
Application of a predictive distribution formula to Bayesian

computation for incomplete data models

By TREVOR J. SWEETING and SAMER KHARROUBI

University College London and University of Sheffield

SUMMARY

We consider exact and approximate Bayesian computation in the presence of la-

tent variables or missing data. Specifically we explore the application of a posterior

predictive distribution formula derived in Sweeting & Kharroubi (2003), which is a

particular form of Laplace approximation, both as an importance and a proposal

distribution. We show that this formula provides a stable importance function for

use within poor man’s data augmentation schemes and that it can also be used as a

proposal distribution within a Metropolis-Hastings algorithm for models that are not

analytically tractable. We illustrate both uses in the case of a censored regression

model and a normal hierarchical model, with both normal and Student t distributed

random effects. Although the predictive distribution formula is motivated by regular

asymptotic theory, it is not necessary that the likelihood has a closed form or that it

possesses a local maximum.

Keywords: asymptotic approximation, Bayesian computation, data augmentation,

importance sampling, Laplace approximation, latent variables, Metropolis-Hastings,

missing data, predictive distribution, simulation

1 Introduction

Widely used strategies for Bayesian computation include numerical integration, stochas-

tic simulation and analytic approximation. With regard to the latter, modern meth-

ods of asymptotic analysis can provide extremely accurate approximations in prac-

tice in problems involving parameter spaces of small to moderate dimension. This is

partly because these approximations have a non-local character and therefore often

reflect the shape of the important region of the posterior density much better than

asymptotic expansions based on high-order derivatives at the likelihood maximum.

However, such approximations are degraded when the dimension of the parameter
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space is high or when the data are insufficiently informative. In such cases the most

widely used computational methods are based on simulation. A number of researchers

have investigated the use of hybrid methods that combine the best features of simu-

lation, or numerical integration, and asymptotics. See for example Evans & Swartz

(1995), Sweeting (1996), DiCiccio et al. (1997). Possible roles for asymptotics within

simulation include the construction of importance distributions for importance sam-

pling and proposal distributions for Metropolis-Hastings schemes, both of which are

explored here.

In this paper we will be concerned with exact and approximate Bayesian com-

putation in the presence of latent variables or missing data. Such data structures

are ubiquitous and there exist many likelihood-based methods of analysis. Data

augmentation techniques are particularly useful in applications where the posterior

analysis of the complete data is analytically tractable. In certain applications max-

imum likelihood estimation may be accomplished via the EM algorithm, which has

been extended for analytically intractable likelihoods to various versions of Monte

Carlo EM (MCEM). For full Bayesian computation in general, one can incorporate

the latent data within a suitable Markov chain Monte Carlo (MCMC) scheme.

Here we will explore the application of a posterior predictive distribution formula

obtained in Sweeting & Kharroubi (2003), both as an importance and a proposal

distribution for missing data problems. This formula is a particular form of Laplace

approximation for a posterior expectation and can be regarded as an alternative to

the Tierney and Kadane formula (Tierney & Kadane, 1986). This formula expresses

a predictive distribution as a finite mixture, and we shall refer to it generically as

the ‘p-bar’ formula. As pointed out in Sweeting & Kharroubi (2003), this mixture

structure makes the p-bar formula an attractive proposition for use within a Bayesian

simulation scheme. We review this formula in §2.

In §3, after reviewing the basic data augmentation algorithm we consider poor

man’s data augmentation algorithms of the type described by Wei & Tanner (1990a).

These algorithms provide non-iterative exact (i.e. simulation-consistent) or approxi-

mate computation of the posterior distribution. One attractive feature of these data

augmentation schemes is that they can provide functional forms for marginal densities

and other quantities of interest in a computationally efficient manner. As pointed out
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by Tanner (1996), the simplest approximate scheme based on a first-order maximum

likelihood approximation may provide a poor estimate of the posterior distribution

and importance sampling implementations are preferable. However, we will show that

such algorithms may exhibit poor convergence behavior due to a poor choice of the

importance function.

In §4 we investigate the p-bar formula as an importance function for use within

these poor man’s data augmentation schemes. Since it has an asymptotically higher

order of accuracy than a simple first-order approximation, it would be expected to pos-

sess superior operating characteristics. Furthermore, unlike the Tierney and Kadane

Laplace approximation, the mixture form of p-bar makes it trivial to simulate from.

Its superior convergence behavior is demonstrated in §4.1 for the censored regression

model discussed by Wei & Tanner (1990a) and Tanner (1996).

More generally, and especially for models that are not analytically tractable, the

p-bar formula may be used as a proposal distribution within a Metropolis-Hastings

scheme. We illustrate such a use of p-bar in §5.1 for a censored regression model.

Although in the present paper we do not attempt to make detailed comparisons

with alternative computational schemes, we note that the resulting algorithm gives

better mixing than a block Gibbs sampler in this case. We further illustrate the use

of the p-bar formula in both data augmentation and MCMC in §6 with a normal

hierarchical model. In the simplest case of normally distributed random effects exact

data augmentation is possible. It is not possible, however, in the case of Student

t distributed random effects since the likelihood does not have a closed form and

instead we use MCMC methods. One feature of this example is that, although we

make use of a predictive distribution formula motivated by regular asymptotic theory,

the likelihood function here does not even possess a local maximum. This example

illustrates the important device of tilting, which allows the application of p-bar in

such cases.

A general discussion and summary is given in §7. Finally some definitions and

technical details on asymptotic error rates are given in an appendix.
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2 The p-bar formula

In this section we will review the higher-order asymptotic formula for a posterior

predictive distribution derived in Sweeting & Kharroubi (2003). This formula is a

particular form of Laplace approximation for a posterior expectation and can be

regarded as an alternative to the Tierney and Kadane formula.

Sweeting (1996) derives an expression (formula (20) in that paper) for the posterior

expectation of a real-valued function v(θ) that has the same asymptotic order of

accuracy as that derived by Tierney & Kadane (1986). Since a posterior predictive

distribution can be expressed as a posterior expectation, this formula leads to a new

formula for a predictive distribution. However, this formula is not in a suitable

form for direct sampling. Sweeting & Kharroubi (2003) obtain a modification of

the formula in Sweeting (1996) that allows for direct sampling. In this section we

present the necessary notation and give the result; the reader is referred to Sweeting

& Kharroubi (2003) for the detailed derivation.

Suppose that the observed data Y consist of n independent and identically dis-

tributed observations. Let p(Y |θ) be the density of Y given a parameter θ ∈ Θ ⊂ Rd,

where d ≥ 1. Suppose that a prior density p(θ) for θ is available and denote by p(θ|Y )

the associated posterior density of θ given Y . Further, let p(Z|Y ) denote the posterior

predictive density of latent unobserved data Z ∈ Z given Y and let p(Z|Y, θ) denote

the conditional predictive density of Z given Y and θ.

Write θ = (θ1, . . . , θd) and let l(θ) = log p(Y |θ), li(θ) = ∂l(θ)/∂θi and j(θ) =

−d2l/dθ2, the matrix of second-order partial derivatives of −l(θ). Assume that the

maximum likelihood estimate (MLE) θ̂ exists and write J = j(θ̂). Let θi = (θ1, . . . , θi)

and θ(i) = (θi, . . . , θd), the vectors of the first i and last (d− i + 1) components of θ.

Define θ̂(i)(θi−1) to be the MLE of θ(i) conditional on θi−1 and, for j ≥ i, let θ̂j(θi−1)

be the jth component of (θi−1, θ̂
(i)(θi−1)). For any function g(θ), when i < d we use

the short-hand g(θi) to denote g(θi, θ̂
(i+1)(θi)). Further, let j(i)(θ) be the submatrix

of j(θ) corresponding to θ(i), setting |j(d+1)(θ)| = 1. Finally, define the signed-root

loglikelihood ratio transformation

ri(θi) = sign{θi − θ̂i(θi−1)}[2{l(θi−1)− l(θi)}]1/2 , i = 1, . . . , d . (1)

Now, for i = 1, . . . , d, define the scalars θi− and θi+ as the solutions to the equa-
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tions

ri(θ̂i−1, θ
i−) = −

√
d , ri(θ̂i−1, θ

i+) =
√

d (2)

and write θ−i = (θ̂i−1, θ
i−) and θ+

i = (θ̂i−1, θ
i+). Assuming that the conditional

predictive density p(Z|Y, θ) is O(1) in n, Sweeting & Kharroubi (2003) show that the

formula

p̄(Z|Y ) =
d∑

i=1

πi

{
α−i p(Z|Y, θ−i ) + α+

i p(Z|Y, θ+
i )

}
(3)

is an O(n−2) approximation to the posterior predictive density p(Z|Y ), where the

weights πi, α
±
i , i = 1, . . . , d, are defined in the Appendix. Notice that the function

p̄(Z|Y ) is a proper density function since the weights do not depend on Z and satisfy
∑d

i=1 πi = 1 and α−i + α+
i = 1. Since (3) expresses the predictive distribution as a

finite mixture, we shall refer to it generically as the p-bar formula.

Since it is based on the signed-root loglikelihood (1), formula (3) is invariant under

reparameterisation. However, the computation of θi− and θi+ involves the solution of a

set of nonlinear equations, which in turn involve conditional maximisation. Sweeting

& Kharroubi (2003) also obtain an alternative asymptotically equivalent formula,

which replaces the definition (2) of θi− and θi+ by

θi− = θ̂i −
√

d(ki)−1/2 , θi+ = θ̂i +
√

d(ki)−1/2 , (4)

where ki is the reciprocal of the first entry in (J (i))−1. The disadvantage of this

formulation is that (3) is no longer invariant to reparameterisation, so some care may

be needed in the choice of parameterisation. However, the computational burden

associated with the quantities θi− and θi+ is greatly reduced. In the case of a single

parameter this approximation is reminiscent of a suggestion by Tom DiCiccio reported

in Kass’s discussion of Sweeting (1996) in which the θ± values are defined by θ± =

θ̂ ± εJ−1/2 for some ε > 0. However, using the present approach and positioning

θ± at the specific values as in (4) leads to the mixture formula (3) useful for direct

simulation of the latent data Z (see below).

Although the p-bar formula is derived from a higher-order asymptotic analysis,

formula (3) accounts for the shape of the likelihood function and prior in the neighbor-

hood of θ̂ and would be expected to give reasonable approximations even in relatively

small samples and in problems with dependent observations. This expectation is
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borne out in our application of these formulae. Indeed, in §6 we successfully ap-

ply these formulae to a case where the likelihood function does not possess a local

maximum.

We briefly compare the p-bar formula (3) for a predictive density with the formula

arising from equation (2.4) in Tierney & Kadane (1986). Wei & Tanner (1990a) use

this equation to obtain the alternative O(n−2) approximation

p(Z|Y ) ∝ p(θ∗)L∗(θ∗; Z)p(Z|Y, θ̂)

|J∗|1/2L∗(θ̂; Z)
, (5)

where θ∗ maximizes p(θ|Y, Z), J∗ is the negative Hessian of log p(θ|Y, Z) evaluated at

θ∗ and L∗(θ; Z) is the augmented likelihood function associated with (Y, Z). Since it

is a finite mixture of the conditional predictive densities p(Z|Y, θ), a key advantage of

formula (3) over (5) is that it is in a convenient form from which to sample, making

it an attractive proposition for use within a Bayesian simulation scheme, as discussed

in §§4 - 6. Furthermore, since p̄(Z|Y ) is a proper density function there is no need to

renormalize. Finally, the abscissae θ±i and weights πi, α
±
i only need to be calculated

once, since they do not depend on Z. In contrast, in the approximation (5) θ∗ must be

recomputed for each Z (although the error continues to be O(n−2) if one-step Newton

approximations to θ∗ are used). However, when the log-conditional predictive density

log p(Z|Y, θ) is not O(1) then (5) may give a superior approximation to (3). In

particular, in the extreme case in which log p(Z|Y, θ) is O(n) the approximation (3)

is no better than using p(Z|Y, θ̂). On the other hand it is shown in the Appendix

that in this case the relative error in (5) turns out to be O(n−1).

3 Data augmentation algorithms

In this section we review the full data augmentation algorithm (Tanner & Wong,

1987), which allows for exact (i.e. simulation-consistent) computation of the entire

posterior distribution. We then review the poor man’s data augmentation (PMDA)

algorithms (Wei & Tanner, 1990a, Tanner, 1996). These non-iterative algorithms,

which may be exact or approximate, reduce the computational burden of the full

data augmentation algorithm.

Recalling the definitions given at the beginning of §2, further let p(θ|Y, Z) be the

augmented posterior density of θ given Y and Z. The data augmentation algorithm is
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motivated by the following two equations. As in Tanner & Wong (1987), the posterior

equation is

p(θ|Y ) =
∫

Z
p(θ|Y, Z)p(Z|Y )dZ , (6)

and the predictive equation is

p(Z|Y ) =
∫

Θ
p(Z|Y, θ)p(θ|Y )dθ .

Given a current approximation gi(θ) to p(θ|Y ), the algorithm proceeds by (a) gener-

ating θ from gi(θ) followed by z from p(Z|Y, θ) and (b) repeating step (a) m times to

yield z1, . . . , zm and the update

gi+1(θ) = m−1
m∑

j=1

p(θ|Y, zj) .

The data augmentation algorithm consists of iterating between the two steps (a)

and (b). Tanner & Wong (1987) present regularity conditions for the algorithm to

converge and discuss the practical issues of monitoring convergence of the algorithm

and the selection of m.

To motivate the simplest poor man’s data augmentation algorithm, PMDA 1,

suppose that the conditional predictive density p(Z|Y, θ) of Z is O(1) in n. Then,

since p(Z|Y ) = E {p(Z|Y, θ)|Y }, we have

p(Z|Y ) = p(Z|Y, θ̂)
{
1 + O(n−1)

}
.

Given the MLE θ̂, the algorithm proceeds as follows.

a. Generate z1, . . . , zm from p(Z|Y, θ̂).

b. Approximate the posterior density by

m−1
m∑

j=1

p(θ|Y, zj) .

Wei & Tanner (1990a) illustrate the PMDA 1 algorithm for a single parameter

genetic linkage model in which 20 animals are distributed multinomially into four

categories as Y = (14, 0, 1, 5). They demonstrate that, although a first-order normal

approximation is poor, PMDA 1 successfully recovers the skewed shape of the poste-

rior density. However, although PMDA 1 may give a reasonable approximation to the

posterior density when n is not too small and the dimension of the parameter space
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not too large, it can produce a poor approximation if the log-conditional predictive

density log p(Z|Y, θ) is not O(1) in n, as will be seen in §3.1.

As mentioned in §2, Wei & Tanner (1990a) use (5) based on equation (2.4) of

Tierney & Kadane (1986) as an approximation to p(Z|Y ). Sampling from this ap-

proximation is possible using importance sampling (Ripley, 1987), resulting in the

PMDA 2 algorithm, which is of the following form.

a1. Generate z1, . . . , zm from p(Z|Y, θ̂) .

a2. Calculate the weights

wj =
p(θ∗j )L

∗(θ∗j ; zj)

|J∗j |1/2L∗(θ̂; zj)
, j = 1, . . . , m ,

where θ∗j and J∗j are the posterior mode and negative Hessian matrix corresponding

to the jth augmented data set.

b. Approximate the posterior density by

m∑

j=1

wjp(θ|Y, zj)
/ m∑

j=1

wj . (7)

For the genetic linkage model mentioned earlier, Wei & Tanner show that PMDA

2 provides an excellent approximation to the posterior distribution of θ. As with the

PMDA 1 algorithm, if the log-conditional predictive density log p(Z|Y, θ) is not O(1)

then approximation (5) will be less accurate. However, as discussed in the §2, this

approximation may still be useful.

Since the sampling of the latent data in both PMDA 1 and PMDA 2 is based on an

approximation to p(Z|Y ), these algorithms produce approximations to the posterior

density. However, as pointed out by Wei & Tanner, if p(Z|Y ) is straightforward to

calculate as a function of Z then one can use importance sampling to sample from the

exact predictive distribution p(Z|Y ). Wei & Tanner refer to the resulting algorithm

as PMDA-Exact. We further note here that one can always compute p(Z|Y ) up to

proportionality whenever the constant of proportionality for the augmented posterior

density is available analytically. This follows since

p(Z|Y ) =
p(θ|Y )p(Z|Y, θ)

p(θ|Y, Z)
∝ p(Z|Y, θ)

p(θ|Y, Z)
, (8)

which may be evaluated at θ = θ̂, for example. In this form, the PMDA-Exact

algorithm is of the same form as the PMDA 2 algorithm but with weights now given
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by

wj =
{
p(θ̂|Y, zj)

}−1
, j = 1, . . . ,m .

This algorithm will provide a consistent estimator of p(θ|Y ) as m → ∞ since, from

(8), we have

wj ∝ p(zj|Y )

p(zj|Y, θ̂)
.

3.1 Example: censored regression

We consider a censored failure dataset (Crawford, 1970) that has been analysed by

several authors. In particular, Wei & Tanner (1990a, 1990b) carry out a full data

augmentation analysis of these data, as well as the poor man’s data augmentation

algorithms PMDA 1 and PMDA 2.

The data arise from temperature accelerated life tests on electrical insulation in

40 motorettes. Ten motorettes were tested at each of four temperature levels (150◦,

170◦, 190◦ and 220◦), resulting in a total of 17 failed units and 23 unfailed (censored)

units. A model of the form (Schmee & Hahn, 1979)

yi = β0 + β1vi + σεi

is fit, where yi is the log10(ith failure time), vi = 1000/(temperature + 273.2) and the

errors εi are assumed to be independent and follow a standard normal distribution.

Failure times are in hours.

Re-ordering the data so that the first m observations are uncensored, with ob-

served log-failure times yi, and the remaining n − m are censored at times ci, the

log-likelihood function is

−m logσ − 1

2

m∑

i=1

(
yi − β0 − β1vi

σ

)2

+
n∑

i=m+1

log

{
1− Φ

(
ci − β0 − β1vi

σ

)}
,

where Φ(x) is the standard normal distribution function. For computational conve-

nience here and later in §4.1 we work with the parameterisation θ = (β0, β1, λ), where

λ = log σ. The MLE is found to be θ̂ = (β̂0, β̂1, λ̂) = (−6.0193, 4.3112,−1.3502) and

the observed information matrix is



427.66 931.31 −65.39
931.31 2033.55 −145.49
−65.39 −145.49 41.29


 .
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We further assume the noninformative prior density p(θ) ∝ 1.

In order to implement the PMDA algorithms we require the functional forms

of the augmented posterior density p(θ|Y, Z) and the conditional predictive density

p(Z|Y, θ), where Z is the vector of unobserved failure times. The latter is simply

obtained as a normal density conditional on Z ≥ c, where c is the vector of censoring

times. For an augmented data set X = (Y, Z), the augmented posterior density

p(β0, β1, σ|X) can be factorised exactly as

p(β0, β1|σ,X)p(σ|X) ,

where (Lee, 1989)

σ−2|X ∼ S−1χ2(n− 2)

β1|σ,X ∼ N(b, σ2/Svv)

α|σ,X ∼ N(a, σ2/n)

and α, β1 are conditionally independent given σ, where α = β0 + β1v̄. Here S =

Sxx − S2
xv/Svv, the residual sum of squares associated with the augmented data set,

where Sxx =
∑n

i=1(xi − x̄)2, Svv =
∑n

i=1(vi − v̄)2, Sxv =
∑n

i=1(xi − x̄)(vi − v̄), a = x̄

and b = Sxv/Svv.

In order to illustrate the PMDA algorithms we examine the marginal posterior

density of σ. In all cases it follows from equation (7) that the approximation to this

density is proportional to

σ−39
m∑

j=1

wjS
19
j exp

(
−1

2
σ−2Sj

)
(9)

with the appropriate weights wj, where Sj is the residual sum of squares for the jth

augmented data set. Following Wei & Tanner (1990a), 5000 samples were drawn from

p(Z|Y, θ̂). Fig. 1 shows the PMDA 1 approximation (dotted line), three different runs

of PMDA 2 (dashed lines) and the exact (solid line) σ marginal (the latter obtained

from a long run of the simulation-consistent algorithm to be given in §4). As can

be seen from these plots, there is a noticeable discrepancy between PMDA 1 and

the other curves. PMDA 2 represents an improvement, but also indicates that the

convergence of the process is quite poor. Of course, in this example there is actually no

need to use the asymptotic approximation in PMDA 2 since the complete augmented
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Figure 1: Censored regression. Marginal posterior density of σ: PMDA 1 (dotted
line); PMDA 2 (dashed lines); exact (solid line).

posterior density is available so that we can use PMDA-Exact. Fig. 2 presents again

the exact marginal density of σ (solid line) along with three different runs of the

PMDA-Exact approximation, again with m = 5000 (dashed lines). Notice that the

PMDA-Exact estimate is still subject to considerable sampling variability.

It is seen from this example that an important practical issue concerns the choice

of importance function on which both PMDA 2 and PMDA-Exact are based. In

the single parameter genetic linkage example the conditional predictive distribution

P (Z|Y, θ̂) turns out to be a reasonable choice of importance function (Wei & Tanner,

1990a). In the censored regression example, however, convergence is poor using this

importance function. Thus some doubt has been cast on the validity of P (Z|Y, θ̂)

as an appropriate general-purpose importance function. In the next section we will

investigate the use of an alternative importance function based on the formulae in §2.

4 Modified poor man’s data augmentation algo-

rithms

In this section we will investigate versions of the PMDA 1, PMDA 2 and PMDA-

Exact algorithms in which p(Z|Y, θ̂) is replaced by the p-bar formula p̄(Z|Y ) given
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Figure 2: Censored regression. Marginal posterior density of σ: PMDA-Exact (dashed
lines); exact (solid line).

by formula (3) of §2. We will denote the modified versions by PMDA 1′, PMDA 2′

and PMDA-Exact′.

The modified algorithm PMDA 1′ is obtained by simply replacing p(Z|Y, θ̂) by

p̄(Z|Y ) at step a in the PMDA 1 algorithm. Since we can easily sample from (3)

there is no need for an importance sampling step in this algorithm, unlike when using

the Tierney and Kadane approximation (5).

In situations where p(Z|Y ) is difficult to compute, the Tierney and Kadane ap-

proximation (5) is available, as in §3. PMDA 2′ is obtained by using (3) instead of

p(Z|Y, θ̂) as the importance function and takes the following form.

a1. Generate z1, . . . , zm from p̄(Z|Y ) .

a2. Calculate

wj =
p(θ∗j )L

∗(θ∗j ; zj)p(zj|Y, θ̂)

|J∗j |1/2L∗(θ̂; zj)p̄(zj|Y )
, j = 1, . . . , m .

b. Approximate the posterior density by

m∑

j=1

wjp(θ|Y, zj)
/ m∑

j=1

wj .

Finally suppose that, as in §3, we are able to evaluate the constant of propor-

tionality in the augmented posterior density. Then the posterior density p(θ|Y ) may
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be obtained by applying importance sampling based on the importance function (3).

The PMDA-Exact′ algorithm has the same form as the PMDA 2′ algorithm but with

weights given by

wj =
p(zj|Y, θ̂)

p(θ̂|Y, zj)p̄(zj|Y )
, j = 1, . . . , m .

4.1 Example: censored regression (continued)

We first obtain all the quantities required for computation of the p-bar formula (3).

First, solution of the equations (2) produces the quantities θi±, where θ = (β0, β1, λ).

Next, again assuming the non-informative prior p(θ) ∝ 1, we obtain the values of

πi and α−i associated with (β0, β1, λ) as (0.372, 0.331, 0.297) and (0.593, 0.376, 0.406)

respectively.

As in §3.1 we examine the marginal posterior density of σ. Based on equation

(9), Fig. 3 presents posterior density approximations for σ arising from PMDA 1′

(dotted line) and three runs of the PMDA 2′ algorithm based on m = 5000 (dashed

lines), along with the exact density. These graphs, which should be compared with

those for PMDA 1 and PMDA 2 in Fig. 1, demonstrate the superiority of the PMDA

1′ approximation over the PMDA 1 approximation and show that the PMDA 2′

algorithm produces stable and accurate estimates in this case. Fig. 4 presents three

runs of the PMDA-Exact′ algorithm with m = 5000. Again these graphs, which

should be compared with those in Fig. 2, indicate that the PMDA-Exact′ algorithm

produces very stable estimates. Generally, the p-bar formula provides a much more

stable importance function than p(Z|Y, θ̂). The above results were obtained using the

signed-root version of equation (3), but very similar results were obtained using the

alternative form based directly on the parameter θ. We note that the exact form of

the density plotted in all the previous figures was obtained using the PMDA-Exact′

algorithm with m = 20000, for which the Monte Carlo error was negligible.

Finally note that, if desired, independent simulations of (Z, θ) from its posterior

distribution may be obtained by resampling the zj values according to their impor-

tance weights wj and sampling from the augmented posterior distribution of θ given

the sampled value Z.
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Figure 3: Censored regression. Marginal posterior density of σ: PMDA 1′ (dotted
line); PMDA 2′ (dashed lines); exact (solid line).
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Figure 4: Censored regression. Marginal posterior density of σ: PMDA-Exact′

(dashed lines); exact (solid line).
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5 Metropolis-Hastings implementations

In the previous section we have shown that the p-bar formula provides a stable impor-

tance function for use within poor man’s data augmentation algorithms. However, it

also has potential application as a proposal distribution within Metropolis-Hastings

schemes for models that are not analytically tractable. See Hastings (1970) or, for ex-

ample, Tanner (1996) for a description of the Metropolis-Hastings algorithm. We will

give an example in which the conditional predictive density p(Z|Y, θ) is available for

computation of the p-bar formula p̄(Z|Y ) and one in which p(Z|Y, θ) is unavailable

analytically but where an approximation q(Z|Y, θ) to p(Z|Y, θ) is used to produce

an approximation q̄(Z|Y ) to p̄(Z|Y ). One possible form of Metropolis-Hastings algo-

rithm incorporating q̄(Z|Y ) as a proposal distribution is as follows. Here q(θ′|Y, Z ′, θ)

is an arbitrary proposal distribution for θ′ given the previous value θ and current value

Z ′.

a. Given the current value (Z, θ), generate Z ′ from q̄(Z ′|Y ) and θ′ from q(θ′|Y, Z ′, θ).

b. Accept the new value (Z ′, θ′) with probability

ρ =

{
min

{
u{(Z′,θ′),(Z,θ)}
u{(Z,θ),(Z′,θ′)} , 1

}
, u{(Z, θ), (Z ′, θ′)} > 0

1 , u{(Z, θ), (Z ′, θ′)} = 0
, (10)

where

u{(Z, θ), (Z ′, θ′)} = p(θ)p(Y, Z|θ)q̄(Z ′|Y )q(θ′|Y, Z ′, θ) .

This construction defines a Markov chain with equilibrium distribution p(Z, θ|Y ).

In the following examples we use an independence sampler of the form q(θ′|Y, Z ′),

giving rise to an independence chain. Clearly, if q̄(Z|Y ) and q(θ|Y, Z) are good

approximations to p(Z|Y ) and p(θ|Y, Z) respectively then we would expect a high

level of acceptance and a low level of dependence in the chain.

5.1 Example: censored regression (continued)

We illustrate the above use of p-bar for the censored regression model of §3.1. We

do not make detailed comparisons here with alternative computational schemes, but

we will show that the resulting algorithm is competitive with a block Gibbs sampler

and in fact achieves better mixing. Recall that X = (Y, Z). Since the exact posterior

density p(θ|X) of θ based on the augmented data is available analytically here and
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is straightforward to sample from (see §3.1), we can take q(θ|X) = p(θ|X), the

exact posterior density of θ based on the augmented data. Similarly, since p(Z|Y, θ)

is available analytically and is straightforward to sample from, we take q̄(Z|Y ) =

p̄(Z|Y ). Clearly some cancellation now occurs in (10) and the formula for ρ just

depends on the ratio of the p-bar formula and the exact conditional density of Z

given Y .

Fig. 5 shows the trace plot for the parameter λ for the final 1000 iterations

of a run of length m = 5000 of the Metropolis-Hastings sampler using the p-bar

formula based on the signed-root r. Table 1 gives the corresponding acceptance rate,

estimated posterior mean of λ and its estimated Monte Carlo standard error after

discarding the first 50 values. The performance of the Metropolis-Hastings sampler

was very stable over repeated runs and the figures in Table 1 represent a typical result.

Although there was no problem with this scheme in the present example, for general

implementation we recommend that the proposal distribution of Z be made slightly

wider than the p-bar formula. This avoids the possible occurrence of occasional high

importance weights with associated small probabilities of acceptance at the next draw,

leading to the chain becoming stuck for several iterations. This modification is easily

accomplished by replacing
√

d in formulae (2) and (4) by f
√

d, where f > 1 is a

suitable scaling factor. If f is taken to be too large then the overall acceptance rate

will be too small, leading to an inefficient algorithm. We found the value f = 1.2

to be a good compromise in general. This has been implemented here for the p-bar

formula based directly on the parameter θ and the relevant figures appear in Table 1.

Although there is a small reduction in the acceptance rate, the overall Monte Carlo

precision is of a similar order to that for the r−based version.

Table 1 also gives the corresponding quantities for a run with p̄(Z|Y ) replaced by

p(Z|Y, θ̂) (referred to as p-hat in the table). However, we note that this algorithm is

quite unreliable with different runs of length 5000 producing quite different results,

arising from the chain occasionally becoming stuck in states with high importance

weights. Finally, for comparison Table 1 gives the results for a run of length 5000 of a

block Gibbs sampler based on the conditional densities p(Z|Y, θ) and p(θ|Y, Z). The

performance of the Gibbs sampler was fairly stable in repeated runs, but within runs

it suffered from relatively high autocorrelations; Fig. 6 shows the trace plot for λ for
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Figure 5: Censored regression. Trace plot of Metropolis-Hastings algorithm incorpo-
rating the p-bar formula.

Table 1: MCMC results for the censored regression example (m = 5000)
Acceptance Posterior mean Monte Carlo

Algorithm rate of λ s.e.
Metropolis-Hastings (p-bar, r) 0.77 -1.257 0.0044
Metropolis-Hastings (p-bar, θ) 0.69 -1.258 0.0045
Metropolis-Hastings (p-hat) 0.50 -1.286 0.0100
Block Gibbs 1.00 -1.242 0.0078

the final 1000 iterations. Overall, the Metropolis-Hastings scheme based on the p-bar

formula provides a stable algorithm with good mixing properties here. All standard

errors were computed by considering the initial sequence adaptive estimators based

on sums of pairs of autocorrelations (Geyer, 1992). For comparison with asymptotic

results, the MLE of λ is -1.350 while the approximation to the posterior mean of λ

obtained from the higher-order formula derived by Sweeting & Kharroubi (2003) is

-1.251.

6 Example: normal hierarchical model

As a second illustration of the use of the p-bar formula within both data augmentation

and MCMC we consider a normal hierarchical model. Exact poor man’s data aug-
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Figure 6: Censored regression. Trace plot of block Gibbs algorithm.

mentation is available in the simple case of normally distributed random effects, which

we consider in §6.1. However, for Student t distributed random effects considered in

§6.2 the likelihood does not have a closed form and we use MCMC methods. For the

data we consider in neither case does there exist a local maximum of the likelihood

function. However, we can still employ the p-bar approximation, even though it is

motivated by regular asymptotic theory. These examples will illustrate the important

device of exponential tilting, which here allows use of the p-bar formula.

We consider the random effects model

yij = µi + εij , j = 1, . . . , Ji , i = 1, . . . , I ,

where yij is the jth observation from the ith group, µi is the effect of the ith group

and εij is the error. Suppose, assuming conditional independence throughout, that

εij|µi ∼ N(0, σ2) so that yij|µi ∼ N(µi, σ
2). Let

yi. =
Ji∑

j=1

yij/Ji and y.. =
1

I

I∑

i=1

yi. .
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6.1 Normal random effects

Suppose further that µi ∼ N(µ, τ 2). Then, unconditionally, (Box & Tiao, 1973)

yi. ∼ N(µ, φ2
i /Ji) ,

where φ2
i = σ2 + Jiτ

2 is the between groups expected mean square (E.M.S) and

Sσ =
I∑

i=1

Ji∑

j=1

(yij − yi.)
2 ∼ σ2χ2(W − I) ,

where W =
∑I

i=1 Ji and Sσ is the within groups sum of squares (S.S.).

Since Sσ is sufficient for σ2, the likelihood function is proportional to

(σ2)−νσ/2

(
I∏

i=1

φ2
i

)−1/2

exp

[
−1

2

{
I∑

i=1

Ji(yi. − µ)2

φ2
i

+
νσmσ

σ2

}]
,

where νσ =
∑I

i=1(Ji − 1) = W − I is the within groups degrees of freedom (d.f.) and

mσ = Sσ/νσ is the within groups mean square (M.S.). Further define ντ = I−1 , Sτ =
∑I

i=1 Ji(yi. − y..)
2 and mτ = Sτ/ντ to be the between groups d.f., S.S. and M.S..

Before proceeding with the PMDA algorithms, we need to obtain the augmented

posterior and conditional predictive distributions. Let Z = (µ1, . . . , µI), Y = (y11, . . . , yIJI
)

and assume that (τ 2, µ) and σ2 are a priori independent with priors specified by

p(τ 2, µ) ∝ 1 and p(σ2) ∝ 1/σ2. This particular noninformative specification ensures

propriety of the posterior distribution (Tanner, 1996). For an augmented data set

X = (Y, Z), the augmented posterior density p(τ 2, µ, σ2|X) can be factorised as

p(τ 2|X)p(µ|τ 2, X)p(σ2|X) ,

where (Lee, 1989)

τ 2|X ∼ S
′
τ/χ

2(I − 3)

µ|τ 2, X ∼ N(µ̄, τ 2/I)

σ2|X ∼ S
′
σ/χ

2(W )

with (τ 2, µ) and σ2 a posteriori independent, where S
′
σ =

∑I
i=1

∑Ji
j=1 (yij −µi)

2, S
′
τ =

∑I
i=1(µi−µ̄)2 and µ̄ =

∑I
i=1 µi/I . The conditional predictive density p(µi|τ 2, µ, σ2, Y )

is normal with mean given by the weighted average

µ

(
1/τ 2

1/τ 2 + Ji/σ2

)
+ yi.

(
Ji/σ

2

1/τ 2 + Ji/σ2

)
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Table 2: Box and Tiao’s generated data for the two-component model
Batch 1 2 3 4 5 6
Individual 7.298 5.220 0.110 2.212 0.282 1.722
observations 3.846 6.556 10.386 4.852 9.014 4.782

2.434 0.608 13.434 7.092 4.458 8.106
9.566 11.788 5.510 9.288 9.446 0.758
7.990 -0.892 8.166 4.980 7.198 3.758

yi. 6.2268 4.6560 7.5212 5.6848 6.0796 3.8252

Table 3: Analysis of variance table for the generated data
Source S.S. d.f. M.S. E.M.S.
Between batches Sτ = 41.6816 ντ = 5 mτ = 8.3363 σ2 + 5τ 2

Within batches Sσ = 358.7014 νσ = 24 mσ = 14.9459 σ2

Total 400.3830 29

of µ and yi. and with variance (1/τ 2 + Ji/σ
2)
−1

.

To illustrate the PMDA algorithms, we will focus on the marginal posterior density

of τ . In all cases it follows from equation (7) that an estimate of p(τ |Y ) is proportional

to

τ−(I−2)
m∑

j=1

wj(S
′
τj)

(I−3)/2 exp
(
−1

2
τ−2S

′
τj

)
,

where S
′
τj is the between groups S.S. for the jth augmented data set.

We illustrate the use of the PMDA-Exact methods for the generated data set

reported in Box & Tiao (1973). The data, with I = 6 and Ji = J = 5, are displayed

in Table 2 and an analysis of variance table is provided in Table 3. It is seen from

Table 3 that the usual unbiased estimate for the variance component τ 2 is negative,

which is clearly objectionable. Furthermore, in this case the MLE does not exist and

we therefore need to find a way to circumvent this problem. The method used here is

the device of exponential tilting. In general, for c ∈ Rd define lc(θ) = l(θ)−cT θ. Then

the turning points of lc satisfy l
′
(θ) = c. In particular, if we choose c = l

′
(θ̄) then θ̄

will be a local maximum of lc, provided that j(θ̄) > 0. Furthermore, it follows from

the more general treatment in Sweeting & Kharroubi (2003) that the p-bar formula

(3) will continue to be of asymptotic accuracy O(n−2) on replacing l(θ) by lc(θ) and

p(θ) by pc(θ) ≡ p(θ)ecT θ provided that c = O(1). In any case, we will use (3) as a

proposal density for a suitably tilted version of l.

Write γ = log τ and λ = log σ. For the data in Table 2, using the parameterisation
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θ = (γ, µ, λ) the choice c = (−2.5, 0, 0) produced a modified loglikelihood lc that was

reasonably symmetric around the (modified) MLE θ̂ = (0.5695, 5.6656, 1.2996) with

(modified) observed information matrix



3.098 0.000 −1.558
0.000 1.032 0.000

−1.558 0.000 56.178


 .

Here the marginal posterior density of σ is extremely well estimated by both the

PMDA-Exact and PMDA-Exact′ algorithms, even with run lengths of less than 1000.

Fig. 7 presents the marginal posterior density of τ based on three different runs

of PMDA-Exact with m = 1000 (dashed lines) and the exact density (solid line)

while Fig. 8 presents the corresponding plots for PMDA-Exact′. As can be seen,

the output from PMDA-Exact′ is less variable than that from PMDA-Exact. In

these figures the exact density was obtained using PMDA-Exact′ with m = 50000,

for which the Monte Carlo error was negligible. The above results were obtained

using the signed-root version of equation (3), but very similar results were obtained

using the alternative form based directly on the parameter θ. The very good results

obtained from using importance samplers based on the modified MLE θ̂ are quite

remarkable given our use of an initial exponential tilt and in view of the relatively

small amount of information in the sample about (γ, µ) (see, for example, the modified

observed information matrix).

6.2 Student t random effects

In the previous example all the conditional distributions required for the poor man’s

data augmentation schemes were available analytically. However, if we elaborate the

model by assuming Student t random effects then closed form expressions are no

longer available. Suppose then that µi ∼ tν(µ, τ 2), the Student t distribution with

location parameter µ, scale parameter τ and (known) degrees of freedom ν. Since it

is not possible to write down an expression for the likelihood function in closed form,

some form of Monte Carlo maximum likelihood is needed to obtain the necessary

ingredients for computation of the p-bar formula. We do not review the literature on

this topic here as this is not the main focus of the present paper. It suffices to mention

that there are a number of such routines, such as the MCEM algorithm Wei & Tanner

(1990a), variants of this algorithm and simulated maximum likelihood. Here a simple
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Figure 7: Variance components (normal model). Marginal density of τ . PMDA-Exact
(dashed lines); exact (solid line).
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Figure 8: Variance components (normal model). Marginal density of τ . PMDA-
Exact′ (dashed lines); exact (solid line).
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Monte Carlo likelihood approximation worked well in the present example, producing

the MLE and an approximation to the observed information matrix very quickly.

In general, since the output from this initial phase is only used to form a proposal

distribution accuracy is not of the utmost importance. For example, one could obtain

a rough estimate of θ̂ followed by exponential tilting based on this estimate. Note that

formula (3) based on the versions of θi− and θi+ given in (4) is more attractive here

than that based on signed-roots since it avoids excessive conditional maximization.

We have therefore used this variant of the p-bar formula here, although we were also

able to compute the signed-root version without too much difficulty; the final results

were very similar.

We illustrate use of the Metropolis-Hastings algorithm as described in §5 in the

case of a t4 random effects model for Box & Tiao’s data set given in Table 2. As in

§6.1 the MLE does not exist here so again we apply an exponential tilt, as described

in that section. Here we took c = (−1.5, 0, 0), which produced the (modified) MLE

θ̂ = (0.1016, 5.6572, 1.2966) of the parameter θ = (γ, µ, λ) with (modified) observed

information matrix 


2.653 −0.025 −1.024
−0.025 1.461 0.244
−1.024 0.244 56.720


 .

For this model neither the augmented posterior density nor the conditional predictive

density of the latent data given θ and Y are available in closed form. We therefore

based the proposal densities q(θ|Y, Z) and q̄(Z|Y ) on the corresponding densities

under the normal model of §6.1, matching the quartile deviation of the normal random

effects distribution with that of the t4 distribution.

Using the p-bar formula based on the parameter θ and with no modification to

the definitions of θi− and θi+, the Metropolis-Hastings sampler was run for m = 5000

iterations. After discarding the first 100 values, the acceptance rate was ρ = 0.53 and

the estimated posterior mean of γ was 1.474 with associated Monte Carlo standard

error 0.018. Although inferior, use of p(Z|Y, θ̂) in place of p̄(Z|Y ) was actually not too

bad in this case, giving an acceptance rate of ρ = 0.37 and a Monte Carlo standard

error of 0.027. However, we would not recommend using this algorithm in general as

it has a tendency to get stuck in a state, as discussed in §3.1. Finally Fig. 9 shows the

marginal posterior density of τ obtained from thinning and smoothing the MCMC
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Figure 9: Variance components (Student t model). Marginal posterior density of τ
based on Metropolis-Hastings incorporating the p-bar formula (dashed line); exact
(solid line).

output for τ , along with the corresponding density obtained from a much longer run

for which the Monte Carlo error is negligible.

7 Discussion

In this paper we have explored the use of hybrid methods involving data augmen-

tation, importance sampling, MCMC and asymptotics and have provided some nu-

merical illustrations. In the case of poor man’s data augmentation algorithms that

incorporate importance sampling, the validity of the estimated conditional predictive

distribution p(Z|Y, θ̂) as an importance function is in doubt as convergence is seen

to be quite poor. However, we have shown that the p-bar formula provides a stable

and effective importance function in such schemes. The new non-iterative algorithms

PMDA 2′ and PMDA-Exact′ have been shown to yield accurate approximations to

the true posterior distribution. These algorithms are easy to implement and greatly

reduce the computational burden of the data augmentation algorithm. Additionally

they are capable of generating independent draws of (Z, θ). Furthermore, PMDA 1′

may provide a reasonable approximation in its own right. Notice that we could define
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a variant of PMDA 2′ by replacing formula (5) by formula (3). We do not recommend

this when the dimension of Z is high, however, since the asymptotic accuracy of (3)

is less than that of (5) in such a case. Thus (3) and (5) play complementary roles,

with (3) being most suitable as an importance function, and (5) as an asymptotic

approximation when Z is high-dimensional.

The version of the p-bar formula based directly on the abscissae (4) requires less

computation than the signed-root version based on the equations (2). However, as

discussed in §2, formula (3) is no longer invariant to reparameterisation so some

care may be needed in selecting an appropriate parameterisation. Note however that

the choice of parameterisation will only affect computational efficiency in the simu-

lation schemes described here. As mentioned in Sweeting & Kharroubi (2003), we

have noticed little difference in the quality of the expectation approximations under

alternative reasonable parameterisations. Generally, we would expect any parame-

terisation that is approximately linear in the signed-root loglikelihood ratio statistic

to perform well. Some further discussion is given in Sweeting & Kharroubi (2003).

The p-bar formula can be used more widely as an importance sampler. Here

we have demonstrated its use as a proposal distribution within a Metropolis-Hastings

scheme. This approach may be used in cases where the integration in (6) is intractable,

through the initial use of a suitable Monte Carlo maximum likelihood algorithm.

Furthermore, it is not confined to situations where the observed likelihood possesses a

maximum, since we may be able to apply a suitable exponential tilting. The methods

described in this paper therefore have potential application to other models which

incorporate latent variables or missing data, such as models for general censored

survival data, errors-in-variables models, longitudinal models and generalised linear

and nonlinear random effects models.

The use of the p-bar formula requires the availability of suitable programmes to

compute the quantities θi±, πi and α±i needed for formula (3). However, generic pro-

grammes may be written to carry out these computations. Once these are available

there will be relatively little additional computational effort over competing algo-

rithms since, for a specific application, routines will always be required to compute

the likelihood, augmented likelihood and conditional densities.
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Appendix

Definition of the weights in equation (3)

Let νi(θ) = p(θ)|j(i+1)(θ)|−1/2. Write l−i = li(θ
−
i ), l+i = li(θ

+
i ), ν−i = νi(θ

−
i ), ν+

i =

νi(θ
+
i ), where θ−i = (θ̂i−1, θ

i−), θ+
i = (θ̂i−1, θ

i+) and θi−, θi+ are obtained from either

equation (2) or equation (4). Now let τ i = (ν−i /l−i )+(−ν+
i /l+i ) and define the weights

α−i = (τ i)−1(ν−i /l−i ), α+
i = (τ i)−1(−ν+

i /l+i ) .

Finally define

πi =





d∑

j=1

|J (j)|1/2(ωj)−1τ j





−1

|J (i)|1/2(ωi)−1τ i ,

where

ωi = {−ri(θ−i )}−1 + {ri(θ+
i )}−1 .

Note that when θi− and θi+ are obtained from equation (2), ωi = 2/
√

d and hence

cancels in the expression for πi.

Asymptotic error of equation (5)

Wei & Tanner (1990a) use equation (2.4) of Tierney & Kadane (1986) to obtain

the approximation (5) to the posterior predictive distribution p(Z|Y ). When the

conditional predictive distribution p(Z|Y, θ) is of order O(1), it follows from Tierney

& Kadane (1986) that (5) is accurate to O(n−2). Here we further investigate the error

in this approximation.

It follows (Sweeting, 1996) that the augmented posterior density p(θ|Y, Z) may

be approximated by

|J∗|1/2
{
(2π)d/2s∗

}−1
{

p(θ)L∗(θ; Z)

p(θ∗)L∗(θ∗; Z)

}
{1 + η∗T (θ − θ∗)} (11)

to O(n−2), where η∗ is O(n−1) and the normalising constant s∗ = 1 + O(n−1). Sub-

stituting (11) in expression (8), we obtain the O(n−2) approximation

p(Z|Y ) = (2π)d/2|J∗|−1/2s∗
{

p(θ|Y )p(Z|Y, θ)p(θ∗)L∗(θ∗; Z)

p(θ)L∗(θ; Z)

}
.

On taking θ = θ̂ we see that, to O(n−2),

p(Z|Y ) ∝ s∗
{

p(θ∗)L∗(θ∗; Z)p(Z|Y, θ̂)

|J∗|1/2L∗(θ̂; Z)

}
. (12)
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Now from Sweeting (1996) the correction term s∗ may be taken as 1 + b∗ to O(n−2),

where b∗ = O(n−1). When log p(Z|Y, θ) is O(1) it follows (Tierney & Kadane, 1986)

that the error in (5) is O(n−2). This can also be seen from (12) by showing that

b∗ = b + O(n−2), where b is the corresponding quantity for the original data set Y

and therefore does not depend on Z. However, if log p(Z|Y, θ) is O(n) then in general

b∗ − b = O(n−1) and so in this case we see from (12) that the relative error in (5) is

O(n−1).

One reason for using the representation (11) to analyse the error in (5) is that

(11) reveals clearly that the accuracy of (5) depends on the form of the augmented

posterior, which is likely to be better suited to asymptotic approximation than p(θ|Y ),

especially when the dimension of Z is high.
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