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SUMMARY

We review objective Bayes procedures based on both parametric and predic-

tive coverage probability bias and explore the extent to which such procedures

contravene the likelihood principle in the case of a scalar parameter. The dis-

cussion encompasses choice of objective priors, objective posterior probability

statements and objective predictive probability statements. We conclude with

some remarks concerning the future development and implementation of objec-

tive priors based on small coverage probability bias.

Some key words: Approximate Bayesian inference; Coverage probability bias;

Higher-order asymptotics; Likelihood principle; Objective Bayes.

1. INTRODUCTION

We discuss objective Bayesian methodology for parametric models from the

point of view of coverage probability bias. There are many different approaches

to deriving ‘objective’ Bayesian procedures; that is, procedures which are for-

mally Bayesian, and for which there is some justification for using them in an

automatic way. There is an extensive literature on the construction of objective,

or reference, priors; see, for example, Kass & Wasserman (1996) and Bernardo &

Ramón (1998). An objective Bayesian procedure may be regarded as a default

method which can be applied in cases where prior information is sparse or not

well understood, or differs between the stakeholders. Such procedures have some
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appeal, especially in complex models where it may be very difficult to make an

adequate subjective assessment of the prior distributions involved.

In the present paper we discuss objective Bayes methods which have some

justification in terms of repeated sampling performance characteristics. More

specifically, throughout this paper we shall use the term ‘objective Bayes’ to mean

any Bayesian procedure, which can be justified on the basis of small coverage

probability bias; that is, any Bayesian procedure that is well calibrated. Here

we use the term ‘coverage probability’ to refer to the frequentist probability of

some statement either about a model parameter or about a future observation.

The rationale behind these ideas is that the resulting Bayesian statements are

endowed with additional frequentist validity. A major aim of the paper is to

elucidate some of the issues underlying objective Bayes construction via coverage

probability bias with a view to the future development of this approach, especially

in relation to objective prior construction for multiparameter models.

We interpret objective Bayes in a broad sense, encompassing objective choice

of priors, objective posterior probability statements and objective predictive prob-

ability statements. There is an interplay between these ideas. For example, one

might fix on an objective prior under which a wide range of posterior probability

statements will have small coverage probability bias. In this case it could be

argued that this would be an appropriate default prior to be used when prior

information is sparse or not well understood. Alternatively, one might focus on a

suitable proper prior to reflects one’s uncertainty, but then limit one’s probabil-

ity statements to a restricted class for which the associated coverage probability

bias is small. Such probability statements will be well calibrated, so this can be

regarded as a frequency-based robustness property to alternative prior specifica-

tions. This might have some appeal when there is some concern about the specific

prior adopted. We remark that, if a small coverage probability bias justification

is used to obtain a default objective prior, then this in itself says nothing about

the suitability of this prior for producing approximate subjective posterior state-

ments. This would have to be argued by appeal to other considerations, such as
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invariance or arguments based on limiting posteriors.

Since the concept of objective Bayes used here is based on coverage probability,

alternative sampling rules may give rise to different objective Bayes methods.

Thus the approach contravenes the strong likelihood principle, and is therefore

incoherent from a Bayesian point of view. This is unavoidable, but we can at

least ask to what extent coverage probability bias is affected by the sampling

rule.

Following some preliminaries in §2, in §3 we review the development of objec-

tive Bayesian inference via assessment of the associated parametric asymptotic

coverage probability bias. As is well known, the situation is quite different for

one-sided and two-sided probability statements. The discussion covers choice of

both objective priors and objective regions. In §4 there is a parallel review of

recent work by Datta et al. (2000) on predictive coverage probability bias. In §5
we focus on the case of a single real parameter and explore the extent to which

the methods of §§3 and 4 conform to the likelihood principle. In general, the

construction of objective priors based on one-sided coverage probability bias will

depend on the sampling rule. However, it may be possible to construct a data-

dependent prior with the required matching property for a given class of sampling

rules. In the case of likelihood and perturbed likelihood regions for the natural

parameter of an exponential family model, it is shown that the objective classes

of Bayes priors obtained in §3 are unchanged under certain classes of stopping

rules. In the case of predictive coverage probability bias, it is shown that the con-

struction of objective predictive intervals does not depend on the sampling rule

at all and hence the likelihood principle is fully respected to the asymptotic order

considered. Some concluding remarks are made in §6, including a discussion on

the future development and implementation of objective priors based on small

coverage probability bias. Finally, Appendices contain proofs of results stated in

§§3 - 5. These proofs, which are only sketched here, use techniques in Sweeting

(1995a, b) and Sweeting (1999).
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2. PRELIMINARIES

We begin by describing the parametric framework and the main regularity

conditions and definitions. Let Xn be an observation vector and assume that

the family of density functions pn(·; θ) of Xn depends on the unknown parameter

θ ∈ Ω, an open subset of Rd. Let ΠΩ be the class of all probability densities on

Ω which are continuous and positive throughout Ω. Then the posterior density

of the unknown parameter value Θ, regarded as a random quantity having prior

density π ∈ ΠΩ, is given by

π(θ|Xn) ∝ Ln(θ)π(θ) , (1)

where Ln(θ) ∝ pn(Xn; θ) is the likelihood function.

We assume throughout that there exists a unique local maximum likelihood

estimator θ̂n of θ. Write ln(θ) = log Ln(θ), jn(θ) = −l′′n(θ), the negative Hessian

matrix, Jn = jn(θ̂n), the observed information matrix, un(θ) = −J−1/2
n l′n(θ), a

normalised score statistic, Un = un(Θ) and In(θ) = Eθ{jn(θ)}, Fisher’s infor-

mation matrix. The asymptotic results given in the present section and in §§3
and 4 are for the case of independent and identically distributed observations.

However, under suitable regularity conditions these results will carry over to more

general settings and in §5 we assume that the relevant results hold under specified

alternative sampling rules which give rise to Xn.

Consider, then, the case where Xn comprises n independent observations from

a common distribution F (·; θ) with density f(·; θ). In that case we can define

i(θ) = In(θ)/n, Fisher’s information per observation. All approximations will

be in the asymptotic sense as n → ∞ and we shall assume that the problem is

sufficiently regular for the validity of the various asymptotic approximations. In

particular, although stochastic O(·) and o(·) terms generally refer to probability

convergence, we will assume that these can be strengthened to convergence in

first mean whenever required in a proof.

The main development will be for the case d = 1, with an indication of

multiparameter extensions. In this case, we write lin for the ith derivative of ln
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with respect to θ and define the functions ρijk... = ρijk...;n and ρ̄ijk... = ρ̄ijk...;n by

ρijk...(θ) = Eθ{lin(θ)ljn(θ)lkn(θ) . . .}
ρ̄ijk...(θ) = {In(θ)}−(i+j+k+···)/2ρijk...(θ) .

The likelihood root, that is the signed loglikelihood ratio or directed likelihood,

is defined by

Rn = sgn(Θ− θ̂n)[2{ln(θ̂n)− ln(Θ)}]1/2 .

Under a given prior π ∈ ΠΩ the posterior distribution of the standardised likeli-

hood root

R̃n = Rn + R−1
n log(Un/Rn)−R−1

n log{π(Θ)/π(θ̂n)}

is standard normal to O(n−3/2) (Sweeting, 1995a). Note that R̃n may also be

written as

R̃n = Rn + R−1
n log(Tn/Rn)−R−1

n log{ξ(Θ)/ξ(θ̂n)} , (2)

where Tn = {i(θ̂n)/i(Θ)}1/2Un and ξ(θ) = {i(θ)}−1/2π(θ). The reason for the

introduction of i(θ) here is that each of the terms on the right-hand side of (2) is

invariant under reparameterisation. Quantities related to (2) are also used as ap-

proximate pivots in frequentist inference. In particular, the sampling distribution

of (2) without the final term is standard normal to third order for all location

models. For a general model, again without the final term, a suitable modification

of Tn yields a third-order standard normal sampling distribution, conditional on

a suitable asymptotically ancillary statistic. See, for example, Barndorff-Nielsen

(1986), Section 6.6 of Barndorff-Nielsen & Cox (1994) and Pierce & Peters (1994).

The connection of (2) with frequentist inference in exponential families is dis-

cussed in Sweeting (1995b).
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3. PARAMETRIC COVERAGE PROBABILITY BIAS

3.1 One-sided parametric intervals

We begin by investigating the construction of objective priors on the basis of

small coverage probability bias associated with posterior parametric statements

in the case d = 1. Let 0 < α < 1 and suppose that π ∈ ΠΩ. Let t(π, α) denote

the upper α-quantile of the posterior distribution of θ, satisfying

pr{Θ > t(π, α)|Xn} = α . (3)

We wish to know under what conditions the coverage probability bias associated

with (3) will be approximately zero. Formally, we ask when is it true that, to a

given asymptotic order of approximation,

pr{θ > t(π, α)|θ} = α (4)

very weakly, by which we shall mean that the relation

pr{Θ > t(π, α)|τ} ≡
∫

pr{θ > t(π, α)|θ}τ(θ)dθ = α (5)

holds to the asymptotic order considered for all smooth prior densities τ ∈ ΠΩ;

see, for example, Woodroofe (1986). For the present purpose of investigating

frequency based robustness to alternative prior specifications, requiring relation

(5) to hold only for smooth priors τ , and not necessarily for point-mass priors, will

be sufficient. It can also be argued that the weaker relation (5) makes sense from a

frequentist standpoint if one is really concerned with performance in repeated use,

as opposed to repeated sampling. We further note that this formulation avoids

a technical issue in asymptotic analysis, where (5) may hold in an asymptotic

sense for every smooth prior τ ∈ ΠΩ, but not for every point-mass prior.

The answer to the question posed above depends on the desired degree of

approximation in (4). To the first order of approximation, the answer is simple

and well known. Relation (4) holds to O(n−1/2) for every π ∈ ΠΩ and 0 < α <

1. Thus, to the first order of approximation there is no coverage probability
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bias associated with posterior probability statements. To the second order of

approximation, the answer is again well known: relation(4) holds to O(n−1) for

all α if and only if π(θ) ∝ {i(θ)}1/2 (Welch & Peers, 1963). Thus Jeffreys’

invariant prior is second-order matching with respect to one-sided parametric

regions and, on the basis of minimising the coverage probability bias associated

with statements of the type (3), the objective prior is Jeffreys’ prior.

The emergence of Jeffreys’ prior as the required matching prior can also be

seen by noting that when π(θ) is Jeffreys’ prior then (2) becomes

R̃J
n ≡ Rn + R−1

n log(Tn/Rn) . (6)

It turns out that the sampling distribution of R̃J
n is also approximately standard

normal to O(n−1); see Barndorff-Nielsen & Chamberlin (1991), DiCiccio & Martin

(1993) and Sweeting (1995a). In fact the conditional sampling distribution of

R̃J
n remains standard normal to this order given an arbitrary second-order locally

ancillary statistic (Sweeting, 1995b). We will say that a prior distribution is ‘kth-

order stably matching’ if, conditional on any kth-order locally ancillary statistic,

the relevant coverage probability bias is O(n−k/2). Thus Jeffreys’ prior is second-

order stably matching with respect to one-sided parametric regions.

In general, the approximation in (4) is no better than O(n−1), unless the

skewness measure ρ̄111(θ) happens to be independent of θ. In that case the

approximation is O(n−3/2) under Jeffreys’ prior, as was shown by Welch & Peers

(1963). The reason for this is that ρ̄′111(θ) appears as a factor in the next term

in the asymptotic expansion of the coverage probability.

In the multiparameter case the O(n−1/2) equivalence property continues to

hold on account of the first-order equivalence of the Bayesian and frequentist

normal approximations. To the second order of approximation, the Welch & Peers

(1963) result was generalised by Tibshirani (1989) and Nicolaou (1993), following

earlier work by Stein (1985). Suppose that (ψ, λ) is a one-to-one transformation

of θ, where ψ = ψ(θ) is a scalar parametric function of interest, and λ = λ(θ) is

chosen to be orthogonal to ψ in the sense of Cox & Reid (1987). Then O(n−1)

matching occurs with respect to one-sided parametric statements about ψ when
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π(ψ, λ) ∝ g(λ)iψψ(ψ, λ)1/2, where g(λ) > 0 is arbitrary and iψψ(ψ, λ) is the

information component associated with ψ. We note that in general it is not

possible to obtain a single prior that will provide the desired O(n−1) matching

property with respect to different scalar interest parameters ψ1 and ψ2.

3.2 Two-sided parametric intervals

In this section we describe the construction of both objective priors and re-

gions on the basis of small coverage probability bias associated with likelihood

and related regions in the case d = 1. For such regions, coverage probability bias

can be reduced to O(n−2) as a result of the cancellation of directional errors. How-

ever, the associated family of matching priors may not contain Jeffreys’ prior, in

which case the coverage probability bias for one-sided intervals will be O(n−1/2).

Matching priors for likelihood regions have been proposed in the literature as de-

fault priors for Bayesian inference, and the primary purpose of this section, along

with §5.3, is to explore and clarify the issues surrounding probability matching

for two-sided statements.

Let 0 < α < 1 and suppose that π ∈ ΠΩ. Let (t1(π, α), t2(π, α)) be any

interval having posterior probability α; that is,

pr{t1(π, α) < Θ < t2(π, α)|Xn} = α (7)

As before, we ask when it is also true that, to a given degree of approximation,

pr{t1(π, α) < θ < t2(π, α)|θ} = α (8)

very weakly.

Although we trivially deduce from the discussion in §3.1 that (8) holds to

O(n−1/2) for any smooth prior, and to O(n−1) under Jeffreys’ prior, the order of

approximation is usually better than this. In particular, suppose that the region

in (7) is a likelihood region; that is, Ln{t1(π, α)} = Ln{t2(π, α)}. Then (8) holds

to O(n−1) for every π ∈ ΠΩ (Hartigan, 1966). Furthermore, it can be shown that

(8) holds to O(n−2) for all priors of the form

π(θ) = {In(θ)}1/2e−τn(θ)
[
k1 + k2

∫
{In(θ)}1/2eτn(θ) dθ

]
, (9)
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where τn(θ) = 1
2

∫ {In(θ)}1/2ρ̄111(θ) dθ and k1, k2 are arbitrary constants (Ghosh

& Mukerjee, 1992a; Sweeting, 1995a). That is, every prior of the form (9) is

fourth-order matching with respect to likelihood regions and, on the basis of

minimising the coverage probability bias associated with statements of the type

(7), we obtain the objective class of priors (9). Notice that this class contains

Jeffreys’ prior only in the special case where the skewness ρ̄111(θ) is independent

of θ.

In the case of the exponential family model

ln(θ) = sθ − nκ(θ) (10)

the above class of priors has a concise form when expressed in terms of the

canonical parameter θ. Since ρ12(θ) = 0, we have ρ111(θ) = I ′n(θ) − 2ρ12(θ) =

I ′n(θ), so that

τn(θ) =
1

2

∫
{In(θ)}−1I ′n(θ) dθ =

1

2
log In(θ) .

Therefore the class of matching priors (9) becomes simply

π(θ) = k1 + k2µ(θ) , (11)

where µ(θ) is the expectation parameter. Note that this family includes the

uniform prior on the canonical scale, which has some intuitive appeal as this is

the flat parameterisation for the family. Note also that the family of priors (11)

is equivalent to forming uniform priors in all parameterisations of the form

φ = k1θ + k2κ(θ)

whenever these transformations are one-to-one. In §5 we establish a connection

between this class of priors and a class of linear stopping rules. We note that

the form (11) holds more generally for any model where θ is the unique affine

parameter for the model for which ρ12(θ) = 0. In this case µ(θ) is any indefinite

integral of i(θ).

As previously remarked, the family (11) of matching priors for likelihood re-

gions usually does not contain Jeffreys’ prior, so the O(n−2) two-sided matching is
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bought at the expense of O(n−1) one-sided matching. Clearly, this is an unattrac-

tive feature of objective priors obtained in this way. Furthermore, it can be argued

that there is nothing special about likelihood regions for the construction of ob-

jective priors. Severini (1993) showed that, by a judicious choice of interval, it is

possible to have agreement between posterior and coverage probabilities to third

order, under any given smooth prior. This is an attractive property, especially

where there may be some concern about the prior adopted, since it gives ad-

ditional frequentist validity to subjective Bayesian probability statements. On

the other hand, approximate frequentist confidence regions can be constructed

which take some account of moderate prior information, having an approximate

Bayesian interpretation under that prior. In Sweeting (1999) such regions are

referred to as ‘Bayes-confidence regions’.

Consider any modification of the likelihood root Rn of the form

R̄n = Rn + R−1
n log gn(Rn) , (12)

where (gn) is a function sequence in the class A4 defined in Sweeting (1999),

and consider intervals of the form |R̄n| ≤ c. We will refer to such intervals as

‘perturbed likelihood regions’ based on R̄n. Note that these are likelihood regions

when gn ≡ 1 in (12). Then, for any prior π ∈ ΠΩ, perturbed likelihood regions

based on R̄n satisfying (7) will also satisfy (8) to O(n−1). The reason for this is

the cancellation of the O(n−1/2) directional errors in the sampling densities.

Now let π = π0, a specific prior in ΠΩ, and define ξ0(θ) = {i(θ)}−1/2π0(θ).

It is shown in Sweeting (1999) that perturbed likelihood regions based on the

particular modification

R̄n = Rn +
3

2
R−1

n log(Tn/Rn)− 1

2
R−1

n log{ξ0(Θ)/ξ0(θ̂n)} (13)

which satisfy (7) also satisfy (8) to O(n−2). Such intervals are therefore invari-

ant fourth-order Bayes-confidence regions. Furthermore, it is shown in Sweeting

(1999) that (8) holds to O(n−3/2) conditionally on any second-order locally ancil-

lary statistic. Thus all that is required for the construction of Bayes-confidence
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intervals is a suitable change in the numerical coefficients of the two adjustment

components of the standardised likelihood root (2). Numerical evaluations in

Sweeting (1999) indicate that the coverage properties of these intervals are very

good, even in quite small samples, although there may be some degradation for

parameter values in regions of relatively low prior density. Thus, for a given prior,

restriction to this class of intervals provides some robustness in the sense that

the coverage properties under alternative neighbouring smooth priors would be

approximately the same.

In view of the above results, there does not seem to be a compelling case for

constructing default priors via probability matching for likelihood regions, since

perturbed likelihood regions could serve the same purpose and would yield dif-

ferent default priors. One way to resolve the tension between objective Bayes

procedures based on one- or two-sided intervals would be to use the matching

prior, that is, Jeffreys’ prior, for one-sided probabilities and, if desired, to use

perturbed likelihood regions associated with Jeffreys’ prior for two-sided proba-

bility statements. These regions will have the additional frequentist robustness

property referred to above. Thus, one would take gn(Rn) = (Tn/Rn)3/2 in (12),

giving rise to O(n−1) coverage probability bias for all posterior statements cou-

pled with O(n−2) coverage probability bias for two-sided posterior statements.

In the case of an exponential family model, an alternative simpler form of

(13) is available, namely

R̄n = Rn − 1

2
R−1

n log{π0(Θ)/π0(θ̂n)} , (14)

where θ is the canonical parameter of the family. As is the case with likelihood

regions, to each perturbed likelihood region based on (14) there is an associated

class of matching priors. The following extension of (11) is proved in Appendix

1.
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THEOREM 1. Consider perturbed likelihood regions based on (14) for an

exponential family model. Then the coverage probability bias of these regions is

O(n−2) for all priors of the form

π(θ) = π0(θ){k1 + k2

∫
π0(θ)

−1i(θ)dθ} , (15)

where k1, k2 are arbitrary constants.

As with (11), in §5 we will relate this class of matching priors to a certain class

of stopping rules. We note that a similar result to Theorem 1 can be obtained

for a general model by considering the perturbed regions based on (13).

The extension to the multiparameter case of approximate Bayesian inference

based on directed likelihood is described in Sweeting (1996). It should be pos-

sible to extend the two-sided results described above for a single parameter in a

multiparameter setting by initial transformation to a directed likelihood vector;

see also Ghosh & Mukerjee (1992b) for a review of matching priors for posterior

and frequentist inference in the multiparameter case.

4. PREDICTIVE COVERAGE PROBABILITY BIAS

4.1. One-sided predictive intervals

In this section we consider the construction of objective priors on the basis of

small coverage probability bias associated with Bayesian predictive statements.

This question is discussed in Datta et al. (2000). Let 0 < α < 1, π ∈ ΠΩ and let

Y be a future observation from F (·; θ). Let y(π, α) denote the upper α-quantile

of the predictive distribution of Y , satisfying

pr{Y > y(π, α)|Xn} = α . (16)

We would like to know when is it also true that, to a given degree of approxima-

tion,

pr{Y > y(π, α)|θ} = α (17)

very weakly.
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It turns out that (17) holds to O(n−1) for every π ∈ ΠΩ and 0 < α < 1. This

is because

pr{Y > y(π, α)|θ} = pr{Y > y(π, α)|θ̂n}+ O(n−1)

and also

pr{Y > y(π, α)|Xn} = E[pr{Y > y(π, α)|Θ}|Xn]

= pr{Y > y(π, α)|θ̂n}+ O(n−1) .

Thus, to second order, there is no coverage probability bias associated with

Bayesian predictive probability statements. Note that this is one order higher

than the corresponding property for parametric statements.

It is now natural to ask whether or not there exists a prior distribution for

which (17) holds to a higher asymptotic order. Write Dj ≡ ∂/∂θj. Datta et al.

(2000) show that, employing the summation convention,

pr{Y > y(π, α)|θ} = α− 1

π(θ)
Ds{Ist

n (θ)µt(θ, α)π(θ)}+ o(n−1) (18)

very weakly, where

µt(θ, α) =
∫ ∞

q(θ,α)
Dtf(u; θ)du

and q(θ, α) satisfies ∫ ∞

q(θ,α)
f(u; θ)du = α .

It follows that (17) holds to o(n−1) if and only if π satisfies the partial differential

equation

Ds{ist(θ)µt(θ, α)π(θ)} = 0 . (19)

In general solutions to (19) will depend on the level α, in which case it is not

possible to improve coverage probability bias beyond O(n−1). On the other hand,

in the case d = 1 it is shown in Datta et al. (2000) that, if there does exist a prior

satisfying (19) for all α, then this prior must be Jeffreys’ prior. In that case, it

can further be shown that the coverage probability bias is actually O(n−2) under

suitable regularity conditions. Examples include all location models. Recent

work by the author indicates that Jeffreys’ prior should produce good predictive
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coverage properties even when there is no prior for which (19) is satisfied for all

α.

The solution to (19) in the multiparameter case is investigated by Datta et

al. (2000). In particular, they show that, when there does exist a prior satisfying

(19) which is free from α, it is not necessarily Jeffreys’ prior. Consideration of

particular models indicates that the prior which does emerge has other attrac-

tive properties. For example, in location-scale models the predictive approach

yields the commonly-used improper prior which is proportional to the inverse of

the scale parameter, as opposed to the problematic Jeffreys’ prior in this case.

Overall, consideration of predictive coverage promises to be a valuable tool for

the development of sensible objective priors.

4.2. Two-sided predictive intervals

In this section we discuss the construction of objective predictive regions on

the basis of small coverage probability bias. For 0 < α < 1 and π ∈ ΠΩ, let

y1(π, α), y2(π, α) satisfy

pr{y1(π, α) < Y < y2(π, α)|Xn} = α . (20)

We would like to know when it is also true that, to a given level of approximation,

pr{y1(π, α) < Y < y2(π, α)|θ} = α (21)

very weakly.

We trivially deduce from §2 that (21) holds to O(n−1) under any smooth

prior, and possibly to o(n−1) under Jeffreys’ prior in the case d = 1. Now let

π0 be an arbitrary prior in ΠΩ. Let γα(θ) be any function of α and θ satisfying

0 < α < γα(θ) < 1 and write γα = γα(θ̂n). Then, from (16), (20) is satisfied if we

take y1(π0, α) = y(π0, 1 − γα + α) and y2(π0, α) = y(π0, 1 − γα). It is shown in

Datta et al. (2000) in the case d = 1 that, under mild regularity conditions on

F (·; θ), the O(n−1) error term in (21) is then

− 1

π0(θ)

d

dθ

{
ξα(θ)π0(θ)

In(θ)

}
,
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where ξα(θ) = ψ(γα(θ), α, θ) and

ψ(γ, α, θ) =
∫ q(θ,1−γ)

q(θ,1−γ+α)
fθ(x; θ)dx . (22)

Equation (21) therefore holds to o(n−1) when ξα(θ) = 0. Datta et al. (2000) show

that, under mild conditions, there is a unique choice of γα(θ) which achieves this.

Furthermore, under additional conditions the error in (21) can be shown to be

O(n−2). Thus restriction to predictive probabilities for this class of intervals can

be regarded as objective Bayes in the sense discussed in §3 in the case of Bayes-

confidence intervals. The construction of analogous objective predictive regions

in the multiparameter case is a topic for future investigation.

5. COVERAGE PROBABILITY BIAS AND THE LIKELIHOOD PRINCIPLE

5.1. Preamble

We have been concerned with Bayesian procedures possessing small coverage

probability bias. However, since coverage probabilities involve the sampling rule,

such procedures contravene the strong likelihood principle and are therefore in-

coherent from a Bayesian point of view. In this section we specialise to the case

d = 1 and explore the extent to which the procedures described in §§3 and 4 con-

form to the likelihood principle. Most of the technical details will be relegated

to the Appendices.

It appears difficult to obtain useful general results which would apply to quite

different models giving rise to the same likelihood. Instead, we focus on the extent

to which objective Bayesian procedures are affected by the censoring model or

the stopping rule. There are connections here with the work of Barndorff-Nielsen

& Cox (1984) on the effect of the sampling rule on Bartlett corrections, and

Pierce & Peters (1994) on its effect on general frequentist inference, based on

Barndorff-Nielsen’s r∗.
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5.2. Data-dependent priors

We return to the construction of objective priors via coverage properties of

one-sided posterior parametric statements. In general O(n−1) objective Bayesian

statements of the form (3) based on Jeffreys’ prior will not conform to the like-

lihood principle to this order. To see this, consider two alternative sampling

rules which give rise to the same likelihood but different Fisher informations

I1(θ), I2(θ). Then, in order that the posterior distributions of θ under the two

forms of Jeffreys’ prior agree to O(n−1), we need

I1(θ)

I2(θ)
∝ 1 + ηn(θ) ,

where ηn(θ) is O(n−1). In general, however, ηn(θ) will be O(n−1/2) and this

relation will fail to hold. On the other hand, as we now show, it may be possible to

construct a data-dependent prior which gives rise to O(n−1) coverage probability

bias under certain alternative sampling mechanisms. Data-dependent priors have

been used quite frequently in the literature as approximate priors.

Define the estimator În(θ) of In(θ) by

În(θ) = −l′′n(θ) + l′n(θ)





∑
i l
′
(i)(θ)l

′′
(i)(θ)∑

i(l
′
(i)(θ))

2



 , (23)

where l(i)(θ) is the component of loglikelihood corresponding to the ith observa-

tion. It is straightforward to verify that the construction (23) is invariant under

reparameterisation. It is shown in Appendix 2 that

În(θ) ∝ In(θ){1 + ηn(θ)} , (24)

where ηn(θ) is O(n−1), which turns out to be sufficient to allow us to approximate

Jeffreys’ prior by the data-dependent prior

π̂n(θ) = {În(θ)}1/2 . (25)

Under this prior, the quantity Tn in (6) becomes

T̂n = −{În(Θ)}−1/2l′n(Θ) , (26)
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so that the posterior distribution of

R̂J
n = Rn + Rn log(T̂n/Rn) (27)

is standard normal to O(n−3/2). The following result is proved in Appendix 2.

THEOREM 2. π̂n(θ) in (25) is a second-order stably matching data-dependent

prior.

It is important to note that the derivation of Theorem 2 requires independence

of the observations. In particular, it can be shown that the result fails in the

case of Type II censored data from an exponential distribution. However, the

result does hold for Type I censoring. As an example, consider the case of n

observations x1, . . . , xn, where xi = min(ti, ci), t1, . . . , tn are independent random

variables from an exponential (θ) distribution and c1, . . . , cn are censoring times

generated from a censoring distribution G. Then it is straightforward to check

that

θ2În(θ) = r − (r − sθ)(r − uθ)

(r − 2uθ + vθ2)
,

where r is the number of uncensored observations, u is the sum of the uncensored

observations, s =
∑

i xi and v =
∑

i x
2
i . This estimator automatically adapts to

the true Fisher information In(θ) ∝ θ−2{1 − φ(θ)}, where φ(·) is the Laplace

transform associated with G. Note that if the censoring distribution is unknown

then it will not be possible to identify In(θ).

Use of the data-dependent prior (25) is attractive in that it permits objective

Bayesian inference to be performed independently of the underlying data cen-

soring mechanism. However, as can be seen from the above example, (25) uses

aspects of the data beyond the minimal sufficient statistic, and so the approach

still contravenes the likelihood principle. Since (25) essentially estimates Jeffreys’

prior under the true underlying censoring mechanism, such a procedure can only

really begin to make sense from a purely Bayesian point of view if the censoring

mechanism is regarded as being informative. In particular cases, it may be possi-

ble to justify a data-dependent prior as an approximation when the construction
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of the experimental design is likely to have been based on prior beliefs about θ.

Such a possibility warrants further investigation. From a frequentist viewpoint,

Theorem 2 indicates that, at least under non-sequential sampling, it is possible to

perform conditional inference to O(n−1) independently of sampling mechanisms

which give rise to the same likelihood. This observation agrees with the discus-

sion in Pierce (1999), who observes that ‘ideal’ frequentist inference conforms to

the second order with the likelihood principle in regard to censoring models.

We note that the objective priors in (11) or (15) do not in general respect the

likelihood principle with respect to Type I censoring. This can be easily shown

by evaluating the canonical parameter under the censoring model and we omit

details. It is not known whether or not one can construct data-dependent priors

in this case to achieve (8) to o(n−1) under Type I censoring.

5.3. Stopping rules and exponential families

In this section we reconsider the two-sided objective parametric intervals of

the form (8). From §2, when these intervals are likelihood regions the class of

objective priors for which (8) holds to O(n−2) is given by (9). We now specialise

to the case of an exponential family model (10) for which s > 0 and investigate

the effect of alternative stopping rules on their associated coverage probability.

Define the class of linear stopping rules for which observation is stopped as

soon as

c1s + c2n ≥ m, (28)

where c1, c2 are nonnegative constants with c1 + c2 = 1, and consider asymptotics

as m → ∞. In order to gain some insight into the behaviour described later,

consider the following heuristic argument. Ignoring any overshoot in the stopping

rule (28), we can write

sθ − nκ(θ) = zφ−mκ̃(φ) ,

where z = s− n, φ = c2θ + c1κ(θ) and κ̃(φ) = κ(θ)− θ. Thus, if we assume φ is

a one-to-one transformation of θ, any stopping rule of the form (28) gives rise to
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another exponential family model with canonical parameter φ. Further assuming

that the transformed family is sufficiently regular for (9) to hold, it follows from

(11) that the class of priors for which (8) holds to O(m−2) is

π(φ) = k̃1 + k̃2κ̃
′(φ) ,

for arbitrary constants k̃1 and k̃2. In terms of θ, these priors become

π(θ) = [k̃1 + k̃2{κ′(θ)− 1}{φ′(θ)}−1]φ′(θ)

= k̃1{c2 + c1κ
′(θ)}+ k̃2{κ′(θ)− 1}

= k1 + k2κ
′(θ) ,

which gives precisely the class of objective priors in (11) under a fixed sample

size.

Thus we have shown informally that the class of objective priors based on

small coverage probability bias of likelihood regions conforms to the likelihood

principle with respect to all linear stopping rules of the form (28). A formal

derivation proceeds by considering all stopping rules of the form

nv(θ̂) ≥ m. (29)

Say that v(θ) is asymptotically linear in φ(θ) if v can be written in the form

v(θ) = c1φ + c2 + o(1). The following result is proved in Appendix 3.

THEOREM 3. Consider stopping rules of the form (29) where v is twice

differentiable. Then the coverage probability bias of likelihood regions under the

class (11) of priors is o(m−1) if and only if v is asymptotically linear in the

expectation parameter µ; that is, the stopping rule is of the form ‘stop when c1s+

c2n + o(n) ≥ m’, where o(n) is arbitrary. Furthermore, the coverage probability

bias under stopping rules of the form (28) under any prior in the class (11) is

O(m−2).

Theorem 3 is related to the concluding remark in Barndorff-Nielsen & Cox

(1984) that, although the Bartlett adjustment factor will in general depend on

the sampling rule, ‘interesting families of sampling rules related in a simple way
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may lead to the same value of the adjustment’. As emphasised by Pierce & Peters

(1994), such results arise because of offsetting directional errors, and there is no

corresponding result for one-sided probability statements.

We return to the discussion in §3.2 concerning the construction of objective

priors on the basis of coverage properties of likelihood regions. From the point

of view of coverage probability bias robustness under alternative stopping rules,

from Theorem 3 and the preceding informal argument, likelihood regions have

the distinctive property of conforming approximately to the likelihood principle

under the class (28) of linear stopping rules. However, Theorem 4 below indicates

that there is really nothing special about likelihood regions, since every perturbed

likelihood region of the form (14) will conform approximately to the likelihood

principle under stopping rules for which v is linear in some other parameterisation.

Put another way, this implies that, for any given prior, the perturbed region based

on (14) will have small coverage probability bias under the class of stopping rules

defined in Theorem 4. The proof is given in Appendix 3.

THEOREM 4. Consider stopping rules of the form (29) where v is twice

differentiable. Then the coverage probability bias of perturbed likelihood regions

based on (14) under the class (15) of priors is o(m−1) if and only if v is asymp-

totically linear in φ ≡ ∫
π0(θ)

−1i(θ)dθ. Furthermore, the coverage probability bias

under stopping rules for which v is linear in φ under any prior in the class (15)

is O(m−2).

It is of interest to note some particular cases. When π0(θ) ∝ 1, we are back to

likelihood regions and the class of matching priors is unchanged under stopping

rules for which v is linear in the expectation parameter. When π0 is Jeffreys’ prior,

then the corresponding stopping rules have v linear in the constant-information

parameterisation. Finally, stopping rules with v linear in the canonical parameter

arise on taking perturbed regions corresponding to π0(θ) ∝ i(θ).

It would be of interest to investigate whether or not there exist stopping rules

for which the coverage property (8) holds to O(m−2) for non-exponential families.

From the results for exponential families, one would expect that approximately
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conformity to the likelihood principle under approximately linear stopping rules,

provided that the statistical curvature of the model is not large.

5.4. Predictive intervals

In this section we investigate the effect of alternative sampling rules on objec-

tive Bayesian inference based on predictive coverage probability bias in the case

d = 1. In order to do this we need to specify the predictive distribution F (·; θ)
of the future observation Y .

It follows from (18) that objective statements of the form (8) will not conform

to the likelihood principle to o(n−1) because of the dependence of the functional

form of Fisher’s information on the sampling rule. In particular, consider the case

where a predictive matching prior exists which is free from α. Suppose initially

that Xn consists of independent observations with common distribution F (·; θ),
the same as the specified predictive distribution of Y , and suppose further that

there exists a predictive matching prior satisfying (19) for all α. Then, from §4.1,

this prior must be Jeffreys’ prior and it follows from (19) that

D1[µ1(θ, α){i(θ)}−1/2] = 0 (30)

for all α. Now consider an alternative sampling rule giving rise to the same

likelihood under which (18) holds with In = Īn, Fisher’s information associated

with this sampling rule. Then, from (18), π̄ will be a predictive matching prior

with respect to this sampling rule if it satisfies the equation

D1[{Īn(θ)}−1µ1(θ, α)π̄(θ)] = 0

for all α. It now follows from (30) that

π̄(θ) ∝ {i(θ)}−1/2Īn(θ) .

Therefore a matching prior exists for every sampling rule for which (18) is valid

and depends on both the predictive distribution F (·; θ) and the sampling rule.

Furthermore, this prior only coincides with Jeffreys’ prior when Īn(θ) ∝ i(θ).
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Finally, if it is possible to estimate Īn(θ) with accuracy given in (24), then a

matching data-dependent prior may be used, as discussed in §5.2.

Consider next the objective predictive intervals described in §4.2. Again,

we suppose that the predictive distribution F (·; θ) of Y is specified and that (18)

holds for the sampling mechanism used to generate Xn. The key point here is that

the construction of the function γα(θ) in §4.2 only depends on F and does not de-

pend at all on the sampling rule. Furthermore, since γα = γα(θ̂n), the quantities

y1(π, α) and y2(π, α) satisfying (20) and (21) are functions of likelihood-based

quantities. Thus, remarkably, the objective predictive intervals constructed in

Datta et al. (2000) conform to the likelihood principle to the order of approxi-

mation considered with respect to all sampling rules under which (18) is valid.

6. DISCUSSION

In this paper we have considered objective Bayesian procedures from the point

of view of coverage probability bias. Objective Bayes has been interpreted in a

broad sense, encompassing objective choice of priors, objective posterior prob-

ability statements and objective predictive probability statements. Since these

methods involve sample space averaging, it is natural to enquire into their sensi-

tivity to the sampling rule. The following issue arises in relation to the construc-

tion of objective priors. In the terminology of Dawid (1991), should we agree to

use a default prior based on a specified ‘inferential model’, or should it be based

on the appropriate ‘production model’? In the first case we might get poor cover-

age properties when the production model does not coincide with the inferential

model. Furthermore, there will probably be some ambiguity in deciding on the

appropriate inferential model. On the other hand, in the second case we will

be violating the likelihood principle. Here we have taken the production model

viewpoint and explored the extent to which the likelihood principle is violated.

Data-dependent priors would seem to be especially useful when the production

model is unknown.
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Pierce & Peters (1994) conjecture that the effect due to the elimination of

nuisance parameters in Barndorff-Nielsen’s r∗ should conform approximately to

the likelihood principle. This suggests that conformity of objective procedures

to the likelihood principle for a single parameter in the presence of nuisance

parameters should be similar to the one-parameter case. Barndorff-Nielsen & Cox

(1984) show that for the special case of an exponential failure time model with

an exponential censoring mechanism, and treating the censoring rate parameter

as a nuisance parameter, the sampling distribution of the likelihood ratio for the

failure time parameter is unaffected by the censoring model to O(n−2).

The difficulties associated with prior construction in Bayesian inference be-

come more severe when the dimension of the parameter space is large. As model

complexity increases it becomes more difficult to make sensible prior assignments,

whether in a subjective or objective manner. At the same time, the effect of the

prior specification on the final inference of interest will tend to become more pro-

nounced. In the case of subjective assignment, the meaning of parameters will

often be less clear and there will be a limit to the amount of elicitation that can

be carried out in a finite time. On the other hand, naive objective assignments

may lead to unappealing properties of the posterior, such as non-propriety or

paradoxical behaviour. Sensible ways of constructing and implementing priors

based on coverage probability bias in the multiparameter case are therefore of

real practical importance.

In the absence of nuisance parameters, the coverage requirement for posterior

quantiles leads to Jeffreys’ prior. However, in the multiparameter case differ-

ent objective priors may emerge according to which parameter is viewed as the

parameter of interest. Furthermore, in the multiparameter case there is a large

class of priors giving rise to O(n−1) coverage probability bias. Mukerjee & Ghosh

(1997) show that it may be possible to achieve o(n−1) coverage probability bias.

The priors that emerge, however, differ depending on whether posterior quantiles

or the posterior distribution function are considered.

In view of the ambiguities associated with the parametric approach, a pre-
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dictive approach to the derivation of objective Bayes procedures appears to be

particularly promising in the multiparameter case, especially when there is no

reason to treat any parameter as the parameter of interest in preference to the

others. Experience so far indicates that such an approach can yield sensible mul-

tiparameter priors. Furthermore, predictive coverage is less influenced by the

sampling rule since, first, it is one asymptotic order higher than parametric cov-

erage for one-sided intervals and, second, two-sided objective predictive intervals

can be constructed independently of the sampling rule.

In addition to providing a sound basis for the construction of priors in general

multiparameter problems, there is also some prospect of computer implementa-

tion of predictive matching priors via local solutions to equation (19). In some

cases it may be possible to incorporate local predictive matching priors within

Gibbs sampling schemes. It turns out that the derivation of (19) also lends

itself to the construction of mixed subjective/objective priors. This would be

an attractive option where there is real prior knowledge about some parametric

functions, but otherwise considerable uncertainly. A related idea would be to

achieve some mixed parametric/predictive matching. For example, the class of

Tibshirani matching priors associated with a specified scalar parametric func-

tion could be obtained, and then a prior identified which achieved some optimal

predictive matching within this class of priors. Finally, it would be of interest

to explore the construction of predictive matching priors in various non-regular

cases. The derivation of matching priors based on parametric coverage for a class

of non-regular cases has recently been considered by Ghosal (1999). There is

therefore a need for further investigation into the properties of priors constructed

via predictive coverage and their practical implementation in the multiparameter

case.
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APPENDIX 1

Proof of Theorem 1

Consider an arbitrary perturbed region of the form (12). The techniques here

are similar to those in Sweeting (1999) and we only sketch the proof. Let sπ
B be

the Bayesian Bartlett correction associated with (12) under the prior π, so that

pr{|R̄n| ≤ sπ
Bzα/2|Xn} = α + O(n−2) .

We wish to determine the class of priors π for which

pr{|R̄n| ≤ sπ
Bzα/2|θ} = α + O(n−2) (A1)

very weakly.

Let ψ be the constant-information parameterisation for which In(ψ) = n.

From (14) in Sweeting (1999), the sampling density of R̄n/s
π
B has the very weak

approximation

f̄n(r|ψ) ∝ φ(r)h̄n(r, ψ0)(∂ψ0/∂ψ){1− b̄n(ψ0)r
2}{1 + ε̄n(ψ0)r} (A2)

to O(n−2), where all terms are as defined in Sweeting (1999). Then (A1) is true

if and only if the second coefficient of the modulating function in expression (A2)

is zero. This coefficient is given by (15) in Sweeting (1999). Write q̄1(ψ) =

ā1(ψ) + p̄1(ψ) where p̄1(ψ) is the first coefficient in ḡ(r). That is, p̄1(ψ) satisfies

p1 = p̄1(ψ0) + n−1ξ + O(n−3/2)

under ψ0, where p1 is the first coefficient of g and ξ is a random variable with

E0(ξ) = 0. Also, define β(ψ) = 3n1/2ā1(ψ) = 1
2
n1/2ρ̄111(ψ) and δ(ψ) = 2n1/2p̄1(ψ).

Substituting for γ̄1, γ̄2, ᾱ1, ᾱ2, β and δ in (15) of Sweeting (1999), after some al-

gebra we obtain, in a similar fashion to §5.4 of Sweeting (1995a), the differential

equation

π′′(ψ) + [{β(ψ) + δ(ψ)}π(ψ)]′ = 0 ,

giving

π′(ψ) + {β(ψ) + δ(ψ)}π(ψ) = C .
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Finally, if we note the invariance of the quantities ρ̄111 and p̄1, the solution to

this equation expressed in the canonical parameterisation is found to be

π(θ) = e−ωn(θ){k1 + k2

∫
In(θ)eωn(θ)dθ} ,

where ωn(θ) = 2
∫

In(θ)1/2p̄1(θ)dθ.

Now let π0 be an arbitrary prior in ΠΩ and take g(r) = {π0(θ)/π0(θ̂n)}−1/2.

Then

In(θ)1/2p̄1(θ) = −1

2
{π′0(θ0)/π0(θ0)}

so that exp{−ωn(θ)} = π0(θ) and (15) follows.

APPENDIX 2

Proof of Theorem 2

Assume without loss of generality that In(θ) = n. Applying one-term Taylor

expansions about θ0 and the law of large numbers, we see that

Î ′n(θ̂n) = −l′′′n (θ̂n) + l′′n(θ̂n)





∑
i l
′
(i)(θ̂n)l′′(i)(θ̂n)

∑
i(l
′
(i)(θ̂n))2





= −l′′′n (θ0) + l′′n(θ0)





∑
i l
′
(i)(θ0)l

′′
(i)(θ0)∑

i(l
′
(i)(θ0))2



 + O(n1/2)

= −E0{l′′′n (θ0)}+ E0{l′′n(θ0)}




∑
i E0{l′(i)(θ0)l

′′
(i)(θ0)}∑

i E0{(l′(i)(θ0))2}



 + O(n1/2)

= −ρ3(θ0)− ρ12(θ0) + O(n1/2)

= I ′n(θ0) + O(n1/2) = O(n1/2)

since I ′n(θ0) = 0. A Taylor expansion of În(θ) about θ̂n now gives

J−1
n În(θ) = 1 + J−3/2

n Î ′n(θ̂n)r + O(n−1) = 1 + O(n−1) . (A3)

Relation (24) now follows from (A3) by converting to an arbitrary parameterisa-

tion.

We now trace through the arguments in §5.3 of Sweeting (1995b), with the

following modifications. All the following statements hold to O(n−1). First, the
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posterior distribution of R̂J
n given by (27) under any prior τ ∈ ΠΩ is given by

f̂J
n (r|Xn) ∝ φ(r){În(θ)/Jn}−1/2{τ(θ)/τ(θ̂n)}

= φ(r){τ(θ)/τ(θ̂n)} (A4)

from (A3). Now let An be any second-order locally ancillary statistic. The

argument in Sweeting (1995b) then gives

f̂J
n (r|An, θ) = φ(r)

very weakly. On comparison with (A4) we see that the conditional sampling dis-

tribution of R̂J
n is the same as the posterior distribution under the data-dependent

prior (25), as required.

APPENDIX 3

Proofs of Theorems 3 and 4

Since l′′(θ) is non-random, we have −l′′(θ) = ni(θ) and −l′′′(θ) = ni′(θ). Let

α(θ) = Ẽ(n), where a˜ indicates expectation under the stopping rule (29). We

have the relations

Ĩn(θ) = (αi)(θ)

Ĩ ′n(θ) = (αi)′(θ)

ρ̃3(θ) = −α(θ)i′(θ) ,

where (αi)(θ) = α(θ)i(θ). The final two relations along with the identity 3Ĩ ′n(θ) =

ρ̃111(θ)− 2ρ̃3(θ) imply that

ρ̃111(θ) = 2α′(θ)i(θ) + (αi)′(θ) .

Since Ẽ(θ̂n) = θ + O(m−1), a second-order Taylor expansion of v(θ̂n)−1 about

θ gives

α(θ) = m/v(θ) + O(1) . (A5)
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Now transform to the constant-information parameterisation ψ under the

stopping rule (29) for which Ĩn(ψ) = m. Then

θ′(ψ) =

{
m

(αi)(θ)

}1/2

.

Proof of Theorem 3. Tracing through the development in Appendix 1 with g ≡ 1,

we see that (8) is true under the stopping rule (29) to o(m−1) if and only if

π′′(ψ) + {β̃(ψ)π(ψ)}′ = o(1) , (A6)

where β̃(ψ) = 1
2
m1/2¯̃ρ111(ψ).

Now revert to the canonical parameterisation, noting that

π(ψ) = π(θ)θ′(ψ)

θ′′(ψ) = −1

2
m1/2(αi)(θ)−3/2(αi)′(θ)θ′(ψ)

β̃(ψ) =
1

2
m1/2¯̃ρ111(θ) =

1

2
m1/2(αi)(θ)−3/2{2α′(θ)i(θ) + (αi)′(θ)} , (A7)

to give

π′(ψ) + β̃(ψ)π(ψ) = m

{
π′(θ)

(αi)(θ)
+

α′(θ)π(θ)

α(θ)2i(θ)

}

=
η(θ)π′(θ)

i(θ)
− η′(θ)π(θ)

i(θ)
, (A8)

where η(θ) = m/α(θ). Now, noting that the class (11) of matching priors under

fixed sample size satisfies the equation

{π′(θ)/i(θ)}′ = 0 ,

differentiate (A8) to obtain, from (A6),

η(θ)

{
π′(θ)
i(θ)

}′
−

{
η′(θ)
i(θ)

}′
π(θ) = o(1) . (A9)

It follows that the class of matching priors under (29) is the same as that under

fixed sample size sampling if and only if {η′(θ)/i(θ)}′ = o(1), which is equivalent

to

η(θ) = c1µ + c2 + o(1) .
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From (A5) this is equivalent to the class of stopping rules which are asymptotically

linear in µ, as asserted.

Finally, for the class of stopping rules (28) we see that equation (A9) holds

with o(1) replaced by O(m−1). This implies that (8) holds to O(m−2), as required.

Proof of Theorem 4. As in the proof of Theorem 3, tracing through the devel-

opment in Appendix 2, we see that (8) is true under the stopping rule (29) to

o(m−1) if and only if

π′′(ψ) + [{β̃(ψ) + δ(ψ)}π(ψ)]′ = o(1) . (A10)

Now revert to the canonical parameterisation, noting the relations (A7) and

p̄1(ψ) = p̄1(θ), to give

π′(ψ) + {β̃(ψ) + δ̃(ψ)}π(ψ) = m

[{
π0(θ)

(αi)(θ)

} {
π(θ)

π0(θ)

}′
+

α′(θ)π(θ)

α(θ)2i(θ)

]

=

{
η(θ)π0(θ)

i(θ)

} {
π(θ)

π0(θ)

}′
− η′(θ)π(θ)

i(θ)
, (A11)

where η(θ) = m/α(θ). Now, noting that the class (15) of matching priors under

fixed sample size satisfies the equation
[{

π0(θ)

i(θ)

} {
π(θ)

π0(θ)

}′]′
= 0 ,

differentiate (A11) to obtain, from (A10),

η(θ)

[{
π0(θ)

i(θ)

} {
π(θ)

π0(θ)

}′]′
−

{
η′(θ)π0(θ)

i(θ)

}′ {
π(θ)

π0(θ)

}
= o(1) . (A12)

It follows that the class of matching priors under (29) is the same as that un-

der fixed sample size sampling if and only if {η′(θ)π0(θ)/i(θ)}′ = o(1), which is

equivalent to

η(θ) = c1φ + c2 + o(1) ,

where φ =
∫

π0(θ)
−1i(θ)dθ. From (A5) this gives the asserted class of stopping

rules.

Finally, for the class of stopping rules (29) which are linear in φ we see that

equation (A12) holds with o(1) replaced by O(m−1). This implies that (8) holds

to O(m−2), as required.
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