) and if their moduli is strictly
less than one or not. From the combination of the nature of the roots and stability
properties, four different cases arise.

Scenario A: any point in this region lies below the function α = 1
β and above the

function α = 4β
(1+β)2 . A constant level of government expenditure will result in a

constant convergence toward the equilibrium. A periodic injection of public expen-
diture will result in a monotonic output behaviour. Two real roots, whose moduli is
less than one, determine a globally asymptotically stable behaviour of the output,
that tends to converge towards the fixed point.

Scenario B: any point in this region satisfies the inequalities α < 1
β , α < 4β

(1+β)2 . A
constant level of government expenditure such as an oscillatory one, both result in
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Figure 2: Scenario B: Damped oscillations.
Source: Lorenz (1993)

damped output fluctuations that converge toward the fixed point. Two complex
roots, whose moduli is still less than one, generate this output movement.

Scenario C: any point in this region satisfies α > 1
β , α < 4β

(1+β)2 . A constant level
of output expenditure will result in explosive oscillations around the fixed points.
Two complex roots with moduli greater than one cause this divergent path.

Scenario D: any point in this region satisfies α > 1
β , α > 4β

(1+β)2 . A constant level of
government expenditure will result in ever increasing output. A single impulse on
net investment will increase output at infinite rate. On the other hand, a minimum
disinvestment impulse will increasingly put downward pressure on output. This
behaviour is generated by two real roots with moduli greater than one.

Samuelson underlines how the model is constructed under the assumption that
the marginal propensity to consume and the accelerator are two exogenous param-
eters, even though in reality they endogenously depend on income. Notwithstand-
ing, the model provides a first clear interpretation of output oscillation.

3.2 The relationship between the accelerator and the multiplier

In a second article published in the same year, Samuelson (1939b) analyses the re-
ciprocal relationship between the accelerator and the multiplier. He starts from the
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Figure 3: Scenario C: Exploding oscillations.
Source: Lorenz (1993)
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Figure 4: Scenario D: Monotonic explosion.
Source: Lorenz (1993)
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consideration that some authors, as Clark and Frisch, stressed the role of the accel-
erator, interpreting consumption as the primary source of investment oscillation.
On the other hand, Keynes looked at the role of investment in fueling income and
consumption, hence at the multiplier effect, which is not only related to the positive
effect of public investment, but also to the effect that private investment exerts on
income.

The question that he poses is: will income expansion be continuous or will it
start to decrease at some point? Assuming zero capital depreciation rate, in the
fixed point, where consumption is constant over time, the propensity to consume
should be equal to one: at this point net investment is equal to zero. But in nor-
mal circumstances, a noninduced component of investment should be present. The
existence of the autonomous investment will increase the output level. The accel-
eration principle thus can determine the nature of oscillations but not the absolute
levels of output and income. Note also that the effect of the accelerator is higher
in societies with low level of autonomous investment and income, rather than in
high income-investment ones. What in the previous model was the role of public
expenditure, in this model becomes autonomous investment:

Yt+2 = A + β(Ct+2 − Ct+1) + Ct+2 (18)

where β is the relation. According to the Keynesian multiplier, output in one period
will be consumption in the following one, so that there exists a relation between
consumption and income that is supposed to be linear:

Ct+3 = f (Yt+2) = f (A + (1 + β)Ct+2 − Ct+1) (19)

More generally, we can easily compute consumption in one period if we know the
relation and the consumption values in the two preceding periods:

Ct+1 = f (A + (1 + β)Ct − βCt−1) (20)

The results of this linear second order difference equation are exactly the same of
the previously exposed ones. For certain values of the propensity to consume and
of the relation, an expansion will always come to an end. For all values of α and
β that lies in scenario B and C a depression movement always occurs: the demar-
cation line between B and C represents the passage from stable to unstable oscil-
lations. Also, being the propensity to consume always less than unity, a positive
propensity to save does exist. Notwithstanding, a positive propensity to save is
not sufficient to bring the system toward the end of the cumulative process (this is
true for those values of α and β such that the system is in the explosive oscillatory
range). For any given value of the propensity to consume, low values of the rela-
tion will not generate a cyclical behaviour (Scenario A). For slightly larger values of
the relation, the system shows convergent oscillations (Scenario B). Grater values of

20



β

α

1
II.

α = 1/β

α = 4β
(1+β)2

I.

VI. IV.

III.

V.

Figure 5: Parameters regimes.
Source: Lorenz (1993)

the relation will determine no more convergent, but divergent oscillations around
the fixed points (Scenario C). Finally, for very high values of the accelerator, the
system has a cumulative explosive path (Scenario D). For a better understanding
see fig. 5. All paths are described maintaining a constant propensity to consume: if
it endogenously depends on income, what can happen will be an infinite upward
movement of the system. Economies with large investment and small propensity
to consume are less hit by the destabilizing acceleration mechanism.

3.3 Variations and extensions

Samuelson built a model based on the two assumptions of multiplier and acceler-
ator. According to the first, consumers spend a constant fraction of their income.
Given any variation in disposable income, due to public or private investment,
changes in spending are generated. These changes multiply the initial variation
over the reciprocal of the saved income fraction (geometric series). According to
the second, the proportion of capital over output is constant. Any variation in
output determines a proportional variation in capital stock, that by definition is in-
vestment. The model is inherently Keynesian because it is demand-led: investment
follows output variations. Capital is accumulated to keep production capacity con-
stant. The system resembles the harmonic oscillations which can be explosive or
damped. In order to obtain sustained and not damped oscillations, Hicks (1950)
proposed to introduce a ceiling and a floor to contain the otherwise explosive be-
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haviour of the system. Following the linear relation, during depressions, firms not
only disinvest; they could also operate an active capital destruction if the disinvest-
ment rate is higher than the depreciation rate. In order to prevent this unrealistic
feature, a lower bound could be meaningful. On the other way around, when in-
vestment becomes very high, a natural upper bound due to resource constraint
could be reasonable. These are the interpretations provided by Hicks to justify
ceilings and floors needed to obtain persistent oscillations. The floor can be repre-
sented by the following equation, that substitutes the original It = α(Yt−1 −Yt−2):

It = max[α(Yt−1 −Yt−2),−I f ] (21)

where I f is the absolute value of the floor disinvestment. The ceiling can instead
be due to a fixed proportion production function:

Yt = min
(

Kt

a
,

Lt

b

)
(22)

where the investment ceiling is the maximum amount of available labour force
multiplied by the utilisation coefficients:

Ic =
a
b

Lt (23)

Since Hicks never wrote a function with a ceiling is not clear whether it should be
introduced within the investment function:

It = min[Ic, max[α(Yt−1 −Yt−2),−I f ]] (24)

or adding it as a constraint in the aggregate production function:

Yt = min(Ct + It, Ic) (25)

Anyway, the introduction of ceilings and floors is an expedient that allows to con-
tain the explosive motion resulting from the Samuelson’s model.
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4 Kalecki’s business cycle model: the role of time in invest-
ment decisions

In this section we are going to carry on the presentation of the business cycle mod-
els that have a Keynesian root. In particular we analyze the Kalecki’s contribution
on business cycle that is in between the multiplier-accelerator model of Samuelson
and the Kaldor’s trade cycle that we will discuss in the next section. The Keynesian
trait present in Kalecki, which can be envisaged in the role played by expectations,
and in particular by future expected profits in determining current investment, can
be better understood reading its article (Kalecki, 1935):

Investments (together with capitalist consumption) determine profits and hence
also the savings that they require, and not the reverse.

In this proposition is clearly stated how investment determines profit accumula-
tion, contradicting the usual Classical assumption, according to which, profits gen-
erate investment. Differently from Keynes, the investment process is not deter-
mined by the gap between the marginal efficiency of capital and the rate of interest.
Kalecki considers that investment decisions are driven by the difference between
the prospective rate of profits and the interest rate. The determinant of the prospec-
tive rate of profits are the long term expectations on returns and on price of invest-
ment goods. But expectations on future profits depend upon the current “state of
the art” of the economy. Hence it is the short period equilibrium that determines
prospective rate of profits.

An interesting link between Kalecki and the Marxian tradition is its view on
the capitalist system as consisting of social classes, unlike the individualistic ap-
proach emphazised by the marginalist school. The national income is the sum of
capitalists’ and workers’ consumption. In addition, unlike Keynes, even though
he supports the idea of full-employment, he conceives this objective practically im-
possible to achieve within a capitalist organization of society. Capitalists need a
reserve army to make the working class more disciplined. Thus unemployment is
an intrinsic feature of capitalism (Kalecki, 1990):

The reserve of capital equipment and the reserve army of unemployed are
typical features of capitalist economy, at least throughout a considerable part
of the cycle.

4.1 The linear model

As discussed in Gabisch et al. (1989), Kalecki published (see Kalecki, 1935) one of
the first business cycle model, re-elaborated afterwards in other versions (Kalecki,
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1937), (Kalecki, 1943). The initial versions were linear while the later ones were non-
linear, even if the basic economic ideas were the same. Differently from Samuelson
that introduced in his multiplier-accelerator model time lags by means of assump-
tions on consumption and investment decisions, the Kalecki model incorporates
technical restrictions in the investment process. The time lag exists between the
investment decision and the installation of new capital goods. He assumes the
investment decision to occur at time t and ID(t) as the corresponding amount of
investment. The production of capital goods requires a time interval θ, then the
capital stock will be modified at t + θ:

K̇ = ID(t− θ) (26)

Being an equilibrium model, the production has to be financed such that I is intro-
duced as an advanced payment. The value of the investment goods is:

W(t) =
∫ t

t−θ
ID(τ)dτ (27)

and the average production of investment goods per unit of time is A = W/θ:

A(t) =
1
θ

∫ t

t−θ
ID(τ)dτ = I(t) (28)

Substituting for:
K̇(t + θ) = ID(t) (29)

we get:

I(t) =
1
θ

∫ t

t−θ

dK(τ + θ)

dτ
dτ (30)

=
1
θ
[K(t + θ)− K(t)] (31)

The investment decisions depend upon the level of income and the level of capital.
In Kalecki (1935) a linear relation is used:

ID(t) = asY(t)− kK(t) (32)

Equating the value of investment goods with the determinant of the investment
process, I(t) = ID(t) and being Y(t) = I(t)/s, we get:

K̇(t) =
a
θ

K(t)− (k +
a
θ
)K(t− θ)) (33)

This is a mixed difference-differential equation. With θ = 1 a solution of

K̇(t) = aK(t)− (k + a)K(t− 1)) (34)
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is K(t) = K0eρt that is very similar to a second order difference equation. According
to Gabisch, the analysis of this equation leads exactly to the same behaviour of the
multiplier-accelerator model: because explosive oscillations should be excluded
and because steady oscillations occur only for exactly one numerical value of k, the
typical dynamic is characterized by damped oscillations in the complex roots case.
In order to obtain permanent oscillations exogenous shocks are necessary.

4.2 Nonlinear case

In 1937 Kalecki substitutes the original linear relation with a non linear one, where
the investment decision process is summarized by the relation:

ID(t) = φ(Y(t), K(t)) (35)

ID is assumed to be S-shaped and negatively affected by K(t). Let:

Y(t) = f (I(t)) (36)

be the short run equilibria of the economy depending on the amount of investment.
Let’s assume that

Y(t) = f (ID(t− 1)) (37)

is a linear function. From the intersection between the S-shaped investment de-
cision curve and the linear short run equilibria, he obtained the long run equilib-
rium Y∗ (see fig. 6). The long run equilibrium is a stable point, since for levels
of income lower than the equilibrium point, capital decreases due to the low in-
vestment, so there will be an upward shift of the investment decision curve. The
opposite (a downward shift due to an increase in capital) will happen, for level
of income higher than the equilibrium level. The existence of a cycle (see fig. 7)
in the Kalecki nonlinear model has to be ensured by a strong shift of the invest-
ment decision curve, otherwise a monotonic return toward the steady state will
occur. In particular, necessary conditions in order to obtain a cyclical movement
from the introduction of the time-lag between the investment decision and the gen-
erated income are: (i) the effect of current investment on total equipment should
be very large, affecting the rate of profits, hence the investment decision; (ii) the
angle enclosed between the locus of points of short run equilibria and the S-shaped
investment function should be small, hence the equilibrium point has a low degree
of stability.
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Figure 6: The non linear Kalecki model.
Source: Gabisch et al. (1989)
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Figure 7: Cycles in the non linear Kalecki Model.
Source: Gabisch et al. (1989)
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5 Kaldor trade cycle model: the S-shaped investment func-
tion

In 1940 Nicholas Kaldor (see Kaldor, 1940) published ‘A model of trade cycle’ where
he discussed how the main sources of business cycle can be envisaged in the com-
bined interaction between the multiplier and the investment demand function. He
focused on the necessary and sufficient conditions under which the combined effect
of these two forces generate a cycle. The usual equilibrium condition of equality
between savings and investment has to be discussed making a distinction between
ex-ante and ex-post equilibrium. We quote from the original article:

Investment ex-ante is the value of the designed increments of stocks of all
kinds (i.e., the value of the net addition to stocks plus the value of the ag-
gregate output of fixed equipment), which differs from Investment ex-post by
the value of the undesigned accretion (or de-cumulation) of stocks. Savings ex-
ante is the amount people intend to save, i.e., the amount they actually would
save if they correctly forecast their incomes. Hence ex-ante and ex-post Sav-
ing can differ only in so far as there is an unexpected change in the amount of
incorne earned.

If ex-ante Investment exceeds ex-ante Saving an increase in the level of activity is
generated. This occurs or because ex-post Investment will be less than ex-ante In-
vestment or either ex-post Saving will be higher than ex-ante Saving. A decrease
in the level of activity is the result of the opposite discrepancy between ex-ante
Investment and ex-ante Saving. This is so, either for the reduction in consumer ex-
penditure due to the reduction of ex-post Saving as compared with ex-ante Saving,
or for the excess of ex-post Investment with respect to ex-ante Investment.

5.1 An analytical description

Both the influence of Investment and Saving on the level of activity are functions
themselves of income so if we denote x as the level of income, we characterized
dS/dx and dI/dx as both positive derivatives. The first expression is nothing other
than a consequence of the Keynesian consumption multiplier (being the recipro-
cal of Keynes’ investment multiplier). The second means that demand for capital
goods will increase with the level of activity. Following Kaldor, we are going to an-
alyze the result of the interaction between these two effects in three different cases:
(i) when both relations are linear, (ii) when only one of the two is non linear, (iii)
when both are non-linear.
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Figure 8: Kaldor linear model: unstable equilibrium.
Source: Gabisch et al. (1989)

Linear case

1. The first possible linear case is when the magnitude of the Investment re-
sponse to changes in income is greater than the one of Saving:

dI
dx

>
dS
dx

(38)

In this case, only one unstable equilibrium point, as shown in the graph (see
fig. 8), is achieved. Below the equilibrium point, S > I, leading to a contrac-
tion in the level of activity. Above the equilibrium point, I > S leading to
an expansion. The interaction of the combined effects will result either in a
full-employment/hyper-inflationary state, or in a zero level of employment.
Since both these two states are not so very common, this first case can be
neglected.

2. The second one is when the Saving response to income changes is greater
than the Investment response:

dS
dx

>
dI
dx

(39)

In this case there will be a single stable equilibrium point, so any discrepancy
that can occur between the level of investment and saving is automatically
stabilized (see fig. 9). The inherent stability of this scenario is so strong that
Kaldor conceived it to be unrealistic such as the previous unstable case. More-
over, according to the principle of the accelerator, the magnitude of invest-
ment could be greater than the magnitude of saving for any level of activity,
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Figure 9: Kaldor linear model: stable equilibrium.
Source: Gabisch et al. (1989)

contradicting equation (39). The unrealistic outcomes of the linear case push
the attention on the non-linear case.

Nonlinear case

1. First case: linear saving function and non linear investment function. The non
linearity of the investment function can be justified by the fact that the level
of investment would be small for both low and high level of activity. It will be
small for low level of activity because when there is a surplus capacity, profits
are not able to generate investment. Anyway, the level of investment can not
be zero because of the long period investment, independent from the level
of activity. Analogously, for very high level of activity, the increase in the
cost of investment will stop it, decreasing the magnitude of the investment
derivative.

2. Second case: linear investment function and non linear saving function. In
this case the effect of extreme low and high level of activity on saving will be
the opposite: for very low income level, saving could also be negative (bor-
rowing activity), while for high income level, saving will be very high. These
relations are reinforced by the interactions at the aggregate level: for low level
of income, an increasing proportion of workers are paid out of capital funds;
for high level of income profits will increase relatively to wages, leading to an
increase in the propensity to save.
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Figure 10: Kaldor non linear model.
Source: Gabisch et al. (1989)

Consider the case in which both functions are non-linear: in this scenario, from the
intersection of the curves three equilibrium points are determined (see fig. 10). The
two extreme ones A and C are stable, since below the equilibrium points, I > S and
the level of activity tends to increase, while above S > I and the level of activity
tends to decrease. The internal equilibrium B is the unstable one since for levels of
activity above the equilibrium point there will be an expansion that will stop in C.
For levels of activity lower than B there will be a contraction that will stop in A.
Introducing non linear saving and investment relations, the economy could reach
a stable point either at a high level of activity (C) or at a low level of activity (A).
Anyway, Kaldor emphasizes how this stability is ensured only in the short run.
We can now rewrite the necessary and sufficient assumptions needed to obtain a
cyclical path of the level of activity:

• The normal value of dI/dx must be greater than the corresponding value of
dS/dx.

• The extreme values of dI/dx, for very high level or very low level of income,
must be smaller than the corresponding value of dS/dx.

• The level of investment in C, the upper equilibrium point, must be sufficient
large for the I(x) to fall in time relatively to S(x). Conversely, in A, the lower
equilibrium point, it must be sufficiently small for I(x) to rise in time rela-
tively to S(x).
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The amplitude of the cycle depends upon the shapes of the I and S curves which
determines the distance between A and C. The amplitude will be the smaller, the
shorter the range of activity over which the normal values of dI/dx and dS/dx are
operative.

5.2 The cyclical behaviour of the model

As Appendix of the above quoted article, Kaldor introduces a comparison with
Kalecki’s model using the same kind of diagram present in Kalecki (see fig. 11).
This model has been used as the prototype model for non linear business cycle
models, being able to reproduce endogenous limit cycles. Let’s see how this dy-
namic is generated. Investment is a function both of the real income and of the
stock of capital in each point in time:

I = I(Y, K), IY > 0, IK < 0 (40)

and there exists a Y1 such that IYY > 0 [< 0] if Y < Y1 [Y > Y1]. Let’s assume the
case in which the saving function is linear, 0 < SY < 1 and SK > 0. The low of
motions that describe the behaviour of the system are:

Ẏ = α(I(Y, K)− S(Y, K)) (41)

and
K̇ = I(Y, K)− δK (42)

with δ as the constant capital depreciation rate and α as an adjustment coefficient,
both strictly positive. The Jacobian matrix of the system is:

J =

(
α(IY − SY) α(IK − SK)

IY IK − δ

)
with determinant:

det(J ) = α(IY − SY)(IK − δ)− αIY(IK − SK) (43)

and trace:
Tr(J ) = α(IY − SY) + (IK − δ) (44)

The eigenvalues of the Jacobian matrix are:

λ1,2 =
Tr(J )±

√
(Tr(J )2)− 4 det(J )

2
(45)

so, in order to be the stability conditions for the continuous time dynamical systems
fulfilled, the real parts of the eigenvalues must be negative, that is Tr(J ) < 0 which
implies α(IY − SY) + (IK − δ) < 0. When α(IY − SY) + (IK − δ) > 0 the fixed point
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Figure 11: Kaldor’s model.
Source: Lorenz (1993)

loses stability. Lorenz (see Lorenz, 1993) demonstrates how the Kaldor’s model
satisfies the criterion needed to obtain a limit cycle, according to the Poincaré-
Bendixon theorem (see theorem 1). The possibility of the existence of a closed orbit
depends upon the magnitude of the term IK − δ. Lorenz performs a graphical so-
lution of the problem looking at the phase portrait (see fig. 12). Considering the
locus of points for which:

K̇ = 0 = I(K, Y)− δK (46)

in order to understand the slope of this curve is necessary to analyze the sign of the
total derivative:

dK
dY

= − IY

IK − δ
> 0. (47)

Hence this locus of points is an upward sloping curve. For all K above the curve
K̇ = 0 investment decreases because of IK − δ < 0 hence K̇ < 0. For all K below the
curve, K̇ > 0. Proceeding in the same way, the locus of points for which Ẏ = 0 is:

Ẏ = 0 = I(Y, K)− S(Y, K) (48)

so that the total derivative is:

dK
dY

=
SY − IY

IK − SK
R 0. (49)

The sign of the equation depends upon the effect of SY and of IY. The numerator is
positive for very low and very high income levels, and is negative for levels around
the equilibrium point. Thus, the locus of points obtained when Ẏ = 0 is negatively
sloped for low and high income levels, and positively sloped in a neighborhood
of the equilibrium point. The shaded area in the graph (see fig. 12) is a compact
set that contains the unstable equilibrium points and the vector field points inwards
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Figure 12: Phase portrait.
Source: Lorenz (1993)

the set, hence the conditions necessary for the existence of a limit cycle are satisfied.
Summarizing, these conditions are:

• Locate a fixed point of the dynamical system and examine its stability prop-
erties.

• If the fixed point is unstable, search for an invariant set D enclosing the fixed
point. When a closed orbit does not coincide with the boundary of D, the
vector field described by the function f and g must point into the interior of
D.
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6 Goodwin’s growth cycle model: fluctuations as result of
the class-struggle

In 1967 Goodwin published its seminal work (see Goodwin, 1967) on growth cycle:
it represents the first formalization of the distributive conflict between profits and
wages stemming from the Marxian class struggle theory. The Goodwin’s model can
be considered a ‘classical’ model as based on a Say’s Law, opposed to a Keynesian,
demand-driven perspective. The main assumption of the model is related to the
symbiotic but conflicting coexistence between capitalists and workers: capitalists
save and immediately reinvest all their profits, without any concern about over-
accumulation. Workers spend all income they receive. Crises can occur for two
different reasons related to capital accumulation: overproduction crises or class-
struggle crises. Overproduction crises occur because of the high rate of profit ac-
cumulation that determines an excess of supply, for a given wage level. In this
case, capitalists should suffer some losses because they are not able to sell their
production to workers, the only class that consumes. Class-struggle crises happen
according to the following process: capital accumulation determines an increase in
labour demand, leading to an employment increase, so strengthening workers con-
tractual power. The profit accumulation has as a counter effect, the drop of profit
rate. Again, less capital accumulation drives to lower production, lower employ-
ment, lower wage rate and higher profit rate. This cyclical and opposite movement
of wages and profits is the same idea present in Smith and Ricardo, deepened by
Marx who developed the idea of workers as an industrial reserve army that could
eventually lead to the end of capitalism. What is important to stress, for the en-
dogenous business cycle approach, is that labour market does not define the abso-
lute value of real wages but just oscillations around an equilibrium value: it is not
an equilibrium model, but a fluctuations model.
Within the classical view of capitalist system is possible to develop a model of eco-
nomic fluctuations due to the combined interrelations between profits and wages.
This is the kernel of Goodwin Growth Cycle model. In analyzing it, we are going
to follow Medio (1979).

6.1 The model

The main features and assumptions are:

i Two economic forces called employment effect and prof its effect: the former is a
positive relation between employment rate and wage rate variation; the latter is
a positive relation between the profit share and the output/production growth
rate.

ii A constant capital/output ratio.
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iii Wages are entirely spent, profits are entirely saved and reinvested.

iv Output growth rate equals profit rate.

v The equilibrium growth rate will be equal to a natural growth rate given by the
sum of population and productivity growth rate. Technical progress is assumed
to be Harrod neutral.

vi All quantities are real.

vii Disequilibrium dynamic: when employment rate is above the equilibrium rate,
wages increase and their growth rate, being higher then productivity rate, erodes
profit rate. Decreasing profit rate leads to a decrease in output growth rate,
reducing employment rate. This implies a reduction in wages allowing for a
profit rate expansion, restarting the cycle.

Although it is particularly meaningful from an economic point of view, this model
presents a peculiar drawback: it is a structurally unstable model. Structural insta-
bility means that every minimal modification of the equations will destroy his
fundamental characteristic, that is the possibility to depict persistent fluctuations
of variables. The model is built on the predator-prey model elaborated by the two
mathematicians Lotka (1925) and Volterra (1931) in order to study the relationship
between preys and predators, in a biological context. The system is expressed in
continuous time; maintaining the original notation used by Goodwin, variables are
the following:

q is output;
k is capital;
w is wage rate;
a = a0eαt is labour productivity, α is constant;
σ is capital-output ratio, the inverse of capital productivity;
w/a = u is workers share of product, (1− u) is capitalists share of product;
surplus=profit=savings=investment=(1− u)q = k;
profit rate = k̇/k = q̇/q = (1− u)q/σ;
n = n0eβt is labour supply, β is constant;
l = q/a is employment;
v = l/n is labour demand;
writing (q̇/l̇) = d/dt(q/l) we get the output per capita growth rate:

(q̇/l̇)/(q/l) = q̇/q− l̇/l = α (50)

Labour demand growth rate is:

(l̇/l) = (1− u)σ− α (51)
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Employment growth rate is:

(v̇/v) = (1− u)σ− (α + β) (52)

The positive relation between real wages and employment is expressed by means
of a linearized Philip Curve:

(ẇ/w) = −γ + ρv (53)

Hence:
(u̇/u) = (ẇ/w)− α = ρv− (α + γ) (54)

So finally, we get the nonlinear continuous system expressed in term of u and v
variation rates:

v̇ = [(1/σ− (α + β))− 1/σu]v (55)

u̇ = [−(α + γ) + ρv]u (56)

The fixed points are the trivial one:

v∗ = 0, u∗ = 0 (57)

and a non trivial one:

v∗ =
α + γ

ρ
, u∗ = 1− σ(α + n) (58)

Goodwin states in his article (1967):

It has long seemed to me that Volterra’s problem of the symbiosis of two pop-
ulations, partly complementary, partly hostile, is helpful in the understanding
of the dynamical contradictions of capitalism, especially when stated in a more
or less Marxian form.

We can simplify the notation of the model reducing it to four coefficients:

a = b− (α + β);
b = 1/σ;
c = α + γ;
d = ρ;
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We rewrite the system in the following way:

v̇ = (a− bu)v (59)

u̇ = (−c + dv)u (60)

The two fixed points now become the usual trivial equilibrium point (u = 0, v = 0)
and the non trivial one (v = c/d, u = a/b). Linearizing the non linear system
around the fixed points in order to study its qualitative behaviour, we get the Jaco-
bian matrix. The partial derivatives of the Jacobian matrix evaluated at the trivial
fixed point are:

J =

(
a 0
0 −c

)

The characteristic equation is:

λ2 − Tr(J )λ + det(J ) = 0 (61)

Tr(J ) = a− c, det(J ) = −ac < 0. In this case, which implies ∆ > 0 independently
of the sign of the trace of J , one eigenvalue is positive, the other is negative (say,
λ1 > 0 > λ2 ). There is, then, a one-dimensional stable and a one-dimensional un-
stable eigenspace and the trivial equilibrium point is known as a saddle point. All
orbits starting off-equilibrium eventually diverge from equilibrium except those
originating in points on the stable eigenspace which converge to equilibrium.
The concept of stability can be distinguished in Lyapunov stability and asymptotic
stability. We introduce the following definitions:

Definition 1. The f ixed point x̄ is said to be Lyapunov stable (or simply stable) if for
any ε > 0 there exist a number δ(ε) > 0 such that if ‖ x0 − x̄ ‖< δ then ‖ x(t)− x̄ ‖< ε

for all t>0.

Definition 2. The f ixed point x̄ is said to be asymptotically stable if a) it is stable and
if b) there exists an η > 0 such that whenever ‖ x0 − x̄ ‖< η

lim
t→∞
‖ x(t)− x̄ ‖= 0

Definition 3. Let x̄ be an asymptotically stable f ixed point, then the set:
B(x̄) = {x ∈ Rm s.t. limt→∞ ‖ x(t)− x̄ ‖= 0} is the domain or basin of attraction of
x̄. If B(x̄) = Rm (or, at any rate, x̄ if it coincides with the state space) then x̄ is said to be
globally asymptotically stable. If stability only holds in a neighbourhood of x̄ it is said
to be locally stable.
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Figure 13: a) Lyapunov stability; b) Asymptotic stability.
Source: Medio et al. (2003)

Broadly speaking, when defined in terms of the union of properties (a) and (b),
asymptotic stability implies that if orbits start near equilibrium they stay near it
and eventually converge to it. Property (b) (convergence to equilibrium) does not
imply property (a) (stability). That is, if (b) holds but (a) does not, we could have
solutions that, before converging to x̄, wander arbitrarily far from it. Systems for
which property (a) holds, but property (b) does not, are called weakly stable. We
are going to see an example: the case of centre.

The partial derivatives of the Jacobian matrix evaluated at the non trivial fixed
point are:

J =

(
0 −bc

d
ad
b 0

)
Tr(J ) = 0, det(J ) = ac > 0, ∆ < 0. In this special case we have a pair of
purely imaginary eigenvalues. Orbits neither converge to, nor diverge from, the
equilibrium point, but they oscillate regularly around it with a constant amplitude
that depends only on initial conditions and a frequency equal to det(A)/2π. The
eigenspace coincides with the state space and the equilibrium point is called a cen-
tre.
Representing the system on the phase space we can observe how the trivial fixed
point is unstable: every trajectory starting from a point in the positive quadrant
will go away from the trivial point sooner or later but remaining in the quadrant.
The trajectories will be attracted by the other stationary point, the centre, depicting
closed orbits around it (see fig. 14).

38



Figure 14: Closed orbits in a Predator Prey system.
Source: Lorenz (1993)

Figure 15: Limit cycles in topological equivalent dynamical systems.
Source: Lorenz (1993)

The equations (59) and (60) describe a dynamical system where every deviation
from the stationary point is followed by an oscillatory movement of u, the output
share of wages (so implicitly of profits), and of v, the employment rate.

6.1.1 Structural instability

In order to understand why the main drawback of the Goodwin model is its struc-
tural instability, we are going to define what is a structural stable system:

Definition 4. Two dynamical systems are topologically equivalent if there exists a homeo-
morphism from the phase space of the f irst system to the phase space of the second system
that transforms the phase f low of the f irst system to the phase f low of the second system.

39



Figure 16: Topologically non equivalent dynamical systems.
Source: Lorenz (1993)

Fig. 15 illustrates the meaning of topological equivalence. It depicts an attracting
circle, i.e., a limit cycle. The two elliptic attracting orbits differ in a geometric sense,
but the property of a limit cycle persisted under the transformation. The homeo-
morphism that transforms one cycle in the other can be understood as a coordinate
transformation.

Definition 5. A dynamical system is structurally stable if for every suff iciently small per-
turbation of the vector f ield the perturbed system is topologically equivalent to the original
system.

The term “small perturbation” is usually interpreted in terms of the C1 norm:

Definition 6. Two dynamical systems are close at a point x if the associated images, e.g.
f (x) and g(x), and the f irst derivatives, f (x)′ and g(x)′, are close together.

Considering these definitions, it is easily to verify that the Goodwin’s model is
structurally unstable: if direct partial derivatives evaluated at the non-trivial fixed
point were not anymore the same, because of a small perturbation of the system,
the trace of the Jacobian matrix would be different from zero.
Being Tr(J ) = 0 a necessary condition to have a centre, any small perturbation will
transform it into a focus, stable or unstable according to the trace’s sign (see fig. 16).
If a small perturbation is performed, the fundamental characteristic of this model
(generating persistent oscillations) will be lost. Trajectories will become spirals con-
verging toward the fixed point or, diverging from it leading to the explosion of the
system.
The direct consequence is that if we try to generalize the original Goodwin’s system
with more flexible hypotheses, the model will lose not only its elegant formalisa-
tion but also the possibility to give a good representation of the economic cycle.
The growth cycle model presents an other drawback, again due to the nature of the
stationary point: the amplitude of oscillations is entirely due to initial conditions.
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Figure 17: Dissipative systems: area contraction.
Source: Lorenz (1993)

Trajectories that start from points near to the centre have a limited amplitude. Vice-
versa, trajectories starting from points far from it have violent and explosive os-
cillations. This is the further confirmation that the Goodwin’s model is not stable:
nothing ensures that a trajectory starting from acceptable values in the phase space
(u, v) will remain in the same region.

6.1.2 Dissipative and Conservative systems

The most common dynamical economic systems present in the literature are the so
called dissipative systems. The term stems from the analysis of the physical systems
characterized by a permanent input of energy which dissipates over time. If the
energy input is interrupted, the system collapses to its equilibrium state. Dissipa-
tion in continuous time dynamical systems can be formally characterised by the
property that the divergence (or Lie derivative) is lower than zero:

n

∑
i=1

∂ fi

∂xi
< 0 (62)

A contraction of the phase-space volume occurs over time. These systems are not
area/volume preserving (see fig. 17).
A classical example in economics is the Kaldor (1940) model previously discussed:
the equilibrium point of this system is unstable so there is a tendency away from the
equilibrium point; a spiraling flow emerges without closed orbits. This behaviour
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Figure 18: Conservative systems: area preservation.
Source: Lorenz (1993)

is determined by the trace’s sign that is positive. Notwithstanding, the trace’s sign
is reversed on the phase space: a negative trace corresponds to a positive friction,
such that the exploding fluctuations will be dampened for points sufficiently far
away from the equilibrium point. A closed orbit arises when exploding and im-
ploding forces collide, so that the trace will be zero.
A limit cycle, according to the Bendixon theorem, can exist if the trace’s sign is not
the same for the entire space:

Theorem 1 (Bendixon’s theorem). Assume the functions f and g of a bi-dimensional
dynamical system have continuous f irst order derivatives in S. If the trace has the same
sign throughout S, then there is no periodic solution of the system lying entirely in S.

Another typology of dynamical systems are the conservative systems where no fric-
tions exist because neither inputs nor loss of energy emerge. According to the previ-
ous characterization, in conservative systems the trace/Lie derivative always equals
zero for all points in the phase space. They are area-volume preserving systems (see
fig. 18):

n

∑
i=1

∂ fi

∂xi
= 0 (63)

The zero trace implies the fixed points are centres or saddles. In physical systems,
the pendulum motion is the classical example.
Regarding the Lotka-Volterra system, which is the underlined mathematical struc-
ture of the Goodwin’s model, the trace is zero for all the space.
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Figure 19: Conservative systems: the dashed line is impossible.
Source: Lorenz (1993)

According to the Hirsch/Smale theorem:

Theorem 2 (Hirsch-Smale’s theorem). Every trajectory of the Lotka/Volterra equations
is a closed orbit (except the f ixed point (v∗, u∗) and the coordinate axes).

The theorems stated mean that trajectories in conservative systems cannot cross the
closed orbits (see fig. 19). The initial conditions determine which of the infinitely
closed orbits describes the behaviour of the system.

6.2 From conservative to dissipative systems

As we saw, the main drawback of the Goodwin’s model is its structural instability,
that is the high sensitivity that the system shows when it is perturbed by any small
perturbation. In the literature we find many attempts that try to overcome this
negative aspect: Desay (1974); Flaschel (1984); Wolfstetter (1987); Velupillai (1978);
Pohjola (1981). Except for the Pohjola’s work, all the other contributions go in the
direction of extending the labour share equation of the Goodwin’s model. Here we
are going to consider the contribution of Flaschel (1984), that is based on the same
assumptions of Desai, Wolfstetter and Velupillai. The extension consists of aban-
doning the real framework of Goodwin and introducing a price equation that de-
termines inflation. Prices are constructed using the mark-up theory, so that workers
target, established by the original linear Phillips-curve f (v) = ẇ/w, now is aug-
mented/diminished by the presence of a mark-up η. The modified Phillips curve
has the following form:

f (v) = ŵ + ηπ (64)

where ηπ is the money illusion that now accounts for wages determination. The
price equation has the following form:

π = g[(1 + r)u− 1], g′ > 0, g(0) = 0 (65)
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so that the extended Goodwin’s model becomes:

û = ρv− γ− α + ηg[(1 + r)u− 1] (66)

v̂ = [1/σ− (α + β))− 1/σu] (67)

The slightly modification of the system can be summarized by the following gen-
eral expression: {

v̇/v = h(u)
u̇/u = f (v)− g(u)

If we know evaluate the Jacobian matrix at the non trivial fixed point, we do not
anymore obtain the usual trace equals zero that determines the conservative struc-
ture, but we get always a trace different from zero:

J =

(
0 [g(u∗)− (α + γ)]/σρ

ρ[1− σ(α + n)] −g′(u∗)[1− σ(α + n)]

)

where u∗ = 1 − σ(α + n) is the equilibrium share of workers in the Goodwin’s
model.

Theorem 3 (Olech’s theorem). Assume that the Jacobian of the system fulf ills: Tr(J ) <

0, det(J ) > 0 and J12,21 6= 0 everywhere in R2
+. Then, the equilibrium u∗, v∗ of the

system is asymptotically stable in the large, i.e., each trajectory which starts in R2
+ will

approach the equilibrium point (u∗, v∗) without hitting the boundary of R2
+ .

The interaction of u and v leads the flow to or away the steady-state depending
on the sign of η. For η < 0 we get an unstable focus (node). For η > 0 we get a
stable focus (node), for η = 0 we get a centre (bifurcation point), coming back to
the Goodwin’s original model. The extension proposed by Flaschel suggests how
the system cannot be structurally stable since the topological properties are not
preserved if the system is perturbed by the money illusion term ηπ. The money il-
lusion is the term which allows to create a dependency of wages share growth rate
not only on the level of employment, but on the level of wages as well. The conser-
vative dynamic is destroyed and the dissipative structure emerges. The system is
not anymore able to reproduce permanent oscillations: depending on the values of
the parameters we end up in converging or diverging oscillations.
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6.3 Discrete time versions

Up to know we have analyzed the Goodwin’s model and its extensions in contin-
uous time. Continuous time systems imply that decisions undertaken by agents
produce instantaneous changes.
In the Goodwin’s framework, two classes of individuals have to take decisions.
First, capitalists decide how to invest. Their investment rule is given by the Say’s
Law, the reason for which the model is sometimes (and rather inappropriately)
defined as a ‘classical model’. Second, workers have to decide how to set their wages
demand. Modeling both sets of decisions in continuous time sounds quite unreal-
istic.
Investment is a time consuming process: equipments have to be purchased, stocked,
introduced in production and so forth. Entrepreneurs usually make investment
plans deciding today how much to invest tomorrow. A time interval that takes at
least months exists between investment decision and capital production/utilisation.
Investment and disinvestment activities cannot happen in an instantaneous way.
Wage bargaining is a process that takes time as well: labour contracts cannot be in-
stantaneously modified. Workers decide today how much to receive for the labour
activity they will offer tomorrow. The laws of motions of the dynamical systems
are the functions that describe how individuals behave, without any sound of mi-
crofoundation. From our point of view, being investment and wage bargaining
decisions characterised by an inherent lumpiness in time, discrete models are more
appropriate to represent human decisions processes and physical constraints.
In what follows we are going to discuss two different modifications of the class
struggle model, both in discrete time. One is the article of Pohjola (1981), that re-
duces the original two dimensional system into a one dimensional logistic equa-
tion. This contribution seems quite interesting because it allows to get chaotic be-
haviour. The other one is a contribution by Canry (2005) that is a linking attempt
between the classical and the Keynesian specification of endogenous fluctuations.

6.3.1 A model of class-struggle with a chaotic dynamics

The interesting feature present in Pohjola’s article is the attempt to obtain a chaotic
behaviour from the predator-prey model. First of all, he rephrased the model in
discrete time since a chaotic dynamic in continuous time needs at least a third di-
mension. Further, he substitutes the original Phillips curve equation with the Kuh
(1967)’s specification. According to this specification, not the wage rate but the level
of wage depends positively upon employment. This apparent slightly change allows
to get a nonlinear first order, difference equation, the well known logistic-equation,
that spans, for changes in the parameter value, from a stable equilibrium point,
into stable cycles, finally into a chaotic dynamic. Even if they are generated by a
deterministic process, chaotic solutions seem indistinguishable from the behaviour
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generated by stochastic processes. To describe the model we are going to follow
the notation used by Sordi (1999).

Labour supply is taken to grow at a constant rate β ≥ 0:

nt+1 = nt(1 + β), ∀t (68)

techinical progress is labour augmenting at a constant rate α ≥ 0

qt+1

lt+1
=

qt

lt
(1 + α), ∀t (69)

where q is output and l employment. The capital-output ratio is constant:

kt

qt
= σ, ∀t (70)

and the savings function is of the classical type (Say’s Law), being investments
equal profits:

kt+1 − kt = (1− ut)qt (71)

where ut = (wtlt)/qt is the workers share of output. Writing the employment rate
vt = lt/nt, we obtain:

vt+1

vt
= 1 +

1− σ(α + β + αβ− ut)

σ(1 + α)(β)
= 1 +

1− σg− ut

σ(1 + g)
(72)

where g = α + β + αβ.

The only equation modified is the wage bargaining equation: as we said, is not
the wage rate, but the wage level that depends upon employment rate and upon
labour productivity at:

wt = h(vt)
qt

lt
∼= (−γ + ρvt)

qt

lt
(73)

Thus we get:

ut =
wtlt

qt
= −γ + ρvt (74)

Finally, substituting equation (74) into equation (72), we get a logistic equation:

xt+1 = (1 + r)xt(1− xt) (75)

where
r =

1− σg + γ

σ(1 + g)
(76)
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Figure 20: Loss of stability of logistic equation: map for r < 1 and r > 1.
Source: Lorenz (1993)

xt =
rρvt

(1 + r)(1− σg + γ)
(77)

The behaviour of the logistic equation:

xt+1 = F(xt, r), xt ∈ [0, 1], r ∈ [0, 3]1 (78)

is a prototypical example of chaotic dynamic (May, 1976): it is a map in which a so
called route to chaos occurs by means of period doubling bifurcation. A bifurcation is a
non linear phenomenon and describes a qualitative change in the orbits structure of
a dynamical system when one ore more parameters are changed. The fixed points
are determined by the intersection with the bisector. We report the standard values
of the parameter r that determines the different behaviours of the map.

If r < 1 the phase curve will lie entirely below the xt+1 = xt line in the positive
quadrant and x̄ = 0 is the only fixed point (in fact x̄ = 0 is an equilibrium ∀r).
As r increases beyond 1, x̄ = 0 loses stability, but a new (positive) fixed point,
x̄ = 1− 1/(1 + r), appears at the intersection of the xt+1 = xt line and the phase
curve (see fig. 20). This is locally attracting if the slope of |F′(x̄, r)| < 1. The
stability condition is 0 < r < 2. The equilibrium is approached monotonically for
0 < r < 1 and in an oscillatory fashion for 1 < r < 2 . But what happens if r > 2 ?
The fixed point is now repelling but, on the other hand, we know that the solution
trajectories are bounded. In order to understand what happens we consider the
second iterative of the logistic equation:

F2 : xt+2 = F(xt+1) = F(F(xt)) = F2(xt) (79)

1Usually the parameter set is [0,4] with the standard formulation of the logistic equation: xt+1 =
r(1− xt)
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Figure 21: The second iterative in the Logistic map.
Source: Lorenz (1993)

which means that the mapping has to be applied twice:

xt+2 = (1 + r)
(
(1 + r)(xt − x2

t )− (1− r)2(xt − x2
t )

2
)

(80)

Fig. 21 illustrates changes in the map F2 when the value of the parameter is less
(first graph) or greater (second graph) than unity. In the first graph, the fixed point
of the second iterative is stable since |F2′(x̄, r)| < 1. This fixed point is also a fixed
point of the first iterative. When the parameter increases, three points of intersec-
tion between the map and the bisector emerge. The former stable fixed point will
lose its stability because the slope of F2 is greater than one. At the two newly fixed
points the slope of F2 is smaller than unity. These two new fixed points are stable
and they are called f ixed points of order 2. The meaning of this stability is that a
fixed point is reached every second period. But this is true also for the other stable
fixed point. Trajectories jump between the two points of intersection from period
to period. The stable equilibrium constellation consists in a permanent switching
between two values. This situation is called a period-2 cycle. A bifurcation called
f lip occurs (see fig. 22).

If the parameter is increased even further, the slope of the second iterative will be
larger than 1. The cycle will then become unstable. Each of the 2-period fixed points
bifurcates into two new stable fixed points and an unstable one. The four stable
fixed points form a period-4 cycle: they are fixed points of the fourth iterative. The
period of the cycle has doubled and the afore mentioned bifurcation is called period
doubling (see fig. 23). After n periods a stable cycle of period 2n exists (see fig. 24
showing a numerical simulation of ours of the model).
We summarise the results regarding the behaviour of the logistic equation in table
(1):
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Figure 22: The supercritical flip Bifurcation.
Source: Lorenz (1993)

Figure 23: Period doubling bifurcation.
Source: Lorenz (1993)

Dynamic behaviour Value of r
Stable equilibrium point 0 < r < 2
Monotonic convergence 0 < r < l
oscillations 1 < r < 2
Stable cycles of period 2 2 < r < 2.570
2-period cycle 2 < r < 2.449
4-period cycle 2.449 < r < 2.544
8-period cycle 2.544 < r < 2.564
Chaotic behaviour 2.570 < r < 3

Table 1: Region of parameter in the logistic equation.
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Figure 24: Period doubling bifurcation.
Source: our simulation

Pohjola highlights some implications due to the emergence of such a chaotic be-
haviour (see fig. 25): it has relevance for business cycle theory and for economic
modeling in general. Firstly, the external random shocks used by RBC theorists are
not necessary to reproduce fluctuations: they are the result of the combination of
nonlinearity and discrete time adjustments, in deterministic equations. Secondly, if
the business cycle displays such unpredictable behaviour, measuring the effects of
policy intervention becomes a very difficult exercise. Thirdly, it has relevant impli-
cations for rational expectations theory: in a chaotic regime, even if agents know
how economy functions today, they are not anymore able to predict its behavior
tomorrow.
Notwithstanding, the route to chaos determined by the period doubling bifurcation,
is called deterministic chaos: successive branches of the bifurcations tend to an accu-
mulation point, so the chaotic region can be confined.

6.3.2 A model of wage-led vs. profit-led dynamics

The other model we are going to discuss is the one proposed by Canry (2005):
this model tries to combine the traditional investment equation (Say’s Law) with
a demand-effect, that resembles the Keynesian tradition. In particular, the invest-
ment function does not simply depend upon savings that equal profits, but also
on demand. In a Goodwin’s model, recessions periods generate their own recov-
ery thanks to the investment take off boosted by higher profits. In a Keynesian
framework, recovery might not happen either because the economy is wage-led (see
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Ergodic Behavior in the Logistic Equation; µ = 3.99

Figure 25: Chaotic behaviour.
Source: Lorenz (1993)

Bhaduri et al., 1990), so investments growth less than savings when profits increase,
or because investments are affected by the negative influence of a shortcoming in
aggregate demand. Investment evolution depends on two antagonist effects: the
positive impact of profits accumulation (classical approach) and the negative im-
pact of economic activity decrease (Keynesian accelerator).

Output is determined by the aggregate demand that depends upon wage share.
There is a threshold w∗ that separates profits and wages led economies. Below
w∗, increases in wage share outweigh decreases in profits (wage-led economy),
so the accelerator effect is higher than the classical effect in determining invest-
ment. Above w∗, wages increases depress investment (profit-led economy) more
than they stimulate demand: the classical effect prevails on the accelerator effect
in determining investments. The interesting feature is that the model is able to
reproduce a Goodwinian type equilibrium (the centre) and a Keynesian type dis-
equilibrium.

The firm production function is:
Yt = atLt (81)

The rates of growth of labour productivity at and labour force nt are respectively α

and β.
Differently from the Goodwin’s model, aggregate activity depends upon aggregate
demand and not upon the current stock of capital. At each period t consumption
and investment determine production:

Yt = Ct + It (82)
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Aggregate production equals aggregate income that is split into wages and profits.
Capitalists invest (save) all their income (profits); workers consume all their wages.
Consumption tomorrow depends upon current wages:

Ct+1 = wtLt (83)

Capitalists investment’s rule depends upon profitability and upon demand they
face. Profitability is measured by the profit share of the previous period. Demand
is captured by the current level of consumption, so the author proposes a multi-
plicative form between profits share and aggregate consumption:

It+1 = ηCt+1(1− ut) η > 1 (84)

where (1− ut) is the profit share and η is an accelerator coefficient. Substituting
equation (84) and equation (83) into equation (82) we get:

Yt+1 = Yt[1− (1− ut)(1− ηut)] (85)

This low of motion determines the output dynamic that has an inverted U shaped
form. Defining the employment rate as usual:

vt =
Lt

Nt
=

Yt

atNt
(86)

we obtain:

vt+1

vt
=

Yt+1atNt

Ytat+1Nt+1
=

[1− (1− ut)(1− ηut)]

(1 + α)(1 + β)
(87)

Regarding labour market, Canry uses the usual Phillips curve in discrete time, but
inserting, at first glance, a slightly modification, that determines a relevant change
in the structure of the original Goodwin’s model. The wage rate in Canry’s for-
mulation depends upon current employment level and not upon past employment
level:

wt+1 − wt

wt
= ρvt+1 − γ, ρ, γ > 0 (88)

instead of the more meaningful expression:

wt+1 − wt

wt
= ρvt − γ, ρ, γ > 0 (89)

This reversed interpretation comes from a (economically questionable) discretiza-
tion of the continuous time version of the Phillips curve:

ẇ
w

= ρv− γ, ρ, γ > 0 (90)
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Apart from the questionable economic meaning, the Phillips curve introduced by
Canry determines a huge effect in terms of the structure of the system. It allows to
transform the original Goodwin system:{

(ut+1 − ut)/ut = f (vt)

(vt+1 − vt)/vt = g(ut)

into:

{
(ut+1 − ut)/ut = f (vt, ut)

(vt+1 − vt)/vt = g(ut)

In fact from the modified Phillips curve we get:

wt+1 =

(
ρ

1 + α
vt+1 +

1− γ

1 + α

)
wt (91)

The analytical form of the system is:

vt+1 =
( [1−(1−ut)(1−ηut)]

(1+α)(1+β)

)
vt

ut+1 = 1
1+α

( [1−(1−ut)(1−ηut)]
(1+α)(1+β)

ρvt + (1− γ)
)
wt

It has three equilibria: the trivial one that is a locally stable point, a saddle point
and a centre (see fig. 26)
The passage from the centre to the trivial equilibrium happens by means of a saddle
(see fig. 27).
Varying the value of the parameter ρ the system bifurcates: when ρ < 0.6 the sys-
tem oscillates around the centre. When 0, 6 < ρ < 0, 7 the system bifurcates: the
orbits enter in the basin of attraction of the saddle point. When ρ > 0, 7 the system
collapses into the trivial equilibrium point. It is remarkable the constant periodicity
of employment rate and wage share trajectories along time (see figg. 28, 29) that
gives origin to the invariant orbit around the centre.
Increasing values of ρ determine the exit from the Goodwin/profit led-region of
the system: cyclical dynamic is interrupted because wages have been too much
squeezed during a recession. As a result, consumption brings down investment in
its fall, in spite of profit share recovery. As soon as investment increases when con-
sumption drops, cycles are maintained, although the model is demand constrained.
However, if consumption becomes too weak, due to very low wages, it may offset
the positive effect of profit recovery on investment.
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Figure 26: Dynamic of the system: different trajectories related to different initial
conditions. In the neighborhood of the centre an infinite number of closed orbits
arises. When the initial points are below the stable manifold of the saddle point,
trajectories converge to the trivial equilibrium.
Source: our simulation

Figure 27: Basin of attraction: the red region depicts the basin of attraction of the
trivial equilibrium point. In the white region between the two red branches of the
basin, we observe closed curves.
Source: our simulation
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Figure 28: Wage share time series.
Source: our simulations

Figure 29: Employment rate time series.
Source: our simulation
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Figure 30: The state space shows the emergence of an invariant orbit.
Source: our simulation

Consumption and investment may thus fall together inducing a cumulative slump.
Cycles disappear because neither consumption nor investment can restore growth.
Slowdown exacerbates wage-share fall, whereas the economy is in the wage-led
area: wages should increase to boost growth.
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7 Exploring extensions of the Marx-Goodwin’s model

Let us try to move some steps toward the construction of a model where both Key-
nesian and Marxian features live together. An important aspect is the time for-
malization: in modeling the system, we use discrete time which we consider more
appropriate compared to continuous time in representing economic decisions (see
Section 6.3 for further explanations). The first step we undertake is reformulating
the Goodwin’s model in a discrete time version. Studying the model analytically
and via simulations, we identify a generic explosive behaviour of the system. Such
structural instability makes impossible to get the same results obtained in the con-
tinuous version of the model. Next, we introduce a generalized extension of the
system, that recovers a richer dynamic. The generalized version is built on a cou-
pled dynamic model. We obtain both a limit cycle and a chaotic behaviour that occur
by means of a Sacker and a period-doubling bifurcations. Indeed in one of the
model formulations we get all the results above, related to the class-struggle model
and its extension.

7.1 A discrete time version of the Goodwin’s growth cycle model

The model, as we said, is a discrete time reformulation of the original one, but it
presents some slightly modifications,

Yt = AKt (92)

meaning that the output-capital ratio (Y/K) is constant and equals A > 0, such
as in the Goodwin’s original model; the dynamic of capital is similar to the one
considered by Pasinetti (1960):

Kt = (1− δ)Kt−1 + It (93)

where 0 < δ < 1 is the constant rate of capital depreciation.

Lt =
Yt

at
(94)

Labour demand L equals total output over labour productivity at. Labour produc-
tivity grows at a constant, exogenous rate α > 0:

at = at−1(1 + α) (95)

The current wage rate depends on lagged wages plus a correction factor constisting
in the difference between the past employment rate and the “equilibrium” value,
the zero wage-inflation rate of employment;

wt = wt−1(1 + λ(vt−1 − v̄)) (96)
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λ parametrizes the strength of workers reaction to “dis-equilibrium”. Differently
from the linearized Phillips curve 2 present in the growth cycle, in our equation, the
coefficient multiplies the deviation from equilibrium. We assume that λ < 1. The
employment rate is defined as the ratio of total labour demand over labour supply:

vt =
Lt

Nt
=

Yt

Ntat
=

AKt

Ntat
(97)

Population growth rate is assumed to grow at a constant rate β > 0:

Nt = Nt−1(1 + β) (98)

Finally, investments are function of the share of profits gained in the previous pe-
riod, where 0 < s < 1 is the capitalists’ propensity to save:

It = sπt−1 = sYt−1(1− ut−1) (99)

where:
ut =

wt

at
(100)

is the workers output share. Making the necessary substitutions, we get a system
of two equations in two variables, with six parameters:

{
Kt = (1− δ)Kt−1 + sAKt−1(1− ut−1)

wt = wt−1
(
1 + λ(vt−1 − v̄)

)
Rewriting the system in terms of vt and ut we get:

vt

vt−1
=

KtNt−1at−1

Kt−1Ntat
=

1− δ + sA(1− ut−1)

(1 + α)(1 + β)
(101)

ut

ut−1
=

Ltat−1

Lt−1at
=

(1 + λ(vt−1 − v̄))
1 + α

(102)

From this expression, we rephrase the original Goodwin’s model in the following
form:

2Indeed, the labour market equation of the Growth-cycle, being expressed in real terms, is not
exactly a Phillips curve which is a negative relation between changes in the money wage rate and the
unemployment rate. It lies in between the P.C. and the so called Wage Curve. The last one is a real
relation between the levels of the wage rate and the unemployment rate (see Blanchflower et al., 1994)
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{
vt = vt−1

(
1− δ + sA(1− ut−1)

)
/(1 + α)(1 + β)

ut = ut−1
(
1 + λ(vt−1 − v̄)

)
/(1 + α)

Such as in the predator-prey relation, the employment rate is the ‘prey’ (because the
wage rate has a positive relation with employment), while the share of wages is
the ‘predator’ (since increases in wage share depress the profit share that positively
affects the level of activity). In order to study the property of the system, we per-
form the usual analysis of the fixed points. The system presents two fixed points: a
trivial and a non trivial one.

(v∗ = 0, u∗ = 0)
(

v∗ =
α + λv̄

λ
, u∗ = 1− δ + g

sA

)
(103)

where g = α + β + αβ. The trivial one is a saddle node, the other one is an unstable
focus. Unfortunately, the nature of centre that distinguishes the continuous ver-
sion is not anymore obtainable. Performing simulations, we found that variables
manifest an explosive behavior (see fig. 31, 32, 33). What we conclude is that the
structural instability that characterises the Goodwin’s system in continuous time
determines the skip from a centre to an unstable focus. The Goodwin’s cycle is not
robust to the discretization process. The same results obtained by our simulations
are discussed in Sordi (1999):

As was to be expected, given the centre character of the non-trivial f ixed point
of the model framed in differential equations and its structural instability [Medio
(1979, pp. 39-40), Velupillai (1979)], the change in the time concept results in a
qualitatively different behaviour of the solution, even in the case in which all
other assumptions are kept unchanged.

7.2 Overcoming the structural instability: a generalised version of the
Goodwinian growth cycle with a Keynesian component

After having performed simulations of our discrete time version, a first remark has
to be pointed out: while the discrete-time version presented by Canry reproduces,
at least for some parameters values, the invariant closed orbits found by Goodwin,
the results of our discretization are completely different: as we showed, we obtain
an unstable focus. The different results are due to the different specification of the
two models. The crucial point in the Canry’s one is not a theoretical meaningful
insight, such as for example, the introduction of the Keynesian framework; it is the
specification of the Phillips Curve in terms of the current employment level. As we
saw, this kind of specification allows to express the wage share rate variation both
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Figure 31: Explosive behaviour. State space.
Source: our simulation

Figure 32: Wage share time series.
Source: our simulation
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Figure 33: Employment rate time series.
Source: our simulation

in terms of the employment level and the wage share level. The question we are
going to address is how the structural instability can be overcome: in the follow-
ing section, we are going to analyse a generalized discrete time formulation of the
original Lotka-Volterra system, in order to understand what kind of dynamics the
system exhibits. As we observed previously, the original Goodwin’s system can be
expressed by the following discrete formalization3:

{
(xt+1 − xt)/xt = e + byt = f (yt)

(yt+1 − yt)/yt = f + dxt = g(xt)

The discretization we used is the simplest one, the method of finite difference:

ẋ ' lim
h→0

x(t + h)− x(t)
h

(104)

We can approximate ẋ ' xt+1 − xt

ẋ
x
' xt+1 − xt

xt
(105)

The same kind of discretization process is used by Goodwin (1989). In the Lotka-
Volterra’s framework, d > 0 and b < 0. In this specification, the variation rate of

3In the current section we are going to replace the usual notation of u and v with y and x respec-
tively. Moreover we are not anymore constrained by the necessity to obtain less than unity outcomes
since we do not treat shares or relative variables.
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each variable depends only upon the other variable. The tracked way in contin-
uous time to make the system structurally stable has been creating a dependence
of at least one rate of variation not only on the level of other variable but on itself
level. What we are going to analyse is the effect of a reciprocal interdependency of
both variation rates on the levels of both variables. This is a generalized version of
the Goodwin’s model, where a, c = 0:

{
(xt+1 − xt)/xt = axt + byt + e = f (xt, yt)

(yt+1 − yt)/yt = cyt + dxt + f = g(xt, yt)

The first equation describes output growth rate’s dynamic, the second equation
wages growth rates dynamic. As said before, both the output rate variation and the
wage rate variation depend upon the level of wages and level of activity of the previous
period. Maintaining the same assumptions of the original model, we continue to
assume that b < 0 and d > 0.
Following Medio (1979), we discuss the possible economic interpretation of the
partial derivatives in this framework.

1. ∂ f (xt, yt)/∂yt < 0: it represents the so called ‘profits effect’ meaning that the
higher the level of wages, the lower the output growth rate. A reduction
in the profit margin will decrease resources available for investment activity.
For any given output-capital ratio, high wage boosts will reduce the profit
rate leading to the detriment of investment activity. In our formulation the
parameter b embodies the profit effect and it is defined, recalling the original
Goodwin’s model, as: 0 < b ' 1/σ(1 + α)(1 + β) < 1. This parameter enters
with a negative specification in the model.

2. ∂ f (xt, yt)/∂xt R 0 if xt Q 0: it represents the ‘demand effect’ meaning that
the higher the level of activity, the higher the output growth rate up to the
point it will be equal to x0, where the last term is the so called ‘normal’ level
of employment. Above this point the output growth rate will increase only
if the profit margin increases, implying an expansion in the productive ca-
pacity. This term embodies a Keynesian effect creating a dependence of out-
put growth rate on demand. After having reached the maximum available
productive capacity, in order to get positive income growth rate, a positive
investment activity is necessary. Entrepreneurs acquire new capital invento-
ries driven by the high consumption activity, that gives them the insurance to
make future profits.

3. ∂g(xt, yt)/∂xt > 0: it represents the employment effect expressed by the Phillips
curve, meaning that the higher the level of activity, the higher the wage rate
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variations. It embodies the assumption that workers contractual power posi-
tively depends upon the level of employment. The parameter’s definition is
0 < d ' ρ/(1 + α) < 1. It enters in the model with a positive specification

4. ∂g(xt, yt)/∂yt < 0: it represents the so called mark-up effect, assuming that
firms operate in a imperfect competition framework. When monetary wages
growth rate is higher than labour productivity growth rate, capitalists in-
crease prices. Since the increase in prices is not immediately compensated by
an increase in monetary wages of the same magnitude, the wage growth rate
is eroded. The prices growth rate depends upon the level of wages weighted
by a mark up factor.

5. The two constants are present in the original Goodwin’s model. In particular
0 < e ' (1 + σ)/σ(1 + α)(1 + β) < 1 and f ' (1− γ)/(1 + α) Q 0.

The theoretical strength of this reformulation is the consideration of a path depen-
dence in the rate of growths that each variable presents, creating a coupled dynamic
interaction. Path dependence means that history and initial conditions matter in
order to explain results.

7.2.1 Analysis of the system and simulations results

The fixed points of the system are fours:

(x∗ = 0, y∗ = 0), (x∗ = 0, y∗ = − f
c
), (x∗ = − e

a
, y∗ = 0) (106)

and
(x∗ =

b f − ec
ca− bd

, y∗ = −−de + f a
ca− bd

), (107)

The partial derivatives of the system are:

J11 =
∂ f (xt, yt)

xt
= 2ax + by + e + 1, J12 =

∂ f (xt, yt)

yt
= xb (108)

J21 =
∂g(xt, yt)

xt
= yd, J12 =

∂g(xt, yt)

yt
= 2cy + dx + f + 1 (109)

The Jacobian matrix is:

J =

(
2ax + by + e + 1 xb

yd 2cy + dx + f + 1

)

According to our hypothesis the signs and the magnitude of the parameters are the
following:

− 1 < b < 0, −1 < c < 0, (110)

63



0 < d < 1, 0 < e < 1, (111)

The only two parameters that can both be positive or negative are a, f ; moroever
we assume the magnitude of f can be greater than unity:

− 1 < a < 1, −2 < f < 2, (112)

The stability conditions for a two dimensional map follow the usual characteriza-
tion: a fixed point x̄ is (locally) asymptotically stable if the eigenvalues λ1 and λ2

of the Jacobian matrix, calculated at the fixed point, are less than one in modulus.
The necessary and sufficient conditions ensuring that |λ1| < 1 and |λ2| < 1 are:

1 + Tr(Jx̄) + det(Jx̄) > 0 (113)

1− Tr(Jx̄) + det(Jx̄) > 0 (114)

1− det(Jx̄) > 0 (115)

The system shows the emergence of two different typologies of bifurcations. Each
of the two generic bifurcations results from the loss of stability through the viola-
tion of one of these conditions:

i The Neimark–Sacker bifurcation occurs when the modulus of a pair of com-
plex, conjugate eigenvalues is equal to one. Since the modulus of complex
eigenvalues in R2 is simply the determinant of J , this occurs at det(Jx̄) = 1. If,
moreover, conditions (113) and (114) are simultaneously satisfied (i.e., Tr(Jx̄) ∈
[−2, 2]), there may be a Neimark bifurcation.

ii The flip bifurcation occurs when a single eigenvalue becomes equal to -1 that
is, 1 + Tr(Jx̄) + det(Jx̄) = 0, with Tr(Jx̄) ∈ [0,−2], det(Jx̄) ∈ [−1, 1] (i.e.,
conditions (114) and (115) are simultaneously satisfied).

The reformulation of the Hoph theorem in discrete time ensures the existence of
the limit cycle showed in fig. 38.

Theorem 4. Let the mapping xt+1 = F(xt, µ), xt ∈ R2, µ ∈ R, have a smooth family
of f ixed points x∗(µ) at which the eigenvalues are complex conjugate. If there is a µ0 such
that:

|λ(µ0)| = 1, λn(µ0) = ±1, n = 1, 2, 3, 4 (116)

and
d|λ(µ0)|

dµ
> 0 (117)

then there is an invariant closed curve bifurcating from µ = µ0.
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Figure 34: Neimark-Sacker bifurcation on x. From the stationary state, the x vari-
able undergoes a Neimark-Sacker bifurcation. Then the stationary state becomes
again stable.
Source: our simulation

The requirement for the Neimark-Sacker bifurcation is that the complex conjugate
eigenvalues cross the unit circle, i.e., that |λ| = 1 at the bifurcation point µ = µ0.
Furthermore, it is required that the roots do not become real when they are iterated
on the unit circle: the first four iterations λn must also be complex conjugate. Fi-
nally, the eigenvalues must cross the unit circle with nonzero speed for varying µ

at µ0.

Performing simulations we find a very rich dynamic of this generalised model. We
found the emergence of both the Neimark-Sacker bifurcation (that allow to get the
invariant orbit), so replicating results obtained by Goodwin, and chaotic dynamics.
The parameters we analyze in order to observe if bifurcations of the system occur
are f = (1− γ)/(1 + α) and a. The observed Neimark-Sacker (see fig. 34) bifurca-
tion occurs when the parameter f is in the range [-1.2,-0.5] and a < 0. The signs of
all the other parameters is the one expressed before: b < 0, c < 0, d > 0, e > 0. Fig.
36 and fig. 37 show the effect of the different magnitude of the parameter b in deter-
mining the formation of the limit cycle. Fig. 38 is the state space obtained with the
same parameters values that generate the Neimark-Sacker. A further confirmation
of the existence of the invariant orbits is given by the periodic oscillations of the
two variables presented in fig. 39 and in fig. 40. Finally the basin of attraction (see
fig. 41) that shows how the behaviour of the fixed points (black dots) leads to the
closed curve.
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Figure 35: Neimark-Sacker bifurcation on y.
Source: our simulation

Figure 36: Limit cycle formation: increasing magnitude of the profits effect.
Source: our simulation
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Figure 37: Limit cycle formation: increasing magnitude of the profits effect.
Source: our simulation

Figure 38:
The limit cycle relative to the Neimark-Sacker bifurcation. The solid part is given
by the high number of iterations converging to the limit cycle.
Source: our simulation
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Figure 39: x-time trajectory.
Source: our simulation

Figure 40: y-time trajectory.
Source: our simulation
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Figure 41: Basin of attraction represented by the red area. The white area is the
region of unfeasible trajectories.
Source: our simulation

After having observed how the formation of the limit cycle occurs, we are going to
present the results regarding the flip bifurcation. In figures 43 and 44 we show the
emergence of the flip bifurcation for both variables with the corresponding basin of
attraction in fig. 48 and 49, where are respectively illustrated the period 2-cycle and
the period 4-cycle. The discontinuity presents in the flip bifurcation is due to the
coexistence of multiple attractors (see fig. 45). The existence of multiple attractors
emphasizes the role of initial conditions: the system shows a quite apparent path
dependency, since depending on the initial conditions, it will end up in different
“states of the world”. When the negative magnitude of a increases the system shows
chaotic behaviour as presented in fig. 46 and in fig. 47.
Invariant, attracting sets and attractors with a structure more complicated than that
of periodic or quasi-periodic sets are called chaotic. A discrete or continuous time
dynamical system is chaotic if its typical orbits are aperiodic, bounded and such
that nearby orbits separate fast in time. Chaotic orbits never converge to a stable
fixed or periodic point, but exhibit sustained instability, while remaining forever in
a bounded region of the state space. They are, as it were, trapped unstable orbits.

The chaotic attractors presented in fig. 50 and in fig. 51 illustrates the passage
from the period-4 cycle that merges in two pieces of chaotic attractors toward a
chaotic regime. The form of the attractor resembles the Henon attractor (see fig. 42).
The sudden merging of two (or more) chaotic attractors or two (or more) separate
pieces of a chaotic attractor, taking place when they simultaneously collide with an
unstable fixed or periodic point (or its stable manifold) is called crisis. Crises of this
type have been numerically observed, for example, in the Henon map (see Medio
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Figure 42: Henon attractor.
Source: Medio et al. (2003)

et al., 2003). Finally, in fig. 52 and in fig. 53 the time trajectories of variables give
proof of the chaotic behaviour. In order to grasp the combined effect of the two pa-
rameters a and f , we realized a two parameters diagram bifurcation showed in fig.
54. The red area shows the combination of the parameters values a, f where the sys-
tem is stable; the white area represents the regions of the parameters where occur
the passage from stability to instability (possible emergence of the Neimark-Sacker
bifurcation and of chaotic dynamic); the blue area the regions of period-2 cycle; the
yellow area the parameters regions of period-4 cycles. Finally the black one shows
the combination of a and f that determines divergent, unfeasible oscillations.

7.2.2 Interpretative notes

One aim of this work was realizing a discrete time version of the class struggle
model discussed by Goodwin. The inherent structural instability was the obsta-
cle to obtain similar results to the continuous case. We already discussed how the
property of the Growth Cycle is not anymore valid in discrete time (persistent har-
monic oscillations turn into explosive oscillations). On the other hand, Goodwin’s
model has a main theoretical limitation, from our point of view, that is the implicit
Say’s Law that drives the economy. Indeed, it is a supply-side model. A Keyne-
sian investment function where past income variations influence current decisions
is not take into consideration. The extension presented in the previous section is
both an attempt to overcome the structural instability in a discrete framework, but
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Figure 43: x: flip bifurcation.
Source: our simulation

Figure 44: y: flip bifurcation.
Source: our simulation
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Figure 45: Multiple attractors.
Source: our simulation

Figure 46: x: Routes to chaos.
Source: our simulation
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Figure 47: y: Routes to chaos.
Source: our simulation

Figure 48: Period-2 cycle.
Source: our simulation
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Figure 49: Period-4 cycle.
Source: our simulation

Figure 50: Formation of the Henon-like attractor.
Source: our simulation
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Figure 51: Henon-like attractor. Chaotic regime.
Source: our simulation

Figure 52: x chaotic oscillations.
Source: our simulation
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Figure 53: y chaotic oscillations.
Source: our simulation

Figure 54: 2 parameters bifurcation diagram.
Source: our simulation

76



also the possibility to give a more complex and interesting explanation to the be-
haviour of the economy. In particular, the extension consists in introducing a de-
mand effect in explaining output growth rate and a mark-up effect in explaining
wages growth rate. While the mark-up effect has a defined negative influence on
monetary wages growth rate (being excluded any instantaneous adjustment mech-
anism that reflects prices increases in wages increases), the demand effect is not
unequivocally determined. The last figure (54) gives a rough idea of what hap-
pens in the selected parameters space. In particular, the white area describes both
the periodic oscillations of income and wages already present in the predator-prey
model and the emergence of a chaotic dynamic. The meaning of the economic
cycle, which emerges when the Neimark-Sacker bifurcation occurs, is the follow-
ing: for low level of employment, income and output growth rate are lower than
the productivity and population growth rate. Wages grow less than productivity
hence the incentive of capital accumulation becomes very high and greater than
the disincentive to invest, due to the low level of consumption. Output growth
rate starts to increase, pushed by the high capital accumulation, at a rate higher
than productivity and population. Capitalists need to hire labour, so employment
increases, but monetary wages carry on to decrease, up to the point they reach a
minimum threshold. From this point on, workers contractual power increases, ob-
taining nominal wages higher than productivity and than prices growth rate: the
share of wages over income increases. The reverse ordering takes place: capital
accumulation is discouraged by low profits rate, so output growth rate starts to
decrease. The level of employment goes down, workers contractual power dimin-
ishes and wages growth rate is lower than productivity and prices growth rate.
In the white region where the profits effect is higher than the demand effect, the
economy is still driven by a classical engine. The interpretation we provide is that,
in the white region where chaotic oscillations replace quasi-periodic orbits (see the
right hand side of fig. 54), the demand effect is higher than the profits effect: cap-
ital accumulation is higher sensitive to changes in consumption, but also the ani-
mal spirits take a crucial role in determining investment decisions. The interesting
feature is that as soon as we introduce a Keynesian effect, embodied by the in-
fluence of past income on current output growth rate, resembling a rudimentary,
first approximation form of an accelerator, the chaotic motion occurs. The so called
demand effect lays actually in between an accelerator and a hysteresis effect in deter-
mining aggregate demand. The chaotic dynamic refers to the occurrence of crises
and unpredictable events generated by an inherent instability: no cyclical constant
fluctuations that could be predictable by agents occur. Notwithstanding, the route
to chaos that happens in our model is determined by period doubling bifurcations,
the so called safe boundary bifurcations. This kind of chaotic behaviour can be sig-
naled by the parameters continuous changes.
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Chaotic dynamics emerge in one region: for positive, high level of f . What is the
meaning of the parameter f ? As stated before: the magnitude and the sign of
f = 1− γ/ 1 + α basically depends upon γ, assuming that productivity growth
rate α ' 0.03 is constant. γ is the vertical intercept of the linearized Phillips curve.
The region in which a cycle emerges (the white area in the left hand side of fig. 54),
where a form of stability (even though fluctuating) exists, is the region where γ > 1,
being f negative. Since the parameter enters the linearized Phillips curve with a
negative specification, it basically means that the monetary wage growth rate will
become inflationary after having passed the NAIRU threshold. We are exactly in
the area where the main properties of the profit-led economy described by Goodwin
are valid. The economy is profit-led and wages negatively affect output growth. The
system enters into a period-doubling bifurcation when f is higher than unity: for
the parameter’s range [1,1.30] the value of γ is lower than one. The parameter f is
able to capture a form of hysteresis in determining the wage level, representing the
effect of past wage on current wage level. Hysteresis means that the natural rate of
unemployment endogenously changes. In this region we capture a very broad and
rudimentary wage-led economy that is characterized by unstable conditions with
eventually lead to chaos. According to the Post Keynesian approach, in absence of
policy interventions, the NAIRU is unstable. Quoting Stockhammer (2008):

The inverse real balance effect and a wage-led demand regime do have an im-
portant consequence: the equilibrium will become unstable. If wages increase
growth, growth increases employment and higher employment improves the
bargaining position of labor, then a deviation from equilibrium will be self-
sustaining.

The chaotic dynamic obstacles the possibility to get any sort of prediction about the
future behaviour of the system.

Concluding, as we said before, analysing one model, we recover Goodwin’s
cyclicality and chaotic dynamics as well. Differently from one would expect, intro-
ducing a demand component has a partly destabilizing role.
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8 Conclusions

In this work we analysed some theories on endogenous business cycle, with partic-
ular attention to the Samuelson’s, Kalecki’s and Kaldor’s models characterized by
a Keynesian root, and to the Goodwin’s model characterized by a classical root. A
research study we implicitly followed is the investigation of the causality direction
of the well-known Kaleckian Investment=Profit equation: is the profit accumulation
that pushes output growth or are expected future profits that determine current
investment? We devoted particular attention to the Goodwin’s model and to its ex-
tensions, developing in the final section a generalized discrete time version of the
class struggle model. The aim of the formulated model is twofold: from the one
hand, overcoming the structural instability of the Goodwin’s one (being the prop-
erty of the Lotka-Volterra system not robust in discrete time); from the other hand,
comparing Keynesian and Classical roots in leading to output fluctuations. Per-
forming simulations we got the same results of the original Goodwinian one, for
some parameter ranges. Additionally, our model is able to generate endogenous
chaotic dynamics. The rich dynamics comes from the introduction of a coupled in-
teraction of both variables in determining the output and the wage growth rate. It
introduces the relevance of the path dependence in explaining variables movements.
In particular, our reformulation takes into account two effects: a demand effect, as
a first rudimental approximation of an accelerator, in influencing output growth
rate, and a hysteresis effect in wage formation. This reformulation, which expresses
the relevance of history in explaining current results, allows to compare the be-
haviour of the system when investments are wage-led (Keynesian approach) and
when they are profit-led (Marxian approach). The interesting puzzle is that, for
some parametrization, a profit-led economy has a more stable path (harmonic pre-
dictable oscillations) than a wage-led economy (erratic oscillations). Unlike the role
of demand is usually considered having a stabilizing effect, according to the Post-
Keynesian tradition its combined effect with hysteresis could create self-sustaining
disequilibrium paths, in absence of any policy intervention. The main question
that remains open is how to interpret empirical results on the ground of economic
intuitions provided by this model. It is a challenging conjecture that demands cor-
roboration both on the modeling side and on the econometric side.
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