
Università degli Studi di Pisa

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis: XXIX

Interactive Rendering of Scattering and Refraction

E�ects in Heterogeneous Media

Daniele Bernabei

Supervisor

Doc. F. Ganovelli

Supervisor

Prof. P. Cignoni

Referee

Prof. D. Pedreschi

Referee

Prof. A. Cisternino

Chair

Prof. P. Degano

14th May 2013

Università degli Studi di Pisa

Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis: XXIX

Interactive Rendering of Scattering and Refraction

E�ects in Heterogeneous Media

Daniele Bernabei

Abstract. In this dissertation we investigate the problem of interactive and real-
time visualization of single scattering, multiple scattering and refraction e�ects in
heterogeneous volumes. Our proposed solutions span a variety of use scenarios: from
a very fast yet physically-based approximation to a physically accurate simulation
of microscopic light transmission. We add to the state of the art by introducing
a novel precomputation and sampling strategy, a system for e�ciently parallelizing
the computation of di�erent volumetric e�ects, and a new and fast version of the
Discrete Ordinates Method. Finally, we also present a collateral work on real-time 3D
acquisition devices.

14th May 2013

Contents

Introduction 7

1 Physics of Light Transfer 9
1.1 Radiometry . 10

1.1.1 Radiant Flux . 10
1.1.2 Irradiance . 11
1.1.3 Radiance . 11
1.1.4 Irradiance from Radiance . 12

1.2 Material Properties . 13
1.2.1 Cross-sections . 13
1.2.2 Coe�cients . 13
1.2.3 Index of refraction . 14
1.2.4 Phase Functions . 14

1.3 Light transmission . 15
1.3.1 Refraction Equations . 16
1.3.2 Beer-Lambert law and Optical Distance . 16
1.3.3 Volume Rendering Equation (Integro-Di�erential Form) 17
1.3.4 Source Function Formulation . 18
1.3.5 Volume Rendering Equation (Integral Form) 18
1.3.6 Separation of Single and Multiple Scattering 20
1.3.7 Bidirectional Functions . 20

2 Literature Review 23
2.1 Discrete Ordinates Method . 25

2.1.1 Discretization of the RTE . 25
2.1.2 Modi�ed DOM and SHDOM . 26
2.1.3 Light Propagation Volumes . 26

2.2 Multiple Scattering as a Di�usion Process . 27
2.2.1 The Di�usion Equation . 27
2.2.2 Solvers to the Di�usion Equation . 30
2.2.3 Lattice-Boltzmann Di�usion . 30

2.3 The Dipole Model . 31
2.3.1 Real-time Rendering with the Dipole Method 33
2.3.2 Screen space Subsurface Scattering . 33

2.4 Volume Rendering . 34
2.4.1 Ray Marching . 34
2.4.2 Splatting and Slicing . 34

2.5 Single Scattering Integral and Closed Form Solutions 36
2.5.1 Air Light Integral . 36
2.5.2 A closed form Integral Solution . 36

2.6 Precomputed Radiance Transfer . 37
2.7 Refraction . 38

4 CHAPTER 0. CONTENTS

3 E�cient Compression of Material Properties for Single Scattering 41
3.1 Algorithm Overview . 42

3.1.1 Reformulating the Radiative Transfer Equation 42
3.2 Point Sampling Algorithm . 45

3.2.1 Sampling Algorithm . 45
3.2.2 O�set Surfaces Construction . 47
3.2.3 Density Heuristic . 48
3.2.4 Poisson Disks Sampling . 50

3.3 Setting Samples Parameters . 50
3.3.1 Spherical Harmonics Compression . 50
3.3.2 Gaussian Functions Width . 51

3.4 Rendering Algorithm . 51
3.4.1 First Pass . 51
3.4.2 Second Pass . 52

3.5 Results . 53
3.5.1 Comparison with ground truth . 54
3.5.2 E�ciency . 54
3.5.3 Discussion . 55

4 A Parallel Ray Tracing and Lattice-Boltzman Method 59
4.1 Overview of the algorithm . 60
4.2 GPU Parallel Programming . 61
4.3 Init pass . 62
4.4 Ray tracing . 63

4.4.1 Initializing photon rays . 64
4.4.2 Marching Pass . 64
4.4.3 Parallel Implementation . 65
4.4.4 Transfer . 66

4.5 Di�usion pass . 67
4.5.1 Di�usion inside a block . 67

4.6 View pass . 68
4.6.1 Termination condition . 68
4.6.2 View . 68

4.7 Results . 69
4.7.1 Comparison with Ground Thruth . 69
4.7.2 Approximation of LBL . 69
4.7.3 Performances . 69
4.7.4 Discussion . 71

5 A Scalable Approach to the MDOM 75
5.1 Outline of the Algorithm . 76

5.1.1 Adapting the DOM . 77
5.2 Direct Component . 77

5.2.1 Tracing and Storing Light . 78
5.2.2 Page Handling . 78

5.3 Parallel Wavefront Propagation . 80
5.3.1 Radiance of the outgoing faces . 80
5.3.2 Average radiance of the voxel . 81
5.3.3 Plane Sweeping . 82
5.3.4 Streaming Blocks . 83
5.3.5 View Gathering . 84

5.4 Results . 84
5.4.1 Performance . 84
5.4.2 Ground Truth Comparison . 86

0.0. CONTENTS 5

5.4.3 Discussion . 87

6 Collateral Work 89
6.1 A navigation system for visually impaired people 89

6.1.1 State of the Art in Computer-Assisted User Navigation 89
6.1.2 System Description . 90
6.1.3 Experimental Results . 94

Conclusions 95

Bibliography 97

A Spherical Harmonics and Legendre Polynomials 107
A.1 Spherical Harmonics . 107
A.2 Legendre Polynomials . 108

6 CHAPTER 0. CONTENTS

Introduction

Realistic visualization of objects is one of the most important goals in Computer Graphics research.
Over the last twenty years, rendering engines have become capable of producing images that are
nearly indistinguishable from real life photographs. These impressive results, however, often come
at the expense of hours of computations. In recent years, since the advent of cheap, powerful, and
now ubiquitous, dedicated graphic devices (GPUs), much attention has been devoted on replicating
the same e�ects in real time on end-user machines. Although convincing renderings of objects have
been produced using graphic devices, many complex lighting e�ects are still subject of intense study.

Most real-world materials in fact exhibit sub-surface lighting e�ects, wherein the appearance of
an object composed of such materials is determined by the light-matter interactions that take place
under the object's surface. Predicting these interactions with a simple analytical model is often
impossible, since physical properties vary non-uniformly through space (heterogeneity) and the
microscopic response to light varies with the direction of incoming light itself (anisotropy). These
kinds of materials are extremely challenging from a computational point of view. A completely
physically accurate simulation, taking into account quantum behavior of light at the atomic level
is still an unrealistic proposition. Thankfully, there is a general consensus that such a precise
simulation of light behavior is unnecessary in most real world scenarios.

As a convention, these materials are usually divided in two kinds: translucent objects and
participating media. For the �rst kind it is assumed that the user will not cross the boundary
of the object and that such boundary produces meaningful interactions with light that need to
be modeled separately. Examples of this kind of datasets are waxy objects, human faces, marble
statues, and so forth. The latter class is instead composed of those materials where it is assumed
that both the light source and the viewer can be present within the medium itself. Examples of
these are fog, smoke, clouds and turbid water.

Despite this classi�cation, the equations that are used to model the volumetric behavior of light
are the same for both types of materials: the Radiative Transfer Equation, an integro-di�erential
equation in �ve dimensions which is very di�cult to solve analytically even for extremely simple
cases. Like most of the literature on the same topic, we will use this model for light transmission
and introduce it accurately in chapter 1.

The aim of the present dissertation is to investigate novel algorithmic approaches to the volu-
metric rendering problem in order to visualize at real-time, or at near interactive speeds, the e�ects
that light has on translucent objects and participating media. In particular, we concentrate our
e�orts on scattering e�ects, i.e. the retransmission of light by volume particles due to excitation
from a light source (single scattering) or from other excited volume particles (multiple scattering),
and refraction, i.e. the apparent change of direction of light when traveling through materials with
variable index of refraction. We investigating the e�ects that di�erent physical approximations
produce on the end result, yielding solutions that range from a very fast single scattering method,
to a very accurate modeling of the Radiative Transfer Equation.

In the �rst proposed solution (chapter 3), we present an algorithm for approximating single
scattering e�ects in translucent materials. The solution is fast and is capable of capturing the
appearance of objects that feature strong discontinuities below their surface. It converts informa-
tion about the subsurface structure of the volume to a set of functions centered on points chosen
by a sampling algorithm. Essential to the performance of this algorithm is a good sampling of
the volumetric data which is performed by our algorithm in a novel way. While this method can

8 CHAPTER . INTRODUCTION

produce extremely fast renderings, its need for a precomputation stage can be a limitation in some
use-cases, especially if deformable models need to be supported. Therefore we set out to design an
algorithm capable of operating without lengthy precomputations (chapter 4). Moreover, the single
scattering limitation of the previous method limits its applicability to materials of low albedo. By
incorporating a multiple scattering simulation, based on an e�ective approximation of the Radia-
tive Transfer Equation, coupled with a precise photon marching algorithm for single scattering, we
are able to convincingly display materials of albedo in the mid to low range at very fast speeds.
Moreover, due to the nature of the marching algorithm, we are capable of incorporating refraction
e�ects, thus greatly adding to the realism of the produced pictures. The strength of this system
resides in the way we have managed to separate and parallelize the computation of multiple scat-
tering and the single scattering ray marching algorithm, exploiting the high degree of parallelism of
modern GPUs, and yielding a system capable of scaling well with future generations of hardware.

This second method however exploits a physical approximation that reduces multiple scattering
to a di�usion phenomenon. This is valid in general except for strongly forward (or backward) scat-
tering. To overcome these limitations we propose a third method wherein we adopt the Discrete
Ordinates Method (DOM) formulation to accurately deal with any kind of anisotropy in addition
to the heterogeneity of the previous two methods, computing accurately multiple scattering e�ects
in general participating media and translucent objects (chapter 5). The resulting system is fur-
thermore capable of dealing with volumes much bigger than the available GPU memory thanks to
a customized paging system.

This dissertation is concluded with a detour on an algorithm dealing with noisy 3D data pro-
duced by a Kinect©acquisition device. We present a system which aids visually-impaired people in
navigating indoors environments, introducing an algorithm which processes data at critical speeds
and converts it to an auditory stimulus.

To summarize, the present thesis is structured as follows. In chapter 1 we review the phys-
ical background, terminology and notation used throughout the dissertation, then in chapter 2
we review the most important papers published in the last thirty years dealing with volumetric
rendering, with a particular focus on those works that follow similar assumptions as the ones used
throughout this thesis. The �rst algorithm we propose is presented in chapter 3 in which we tackle
single scattering in translucent objects; while the second algorithm for multiple scattering and
refraction is presented in chapter4, followed by our third DOM-based proposal in chapter 5. We
conclude this dissertation in chapter 6 with our excursus on the navigational system for visually
impaired people.

Chapter 1

Physics of Light Transfer

Abstract

We review the basic units of measure employed in Radiometry and the laws governing
Light-Matter interaction as used in this dissertation.

Light is a speci�c type of electromagnetic (EM) radiation which is known to be transported
by discrete elements, i.e. photons. However, even if photons at the moment of their emission and
absorption exhibit particle behavior, their propagation through space is wave-like. Indeed, they
are characterized by a frequency ν :

[
1

seconds

]
, and the energy that each photon carries is

E = hν : [Joules]

where h is the Planck constant1.

Visible light is simply EM radiation at the frequency range from approximately 380nm and
740nm.

Figure 1.1: The range of EM radiation (source: wikipedia)

1h = 6.626068Ö10−34 :
[

Joules
seconds

]

10 CHAPTER 1. PHYSICS OF LIGHT TRANSFER

Since a complete wave description of light introduces a considerable overhead both in mathemat-
ical derivations and in computations, we will follow the standard approach in Computer Graphics
literature of Geometric Optics. According to Geometric Optics light propagation can be modeled
as �rays�. These rays can be imagined to be the paths taken by single photons, or in�nitesimally
small beams of light; however, it is more physically correct to de�ne them as those geometric lines
that are perpendicular to the equiphase surfaces of the EM waves, i.e. the �wavefronts�2. We will
describe rays parametrically with equations of the type:

x(t) = x0 + tω

Throughout this dissertation we will indicate points x ∈ R3 with boldface Roman letters, and we
will use a round bracket notation for its components: x = (x, y, z). We will instead indicate vectors
with boldface Greek letters like ω and component notation with angled brackets: ω = 〈x, y, z〉.
Subscripts will be used to indicate a speci�c component, e.g. xy. All directions indicated in this
text will always be normalized (i.e. ω · ω = 1), therefore we will sometimes use Cartesian angles
ϑ and ϕ to indicate a direction, with the convention that ω = 〈sinϑ cosϕ, sinϑ sinϕ, cosϑ〉

When it is clear from the context, and with a slight abuse of notation, a ray x(t) will be simply
denoted as x.

Figure 1.2: Rays are always perpendicular to Wave fronts

1.1 Radiometry

In order to introduce the notation used in this dissertation, we will brie�y review the de�nitions
and unit of measures of radiometry. However; we will follow the intuitive operative de�nitions
given by Preisendorfer [106], whose rigorous axiomatic description of light is based on measure
theory and sets Radiant Flux as the fundamental quantity3.

1.1.1 Radiant Flux

Given any planar surface S (e.g. the small surface of a measurement device) and a set of directions
Ξ which are visible from the surface (which can be at most the full hemisphere of visibility), the
amount of energy received by the surface per unit time at time t is called Radiant Flux. Since
we will be mostly dealing with steady state systems, we will drop the temporal dependence and
simply denote this quantity as:

Φ(S,Ξ) : [Watts] =

[
Joules

seconds

]
2This ray-wavefront connection can be made explicit by the eikonal equation
3Sometime it is radiance, presented later, which has interesting properties, that is taken as the fundamental

quantity. This is operationally clearer for many reasons.

1.1. RADIOMETRY 11

This quantity is directly proportional to the number of photons (and the energy they carry)
impinging on the surface per unit time; therefore, a more precise de�nition should be parametrized
on the speci�c frequency of interest, (e.g. Φ(S,Ξ, ν)) thus allowing a description of the distribution
of power across the full range of EM frequencies (or spectrum). On the other hand, since it is now
accepted that almost any color can be reproduced for human consumption by a linear combination
of three primary spectrally pure colors, we will follow the usual convention of representing all
frequency-dependent phenomena with three mutually independent values, corresponding to pure
Red, Green and Blue. This convention forces us to disregard all frequency-shifting phenomena
(like �uorescence) but is nonetheless a perceptually valid approximation.

1.1.2 Irradiance

It can be experimentally veri�ed that Radiant Flux has the following property (call it S-property):
for any two surfaces S1 and S2,

Φ(S1,Ξ) + Φ(S2,Ξ) = Φ(S1 ∪ S2,Ξ)

and if we de�ne a measurement of the area of the surface as A(S) then

if A(S) = 0 then Φ(S,Ξ) = 0

We can therefore de�ne the derived quantity Irradiance at a point x in a sound way as:

E(x,Ξ) = lim
A(s)→0

Φ(S,Ξ)

A(S)
:

[
Watts

meters2

]
In most situations we are interested in the entire hemisphere centered around a preferred

direction ξ, indicated as Ξ+(ξ) = {ω|ω · ξ > 0}. As a shorthand notation we can therefore write
Irradiance as follows:

E(x, ξ) = E(x,Ξ+(ξ))

In Computer Graphics textbooks, Irradiance is usually de�ned on the surface of a generic object.
In fact, when the direction is omitted, it is implicitly assumed that ξ = n(x), i.e. the normal to
the surface at point x.

E(x) = E(x,Ξ+(n))

This notation will never be used in this dissertation in order not to generate confusion with a
similar notation, which is necessary to rigorously de�ne Irradiance in free space or volumes.

The Cosine Law for Irradiance The de�nition of Irradiance as the ratio of �ow to area has
the �cosine law� as an important implication. In fact a surfaceS′ placed at an angle α with respect

to a surface S, if it covers an area such that A(S′) = A(S)
cosα , then it will receive the exact same

amount of radiant �ux as S from the same �xed set of directions Ξ(ξ). Therefore, the Irradiance
will be less for S′ than for S. More precisely,

E(x′,Ξ(ξ)) = cosα · E(x,Ξ(ξ)) (1.1)

for any x′ ∈ S′, x ∈ S.

1.1.3 Radiance

At the macroscopic level, Radiant Flux also seems to exhibit the following property (call it D-
property): for any disjoint set of directions Ξ1 and Ξ2,

Φ(S,Ξ1) + Φ(S,Ξ2) = Φ(S,Ξ1 ∪ Ξ2)

12 CHAPTER 1. PHYSICS OF LIGHT TRANSFER

moreover, if we de�ne a measurement of a set of directions as a solid angle Ω(Ξ), then:

if Ω(Ξ) = 0 then Φ(S,Ξ) = 0

There are several counter examples that show that this property does not always hold, among
which interference is an excellent example. However, if we take the above property as valid we can
de�ne radiance as:

L(x, ξ) = lim
Ω(Ξ)→0

lim
A(s)→0

Φ(S,Ξ)

A(S)Ω(Ξ)
:

[
Watts

meters2 · steradians

]
Radiance has the property of being invariant in vacuum. If we move a surface S placed at x to

a di�erent position x− tξ while pointing to the same in�nitesimal cone of directions Ξ(ξ), it will
register the same amount of radiance.

Flux (or power) Watt Φ(S,Ξ)

Irradiance Watt
meter2

E(x,Ξ) limA(s)→0
Φ(S,Ξ)
A(S)

Radiance Watt
meter2·steradian L(x, ξ) limΩ(Ξ)→0 limA(s)→0

Φ(S,Ξ)
A(S)Ω(Ξ)

Table 1.1: The Three Fundamental Radiometric Quantities

1.1.4 Irradiance from Radiance

As a consequence of the de�nition of Radiance and of the cosine law1.1, Irradiance can be inversely
de�ned as the integral of Radiance across all directions in the same hemisphere as ξ, weighted by
the cosine factor:

E(x, ξ) =

ˆ
ξ·ω≥0

L(x,ω)ξ · ω dΩ(ω)

where dΩ(ω) is a di�erential solid angle4 around direction ω.

Since Irradiance is de�ned with respect to a direction (usually the normal of a surface at a
point), direction-independent auxiliary measures are often used. In particular, scalar Irradiance

e(x) =

ˆ
4π

L(x,ω) dΩ(ω)

which is also called ��uence� or �energy density�. In fact, it captures the notion that the amount
of photons at a given point depends on the amount of light (Radiance) arriving from all direction
and �passing through� the point. Vector irradiance is instead de�ned as,

E(x) =

ˆ
4π

L(x,ω)ω dΩ(ω)

and another not so commonly used derived quantity is hemispherical scalar irradiance, de�ned as

e(x, ξ) =

ˆ
ξ·ω≥0

L(x,ω) dΩ(ω)

All of the Irradiance-like quantities are measured in Watts per square meters.

4in Cartesian coordinates it would be dω = sinϕdϕdϑ

1.2. MATERIAL PROPERTIES 13

Irradiance E(x, ξ)
´
ξ·ω≥0

L(x,ω)ξ · ω dΩ(ω)

Scalar Irradiance a.k.a. �uence e(x)
´

4π
L(x,ω) dΩ(ω)

Vector Irradiance E(x)
´

4π
L(x,ω)ω dΩ(ω)

Table 1.2: Three Irradiance Measures

1.2 Material Properties

1.2.1 Cross-sections

The two main properties used to describe scattering materials are the absorption cross-section
and the scattering cross-section. The absorption cross-section, indicated as σa(x), determines the
probability that a light particle will be absorbed by the material at point x; while the scattering
cross-section, indicated as σs(x) determines the probability that a particle will �change direction�5

by interacting with the material at point x. The sum of these two properties, σt(x) = σa(x)+σs(x),
is called the extinction cross-section of the material. The dimensions of these cross section is related
to, but is not representative of6, the actual dimensions of the atom. In fact, the unit of measure
of the cross sections is the squared meter, an area measure. It is intuitive that the bigger is the
area of interaction, the higher the probability that a particle will scatter or be absorbed.

σt(x) :
[
meter2

]
The atom of gold, for example, has a cross section of 1.54 · 10−24cm2. Cross-sections have

di�erent e�ects on di�erent ranges of the EM spectrum; therefore, for our purposes they will be
represented with RGB tuples.

1.2.2 Coe�cients

To obtain the scattering coe�cients for a substance, the cross-sections de�ned above (per atom)
must be multiplied by the material density ρ(x). We de�ne them as

κs(x) = σs(x)ρ(x)

κa(x) = σa(x)ρ(x)

κt(x) = σt(x)ρ(x)

Scattering coe�cients are measured in m−1:

κt(x) :

[
1

meter

]
A useful derived quantity is the mean free path of a photon (average distance before a scattering

event) which is simply 1
kt
, and it is, as one could intuitively expect, measured in meters.

Another derived quantity, whose name can be misleading, is scattering albedo, a dimensionless
quantity de�ned as

Ω(x) =
κs(x)

κt(x)

We will refer to this quantity through this dissertation simply as �albedo�.

5More precisely, according to Quantum Electrodynamics, when a photon scatters there are no collisions. Instead
there is an absorption of a quantum of EM radiation, followed by an immediate emission of radiation at the same
frequency in all directions. Superposition and interference of waves then explains the apparent e�ect of scattering
in speci�c directions, as modeled at a higher level by phase functions.

6shape of the particle and other electromagnetic properties of the atom also play a role. Sometimes it is used
the term σg(x) to indicate the actual geometric cross-section of the particle.

14 CHAPTER 1. PHYSICS OF LIGHT TRANSFER

1.2.3 Index of refraction

In di�erent materials, the apparent7 speed of light propagation changes, a phenomenon called
refraction. The index of refraction in its most general form is modeled as a complex number
ñ related to EM permettivity and permeability of the material. The real part of this quantity
η = <(η̃) is connected to the ratio of the apparent speed v of light traveling in the material w.r.t.
its speed in vacuum.

v =
c

η

Although this quantity is usually presented in Computer Graphics as independent of the other
quantities, including material density, the Imaginary part of η is actually related to the absorption
coe�cient as follows[55]:

κa =
4π

λ0
=(η̃)

where λ0 is wavelength of light in vacuum.
Even if this is a wavelength dependent quantity like all scattering coe�cients, it is often treated

as a single value in most Computer Graphics literature. We will call this approximation, which
precludes the computation of di�raction e�ects, as scalar refraction.

1.2.4 Phase Functions

The scattering coe�cient κt describes only the amount of light that is out-scattered; in order
to model the distribution of directions that light takes after a scattering event it is necessary to
introduce phase functions. As is lamented in [14], the name �phase function� is confusing, because
it has nothing to do with wave phases. We will nonetheless use this name since it is become a
convention.

Phase functions describe the probability that a single photon, arriving from direction ω will be
de�ected towards direction ξ. Since the de�ection probability usually depends only on the angle
between the two directions (a phenomenon called incoherent scattering), it is customary to write
phase functions as,

p(ω · ξ) or p(α)

All phase functions presented in this dissertation are normalized, that means that for every ω,´
4π
p(ω ·ω′) dω′ = 1. A useful index of the function behavior is g, the mean cosine of the scattering

angle:

g =

ˆ
4π

(ω · ξ)p(ω · ξ) dξ

If g is positive the function is said to be �forward scattering�, if g is negative then backwards
scattering dominates. When function p is constant, then g = 0.

General theories like Rayleigh's yield complex functions, and the most general scattering model
is provided by the Mie solutions to Maxwell's Equations in the presence of participating media.
However, the level of accuracy of these models makes them inappropriate for real-time compu-
tations. Simpler and more common models are the isotropic and the Henrey-Greenstein phase
functions.

Isotropic Phase Function The simplest and most common scattering phase function in Com-
puter Graphics literature is the isotropic function:

p(α) = k =
1

4π

7This is only an apparent e�ect: in reality EM radiation always travels at speed c, what changes is phase velocity.
This is due to phase shifts in the re-emitted waves in the excited atoms of the material.

1.3. LIGHT TRANSMISSION 15

Henrey-Greenstein Phase Function Even if originated for describing scattering of interstellar
phenomena, the HG Phase function has been adopted, often inappropriately, to model many real-
life materials. Its main features are ease of computation and direct use of the mean cosine in its
de�nition.

p(α) =
1

4π

1− g2

(1 + g2 − 2g · cos(α))
3
2

σa(x) Absorption Cross-section
σs(x) Scattering Cross-section
p(α) Phase Function
ρ(x) Material Density
ε(x, ~ω) Emissivity

Table 1.3: Fundamental Material Properties

σt(x) σa(x) + σs(x) Extinction Cross-section
κt(x) σt(x)ρ(x) Extinction Coe�cient

Ω σs(x)
σt(x) Single Scattering Albedo

g
´

Ξ
(ω · ξ)p(ω · ξ) dΩ(ξ) First Moment of Phase Function

σtr(x) σt
(
1− Ω µ̄

3

)
Transport Coe�cient

τ(x, y)
´ y
x
κt(z)dz Optical Distance

tr(x, y) e−d(x,y) Transmittance

τ̂(x, ~ω)
´ y
x
κt(z)dz Optical Depth

τ∞(x, ~ω) Optical Distance from In�nity

Table 1.4: Derived Material Properties

1.3 Light transmission

When dealing with rendering algorithms, a distinction is made between global illumination and
local/direct illumination. The latter assumes that the appearance of objects is determined solely
by their surface, and in turn, the color of the surface is determined solely by the light sources
directly illuminating it. Global illumination, on the contrary, takes into account all possible paths
that light can travel from a direct light source towards the eye, and as such it models all kinds of
material interactions. Even if our solutions can be classi�ed as Global Illumination algorithms, we
are here interested in a speci�c subset of the macroscopic phenomena resulting from microscopic
light-matter interaction. Namely, these are:

� Refraction

� Absorption

� Emission

� Out-scattering

� In-scattering

We will introduce the equations that describe singularly them and then combine them in a single
equation for volumetric light transport.

16 CHAPTER 1. PHYSICS OF LIGHT TRANSFER

1.3.1 Refraction Equations

The apparent change of speed of light waves when crossing the boundary of an object with a
di�erent refractive index, produces a change in direction of light rays. The angle of transmittance
is related to the angle of incidence by Snell's law

ηisin(θi) = ηtsin(θt) (1.2)

However, a part of incoming energy will not be transmitted through the medium and will be
in fact re�ected back. A physically accurate calculation of the intensity of transmitted light Ft,
predicted by Fresnel equations, would require the determination of the polarization of light. A
common approximation consists in assuming light to be randomly polarized. Fresnel's law, under
this assumption, is

Ft = 1− 1

2

((
ηtcos(θi)− ηicos(θt)
ηtcos(θi) + ηicos(θt)

)2

+

(
ηicos(θi)− ηtcos(θt)
ηicos(θi) + ηtcos(θt)

)2
)

(1.3)

If the refractive medium8 is not constant in density or material type, then the refractive index
will vary across space. This means that light waves will be constantly perturbed by superposition
e�ects and hence light rays will not travel as straight lines. If we indicate with s(t) the tangent to
the parametric ray at position x(t), then the eikonal equation form Gradient-index Optics predicts
that:

d

dt
(ηs) = ∇η (1.4)

This equation generalizes motion of light rays; in fact, it has as solution for constant refractive
media the ray equation9.

As a �nal note, we use the term �caustics� to denote the volumetric and surface patterns
produced by refraction of light.

1.3.2 Beer-Lambert law and Optical Distance

Within any medium, the e�ects that arise from the encounter of external EM radiation with
molecules of the solid produce an attenuation of energy along ray paths.

The Extinction coe�cient κt(x) captures these attenuation phenomena as the rate of reduction
of light as described by the Beer-Lambert law,

∇ωL(x,ω) = −κt(x)L(x,ω) (1.5)

This equation positively correlates the rate of reduction of light to the radiance of the light itself,
multiplied by the extinction coe�cient of the medium10. This First Order Homogeneous Ordinary
Di�erential Equation is easy to solve by separation of variables. If we limit the discussion to a ray
with starting point in x0 and we know the distribution of light at that particular point (acting as
boundary condition for the equation), we can solve as follows. Parameterizing the above equation
on ray x0 + tω:

∂L(x,ω)

∂t
= −κt(x)L(x,ω)

Integrating from distance0 to distance t from the point x0

ˆ t

0

L′

L
dt′ = −

ˆ t

0

κt(t
′)dt′

8by �refractive medium� we mean any medium with n 6= 1
9if η is constant, then ∇η = 0 which implies d

dt
(ηs) = 0, that is s(t) is a constant, say ω, therefore d

dt
x = ω

which implies x(t) = ωt+ x0, the straight line equation
10The extinction coe�cient of perfect vacuum is in fact zero

1.3. LIGHT TRANSMISSION 17

gives us

L(x(t′),ω) = L(x0,ω)e−
´ t
0
κt(x(t′))dt′

The integral of the extinction coe�cient along a straight path from x to y (in the equation above,
from x(0) to x(t)) is called the optical distance of the two points, and it is often indicated as

τ(x,y) =

ˆ y
x

κt(z) dz (1.6)

For convenience, when we consider points enclosed by a speci�c surface S, we will instead refer
to the optical depth of a point. Such function is simply the optical distance between a given point
inside a volume and the surface point found in a given direction,

τ̂(x,ω) = τ(x,y) s.t. y ∈ S, y − x = ω (1.7)

Sometimes the whole exponential is considered and called transmittance or exponential atten-
uation:

tr(x,y) = e−τ(x,y)

1.3.3 Volume Rendering Equation (Integro-Di�erential Form)

We denote the spontaneous emission of photons (for example by media like �re) with letter epsilon.
This is simply the process by which light is introduced into the system.

ε(x,ω)

However, from the perspective of the analysis of the change in energy transported along a
speci�c rays, radiance can increase also because of scattering phenomena. The part of the energy
that is not absorbed during the attenuation of other rays, is scattered in all other directions,
eventually reaching a di�erent ray. This phenomenon is called in-scattering and can be described
with the following equation:

∇~ωL(x,ω) = κs(x)

ˆ
4π

p(ω,ω′)L(x,ω′) dΩ(ω′) (1.8)

out-scattering

in-scattering

absorption

emission

xω

Figure 1.3: The volumetric phenomena modeled by the RTE

Combining equation 1.5 with equation 1.8 and adding the emission term we obtain the complete
volume rendering equation:

18 CHAPTER 1. PHYSICS OF LIGHT TRANSFER

∇ωL(x,ω) = −κt(x)L(x,ω)︸ ︷︷ ︸
extinction

+ ε(x,ω)︸ ︷︷ ︸
emission

+ κs(x)

ˆ
4π
p(ω,ω′)L(x,ω′) dω′︸ ︷︷ ︸
in-scattering

(1.9)

1.3.4 Source Function Formulation

Some texts, notably optic texts, will refer to a quantity called source function, which is just a
rewriting of the quantities we have already introduced.

The source function is the ratio of the total apparent emission (in-scattering and emission) to
total absorption (absorption and out-scattering), that is, using ε to indicate total emission:

S(x, ω) =
ε(x, ω)

κt(x)
=
ε(x, ~ω) + κs(x)

´
Ξ
p(~ω, ~ω′)L(x, ~ω′) dΩ(~ω′)

κt(x)

Note that, if there is no emission within the medium, the function reduces to

S(x, ω) = Ω(x)

ˆ
Ξ

p(~ω, ~ω′)L(x, ~ω′) dΩ(~ω′)

Intuitively, the source function gives for a point and direction how much energy is available for
redistribution.

Using the source function the radiative transport equation can be rewritten compactly as fol-
lows:

∇~ωL(x, ~ω)

κt(x)
= −L(x, ~ω)︸ ︷︷ ︸

radiance

+ S(x, ω)︸ ︷︷ ︸
source function

This separation of source term from the rest of the equation is a starting point for many com-
putational models, including the Discrete Ordinates Method, outlined in chapter 2 and expanded
in chapter 5. Note however that sometimes in literature by �source function� it is intended total
emission ε.

1.3.5 Volume Rendering Equation (Integral Form)

The Volume Rendering Equation can more conveniently be rewritten as an integral equation.
Since this connection is seldom made explicit, we believe it worth it to report here the complete
derivation. Starting from equation 1.9:

∇~ωL(x, ~ω) = −κt(x)L(x, ~ω)︸ ︷︷ ︸
extinction

+ ε(x, ~ω)︸ ︷︷ ︸
emission

+ κs(x)

ˆ
Ξ

p(~ω, ~ω′)L(x, ~ω′) dΩ(~ω′)︸ ︷︷ ︸
in-scattering

we can formulate it as a derivative over a single ray x(s) = x0 + sω and, since the equation is
on the spatial components of L only, we will omit the directional parameter ω for the rest of the
derivation

dL(x)

ds
= −κt(x)L(x) + ε(x) + κs(x)

ˆ
Ξ

p(ω,ω′)L(x,ω′) dΩ(ω′)︸ ︷︷ ︸
q(x)

To simplify the next passages, we will call the emission and in-scattering terms with the function
name q and treat it as a constant term. The simpli�ed di�erential equation is therefore of the form:

L′ = −κtL+ q

1.3. LIGHT TRANSMISSION 19

A �rst order di�erential equation of this type can be solved by using the arti�cial function u(x)
as an integrating factor. Multiplying both sides by this function and, moving the �rst term on the
right to the left, we get:

uL′ + uκtL = uq

Now, if u is such that u′ = uκt, then (uL)′ would be exactly the left hand side of the previous
equation. So in order for this to happen we need to solve u′ = uκt. Therefore, similarly to
Beer-Lambert's law, we set u as: u(x(t)) = e

´ t
0
κt(x(t′))dt′ . We can now state that:

(uL)′ = uq

and integrating both sides independently

ˆ t

0

(u(x(t′))L(x(t′)))
′
dt′ =

ˆ t

0

u(x(t′))q(x(t′))dt′

u(x(t))L(x(t))− u(x0)L(x0) =

ˆ t

0

u(x(t′))q(x(t′))dt′

now, since u(x0) = 1, by moving L(x0) to the right hand side and substituting u(x) with its
de�nition,

e
´ t
0
κt(x(t′′)dt′′L(x(t)) =

ˆ t

0

e
´ t′
0
κt(x(t′′)dt′′q(x(t′))dt′ + L(x0)

To make things more clean we can divide both sides by the exponential factor, in order to leave
only L on the left hand side:

L(x(t)) = e−
´ t
0
κt(x(t′′)dt′′

ˆ t

0

e
´ t′
0
κt(x(t′′)dt′′q(x(t′))dt′ + e−

´ t
0
κt(x(t′)dt′′L(x0)

Moving the exponential factor on the inside of the integral yields the �nal solution

L(x(t)) =

ˆ t

0

e−
´ t
t′ κt(x(t′′)dt′′q(x(t′))dt′ + e−

´ t
0
κt(x(t′)dt′′L(x0)

And now, remembering how q(x) has been de�ned,

L(x(t),ω) = e−
´ t
0
κt(x(t′)dt′′L(x0,ω)︸ ︷︷ ︸

attenuated direct light

+

+

ˆ t

0

e−
´ t
t′ κt(x(t′′)dt′′

(
ε(x(t′),ω) + κs(x(t′),ω)

ˆ
4π

p(ω,ω′)L(x(t′),ω′) dΩ(ω′)

)
dt′︸ ︷︷ ︸

accumulation along ray of attenuated emission and in-scattering

Since we have already de�ned the convenient optical distance we can write more compactly
what it is called the integral formulation of the volume rendering equation:

L(x,ω) = e−τ(x0,x)L(x0,ω)︸ ︷︷ ︸
attenuated direct light

+

ˆ x
x0

e−τ(x′,x)

(
ε(x′,ω) + κs(x

′,ω)

ˆ
4π

p(ω,ω′)L(x′,ω′) dω′
)
dx′︸ ︷︷ ︸

accumulation along ray of attenuated emission and in-scattering

It is to be noted that in most volumetric simulation, there should be no di�erence between
emissive media and light sources. Therefore the �rst term of the right hand side can be omitted,
since the emission within the second term takes care of introducing light into the system.

20 CHAPTER 1. PHYSICS OF LIGHT TRANSFER

1.3.6 Separation of Single and Multiple Scattering

Very often, in literature, scattering is arti�cially divided into a �single scattering� component and
a �multiple scattering� one.

L(x,ω) = LSS(x,ω) + LMS(x,ω)

Single scattering models light that comes directly from light sources in the medium and outside
of it, i.e. external direct lighting and internal emission, and �rst order scattering of such light;
while multiple scattering is the result of higher order scattering of single scattered light. This
formulation neatly separates scattering into two distinct phenomena. In media where the albedo
is low, single scattering represents a good approximation of total scattering (we will call this the
�single scattering assumption�). In general cases, multiple scattering must also be accounted for.

Figure 1.4: Scattering Orders

1.3.7 Bidirectional Functions

In dealing with scattering phenomena, often a clear distinction is made between participating
media and translucent objects, the reason being that viewers cannot penetrate translucent objects
while they can freely roam inside participating media (e.g. fog). When dealing with the former,
one would be ideally interested in computing the appearance of the surface of the objects, without
investigating the internal interactions of lights and matter.

1.3.7.1 BRDF

In Computer Graphics, the interaction between light and the surface of an object is modeled with
the �Rendering Equation�, introduced by Kajia in 1986[74]:

Lout(x,ω) =

ˆ
ω′·nx>0

b(x,ω,ω′)︸ ︷︷ ︸
brdf

Lin(x,ω′)ω′ · nx dω′

The equation states that the outgoing radiance from the surface of an object can be expressed
as the integral of the product of incoming radiance with a re�ection function, weighted by a cosine
factor. Re�ection functions as used in the Rendering Equation are called Bidirectional Re�ection
Distribution Functions (BRDFs), and in fact relate the probability of a photon from direction ω′

to be re�ected towards direction ω. Note that a model of this kind completely disregards any
subsurface e�ect.

1.3.7.2 BSSRDF

When dealing with transparent objects, it is clear that outgoing light from the surface of the object
at a given position is determined by light entering the system/object at any point along its surface.
The equation can therefore be modi�ed as such[70]:

Lout(y,ω
′) =

ˆ
x∈∂V

ˆ
ω·nx>0

b(x,y,ω,ω′)︸ ︷︷ ︸
bssrdf

Lin(x,ω)ω · nx dω

1.3. LIGHT TRANSMISSION 21

The re�ection function is now called Bidirectional Subsurface Scattering Re�ection Distribution
Function (BSSRDF). One would ideally like to �nd a simple analytical bssrdf function that captures
the appearance of translucent materials. However, even for homogeneous isotropic materials it is
seldom possible to de�ne such a function since it depends on the geometry of the speci�c object
of interest.

1.3.7.3 BTDF

In order to model refractive materials, the Bidirectional Transmittance Distribution Function is
sometimes used complementary to the BRDF. It speci�es the amount of radiance that is instead
transmitted below the surface of an object, taking into account deviation e�ects as modeled by
Snell's law:

Lt(x,ω) =

ˆ
ω′·nx>0

b(x,ω,ω′)︸ ︷︷ ︸
btdf

Lin(x,ω′)ω′ · nx dω′

A BTDF coupled with a BRDF yields a Bidirectional Scattering Distribution Function (BSDF),
not to be confused with BSSRDFs.

22 CHAPTER 1. PHYSICS OF LIGHT TRANSFER

Chapter 2

Literature Review

Abstract

In this chapter we review the state of the art in rendering scattering and refraction e�ects,
with a particular focus on some of the seminal works in this �eld and on the approaches most
closely related to our work, namely the analytical solutions to Single Scattering, the Discrete
Ordinates Method and its variants, and the Di�usion approximation, which is also relevant
by itself for its wide adoption in the Computer Graphics community to solve the Multiple
Scattering problem. We review some of the most interesting derivations of these methods, in
order to render this volume as self contained as possible.

Research in scattering and refraction rendering in the last thirty years is vast, and di�erent
taxonomies have been proposed to classify this impressive body of work1. In this chapter we choose
to �nely categorize methods according to the main underlying paradigms, be it a physical model
or a seminal algorithm.

The pioneering work in this �eld was carried out by Blinn[13], who gave analytical formulations
for speci�c basic cases, e.g. a uniformly scattering medium with low albedo and a single light source.
Later, Pattanaik et al.[99] employed the more general Monte Carlo (MC) path tracing approach,
which had been long used for solving problems in particle transport. Their solution was the �rst
to tackle the problem at a global level, and several other stochastic approaches followed. Among
these, it is worth mentioning in particular the bidirectional path tracing approach of Lafortune
and Willems[83] and the Metropolis Light Transport approach of Pauly et al.[100]. All of the
aforementioned methods, despite being physically accurate and general, are suitable mostly for
o�-line rendering since the number of samples that they require in order to reduce noise in �nal
images is extremely high. Hanrahan and Krueger [56] provided a restricted computationally more
e�cient model, which limits light transport in translucent materials composed of strati�ed layers.

Photon Mapping, introduced by Jensen et al.[71] greatly reduce the number of samples needed
since light is �rst traced from the sources to the scene. However, only recently McGuire et al.[93]
proposed an approximation of this method that is capable of running at interactive speeds, which
however does not keep scattering e�ects into account.

The Zonal Method, proposed in thermal engineering by Hottel[62], is instead a completely
deterministic approach. It was introduced by Rushmeier et al.[112] to the Computer Graphics
community, and similarly to the Radiosity method, it iteratively computes the exchange of energy
between �nite elements of the scene. Contrarily to Radiosity, these �nite elements are volume
elements instead of surface patches, but it nonetheless requires the setting up of a large matrix
correlating all elements to each other, thus imposing large memory requirements. While the method
itself is designed for isotropic phase functions, Rushmeier et al.[111] later proposed an enhancement
supporting weakly anisotropic materials. This method has also been extended by Sillion et al.[115]

1E.g., volumetric vs. surface-based vs. image-space[20], single vs. multiple scattering, online vs. o�ine, ray
tracing vs. rasterization[8]

24 CHAPTER 2. LITERATURE REVIEW

with a hierarchical approach in order to mitigate computational complexity, and by Bhate et al.[9]
who employ a combination of the zonal method and spherical harmonics expansion.

Spherical Harmonics are widely adopted as a basis for representing spherical functions, and the
algorithm we present in chapter3 is based on this fact. When they are used to model incoming
light and arbitrary phase functions they give rise to the PN family of methods, �rst introduced to
the Computer Graphics community by Kajiya in 1984[75].

Radiosity & Zonal Method
[62, 112, 9, 40]

Monte Carlo Path Tracing / Photon Mapping
[71, 89, 37, 105, 82]

Table 2.1: Traditional paradigms applied to scattering & refraction

Another approach for dealing with anisotropic behavior of general phase functions, is the Dis-
crete Ordinates Method[19], originated within the thermal engineering community. As reported
by Barichello[5], under appropriate circumstances, this method provides the same level of accuracy
as the PN method, and it has become one of the most used methods due to its high generality. It
will be further explained in section 2.1.

Another important line of work in scattering comes form the Di�usion Approximation (section
2.2), whose concept is highly relevant for the Lattice Boltzmann Lighting method, explained in the
same section and expanded in chapter 4. From the di�usion approximation a large body of work has
sprung out following the dipole approximation, which for its impact alone is worth mentioning in
this dissertation and is thus presented in section 2.3. Precomputed Radiance Transfer is presented
in section 2.6 and while its use of spherical harmonics for pre-computing transmission of light is not
directly applied in our work, it has still in�uenced the method presented in chapter 3. Finally, since
our work in chapter 3 is focused on single scattering computations, the most relevant analytical
solutions are presented in section 2.5. An orthogonal body of work which is related to every chapter
of our dissertation is the one in volumetric rendering, brie�y outlined in chapter 2.4.

Interestingly, refraction is often treated as a separate topic from radiative transfer; the relevant
algorithms will be highlighted in section 2.7.

Discrete Ordinates Method (� 2.1)
[19, 123, 84, 41, 76, 15, 11]

Di�usion Approximation (� 2.2)
[19, 66, 119, 54, 137, 128, 130, 3, 88, 47, 48, 120, 49]

Dipole (� 2.3)
[70, 69, 86, 95, 27, 57, 129, 94, 34, 135, 113, 118, 20]

Precomputed Radiance Transfer (� 2.6)
[117, 116, 135, 96]

Single Scattering Integral & Closed form Solutions (� 2.5)
[98, 13, 56, 121, 46, 136, 103, 101, 102, 10, 39]
Volumetric Rendering & Splatting (� 2.4)

[33, 80, 110, 65, 60, 32, 59]

Table 2.2: State of the art methods in Interactive Scattering & Refraction

A thorough classi�cation of general approaches for scattering, up to 2005, can be found in the
work of Cerezo et al.[18]. In this chapter we will focus on recent advances and in particular on
those methods that are most closely related to our line of work.

2.1. DISCRETE ORDINATES METHOD 25

2.1 Discrete Ordinates Method

One of the most widely adopted method for computing the Radiative Transfer Equation, mainly
because of its tractability and generality, is the Discrete Ordinates Method (DOM). In this method,
3D space is discretized into �nite elements and the 4π solid angle is divided into a discrete number
m of solid angles, each corresponding to a principal direction ωm. The RTE is then rewritten as
a �nite di�erences equation for the average radiance over the discrete directions, and solid angle
integration is substituted with an appropriate quadrature scheme. The resulting method allows
to treat any phase function and is capable of handling robustly any irregularity in the volumetric
properties of objects.

This method, or family of methods, has long been used within di�erent communities, e.g.
thermal engineering, �uid mechanics and neutron transport2. Its main advantage lays in reducing
a global process to local easily-parallelizable interactions without losing in physical accuracy. The
advantage can be readily seen if contrasted with a Radiosity-like method which needs, in order to
operate, to precompute all form-factors between every pair of elements.

2.1.1 Discretization of the RTE

If we consider only a �nite set ofM directions ωm =< µm, ζm, ηm > the radiative transfer equation
can be written as:

µm
∂L(x,ωm)

∂x
+ ζm

∂L(x,ωm)

∂y
+ηm

∂L(x,ωm)

∂z
= −κt(x)L(x,ωm)︸ ︷︷ ︸

extinction

+ ε(x,ωm)︸ ︷︷ ︸
emission

+κs(x)

M∑
m′=1

pm,m
′
L(x,ωm

′
)wm

′

︸ ︷︷ ︸
in-scattering

Where pm,m
′
are discretized phase function coe�cients, and wm are quadrature weights corre-

sponding to the solid angle associated with direction ωm. Discretizing also with respect to space,
we obtain:

µm
L(x + hî,ωm)− L(x− hî,ωm)

2h
+ζm

L(x + hĵ,ωm)− L(x− hĵ,ωm)

2h
+ηm

L(x + hk̂,ωm)− L(x− hk̂,ωm)

2h
=

= −κt(x)L(x,ωm) + ε(x,ωm) + κs(x)
M∑

m′=1

pm,m
′
L(x,ωm

′
)wm

′

If cells have dimensions ∆y = ∆z = ∆x = 2h then, integrating on the volume V = ∆x∆y∆z of
the cell, and explicitly indicating the set of the eight faces of a cell as F = {X+, X−, Y +, Y −, Z+, Z−},

µmA(LmX+ − LmX−) + ζmA(LmY + − LmY) + ηmA(LmZ+ − LmZ−) =

= −κt(x)V L(Vx,ω
m) + V

(
ε(Vx,ω

m) + κs(x)

M∑
m′=1

pm,m
′
L(Vx,ω

m′)wm
′

)
where A = 4h2 is the area of a voxel face, and with a slight abuse of notation, we used ε(Vx,ω

m)
and L(Vx,ω

m′) to indicate respectively the average emission and average radiance over an entire
voxel. Notice that the quantity within round parenthesis is κt(x)S(Vx,ω

m), where S is exactly
the source function as described in section 1.3.4.

Once boundary conditions are given, this system can be solved numerically by iteration. Each
iteration provides the equivalent of one scattering as it propagates radiance from a cell to its
neighbors. Gortler et al.[53] further provided di�erent physical interpretations of alternative solving
methods.

A large part of the literature about the DOM family is concerned with two important details of
this discretization. The �rst regards the quadrature scheme used to choose the M directions and

2Note that when the quadrature scheme is based on the zeroes of Legendre Polynomials, then the method is
often referred to as SN method, surprisingly equivalent to the PN method brie�y outlined in the introduction.

26 CHAPTER 2. LITERATURE REVIEW

the associated weights. A good quadrature scheme must be symmetric about all axes and energy
preserving. The second regards the closure scheme related to the spatial discretization, examples
of which are the step, diamond and CLAM scheme. In the remainder of this dissertation we will
employ the popular diamond scheme[23].

2.1.2 Modi�ed DOM and SHDOM

The Discrete Ordinates Method is not immune from limitations; much e�ort has been devoted into
solving the two resulting main errors, namely false scattering and the ray e�ect.

False scattering is a form of numerical smearing which arises due to the spatial discretization
of the volume. In fact, radiance transferred from a cell to the next along a speci�c direction is
repeatedly averaged across the faces of the cell. This e�ect makes it impossible for rays traversing
the medium to maintain a sharp pro�le.

The �ray e�ect� is instead due to the angular discretization, since energy is forced to be trans-
mitted across speci�c directions. The name of this systematic error is due to the appearance of
spurious beams of energy emanating from irradiated zones. Among the several solutions that have
been proposed in literature to overcome these e�ects, the MDOM (Modi�ed DOM) is one that has
gained popularity[23, 109]. This method is based on the assumption that since basic DOM is not
suited for maintaining high frequency detail, the direct component of radiation should be computed
separately from the indirect component. This idea has been taken up in Computer Graphics by
Languenou[84] and it forms the basis of the work we present in chapter 5 where the derivation of
Languenou, adapted to our system, is presented.

The Spherical Harmonics DOM[41] switches from a discrete ordinates representation of radiance
to a Spherical Harmonics one, employing the latter when computing the source function and the
former when streaming radiance to a voxel to its neighbor. In this method Evans[41] also employed
adaptive resolution, in order to provide extra accuracy where needed.

Another interesting development of DOM in Computer Graphics has come from Fattal[45] which
introduced a decoupling of the angular resolution for propagation and of the angular resolution
for storage. Moreover, since radiance is transported by a moving bidimensional map of rays, false
scattering is greatly reduced. It is to be noted that this propagation mechanism is akin to the
Long Characteristic (LC) computation in the Method of Characteristics (MOC).

Despite the large number of variants of the DOM, very few attempts have been made to port
this family of algorithms to the GPU. The method we present in chapter 5 is one of these few.
The reason why the Discrete Ordinates Method (DOM) has not been widely adopted within the
Computer Graphics community is due to its large memory requirements, which do not make it
amenable to a real-time GPU implementation. Only recently some approaches have been suggested
to properly parallelize this method, most notably Gong et al.'s[52] who adapted the sweep3d variant
introduced by Koch et al.[81] We decided to follow a similar approach and verify the feasibility of
performing a full RTE simulation at interactive frame rates.

2.1.3 Light Propagation Volumes

Recently, Kaplanyan et al.[76] introduced a system to compute Global Illumination that is based
on the ideas of the Discrete Ordinates Method. This method exploits several state of the art ideas
like Virtual Point Lights, introduced by Keller et al [77] in their seminal Instant Radiosity paper,
and has proven its capability of handling large fully dynamic scenes by being implemented in a
popular commercial rendering engine.

In the system of Kaplanyan et al. grids at di�erent resolution are used to represent indirect
lighting (thus separating direct from indirect as in MDOM) and scene geometry. Within each cell,
the spherical function is represented using a low frequency Spherical Harmonics approximation.

This method has been shown independently by Christensen[15] and Billeter[11] to be able to
handle subsurface scattering.

2.2. MULTIPLE SCATTERING AS A DIFFUSION PROCESS 27

2.2 Multiple Scattering as a Di�usion Process

By empirically studying the behavior of light under multiple scattering it becomes apparent that
light distribution in a highly scattering material (i.e. with high albedo) tends to become isotropic.
This implies that the directional information tends to be lost and therefore it is reasonable to avoid
performing complex computations involving the full radiance distribution from the outset. This
behavior of light can be also seen as a di�usion process: photons move in a highly scattering media
according to a process similar to the one that governs di�usion of heat in a solid or di�usion of
solvent in a solution, i.e.:

∂Φ

∂t
= D∇2Φ︸ ︷︷ ︸

di�usion

+ S(x)︸︷︷︸
source term

The Di�usion equation for light, also known as the Photon Di�usion Equation, must also
account for the absorption process as described in the previous chapter, and it is therefore a
di�erential equation of the form:

∂Φ

∂t
= D∇2Φ︸ ︷︷ ︸

di�usion

− κaΦ︸︷︷︸
absorption

+ S(x)︸︷︷︸
source term

The most widely used di�usion equation in Computer Graphics is a steady-state variant of the
form above; however, from a Lattice-Boltzmann model of light transmission it is possible to derive
a time-varying equation which is particularly relevant to the work we present in chapter 4.

2.2.1 The Di�usion Equation

Although already known in di�erent communities[19, 66], in 1995 Stam[119] introduced to Com-
puter Graphics the di�usion approximation and the equation governing it. Since then, most meth-
ods accounting for Multiple Scattering in translucent objects and participating media have dealt
either with this equation directly or with a simpli�ed model, which we present in the next chapter.
For this reason, and for the insights that it provides on light transmission that are exploited in
chapter 4, we report here the full derivation. Furthermore, a complete and detailed explanation of
such derivation is seldom found.

2.2.1.1 Considerations on Vector Irradiance

As a preliminary step, it is necessary to make some general considerations regarding Irradiance
that can be directly derived from the integro-di�erential volume rendering equation. Starting with
this equation again

ω · ∇L(x,ω) = −κt(x)L(x,ω)︸ ︷︷ ︸
extinction

+ ε(x,ω)︸ ︷︷ ︸
emission

+ κs(x)

ˆ
4π

p(ω,ω′)L(x,ω′) dω′︸ ︷︷ ︸
in-scattering

(2.1)

and recalling how we de�ned the accessory quantities vector irradiance E(x) =
´

4π
L(x,ω)ω dω

and scalar irradiance e(x) =
´

4π
L(x,ω) dω (which, if you divide it by 4π, can be seen as �mean

radiance�). A useful property of directional derivatives is that they can be changed to divergence
operations ω · ∇L(x,ω) = ∇ · (ωL(x,ω)) which is easily veri�able3. So by making this switch,
and integrating over the unitary sphere the left-hand side of the equation becomes4:

ˆ
4π

∇ · (ωL(x,ω)) dω = ∇ ·
ˆ

4π

ωL(x,ω) dω = ∇ · E(x)

3This is because in this case nabla operates on space, therfore directions are treated as constants that can be
moved inside or outside the di�erentiation operation. Look for example at the x component and notice in fact that
∂(ωxL(x,ω))

∂x
= ωx

∂L(x,ω)
∂x

4Here we exploit the fact that integration is on directions while di�erentiation is on space and therefore they can
be safely exchanged in order

28 CHAPTER 2. LITERATURE REVIEW

Now, by applying the same integration on the right hand side of the volume rendering equation,
we discover that:

∇ · E(x) = −κt(x)e(x)︸ ︷︷ ︸
extinction

+

ˆ
4π

ε(x,ω)dω︸ ︷︷ ︸
emission

+ κs(x)e(x)︸ ︷︷ ︸
in-scattering

The phase function is normalized to yield 1 upon integration over the sphere, therefore by
integrating �rst with respect to ω instead of ω′ (this switch is possible since they are two indipen-
dent varibales) you directly obtain e(x). Now, remembering that κt = κs + κa, it is possible to
compactly write:

∇ · E(x)︸ ︷︷ ︸
divergence

= −κae(x)︸ ︷︷ ︸
sinks

+

ˆ
4π

ε(x,ω)dω︸ ︷︷ ︸
sources

(2.2)

This result may be backed up by intuition. The divergence of a vector �eld is positive where there is
in�ux and negative where there is out�ux. The two process that in�uence divergence of irradiance
are therefore those that add irradiance or remove irradiance: absorption and emission. Scattering
will only change direction but not the total energy circulating in the system. On the other side, in
a medium with no absorption and no emission, the divergence is zero: if many photons enter the
medium, the same amount will exit, none will be created or absorbed.

2.2.1.2 Taylor Approximation to Radiance

Kajiya and Von Herzen[75] approximated radiance using the �rst two levels of spherical harmonics
expansions but did not notice the transformation of propagation of light in a di�usion process.
Stam[119] instead made more clear that by using the �rst two terms of the Taylor expansion of
radiance you invariably obtain a di�usion process. This interesting result is the one that will be
presented here. By performing a Taylor expansion of radiance in the directional component only
you obtain:

L(x,ω) ≈ L(x, ξ) + (ω − ξ) · ∇L(x, ξ) (2.3)

By �directional component only� it means that above and in the following steps of the derivation
x should be treated like a �constant�, and the nabla operates on directions only, i.e. ∇ = 〈 ∂∂ϑ ,

∂
∂ϕ 〉.

Under this approximation, scalar irradiance becomes:

e(x) ≈
ˆ

4π

(L(x, ξ) + (ω − ξ) · ∇L(x, ξ)) dω = 4πL(x, ξ)− 4πξ∇L(x, ξ)

while vector irradiance becomes (refer to the integration identities in the �rst chapter):

E(x) ≈
ˆ

4π

ω · (L(x, ξ) + (ω − ξ) · ∇L(x, ξ)) dω =
4π

3
∇L(x, ξ)

Combining these two equations together you get:

L(x, ξ) ≈ 1

4π
e(x)︸ ︷︷ ︸

di�usive term

+
3

4π
ξ ·E(x)︸ ︷︷ ︸

directional term

(2.4)

Intuitively, radiance is approximated with its average across all directions (the �rst term) and
corrected by comparing it to the �average direction� of transmission (the second term). To store
the radiance function at a point x according to this approximation you would just need a single
scalar value e(x) and a single vector value E(x).

2.2. MULTIPLE SCATTERING AS A DIFFUSION PROCESS 29

2.2.1.3 The Gradient of Scalar Irradiance

We want to explore the gradient of the scalar irradiance under the above approximation. Therefore
from now on we will revert to using ∇ to indicate di�erentiation in space, not on directions:
∇ =< ∂

∂x ,
∂
∂y ,

∂
∂z > and return to using ω again to indicate the unknown direction instead of ξ.

Let us substitute the previous equation (2.4) in the regular volume rendering equation. What
you get on the left hand side is directly

ω · ∇L(x,ω) ≈ ω · ∇
(

1

4π
e(x) +

3

4π
ω ·E(x)

)
=

=
1

4π
ω · ∇e(x) +

3

4π
ω · ∇ (ω ·E(x))

while for the right hand side, let us concentrate on the in-scattering term �rst.
Remember again that the phase function has been normalized (

´
4π
p(ω ·ω′) dω′ = 1) and that

those quantities that do not depend on angle can be easily taken outside of integrals on directions:

κs(x)

ˆ
4π

p(ω,ω′)

(
1

4π
e(x) +

3

4π
ω′ ·E(x)

)
dω′ =

=
1

4π
κs(x)e(x) + κs(x)

3

4π
E(x) ·

ˆ
4π

p(ω,ω′)ω′ dω′︸ ︷︷ ︸
G(ω)

Now let us consider the vector quantity that has been labeled G(ω). Since our phase functions
are anisotropic, this vector quantity must have direction ω. This is because, when integrating on
the sphere, directions ω′ at the same angle with respect to ω will contribute the same amount and
therefore their directional components will cancel each other out.

Now if take the dot product of G(ω) with vector ω, which being a constant vector can be
taken inside the integral, we would obtain g, the mean cosine of the scattering angle (remember
the de�nition given in chapter 1).

g = G(ω) · ω

Since G(ω) has direction ω, the above relation implies that the length of vector G(ω) is g.
Therefore we can conclude that:

G(ω) = gω

Including the emission term, which remains unvaried, and the extinction term, obtained by
direct substitution, what you get therefore is:

1

4π
ω · ∇e(x) +

3

4π
ω · ∇ (ω ·E(x))︸ ︷︷ ︸

was ω·∇L(x,ω)

=

= − 1

4π
κt(x)e(x)− 3

4π
κt(x)ω ·E(x)︸ ︷︷ ︸

extinction

+
1

4π
κs(x)e(x) +

3

4π
gκs(x)E(x) · ω︸ ︷︷ ︸

in-scattering

+ ε(x,ω)︸ ︷︷ ︸
emission

Now, multiply by ω and integrate over 4π. All non direction dependent terms disappear; most
of the other terms simplify quickly according to the rule

´
ω(ω · ξ) = 4π

3 ξ. More e�ort is instead
required to show that

´
ω
(

3
4πω · ∇ (ω ·E(x))

)
= 0. What you �nally get is:

1

3
∇e(x) + 0 = 0− κt(x)E(x) + 0 + gκs(x)E(x) +

ˆ
4π

ε(x,ω)ω dω

Or, equivalently:

30 CHAPTER 2. LITERATURE REVIEW

∇e(x) = 3 (gκs(x)− κt(x))E(x) + 3

ˆ
4π

ε(x,ω)ω dω

The quantity κs(x)(1 − g) + κa(x) e�ectively approximates the anisotropic behavior of phase
functions: it will be called reduced extinction coe�cient and we will indicate it with κ′t(x).

∇e(x) = −3κ′t(x)E(x) + 3

ˆ
4π

ε(x,ω)ω dω (2.5)

2.2.1.4 The Di�usion Equation

Now that we know the gradient of the scalar irradiance in terms of the vector irradiance, and
the divergence of the vector irradiance in terms of the scalar radiance, we can combine equation
2.5 and 2.2 to get an equation for scalar irradiance only. Let us introduce D = 1

3κ′t
and rewrite

equation 2.5:

E(x) = −D(x)∇e(x) + 3D(x)

ˆ
4π

ε(x,ω)ω dω

Now this can be plugged in equation 2.2, yielding

∇ ·D(x)∇e(x) = κa(x)e(x)−
ˆ

4π

ε(x,ω) dω︸ ︷︷ ︸
q(x)

+ 3∇ ·D(x)

ˆ
4π

ε(x,ω)ω dω︸ ︷︷ ︸
Q(x)

(2.6)

This equation describes a di�usion process and it can be more clearly seen in the case of constant
coe�cients:

D∇2e(x) = κae(x)− q(x) + 3∇ ·Q(x)︸ ︷︷ ︸
S(x)

By adding proper boundary conditions, a system can be set up and solved to obtain the spatial
distribution of scalar irradiance.

2.2.2 Solvers to the Di�usion Equation

When Stam[119] introduced the equation he contextually proposed a multigrid approach to solve
the resulting system of equations. This approach was later extended to more general cases by
Haber et al.[54], who dealt with the problem of boundary voxels not perfectly aligning with a mesh
of arbitrary geometry. Instead of discretizing the equation on a grid, it is also possible to use
as supporting structure any connected graph; this is the approach of Yajun Wang, Jiaping Wang
et al. [128, 130] who employed �rst a static polygrid, and then a QuadGraph obtained from the
tetrahedralization of the mesh.

Arbree et al.[2, 3] introduced very accurate boundary conditions for the di�usion approximation,
capable of taking into account refraction at the boundary. Moreover, they introduced a query
function to recover radiance from the computed �uence which smooths computational errors by
averaging. In the second paper, they solved the resulting system using the Finite Element Method,
which had not been used previously for heterogeneous scattering, yielding impressive results.

Finally, a recent incorporation of multiple scattering in a single scattering framework by Zhou
et al.[137] solved the di�usion system by conjugate gradient.

2.2.3 Lattice-Boltzmann Di�usion

Lattice-Boltzmann models, introduced by Geist[47] for the computation of scattering e�ects, de�ne
global behavior exclusively through local interactions. Update rules are de�ned for each discrete
element and through iterated application of these rules, a desired system evolution results, in a

2.3. THE DIPOLE MODEL 31

manner similar to the evolution of Cellular Automata. In particular, Geist showed that by modeling
light distribution as in �uid mechanics, the system behaves according to a di�usion process.

In a Lattice-Boltzmann method, space is discretized into cells and each cell is connected to its
neighbors through links. The quantity under simulation is de�ned over the M connecting links
plus a rest distribution.

fm(x, t)

Total �uence at a site at time t is recovered by the sum of these distributions: e(x, t) =
∑
m fm(x, t).

If we indicate lattice spacing with λ and simulation step time with τ , then at every step the
update rule is:

fm(x+ λξm, t+ τ)− fm(x, t) = Ωm · f(x, t)

where Ωm denotes the m-th row of the m × m matrix describing local particle interactions.
This de�nes the relation of the m-th distribution at a site connected along direction ωm to another
site.

The choice of the Ω matrix (called collision matrix) is not unique apart from some reasonable
constraints like conservation of mass. A reasonable choice, the one presented in the original paper,
de�nes Ω as following:

for row 0 :

Ω0j =

{
−1 j = 0

κa j > 0

for the axial rows i = 1, ..., 6:

Ωij =


1/12 j = 0

κs/12 j > 0, j 6= i

−κt + κs/12 j = i

for the non-axial rows i = 7, ..., 18:

Ωij =


1/24 j = 0

κs/24 j > 0, j 6= i

κt + κs/24, j = i

However, it can be proven[49] that with a step size close to zero and a comparably small spatial
discretization, the process tends towards a time varying di�usion process governed by equation:

∂e

∂t
= D∇2e

with

D =
λ2

τ

(
(2/κt)− 1

4 (1 + κa)

)
Geist, Steele et al.[48, 120] have shown in multiple papers the applicability of this method to

the rendering of participating media, like clouds; and how to extend this approach to complex
forest ecosystems. More details about the Lattice-Boltmann process are given in chapter 4 where
it is used in the context of one of our solutions.

2.3 The Dipole Model

It is possible to �nd an analytical solution to the di�usion equation (2.6) for a point-like source of
unit power Φ = 1 immersed in in�nite isotropic media:

32 CHAPTER 2. LITERATURE REVIEW

e(x) =
1

4πD

e−κtrr(x)

r(x)

where r(x) is the distance from the light source at point x and κrt =
√

3κaκ′t is the reduced
transport coe�cient. This provides the di�usion Green's Function.

Jensen et al.[70]introduced to the Computer Graphics community a model for media with
in�nite boundary which poses that the e�ects on a surface point xo produced by a collimated
beam of light impinging on a surface point xi can be modeled by introducing two imaginary light
sources: one below the surface at the distance of a mean free path (zr = 1/κtr) called the �real�
source, and one (negative in power) over the surface at height5 zv = zr + 4Aκtr called the virtual
source. This is the Dipole Approximation. Under this model, outgoing �uence at point xo can be
computed as

e(x) =
Φ

4πD

(
e−κtrdr

dr
− e−κtrdv

dv

)
where dr is the distance of xo from the real source and dv the distance from the virtual source

(see �gure 2.1). Even if this method is theoretically sound only for half-in�nite media, it can
successfully be applied to model objects of any geometry. Discarding direction of incoming light,
except for computing Fresnel transmittance, it is possible to construct a BSSRDF using the dipole
model as:

SMS(xi,ωi,xo,ωo) =
1

π
Ft(η,ωi)Rd(xi,xo)Ft(η,ωo)

where

Rd(xi,xo) =
Ω′

4π

[
zr(κtrdr + 1)

e−κtrdr

κ′td
3
r

+ zv(κtrdv + 1)
e−κtrdv

κ′td
3
v

]
with Ω′ = κs(1−g)

κ′t
.

Figure 2.1: Dipole Approximation

This method has gained popularity due to the unique capability of providing an analytical BSS-
RDF for translucent materials; however, it is not without shortcomings. In addition to the semi-
in�nite media assumption, this derivation assumes homogeneous materials and does not cleanly
separate the Single Scattering contribution from the Multiple Scattering one. Papers in the last
ten years have been geared towards overcoming these limitations. Worth mentioning are the multi-
pole extension for layered materials[34], and the quadpole method, for handling sharp features[35].
Only recently a paper by D'Eon and Irving[31] has challenged the model from its core assumptions
proposing an alternative formulation. Finally, it must be noted that other BSSRDF approaches

5The A factor in the equation accounts for Fresnel e�ects

2.3. THE DIPOLE MODEL 33

have been explored, for example Holzschuch et al. [61, 36] devloped a model based on empirical
obsersavtions about the correlation between multiple scattered light and secondorder scattering
events.

2.3.1 Real-time Rendering with the Dipole Method

After its introduction the dipole model was initially used to accelerate o�-line algorithms and
continues to be a popular alternative to a full Monte Carlo or Photon Traced simulation[69, 34,
35, 89].

In a following paper[69], Jensen and Buhler decoupled irradiance evaluation from scattering
computation with a two pass technique. In the �rst pass they sampled the incoming irradiance at
selected points on the surface. In the second pass they applied the dipole di�usion approximation by
cleverly integrating with a hierarchical method. Instead of summing for each point the contribution
of every other point, or discarding a priori the contribution of distant samples, they clustered distant
points for quick evaluation. Even if their method is considerably faster, they still did not achieve
interactivity.

Lensch et al.[86] noticed how throughput factors Rd in the above equation are somehow similar
to the geometric factors used in radiosity methods. But while geometry factors encode only distance
and angular information between two patches, the subsurface scattering re�ectance Rd encodes all
the information about the volume that pertains to the di�usion of light from entering point to
exiting point. The idea by Lensch et al. was then to discretize the subsurface scattering equation
using Galerkin methods in a similar way as it is done in radiosity calculations. The authors
employed a double discretization, one for the dominating local scattering (between close vertices)
encoded as a texture, and one for the global scattering (between far apart vertices), encoded as
hat functions. Although, this method is capable of producing real time results, its frame rate is
still very limited.

Hao and Varshney[57], precomputed for every vertex, and for every incoming light direction,
the contribution of the incoming radiance on the neighborhood to the outgoing radiance at the
vertex. They stored such integral fully at selected points while using Spherical Harmonics to store
at the remaining vertices the low-frequency di�erence from the selected ones. With such a scheme,
they �nally achieved a considerable interactive frame rate.

Mertens et al.[95] employ a hierarchical boundary element method for solving the light transport
integral. However, their method is limited to interactive frame rates for moderately tessellated
deformable objects. In a subsequent work, Mertens et al.[94] instead sped up the evaluation of Rd
by implementing an importance sampling of the function in image space, such as to minimize the
number of neighbor location accessed per vertex.

2.3.2 Screen space Subsurface Scattering

Among the attempts to develop an algorithm that could compute subsurface scattering in screen
space we mention the simple method by Jimenez et al.[72] which performs a simple screen space
blurring of the irradiance in order to approximate the e�ects of multiple scattering in human skin.
A more precise approach is the one by D'Eon et al [30] who perform a similar blurring in texture
space.

However, more accurate methods have been developed leveraging the dipole approximation.
The now popular work by Dachsbacher and Stamminger[27], Translucent Shadow Maps, pro-

vided a quick and conceptually simple algorithm. In their method the object is �rst rendered from
the light position, such that all illuminated areas of the object correspond to visible rasterized frag-
ments, as in shadow mapping methods. Contrarily to simple shadowing, this rendering is saved
along with per-fragment depth information and normal information. During the view rendering
stage, color is computed by accessing the translucent shadow map with a �lter whose weights are
given by Rd factors of the dipole approximation.

More recently, Shah et al.[113] proposed an image-space method based on irradiance splatting
and gahtering, very e�cient for homogeneous materials, but less suited for heterogeneous mixtures

34 CHAPTER 2. LITERATURE REVIEW

of short and long scattering ranges. A more straightforward approach is the one by Elek et al. [38],
whose method is based on a �lter in image space that can render the appearance on homogeneous
fog given a rendered scene with depth information. Note that Lopez-Moreno et al. [91] had
previously shown that perceptually plausible fog can be added to any scene if just a rough depth
map, e.g. user sketched depth, is available.

2.4 Volume Rendering

The term �volume rendering� is mostly used to describe those methods that provide visualizations
of volumetric datasets, ranging from CAT scans, to computer generated datasets. Although some
of these methods are based on approximations of the RTE, in general the accent is placed on a
real-time visualization that can carry meaningful information about the volumetric structure of the
object rather than a physically correct appearance. A recent survey of volume rendering techniques
can be found in Jonsson et al.[73] who divide state of the art methods according to the way light
get transmitted from the sources to the volume.

We can subdivide methods based on the way the volume is visited during rendering. i.e.,
whether it happens in the direction from the viewer (marching, or Image Order methods) or
towards the viewer (splatting, or Object Order methods).

2.4.1 Ray Marching

The method of Levoy[87] is still one of the most used for quickly computing the appearance of
a volume under a given light direction. The gradient of the volume density is used as a normal
and lighting is computed using a BRDF-like model. E�ects are calculated locally and scattering
is ignored. This is based on marching along every view-ray within the volume, i.e. sampling
at regular interval the volume, accumulating the total opacity (more precisely, the exponential
attenuation), and adding to the color of the pixel the computed local lighting multiplied by the
opacity factor. This simple strategy has been the basis for most method to date dealing also with
Single Scattering, whose main di�erence is that in ray marching single scattering, it is necessary
to trace another ray towards all light sources at every sampling point.

The �rst algorithm of this kind has been provided by Nishita et al. in 1987[98] contextually to
their introduction of the airlight integral (see section 2.5.1). To speed up the computation they
proposed to bound each light by a cone as to restrict ray-marching to illuminated segments only.

Dobashi [33] subsequently proposed to approximate the integral of a product as a product of
integrals, allowing the low frequencies to be coarsely evaluated on the CPU while higher-frequencies
can be �nely sampled via textured subplanes. Being also concerned about the trade-o�s between
aliasing and cost, Imagire et al.[65] proposed to divide space into a set of sampling hulls of which
contributions are hardware-blended, allowing for higher sampling rates while limiting read-write
memory accesses. A recent method by Engelhadt et al.[39] proposes instead to exploit the concepts
of epipolar geometry to reduce the number of samples taken along the integral. A recent work
by Baran et al. [4] accelerates the ray marching by constructing an acceleration structure from a
shadowmap. Chen et al. [21] extended this work by adding support for textured light sources.

2.4.2 Splatting and Slicing

Instead of marching along rays for each pixel of the �nal image, another common technique in
volume rendering is projection, that is, the volume is divided in smaller elements of constant
optical properties (voxels, RBFs, metaballs), which at run time are sorted and rendered front-
to-back with respect to the viewer, each piece independently of the others. The �nal color of the
volume, as seen by the viewer, is given by a simple sum in image space of the colors of the elements.
This approach is especially favored when the volume is not densely represented, but approximated
using basis functions.

2.4. VOLUME RENDERING 35

Figure 2.2: Splatting In step (a) of the illustration by Dobashi et al.[32], metaballs are rendered
as simple billboards, ordered as B, E, A, D, C. In step (b), they are rendered in order C, A, D, B,
E.

Dobashi et al.[32], for example, modeled volumetric information of density using metaballs
of user de�ned radius. These metaballs were rendered, as billboards, two times: �rst from the
light direction, to account for light-metaball attenuation, and then from the view to account for
metaball-view attenuation, thus e�ectively computing single scattering.

Harris and Lastra[59], in the context of producing an as fast as possible cloud rendering algo-
rithm for games, instead of rendering metaballs, rendered simpler impostors, precomputing multiple
scattering and computing single scattering as in[32].

Another technique that allows the computation of multiple scattering at run time is given by
half angle slicing, introduced by Kniss et al.[80], and particularly e�ective when volumetric data is
stored as a 3D texture. The volume is sliced multiple times at an angle that is halfway between the
view direction and the light direction (see �gure 2.3). Slices are then rendered sorted by increasing
light distance, each in two passes, �rst from the sun and then from the view. Lighting information
computed at the previous pass is then spread at the next pass. With this method single and
multiple scattering are accounted for, although for the latter, only its forward approximation is
considered. This approach has the obvious drawback that it requires many renderings for any single
view and it is not clear how it can be e�ciently used with multiple lights or environment maps.
Since Kniss et al. presented this algorithm with the intent of rendering clouds, this approach has
been extended by Riley et al.[110], who added other atmospheric e�ects such as halos, coronas and
rainbows.

Figure 2.3: Slice Accumulation. The volume is divided in slices, rendered according to the light
source direction. Each slice passes information about received and retransmittable light to the
next.

36 CHAPTER 2. LITERATURE REVIEW

Hegeman et al.[60] augmented the model by Kniss et al. by incorporating the Path Integration
framework by Premoºe et al.[107]. By slicing, instead of ray marching, they achieved a modest
form of interactivity (4 fps).

2.5 Single Scattering Integral and Closed Form Solutions

Even if ray marching computations have become feasible on modern hardware, a major goal in
volumetric rendering literature has always been the development of an analytic and accurate equa-
tion for scattering. While, as we have seen in previous sections, di�usion based approximations
permit some kind of analytic formulations, they are still based on arbitrary assumptions. However,
for the case of single scattering in participating media, where the light source is immersed in the
media itself, it has been shown possible to formulate a closed form solution of the integral form of
the RTE. This integral is usually referred to as �airlight integral�, since it captures the apparent
phenomenon of air emitting light when a participating medium is present.

2.5.1 Air Light Integral

The �rst airlight model was developed by Nishita et al.[98], but a �rst attempt at an analytical
solution is due to Lecocq et al. [85] who expanded the integral into a Taylor series. Biri et al. [126]
followed this approach and incorporated volumetric shadows.

Sun et al.[121], contrarily to Biri et al.[126], built a method based on an explicit, exact, analytic
solution of the single scattering integral for isotropic point lights in homogeneous participating
media. However, the airlight integral is not completely solvable but requires the evaluation of a
special function. Sun et al.[121] managed to numerically evaluate such function and store it in
texture memory, allowing all computations to happen quickly at run-time.

In fact, the airlight integral due to a point light source of intensity Φ at location s scattered in
the direction of a ray is given by,

L(x0,ω) =

ˆ dr

0

κs(x)p(α(x))
Φ

||x− s||2
e−τ(v,x)−τ(x,s) dt (2.7)

It can be shown that, by introducing the angle γ between the view-light and view-object lines,
by approximating p(α(x)) with k, and by integrating by substitution,

L(x0,ω) =
κ2
skΦe−τ(s,v) cos γ

τ(s,v) sin γ

ˆ π
4 + 1

2 arctan
τ(v,p)−τ(s.v) cos γ

τ(s,v) sin γ

γ
2

exp [−τ(s,v) sin γ tan ξ] dξ

Although the expression seems fairly complicated, it reduces the evaluation of the integral to
the integration of function

F (u, v) =

ˆ v

0

e−u tan(α) dα

Even if function F is not analytically solvable, it is well behaved, and can be precomputed and
stored as a 2D table.

The approach by Sun et al.[121] has been picked up by Zhou et al.[136] and by Wyman et al.
[134] who independently combined it with ray-marching as to handle heterogeneous media in the
�rst case, and light-shafts and anisotropic light sources in the second.

2.5.2 A closed form Integral Solution

More recently Pegoraro et al.[103, 101, 102] presented a solution of the airlight integral which does
not require any tabulated function and which is capable of incorporating di�erent phase functions

2.6. PRECOMPUTED RADIANCE TRANSFER 37

into the solution by expansion via Legendre polynomials.6 Their impressive result provided the
�rst closed-form solution to the airlight problem.

Similarly to Sun et al.[121], the authors de�ne in-scattered radiance due to a isotropic point
light of power Φ, immersed in a homogeneous participating medium with phase function p as:

Lin(x,ω) = Φ
e−κtd(x,ω)

d2(x,ω)
p(x,ω)

where the directional distance d(x,ω) replaces the explicit ||x − s||2 term, and similarly,
κtd(x,ω) is equivalent to the optical distance τ(x, s). Introducing h as the distance to the light
from the given ray and xh the coordinate of its projection onto it, the term can be rewritten as

Lin(x,ω) = Φ
e−κt
√
h2+(x−xh)2

h2 + (x− xh)2
p

(
arctan

(
x− xh
h

)
+
π

2

)
Introducing the substitution v(x) = x−xh

h +

√
1 +

(
x−xh
h

)2
, then the following holds:

ˆ x∞

x0

e−τ(x0,x)κs(x)Lin(x,ω)dx = Φ
κs
h
eκt(x0−xh) 2

4π
I0(−H, v0, v∞)

whereH = κth is the optical distance between the source and the ray, and I0(a, va, vb) = i0(a, vb)−
i0(a, va) with i0 an auxiliary function de�ned as

i0(a, v) = sin(a)<(Ei(av + ia))− cos(a)=(Ei(av + ia))

and Ei the exponential integral function.

2.6 Precomputed Radiance Transfer

In their seminal paper, Sloan et al.[117] used a Spherical Harmonics basis to encode, for each
vertex, a transfer function that maps incoming illumination to �transferred� radiance.

By exploiting linearity of light transfer, they encoded distant, low frequency illumination in the
same basis as the surface transfer function, thus reducing the evaluation of the rendering integral
to a simple dot product between two 9-25 coe�cient vectors (see � A.1).

During the preprocessing stage, global lighting computations are performed to record how an
object shadows and scatters light onto itself. The results of this computation is stored in vectors
(for di�usely re�ecting objects) or matrices (for glossy objects).

At run time, global incident illumination is projected on the Spherical Harmonics basis. If
the object's surface is di�use, the transfer function coe�cients at each vertex are dotted with the
lighting coe�cients, thus producing the �nal correct shading. If the object's surface is glossy,
the transfer matrix is applied to the lighting coe�cients in order to produce the exiting radiance
coe�cients. These coe�cients are then convolved with the BRDF of the object and the resulting
spherical function is evaluated at the view direction.

Exiting radiance at a surface point p of a di�use object can be simpli�ed to

L(x,ω) =

ˆ
Ξ

L(x,ω′)
ρ

π
max(np · ω′, 0)V (ω′)︸ ︷︷ ︸

transfer function

dΩ(ω′)

with ρ the di�usive coe�cient and V (ω) a visibility term that equals zero if there is self-occlusion
of the object in direction ω.

The transfer function at each point depends only on the normal at the point. So by virtue of
being completely know during preprocessing, it can be projected on the SH basis

6the expansion of the phase function via Legendre polynomials is central to the PN method and the SHDOM.

38 CHAPTER 2. LITERATURE REVIEW

L(x) =

ˆ
Ξ

L(x,ω′)T (ω′) dΩ(ω′)

Then, thanks to SH properties if incoming light has been projected on the same basis

L(x) =

n2∑
i=0

liti

If the object is glossy, its exiting radiance is

L(x,ω) =

ˆ
Ξ

L(x,ω′)P (ω′,ω, r)V (ω′) dΩ(ω′)

Since P depends on both view direction and light direction, it cannot be precomputed, but
thanks to SH properties it is possible to precompute visibility (and interre�ections)

L(x,ω) =

P ∗r ∗
 n2∑
j=0

liTi,jyi,j

 (ω)

where P ∗r (ω) = P (ω′, (1, 0, 0), r) and the operator ∗ represents the convolution operator.

Figure 2.4: Precomputing Radiance Transfer. Interre�ections, self shadowing and subsurface
scattering[116]

In a following paper[116], Sloan et al. explicitly treat, among other global illumination e�ects,
the subsurface scattering case, de�ning a compact way to store the matrices representing transfer
functions. To account for subsurface scattering it is su�cient to substitute the simple visibility
term V with a more complex function that performs some expensive traversal of the solid to
determine light paths inside the medium. Since this computation happens during the o�ine stage,
this traversal can be solved with a Monte Carlo simulation. The main limitation is again the
assumption of distant lighting and the necessity to store a matrix for each surface point.

2.7 Refraction

Even if refraction has often been treated as a separate subject from scattering, Computer Graph-
ics researchers have been interested in this phenomenon since the o�-line ray tracing engine of
Turner Whitted[132]. In fact, refraction can be trivially incorporated in a ray traced paradigm by
employing Snell's equations at the boundary of objects, or a more complex transmission function
modeled with an appropriate BDTF.

2.7. REFRACTION 39

In the area of real-time rendering, refraction has often been simpli�ed by considering only the
�rst interaction between light and object boundaries. This is the case of [90] where a normal map
is used to deviate rays and index into a texture containing background information.

A more accurate approximation is proposed by Wyman et al., in their two-pass method[133],
capable of accounting both for the incoming and outgoing interactions with the volume, but is
inaccurate for non convex objects. More recent methods are capable of dealing with more complex
e�ects, for example Rousier et al.[29] incorporated non specular BTDFs, transcending the assump-
tions that for every incoming light ray only one transmitted ray needs to be tracked. Ihrke et al.[64]
introduced a particle-based method derived from the Eikonal equation that achieves interactive
frame rates. Sun et al.[122] instead presented a real-time renderer which constantly bends light
rays at each voxel intersection in a fashion similar to volumetric photon mapping. More recently,
this method has been extended in order to handle a closed form analytical formulation of light ray
trajectory on constant gradient refractive media[17]. Finally, Walter et al.[127] showed a real-time
formulation that determines the focal points on the boundary of an object.

Note that even if there has been one example of derivation of the di�usion equation with
refraction[78], this formula, to the best of our knowledge, has never been put to practical use.

40 CHAPTER 2. LITERATURE REVIEW

Chapter 3

E�cient Compression of Material

Properties for Single Scattering

Abstract

In this chapter we present a general and e�cient algorithm to render single scattering e�ects
in translucent objects of arbitrary geometry composed of heterogeneous materials or having
visible internal details. The developed technique is based on an adaptive volumetric point
sampling, done in a preprocessing stage, which associates to each sample the optical depth
for a prede�ned set of directions. This information is then used by a rendering algorithm
that combines the object's surface rasterization with a ray tracing process, implemented on
the graphics processor. This approach allows us to simulate single scattering phenomena for
inhomogeneous isotropic materials in real time with an arbitrary number of light sources. We
tested our algorithm by comparing the produced images with the result of ray tracing and
show that the technique is e�ective.

Figure 3.1: An overview image of our algorithm. the direction-dependent optical depth is
sampled and stored in a set of locations and it is used at rendering time to compute the scattering
of light in a single pass.

In translucent objects composed of materials with low albedo (Ω � 1), multiple scattering
e�ects add little to the global appearance of the object; consequently, a full solution to the Radiative
Transfer Equation is often considered not to be necessary[75, 13]. Both in the o�ine and real-
time application domains, numerical methods or Di�usion/Dipole based solutions can bring an
unnecessary overhead to the rendering time of such materials. On the other hand, simple volumetric
solutions, which compute single scattering in arbitrary dense volumetric representations, do not
scale well with the number of lights, and are often con�ned to work with a speci�c rendering
paradigm. Moreover, precomputation strategies like Precomputed Radiance Transfer either impose

42 CHAPTER 3. EFFICIENT COMPRESSION OF MATERIAL PROPERTIES FOR SINGLE SCATTERING

a simpli�cation on directional e�ects or require a large amount of storage in order to produce high
quality results.

In this chapter we therefore introduce a method that is tailored at producing convincing visual
results conveying the volumetric appearance of low albedo objects, obtained with an adaptive
sampling strategy. This strategy is guided by material properties in a way that we believe manages
to capture discontinuities inside the material while producing data-sets of reasonable size. Although
preprocessing times can be considerable for complex meshes, they are balanced by a frame rate at
rendering time that is always above the interactivity threshold (10 fps in the worst case).

In summary, our contribution to the state of the art is two-fold:

� An e�cient, single-pass algorithm for real-time rendering of single scattering e�ects which
completely decouples scattering phenomena from super�cial light re�ection computations,
and that can be well integrated in standard rendering pipelines.

� A strategy for an adaptive opacity-dependent point sampling of the volume enclosed by a
surface that is able to capture and represent the internal appearance of the object.

3.1 Algorithm Overview

The presented algorithm is divided in a preprocessing stage and a rendering stage.
In the preprocessing stage, the internal volume of the object is sampled with a set of points, each

of which covers a spherical portion of space. This set is chosen to maximally cover the outermost
subsurface stratus and to capture the most important internal discontinuities. To each sample is
associated a directional function that describes the attenuation due to Beer-Lambert's law between
the surface and the point (see �gure 3.1). The function is computed by tracing rays through the
material, from each sample towards a prede�ned set of directions, compactly encoding the result
using Spherical Harmonics.

At run-time, the boundary surface is normally rendered with the rasterization pipeline to
account for the pure surface re�ection. Subsequently, the spheres associated with the sampling
points are ray traced with an algorithm implemented in a GPU fragment shader, which computes
the contribution of each spherical portion to the color of the corresponding pixel by integration.

The substantial di�erence with similar approaches for participating media is that, thanks to
the precomputation of the optical depth, we do not need to perform a rendering pass for each light
in order to accumulate Irradiance on the samples.

3.1.1 Reformulating the Radiative Transfer Equation

Translucent objects, as opposed to participating media, are enclosed by a de�nite boundary. We
exploit this fact in the following derivation without posing limitations on the topology of the
enclosing surface. Moreover, since most translucent objects do not emit radiance1, we can drop
the emission term from the Radiative Transfer Equation (1.9):

∇ωL(x,ω) = −κt(x)L(x,ω)︸ ︷︷ ︸
extinction

+ κs(x)

ˆ
Ξ

p(ω,ω′)L(x,ω′) dΩ(ω′)︸ ︷︷ ︸
in-scattering

(3.1)

Since points belonging to surface S are the only receivers of direct, unattenuated lighting, we
can treat them as the sole emitters of transmitted light within the volume, which we indicate it in
this chapter as Lt.

We simplify refraction of light trough the boundary using equation 1.3 and therefore set the
ratio of transmitted light to incoming light as Ft.

Lt(y,ω) = FtLi(y,ω)

1we ignore incandescent and �uorescent materials

3.1. ALGORITHM OVERVIEW 43

We rewrite the integral form of the RTE on the ray between a point x and a point y ∈ S on
the surface of the object. (see �gure 3.2)

L(x,ω) = e−τ(x,y)Lt(y,ω)︸ ︷︷ ︸
attenuated direct light

+

ˆ y
x

e−τ(x′,y)κs(x
′)

ˆ
Ξ

p(ω,ω′)L(x′,ω′) dΩ(ω′) dx′︸ ︷︷ ︸
in-scattered lighting

Since we developed a system which deals with point-lights, which are by de�nition invisible
sources, we can safely drop the �rst term of the above equation and work on the second.

L(x,ω) =

ˆ y
x

e−τ(x,y)κs(x
′)

ˆ
Ξ

p(ω,ω′)L(x′,ω′) dΩ(ω′) dx′

Under the single scattering assumption (� 1.3.6), L(x′ω′) must simply be the attenuated direct
lighting coming from some point y′ on the surface.

Figure 3.2: Single Scattering of Light The contribution of single scattering of light at point x in
direction ~ω is computed by integrating, for each point x′ along the ray from x to y, the attenuated
amount of light received from direction ~ω′ and retransmitted towards ω.

The integral can then be explicitly written using the de�nition of optical depth τ̂ , as

LSS(x,ω) =

ˆ y
x

e−τ(x′,y)κs(x
′)

ˆ
Ξ

p(ω,ω′)e−τ̂(x′,ω′)Lt(x
′,ω′)︸ ︷︷ ︸

attenuated direct light

dΩ(ω′) dx′ (3.2)

where we abused the notation to indicate with Lt(x
′,ω′) light arriving on the surface at the point

y found by traversing the volume in direction ω from x.
On a surface point y, the total amount of light that appears to be outgoing towards viewer

direction ω is given by the sum of the re�ected radiance according to the rendering equation and
the retransmitted radiance arriving according to the above equation (3.2). Since we ignore in this
model the directional e�ects of crossing a boundary between materials with di�erent indexes of
refraction we will show how this e�ect can be modeled further on.

As shown in �gure 3.3, radiance at point x towards ω is therefore, according to our purposes,
given by,

Lo(x,ω)︸ ︷︷ ︸
total outgoing light

= Lss(x,ω)︸ ︷︷ ︸
single scattered light

+ (1− Ft)
ˆ

4π

f(ω,ω′)Li(x,ω
′)dω′︸ ︷︷ ︸

Lr(x,ω)

The term Lr(x,ω), in the context of our on-line rendering application, will be calculated using
one of the popular shading models used by OpenGL.

44 CHAPTER 3. EFFICIENT COMPRESSION OF MATERIAL PROPERTIES FOR SINGLE SCATTERING

Figure 3.3: Radiance leaving point x is the contribution of radiance directly re�ected by the
surface (component r) and subsusrface scattering (component ss). On the left, light directly
incident on the surface partially penetrates the object Ft and partially is re�ected 1− Ft. On the
right, light that exits the surface at x is determined by the integral of all points on the ray. Total
outgoing radiance is simply the sum of the two.

For the sake of simplicity, we assume that scattering is isotropic, hence p(ω,ω′) = 1
4π ; moreover,

we will refer to the integrand function in the next steps as the function F (x′),

Lss(x,ω) =

ˆ y
x

e−τ(x′,y)κs(x
′)

1

4π

ˆ
4π

e−τ̂(x′,ω′)Lt(x
′,ω′) dΩ(ω′)︸ ︷︷ ︸

F (x′)

dx′

We would like now to evaluate F (x′) only at discrete points within the volume and interpolate
them when integrating along a ray. To this end, we will properly choose a set of points B = {bi}.

Let us assume that, given B, it is possible to build a set of Gaussian radial basis functions
Γ = {γi(x)}, where γi(x) = eai||x−bi||, such that, if we call V the internal volume of an object,
then 

γi(bi) = 1 ∀i
γi(bj) = 0 ∀j 6= i∑
i γi(x) = 0 ∀x /∈ V∑
i γi(x) = 1 ∀x ∈ V

(3.3)

If that be the case2, then the following relation is satis�ed

ˆ y
x

F (x′) dx =

ˆ y
x

F (x′)
∑
i

γi(x
′) =

∑
i

ˆ y
x

F (x′)γi(x
′) dx′

If function F (x′) is such that its values, when γi(x
′) is not null (i.e. in the surroundings of the

Gaussian center), do not vary signi�cantly, then we can assume F (x′) to be constant and take its
value at point bi.

∑
i

ˆ y
x

f(x′)γi(x
′) dx ≈

∑
i

f(bi)

ˆ y

x

γi(x
′) dx′

It is intuitive that, if Gaussians have small radii of in�uence with respect to the dimensions of
the surface, then F (x), whose value strongly depends on the distance from the surface, will have
little variance inside said radius. Therefore, we can write,

2Note, however, that conditions 3.3 cannot be actually satis�ed using simple Gaussian functions. While we will
base our derivation on the assumption that a perfect set Γ can instead be built, in practice we will only attain a
rough approximation.

3.2. POINT SAMPLING ALGORITHM 45

Figure 3.4: Gaussian Radial Basis Functions Instead of computing the correct integral of
function F (x) (light gray paths), the function is computed only at bi (dark path) and multiplied
by the integral of the Gaussian function (dashed path)

LSS(x,ω) ≈
∑
i∈Γ

1

4π
κs(bi)e

−τ̂(bi,ω)

ˆ
Ξ

e−τ̂(bi,ξ)FtL(bi, ξ)dΩ(ξ)︸ ︷︷ ︸
F (bi)

ˆ y
x

γi(x
′) dx′

By encoding the exponential attenuation due to the optical depth of each Gaussian center with
Spherical Harmonics ψi, we arrive at the �nal formula used in our on-line computations:

Lss(x,ω) ≈
∑
i∈Γ

1

4π
κs(bi)ψi(ω)

ˆ
Ξ

ψi(ξ)FtL(bi,ω) dΩ(ξ)

ˆ y
x

γi(x
′) dx′ (3.4)

Lighting computations are extremely fast if light comes only from a limited set of directions
D. In such case, instead of integrating over Ξ, it is su�cient to evaluate and sum for all directions
in D. On the other hand, if lighting is de�ned over the whole sphere of directions, like when
environment maps are used, then by projecting it over the Spherical Harmonics basis the above
integral will reduce to a simple dot product of two vectors of coe�cients (see Appendix A.1).

3.2 Point Sampling Algorithm

The core of the preprocessing stage revolves around �nding good positions for the samples inside the
volume. The sampling algorithm is critical not only to minimize memory occupation and rendering
times, but also to ensure that the assumptions made in our derivation are valid. Preprocessing is
done in two stages; in the �rst stage, great care is taken in choosing the right sampling set (samples
in algorithm 1), which corresponds to set B in our derivation. The construction of such set is
explained in detail in the next section (� 3.2.1)

In the second part, the remaining preprocessing steps consist only of associating, with each
point, the compressed attenuation function coe�cients (vector SH) and the Gaussian radial basis
function width (value Width). This relatively simple process is presented in section 3.3.

3.2.1 Sampling Algorithm

Producing a good stochastic sampling of a region of space, delimited by a generic mesh, is not
trivial. Instead of adapting an existing sampling algorithm (see �gure 3.5), we sought an ad hoc
solution based on considerations on the behavior of light.

From simple observations it can be noticed that, for most scattering materials, light will pen-
etrate only by a small distance beneath the surface of an object, proportionally to the mean free
path. A consequence of the exponential attenuation predicted by Beer-Lambert's law 1.5 is that

46 CHAPTER 3. EFFICIENT COMPRESSION OF MATERIAL PROPERTIES FOR SINGLE SCATTERING

Algorithm 1 Preprocessing Stage

Pr ep r o c e s s (Mesh mesh)
{

// Po i s son Disk Sampl ing wi th v a r i a b l e d i s k r a d i u s .
// V a r i a t i o n i s g i v en by a Dens i t y H e u r i s t i c Func t i on
Sample [] samp les = Laye r edPo i s sonD i skSamp l i ng (mesh) ;

// A s s o c i a t e w i th each sample the S p h e r i c a l Harmonics
// c o e f f i c i e n t s and the g au s s i a n width .
f o r e a c h sample i n samples
{

sample . Width = WidthFromDensity (sample) ;
sample . SH = Pro j e c tFunc t i o nA t (sample) ;

}
return samples ;

}

Figure 3.5: Sampling Strategies Using a uniform grid approach (a), in order to capture small
details, and ensure that variance with respect to the Gaussian functions is minimal, it would be
necessary to over-sample the whole volume, leading to an excessive amount of data. Similarly,
a completely random sampling (b), while possibly eliminating visual artifacts produced by the
uniform sampling, would lead to an even more accentuated oversampling of the volume in order to
ensure that all areas are adequately covered. Our approach (c) strives to put samples only where
they are actually needed.

the majority of light rays will be scattered or absorbed within a thin subsurface layer. Therefore, in
order to adequately represent small distance lighting e�ects, it is necessary to place many samples
as close as possible to the surface of objects. Furthermore, as seen in section 3.4, the nature of
our rendering algorithm is such that, if an area remains accidentally uncovered by any sample, it
will be displayed as unnaturally dark. Surfaces presenting high frequency geometric details must
be sampled with great accuracy, so as to ensure that even small convex features are covered.

On the other hand, chosen points will be used with the principal intent of encoding function
ψi(ω) = e−τ̂(bi,ω), which represents the amount of attenuation to which light arriving at the
point is subject. If we allow scattering coe�cients to be variable, it follows intuition that there
will possibly be areas of lower or higher light penetration. In low lighting areas, deep within the
surface, or even at the surface level if the material is extremely thick, there will be no need to place
sampling points as they would be used to encode a function which is approximately always zero.
Furthermore, as some models will undoubtedly present areas across which scattering behavior is
constant, it would be a reasonable choice to use fewer sampling points, with Gaussians of bigger
radii, in those areas.

With these considerations in mind, our sampling algorithm proceeds by iteratively building
concentric meshes inside the input one using the O�setSurface algorithm (� 3.2.2), separated by
a constant, tiny, o�set . Sampling points will be successively placed only on the surfaces of these
internal meshes, which we will call layers . In this way, sampling positions, while still random, will
be forced to follow the shape of the surface.

3.2. POINT SAMPLING ALGORITHM 47

Algorithm 2 Layered Poisson Disk Sampling

Samples [] Laye r edPo i s sonD i skSamp l i ng (Mesh mesh)
{

f o r (o f f s e t = d e l t a ; o f f s e t < max_offset ; o f f s e t += d e l t a)
{

l a y e r s += O f f s e t S u r f a c e (mesh , o f f s e t) ;
}
H e u r i s t i cD e n s i t yP e rV e r t e x (l a y e r s) ;
Sample [] samp les = Po i s sonD i skSamp l i ng (l a y e r s) ;
return samples ;

}

Figure 3.6: Our Sampling Strategy (a) layers are build underneath the original mesh at regular
intervals, (b) density is heuristically estimated (darker areas represent higher density), (c) samples
are chosen from all layers using a Poisson disk algorithm guided by density (note that disks have
a bigger radius in areas of lower density)

Before the actual sampling, HeuristicDensityPerVertex is used to estimate areas where more or
less samples are needed to follow variation of encoded function ψi(ω). This heuristic is based on
the divergence of the �rst moment of function ψi(ω) and it is computed and stored at all vertices
of the internal layers (� 3.2.3).

Finally, layers are densely sampled using an adapted PoissonDiskSampling. The algorithm,
using previously computed density information, produces a random subset without generating
accidentally overcrowded or under-sampled zones (� 3.2.4).

3.2.2 O�set Surfaces Construction

In the �rst phase of the algorithm, internal meshes are built at regular intervals beneath the surface
of the object. These meshes need to be placed at short distances from each other so as not to
in�uence the �nal density distribution of sampling points. While the optimum would be to separate
them by in�nitesimal intervals, good results can still be obtained by setting distances as fractions
of the predicted mean distance3 between sampling points. The construction of these internal
surfaces is performed by iteratively applying a Marching Cubes[92] algorithm on the distance �eld
determined by the outer mesh.

3This distance is estimated given the dimensions of the bounding box of the input mesh, and the number of
requested samples by the user.

48 CHAPTER 3. EFFICIENT COMPRESSION OF MATERIAL PROPERTIES FOR SINGLE SCATTERING

3.2.3 Density Heuristic

Before the actual sampling is applied, a strategy to predetermine optimal density guided by the
behavior of function ψi(ω) must be employed.

Since such function decreases exponentially with the optical depth τ̂(bi,ω), it follows that it
will be strongly peaked at directions corresponding to minimal τ̂(bi,ω). As an extreme case, the
function ψi(ω) de�ned at a point x placed at an in�nitesimal distance beneath the surface, will
present an extreme peak in the same direction as the normal to the surface. (see �gure 3.7)

 0.015

 0.01

 0.005

 0

 0.005

 0.01

 0.04 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 0.005

Exponential Attenuation

Exponential Attenuation

Figure 3.7: Optical Depth Peakiness On the left-hand side a point x is placed near the surface
of a cube; lines indicate the optical distance τ(x,ω) between point and surface. On the right-hand
side an impulse plot of the function e−τ(x,ω), or exponential attenuation function, i.e. the function
that is actually encoded using Spherical Harmonics. It can be noticed how such function has an
extremely pronounced peak at the direction of minimum optical distance from the surface.

Since the function is strongly peaked, a good indicator of its shape and behavior is its �rst
moment:

T (x) =

ˆ
e−τ̂(x,ω) · ω dΩ(ω) (3.5)

Function T (x) de�nes a vector �eld whose values point towards the mean direction of minimum
optical distance at each point. Moreover, the norm of these vectors, ||T (x)||2, would give us a
weighted mean of the attenuation factor over all directions. However, this value does not concern
us because, as sampling density needs to re�ect changes in shape of e−τ̂(x,ω) with respect to x,
the quantity that is more apt to estimate optimal density is the divergence of the aforementioned
vector �eld, ∇·T (x). In fact, in areas where the principal direction of light changes rapidly, e.g. at
corners, divergence will be higher; similarly in areas where the magnitude of the principal direction
decreases rapidly, this value will be high as well, e.g. near the surface, exactly where we expect
scattering phenomena to be more pronounced (see �gure 3.8).

As divergence is a signed quantity, we will set desired density ρ as its absolute value. Note also
that this quantity cannot be considered the optimal density but rather a heuristic approximation.

ρ = |∇ · T (x)|

After layers have been built at the previous stage, for each vertex vj of those internal meshes
the value ρj = |∇ · T (vj)| is computed. The computation of theses values is simply done by �nite
di�erences, choosing an appropriately small h:

3.2. POINT SAMPLING ALGORITHM 49

Figure 3.8: Vector Field In the two �gures, lines indicate vectors at sampling points of a simple
triangulated cube with a homogeneous material. Notice how direction is in�uenced by surface
curvature, while magnitude by surface distance.

∇ · T (χ) ≈
T (χx + h,χy,χz)x − T (χx − h,χy,χz)x

2h

+
T (χx,χy + h, χz)y − T (χx,χy − h,χz)y

2h

+
T (χx,χy,χz + h)z − T (χx,χy,χz − h)z

2h

with an error proportional to O(h).

This, in turn, requires the computation of T (x) at six di�erent points. Such integrals (3.5) are
obtained by simple Monte Carlo evaluation using strati�ed sampling. Since the resulting values
are used only as a reference for the �nal sampling, we allow precision of Monte Carlo integration
to be lower by sampling the integral only at a limited number d of directions.

Computing equation 3.5 via Monte Carlo requires, for each sampling direction, the computation
of τ̂(x,ω). This calculation is again non trivial, as it requires a ray marching integration. Firstly,
all intersections between a ray, with origin x and direction ω, and the mesh are computed. Such
process would usually require an O(m) time, where m is the number of triangles of the mesh, but
we accelerate this computation by using an indexing data structure for the outer mesh. Once all
intersections are known, the scattering coe�cient is sampled at small random intervals along the
ray between each couple of intersections.

To preemptively reduce the number of samples to be processed at the �nal stage, all points
whose total receivable light is under a given threshold (i.e. such as

´
Ξ
e−τ̂(x,ω) dΩ(ω) < ε) will be

discarded as inconsequential. In fact, those points will always contribute an in�nitesimal part to
the lighting of a surface point for every lighting condition.

As can be easily seen, this stage is extremely expensive, as it requires O(m · v · d) time, where
v is the total number of vertices of the internal meshes. Even if this density value is needed at the
next stage, after a large number of uniformly random samples is produced, we chose to perform it
before and later interpolate computed values. Performing density estimation at this point in the
overall algorithm allows for a balanced compromise between accuracy and computation times.

50 CHAPTER 3. EFFICIENT COMPRESSION OF MATERIAL PROPERTIES FOR SINGLE SCATTERING

3.2.4 Poisson Disks Sampling

In the �nal stage, we seek to sample layers, using the computed desired density, to produce samples
that, even if randomly placed, do not interfere with each other forming clusters of overcrowded
areas or holes. Poisson Disks sampling produces a set with the guarantee that no two samples can
be closer than a certain distance. By varying this minimum distance according to desired density,
we obtain a set with the desired properties.[24]

The algorithm can be naively implemented with a dart throwing strategy, by discarding each
sample that lays within an already chosen sample. Such approach would require O(n2) time where
n is the number of samples. Instead, the algorithm chosen is a variant that uses a hierarchical
data structure to rapidly �nd out if a vertex is good or bad. This algorithm due to White and
Egbert[131] has been shown to run in O(n) time.

Although this algorithm is extremely fast and works well even if the desired density is not
uniform, it has been observed that radius variance cannot exceed a given limit. Our algorithm
then assigns the predicted mean radius4 r to all samples, and allows it to vary between 2∗r and r/2
according to normalized heuristic density ρ−ρmin

ρmax−ρmin . The �nal, actual radius used is again stored
with each vertex.

3.3 Setting Samples Parameters

In the second stage, once the �nal set of samples is known, we associated to each of them a �oating
point value Width representing the parameter ai of the Gaussian function γi(x) = eai||x−bi||

2

and
a vector SH of 25 �oating point coe�cients that represents the Spherical Harmonics compression
of function ψi(ω) = e−τ̂(bi,ω).

3.3.1 Spherical Harmonics Compression

As reviewed in Appendix A.1, projecting a function on a Spherical Harmonics basis is performed
by integrating the product of the function with each basis function. Such integration is again
achieved with a Monte Carlo method. Instead of limiting the number of sampling directions as
we did for the estimation of the density, this time we set such number to be reasonably high. We
empirically found that 128 directions are enough to produce plausible results. Moreover, sampling
at more than 256 directions does not sensibly change the quality of results.

Compression error can be estimated by evaluating the integral of the squared optical depth[108].
As Spherical Harmonics compression is theoretically loss-less for an in�nite degree (and in�nite
number of coe�cients), the following holds:

∞∑
l=0

l∑
m=−l

|τ̂xl,m|2 =

ˆ
Ξ

τ̂2(x, ξ) dΩ(ξ)

Then, to obtain accuracy (1− ε), the maximum order n must be such that

n∑
l=0

l∑
m=−l

|τ̂xl,m|2 ≥ (1− ε)
ˆ

Ξ

τ̂2(x, ξ) dΩ(ξ)

Based on such estimate it would be possible to increase the number of coe�cients when the error
is over the desired threshold and reduce them when the function is very smooth; this optimization,
however, is left for a future work. In our work we have empirically found that the �fth order (25
coe�cients) is enough to represent the exponentiated optical depth with a reasonable error margin,
producing data-sets with a small memory footprint.

4see note 3

3.4. RENDERING ALGORITHM 51

3.3.2 Gaussian Functions Width

From the Poisson Disk sampling algorithm we know the radius of each sample, i.e. the distance
under which there are no other sample. Poisson Disk sampling, however, guarantees that there
cannot be other samples in the same radius, but does not place any bound on the maximum distance
of the closest sample. Fortunately, in practice this distance is not far from the requested radius and
a small scaling factor is su�cient to account for this discrepancy. We use this information to set the
parameters ai of Gaussian functions centered on the sampling points. As it is nearly impossible
to produce a set with the properties described in equation 3.3, we will produce a reasonable
approximation by setting the function to have full width at half maximum5 proportional to the
radius produced by Poisson disk sampling.

Gaussian Functions of the form γi(x) = eai||x−bi||
2

have a width at half maximum of δ =
2
√

ln(2)

ai
, hence we will set

ai ∼
2
√

ln(2)

δ

where δ is the requested radius of the associated Poisson disk.

3.4 Rendering Algorithm

We implemented our algorithm using the cross-platform OpenGL rendering API. In a �rst phase,
the outer mesh is rendered using basic OpenGL functions, while, in a second phase, Spherical
Harmonics are evaluated and passed, along with the width of the related Gaussian function, to a
shader program written with GLSL, the OpenGL language for shader programming.

Figure 3.9: Rendering Passes The mesh is �rstly rendered using Phong shading, then samples
contributions are computed on the GPU. The �nal result is given by the clipped sum of the two
passes.

3.4.1 First Pass

The input mesh is �rstly rendered, according to simple Phong shading, using color and normal
information de�ned at each vertex. This pass is necessary to compute, on one hand, the re�ected
component Lr(x,ω) of light at each surface point, and on the other hand, to determine the region
where samples must be rendered (clipping region).

This rendering is not immediately shown to the user, as it is saved on a hidden color bu�er
stored on the graphics device memory. As part of the normal order of operation, a depth bu�er is
produced together with the color bu�er. Each pixel of the depth bu�er contains the distance from
the viewer of the rendered primitive visible at that pixel. In order to allow quick access to perform
clipping computations, this depth bu�er is saved as a texture and kept in device memory.

5the width of the Gaussian �bell� when the function has half peak strength

52 CHAPTER 3. EFFICIENT COMPRESSION OF MATERIAL PROPERTIES FOR SINGLE SCATTERING

3.4.2 Second Pass

To simplify rendering procedures, in our implementation we used only point light sources (array
lights in algorithm 3) located at a limited number of positions lj with associated intensities Ij ,
speci�ed as colors. For each sampling point bi, the following multiplication is performed

vi =
1

4π︸︷︷︸
phase function

· κs(bi)︸ ︷︷ ︸
scattering coe�cient

· ψi(ω)︸ ︷︷ ︸
view attenuation

·
∑
j

Ij · ψi(lj − bi)︸ ︷︷ ︸
attenuated light

A shader program is then activated, and its execution begins by forwarding Gaussian centers
bi, computed colors vi and Gaussian widths ai.

Algorithm 3 Rendering Stage

Render (Mesh mesh , Sample [] po i n t s , L i gh t [] l i g h t s)
{

// F i r s t Pass − Compute l i g h t i n g component L_r
Render (mesh) ;

//Second Pass − Compute l i g h t i n g component L_ss
f o r i = 0 . . . p o i n t s . s i z e
{

Co lo r c o l o r = BLACK;
f o r j = 0 . . . l i g h t s . s i z e L i gh t e n t e r s the system from the s u r f a c e boundary ; t h e r e f o r e ,
{

l i g h t_ d i r e c t i o n = l i g h t s [j] . p o s i t i o n −
p o i n t s [i] . p o s i t i o n ;

c o l o r += l i g h t s [j] . c o l o r *

p o i n t s [i] . SH . Eva l (l i g h t_ d i r e c t i o n) ;
}
c o l o r *= k * p o i n t s [i] . s c a t t e r i n g_ c o e f f *

p o i n t s [i] . SH . Eva l (v i ew_d i r e c t i o n) ;

//Render a l l p o i n t s u s i n g f ragment / geometry s h ad e r s
RayGau s s i a n I n t e g r a t i o n (p o i n t s [i] , c o l o r) ;

}
}

Fragment shaders are perfectly suited to perform parallel execution of code that computes a
value associated with a pixel on screen. To each pixel, according to the pinhole camera model,
corresponds exactly a ray6, originating in the viewer location and directed towards the position of
the pixel on the virtual image plane.

In order to trigger fragment shader evaluation for each ray, and for each Gaussian separately, a
primitive covering the desired area of evaluation must be submitted to the rastering engine. In our
scenario, the desired area is composed of all pixels whose associated ray intersects the Gaussian
function within a certain radius from its center. In fact, even if Gaussian radial functions are never
null over their entire domain, their values become rapidly negligible, and it would be useless to
integrate over in�nitesimal values. Let us then de�ne ε = 10−6, i.e. a small value under which we
can assume the Gaussian function to be zero. The distance r = ||x−bi|| for which e−a

2
i ||x−bi||

2

< ε,
is

6Excluding multisampling strategies to avoid aliasing e�ects

3.5. RESULTS 53

r =

√
log(1)− log(ε)

ai

To activate fragment shaders only when rays cross the Gaussian function within radius r from
the center, the optimum would be to rasterize a sphere. However, a common compromise between
number of useless fragment processed and number of submitted vertices is to use a cube of side 2r
centered on bi.

Furthermore, instead of submitting cube triangles to the raster engine, we can reduce the
number of costly data transfers from the host to the device by forwarding just ai and bi to a
geometry shader. The geometry shader computes r from the above formula and generates at run
time all vertices and necessary topology to draw a cube.

The raster engine is designed to interpolate values, de�ned at vertices, across the surface of a
triangle. With programmable shaders, it is possible to set cube vertices positions as these values.
When the fragment shader is �nally invoked it will not only know the position of the vertex at the
center of the cube, but also the position in space of the portion of the cube that has triggered the
fragment shader. This two pieces of information, along with the knowledge of the user position,
are enough to determine the angle ξ and the distance between the viewer and the Gaussian center
||bi − v||, the only two variables required to analytically compute the integral of the Gaussian
function. (see �gure 3.10)

Figure 3.10: Gaussian Rendering The area in which the Gaussian function has values above ε is
approximated using a cube. The contribution of the Gaussian function i to pixel fj is given by the
integral of the function along the ray ω. To compute such integral it is necessary to know angle ξ,
which can in turn be computed by knowing bi, the viewpoint and p. Coordinates of point p are
automatically generated by the rastering engine by simple interpolation of the coordinates at the
vertices (v0 and v1 in the �gure)

As fragment shaders parallely complete their calculation, their results are blended together by
simple summation, adding to the previously computed color of the outer mesh, the color contribu-
tion of each Gaussian. Finally, the result is displayed to the user.

3.5 Results

We implemented our algorithm in C++ and OpenGL, using OpenCL for the preprocessing phase
and and GLSL for the shader programs in the rendering phase. All the tests were run on a Core
2 Duo @ 3.0 GHz 4GB RAM equipped with Nvidia GeForce 9800 GX2 512MB graphics card.

54 CHAPTER 3. EFFICIENT COMPRESSION OF MATERIAL PROPERTIES FOR SINGLE SCATTERING

3.5.1 Comparison with ground truth

Our method relies on an approximation scheme con�gurable with a three parameters: the number
of samples, the number of directions and the number of SPH coe�cients. We do not give a formal
proof of the bound on the error committed as a function of these parameters, but we can empirically
show their in�uence by comparing images generated with our algorithm with the ground truth
image obtained by ray tracing the original density �eld and integrating single scattering along the
rays. Note that in this context �ground truth� is only referred to the single scattered contribution,
which is the focus of this work, therefore the other phenomena are ignored in producing the image.

The �rst row of Table 3.11 shows the ground truth image for a view of a homogeneous sphere,
while the next 3 rows show images taken with our method at an increasing number of sampling di-
rections (left column) and the pixel-by-pixel di�erence with the ground truth image (right column).
Note that the number of �nal sampling points increases with the number of directions. This is due
to the fact that more directions capture more features and con�rms that the divergence criterion
adopted to sample the direction- dependent optical depth is e�ective.

The Figure 3.12 shows two arti�cial examples. In the �rst example we place a torus inside
a cube as shown in Figure 3.12.a and process the dataset considering the cube as the boundary
of a translucent object containing an opaque part (the torus). Figure 3.12.b shows the result of
our rendering algorithm putting behind the cube a single white light. Note that the geometric
description of the torus is no more part of the dataset, but the sampling of the direction dependent
optical depth captures its e�ect on the scattering of light inside the volume. A similar example is
shown in Figure 3.12.c, where two lights (a white and a red one) are placed roughly symmetrically
about the cube. Figure 3.12.d shows a dataset composed of a cube which volume is procedurally
de�ned as a set of layers with two di�erent density values, visible in the rendering.

3.5.2 E�ciency

The preprocessing time of our algorithm is dominated by the time to compute the directional de-
pendent optical depth, which in turn is linearly proportional to the number of sampling directions.
Table 3.1 show the preprocessing times decomposed for the steps described in Section 3.2. The
number of frames per time is linearly proportional to the number of samples used, and in all our
experiments with a single light is constantly over 60 for a number of samples ranging from 8k to
11k.

Note that it could be possible to implement a fully GPU version of our sampling algorithm,
thus severely reducing preprocessing times. However, in the next chapter we present a method
that is capable of running without a preprocessing stage.

DDOD Div PDS SPH coe�
43.02 1.76 15.39 28.92
168 1.71 17.64 112
664 1.78 19.16 446

Table 3.1: Preprocessing times. Construction times (seconds) for the gargoyle model varying
the number of directions for constructing the direction-dependent optical depth. DDOD: time for
direction dependent optical depth computation; Div time for computing the divergence; PDS: time
for the Poisson Disk Sampling algorithm; SPH: time for the spherical harmonic coe�cients.

Table 3.2 shows that the fps decrease is only sub-linearly the increasing of the number of
lights. This results is obtained because, thanks to the precomputation of the direction-dependent
optical depth, adding a light only costs one more evaluation of the spherical harmonics. Table 3.3
shows the linear relation between rendering time and number of samples. It can be seen that the
algorithm produces over 30 FPS with 100K samples.

3.5. RESULTS 55

n. lights 2 4 7 8

fps 62 51 42 38

Table 3.2: FPS when augmenting the number of lights in a scene. Tests where made with 58297

samples with 25 SPH coe�cients on a 800× 800 viewport.

n. samples 25000 50001 107833

fps 117 55 31

Table 3.3: FPS in relation to the number of samples on a 800× 800 viewport.

3.5.3 Discussion

As in the works of Zhou et al. [136, 137] our approach represents the volume with radial basis
functions to accelerate the computation of scattering e�ects. However, instead of storing density
information, we use sampling points to encode a direction dependent optical depth. In this way,
ray marching can be done without sorting the spheres front-to-back and therefore avoiding the
overlinear cost of a sorting algorithm and �nally allowing us to use a much greater number of
particles. As a consequence, we have a reduced approximation error which allows us to obtain
satisfying visual results and to sustain higher fps. Clearly this is possible because the object is
assumed to be static and the direction dependent optical depth does not change over time. On
the downside, only single scattering e�ects have been considered, thus reducing the applicability
of the method to materials of low albedo. Furthermore, refraction e�ects, which are important
for the realistic appearance of semi-transparent materials, have been largely ignored. Even if it
is possible to implement a ray tracing strategy capable of accounting for refraction at the �rst
interaction with the object, in order to perform a physically accurate simulation of refraction in
solid materials, it is necessary to resort to a di�erent approach.

An intrinsic limitation with this approach is due to the use of non perfectly overlapping Gaus-
sians. Either a di�erent (and potentially more expensive) space partitioning strategy is employed,
or else a noise reduction algorithm operating a posteriori in image space. Most of the artifacts
as visible in the images (e.g. bottom left of �gure 3.13) arise from the early cut-o� of the region
of in�uence of the Gaussians, since a cube of limited area is used to activate their integration.
However, increasing the cube's areas is not a solution as it would drastically increase render times.
Other noise reduction strategies can be considered interesting directions for future work.

56 CHAPTER 3. EFFICIENT COMPRESSION OF MATERIAL PROPERTIES FOR SINGLE SCATTERING

ground truth

32 dir. 52395 samples

128 dir. 50354 samples

512 dir. 51237 samples

Figure 3.11: Ground truth comparison. Dependency of the approximation on the number of
sampling directions. The top image is the ground truth, on the left column our approximation and
on the right the di�erence with the ground truth. Original pixels values are inverted compressed
in a darker range to make the result visible when printing.

3.5. RESULTS 57

(a) (b)

(c) (d)

Figure 3.12: Capturing subsurface details. (a) a cube with a torus inside. The cube is taken as
external boundary of a translucent object and the torus as an opaque blocker. (b-c) Two renderings
that show how the e�ect of the blocker is captured by the sampling. (d) a procedural volume with
two values of density arranges in parallel layers.

58 CHAPTER 3. EFFICIENT COMPRESSION OF MATERIAL PROPERTIES FOR SINGLE SCATTERING

Figure 3.13: Rendering of translucent objects: a statue, a bottle (botijo) and a jelly�sh.

Chapter 4

A Parallel Ray Tracing and

Lattice-Boltzman Method

Abstract

In this chapter we present a di�erent solution which combines accurate tracing of light
rays in inhomogeneous refractive media to compute high frequency phenomena (i.e. Single
Scattering and refraction) with a Lattice-Boltzmann method to account for low-frequency
Multiple Scattering e�ects. The presented technique is designed for parallel execution of these
two algorithms on modern graphics hardware. In our solution, light marches from the sources
into the medium, taking into account refraction, scattering and absorption. As a light ray
marches inside the volumetric representation of the scene, Irradiance is accumulated and it
is di�used with the Lattice-Boltzmann method to produce multiple scattering e�ects. The
resulting architecture is capable of running at real-time speeds without precomputations and
produces results which are comparable to state of the art methods.

Materials of albedo within the low to mid range (Ω ≤ 0.8) cannot be captured adequately under
a single scattering approximation. Moreover, if the albedo is in said range, the e�ects of refraction
greatly contribute to the realism of the produced pictures and should not be ignored. If materials
are heterogeneous in their scattering coe�cients then it follows that refractive indexes throughout
the volume should be heterogeneous as well. Hence, a standard straight-line integral cannot be
computed for this kind of materials and a form of �eikonal tracing� becomes a necessity: rays of
light naturally bend when traversing heterogeneously refractive objects.

In order to overcome the limitations of the method of the previous chapter we set out to develop
an architecture which could enable single scattering, multiple scattering and refraction e�ects, by
fully exploiting the power of modern GPUs as exposed by the OpenCL application programming
interface.[79]

Multiple papers have shown[137, 109, 31] that scattering is best treated by separating the single
component from the multiple component in order not to loose the highly directional information
associated with single scattering. However, a ray tracing or a photon tracing paradigm seems best
suited for SS computations, while Multiple Scattering can bene�t from a more volume-centered
approach. Lattice-Boltzmann lighting is such a volume-centered method, and it is capable of
e�ectively capturing di�usion-like multiple scattering e�ects. We therefore set out to develop
an architecture that is capable of supporting these two approaches and to run them in parallel,
performing multiple scattering di�usion to single scattering marching. It is nowadays apparent
that Moore's law applied to GPUs is more related to the number of cores per unit than to their
clock speed, therefore our goal is to use as much as possible the multiplicity of cores instead of just
their speed.

Summarizing, the proposed algorithm brings a twofold contribution to the state of the art:

� a real-time rendering engine that takes into account refraction, scattering and absorption for
inhomogeneous media;

60 CHAPTER 4. A PARALLEL RAY TRACING AND LATTICE-BOLTZMAN METHOD

� a novel parallel rendering framework speci�cally designed to harness the modern GPU archi-
tecture and amenable to scale well to large scenes.

To the best of our knowledge the proposed method constitutes the �rst real-time approach to
simulate refraction and multiple scattering e�ects in heterogeneous media.

4.1 Overview of the algorithm

In our architecture, single scattering is computed on a per ray basis, while multiple scattering
is computed on a per voxel basis. For each light source, rays are generated and traced through
the scene, leaving irradiance within the voxels that are visited. While rays are still traversing
the volume, a di�usion process (LBL) starts spreading the irradiance deposited by the rays to
neighboring voxels, simulating the e�ect of multiple scattering. When both the ray traversal is
complete and di�usion have �nished, view rays are shot, traversing the scene and reading back the
irradiance.

Figure 4.1: A schematic description of our parallel rendering pipeline. On the left: a
timeline of our pipeline, where for each iteration step n of the algorithm, phase I (tracing) is run
concurrently with phase II (di�use) of iteration step n − 1. Note that the transfer phase T must
run by itself because it accesses data structures from phase I and II. On the right: the three phases.
During the tracing phase (I), multiple threads (grouped in work-groups) run concurrently on the
GPU, tracing light through a limited number of voxels (around 8 in most of our tests), and storing
their deposited irradiance in the Ray History Bu�er. The transfer phase then takes these values
and transfers them to the di�usion volume through a shader program. Finally, during the Di�use
stage (II) on the GPU a thread per each voxel computes the di�used local irradiance distribution
based on the light incoming from neighbors.

In summary, we can logically divide the operations performed by our algorithm in the following
stages:

1. Init: computes the voxelization of the scene and the gradient of the refractive index, and
initializes the light rays.

4.2. GPU PARALLEL PROGRAMMING 61

2. Marching: traces the light rays from the sources through the volume, accounting for re-
fractive index, scattering and absorption coe�cients. Finally, it stores in the voxels the
percentage of attenuated light that has to be scattered. The process ends when all rays have
left the scene or there is no more light to carry.

3. Di�usion: computes the multiple scattering contribution of the light deposited in the March-
ing pass.

4. View: casts rays from the point of view and gathers the irradiance.

Our algorithm is built around the observation that the di�usion stage should run concurrently with
the marching stage. Theoretically, in order for a scattering simulation to be physically correct,
there should be no temporal gap between the moment light reaches a particle of a volume and the
moment this particle starts re-emitting energy. Therefore, in our parallel architecture as soon as
a portion of volume has been traversed by light rays, the irradiance accumulated in the volume
elements gets di�used throughout the volume without waiting for the end of ray traversal. During
the di�usion pass, rays may continue to march through the volume. This structure ensures that
if an early termination of the algorithm is requested, provided that the tracing stage has been
completed, then multiple scattering will be approximated to the number of local bounces it could
perform up to that point, yielding plausible results. Figure 4.1.a shows a temporal diagram of the
algorithm.

Note that since the tracing pass and the di�use pass are built around two di�erent paradigms,
there is a necessity to implement a custom stage to transfer accumulated energy from the bu�er
of rays to the voxels used in di�usion. This is the transfer stage (T in �gure 4.1) and it is outlined
in section 4.4.4.

4.2 GPU Parallel Programming

Despite the power of Graphics Programmable Units exposed by the OpenGL interface, which con-
stituted the backbone of the method of the previous chapter, this graphics-oriented API limits
programmability to those algorithms that can be mapped e�ciently to the shader model. Thank-
fully, the advances in Graphics Hardware and the availability of more open APIs in the last decade
have �nally allowed programmers to perform general purpose computing on GPUs. The two most
complete and stable API at the time of this writing are OpenCL and CUDA. We decided to use
OpenCL because of its greater portability and ease of integration with existing programming en-
vironments; furthermore, recent investigations (e.g. [42]) have shown that in term of performance
the two APIs are equivalent. Despite the di�erent naming conventions that they adopt, their
architecture is similar, since it closely maps on the actual hardware architecture (see �gure 4.2).

The abstract architecture upon which the OpenCL speci�cations[79] are built has at its lowest
level the concept of Processing Element (PE), that is, a register-based, programmable computing
unit which is able to run user-de�ned code routines, or kernels, and to access memory in read
and write mode. In addition to operate on its own registers, a PE can access a private memory,
which is typically very small and extremely fast. PEs are grouped together to form a Streaming
Multiprocessor or Compute Unit (CU), and can concurrently access a dedicated small amount of
fast local memory, with the ability to implement communication mechanisms using synchronization
primitives. A group of CU form the top of the abstract architecture, called a Computing Device
(CD), equipped with a large amount of relatively slow global memory. This memory resource
represents the only communication channel between PEs belonging to di�erent CUs and between
the host OpenCL application and the CD.

A fundamental di�erence in the execution model between a multi-cpu system and the actual
hardware implementation of a CU is that all the PEs belonging to the same CU share their
instruction pointer: this implies that, to obtain maximum processing throughput, all the instances
of instructions which conditionally modify the control �ow (e.g. conditional jumps) must generate
the same execution path in every PEs of the CU. Whenever this condition is not met (branching

62 CHAPTER 4. A PARALLEL RAY TRACING AND LATTICE-BOLTZMAN METHOD

Figure 4.2: Memory structure in OpenCL

divergence), e.g. when the condition of an if-then-else statement evaluates di�erently among PEs,
the shared instruction pointer must proceed through all the branches of the execution �ow and
every PE is in charge of masking out all the instructions which are not executed, thus degrading
the performances.

Running an OpenCL computation means instancing a kernel on a virtual N-dimensional1 com-
puting grid, virtually represented by the CD. Kernel execution instances is furthermore grouped
into work groups, each virtually mapped to a CU. This architecture model implies that, to obtain
a high level of performances, a kernel should exhibit as little as possible branching divergence and
should mainly use private and local memory, possibly avoiding synchronization.

In general, the execution of a parallel OpenCL computation consists of: (1) transferring data
from host memory to the device global memory, (2) de�ning the execution shape (computing grid
and work group size), (3) instancing a parallel execution of a kernel over the computation grid and
(4) reading back data from device global memory to host memory.

In the context of our work it is important to note that, di�erently from previous generation
hardware, recent hardware implementations allow a computation involving a di�erent kernel to
be executed before the previous one has completely �nished: this means that, at the same time,
di�erent CUs on the same CD can execute di�erent kernels. In addition, our technique exploits
e�cient resource (bu�ers and textures) sharing between OpenGL and OpenCL kernels.

4.3 Init pass

The input to our algorithm is a scene described as a set of watertight meshes, and the role of the
Init pass is to �ll the Material Volume and to initialize the light rays.

The Material Volume is stored in two separate 4-channel textures, one containing the 3-channel
extinction coe�cient κt and the occupancy value o (the percentage of the voxel that is actually
occupied by the object), the other containing the scalar refractive index η and its three-component
gradient ∇η. Memory consumption when dealing with this kind of data structures can be high, and
we strove to optimize memory usage for auxiliary data structures, especially since access to global
memory can be the main bottleneck in an OpenCL/CUDA algorithm. Nonetheless, we observed
a signi�cant increase in performance for the tracing part of the algorithm if the gradient of the
heterogeneous refractive index is computed in advance and stored.

The occupancy value is initialized from the mesh description of the scene by performing a
voxelization at a higher resolution (eight times the �nal target size in our experiments), in a

1where N can be 1, 2, 3

4.4. RAY TRACING 63

manner similar to Sun et al.[122] and using the algorithm of Fang et al.[43] implemented using
OpenGL �xed pipeline operations. According to this algorithm the mesh is rendered in orthogonal
projection multiple times seen from a camera positioned at a negative z value, one for each discrete
value of z, and a value of 1 is recorded if a backfacing triangle is seen, 0 otherwise. This volume
is then downsampled to the target size, thus setting more accurate fractionary values for the
occupancy. The method has been chosen for its speed; however, it requires all meshes in a scene
to be watertight. This is not a serious limitation as most production-quality meshes are already
closed, and there exist many automatic techniques for closing holes in meshes.

Extinctions coe�cients in Material Volume are initialized either by a user provided volumetric
texture (which is upsampled or downsampled to the resolution of Material Volume) or by a procedu-
ral generator. Values are premultiplied by the occupancy value, similarly to alpha-premultiplication
in images. Note that we do not allocate a separate texture for scattering and absorption coe�cient
and let the user specify a global albedo Ω for the material. Scattering and absorption are then
recovered simply with the relation κs = Ωκt, κa = (1 − Ω)κt. This approximation makes sense
in most real world situation, where the variation in one coe�cient is positively correlated to the
variation in the other2.

It is to be noted that we allow meshes to change shape and topology, and as such the entire
process, which is implemented in OpenGL/OpenCL in a straightforward way, can be repeated for
each frame of the animation. The added cost is noticeable but still keeps the algorithm above the
interactivity threshold.

Scalar refractive index is as well multiplied by the occupancy (space not occupied by meshes
is always assumed to have refractive index 1); however, after computing its gradient using �nite
di�erences, as in [64], we �lter the gradient with a Gaussian kernel to avoid aliasing e�ects when
refracting rays. These Gaussian kernels are uniform and with a standard deviation of 0.5-1.0 voxels,
thus producing object boundaries that extend over 2-3 voxels. We avoid this blurred boundaries to
be visible by employing a clipping operation using the original mesh geometry, similarly to what we
did in the previous chapter. Note that the settings that have been chosen for the Gaussian derive
from the direct observation that an increase in kernel size decreases the visual quality without
positively a�ecting the stability of ray traversal.

Finally, additional data structures used for bookkeeping propagation of light, i.e. the Raymap,
the Ray History Bu�er, the Irradiance volume and the interfaces bu�ers, are all initialized to zero
values.

Data Structure Quantity Stored
Material Volume κt, η, ∇η, o
Irradiance Volume e(x)

Raymap x,ω, Φpb , active_�ag
Ray History Bu�er e(x), voxel_id
Interfaces Bu�er e(x)

Table 4.1: Data structures used in the algorithm

4.4 Ray tracing

The �rst step is implemented as a parallel photon marching pass[68], where each execution thread
(or Work Group Item, in one-on-one correspondence with Processing Elements) is responsible for a
single light ray. Instead of writing directly to the global Irradiance Volume, rays add entries in the
Ray History Bu�er, storing voxel_id and deposited light. The second step of of this pass is then
to render these entries as single vertexes into the Irradiance Volume, exploiting the fast blending
capabilities of OpenGL.

2Usually, it is variation in density in participating media that accounts for the change in coe�cients. In such
cases, a �xed global albedo is a valid assumption.

64 CHAPTER 4. A PARALLEL RAY TRACING AND LATTICE-BOLTZMAN METHOD

4.4.1 Initializing photon rays

For each light source, we render the scene to build a depth map that will be used in the view pass
for handling shadows. Furthermore, the depth values are converted in world space and used to set
the starting point for the rays, so avoiding the marching of rays through the empty volume. We
set the starting point slightly before the position found with the depth value, more precisely by a
distance equal to the number of voxels used for the Gaussian smoothing, as shown in Figure 4.3.(a).
This is an optimization that may be disabled if the light source is inside a participating media.
Rays are slightly jittered in their starting position to reduce artifacts. Although we could also have
applied a small jittering in step size during the actual tracing, it would have introduced ine�cient
branching in the execution process.

Figure 4.3: Photon Marching (a) Setting the starting point of rays a few voxel from the actual
volume. (b) Update of particle motion and radiance attenuation according to the Eikonal equations.

We divide power of light source among photons according to the subtended solid angle of a pixel
in the Raymap with respect to the light source. In order to avoid areas of low photon penetration,
the raymap size must be dense enough such that the spacing between rays does not exceed a voxel
of distance. We have observed that for a volume of 1283 a raymap of 5122 is more than enough
for general cases.

Note that we still use the same single ray map strategy even when multiple lights or an envi-
ronment map are present. In case of multiple lights, we subdivide the light map equally between
the light sources; in the case of Environment maps, we perform importance sampling on the values
within and reduce to the case of multiple spot lights. Empirical tests have shown that keeping
to 5122 the total number of rays, even when dividing them between multiple lights, does not
signi�cantly degrade the quality of produced scenes.

The internal state of rays as stored in the Raymap keeps track of registering position, carried
energy and termination status (active_�ag). This �ag is activated when:

� the power carried by the beam falls below a given threshold.

� the beam has reached the end of the volume.

� a time limit has been reached (thus preventing total internal re�ection rays from hijacking
the GPU)

4.4.2 Marching Pass

In our model light gets propagated according to a process that Jarosz et al. termed[68] �photon
marching�, an hybrid process between photon tracing and ray marching integration. However,
contrarily to the algorithm presented in their paper, we march curved beams to account for refrac-
tion, in a manner similar as Sun et al.'s[122] who however did not give a precise account of the
mathematical foundation of their photon mapping process.

Photons from a ray, or stream, are deposited at regular intervals in the volume. The energy
that is deposited corresponds to the amount that the stream has not lost due to extinction at the

4.4. RAY TRACING 65

beginning of each interval, reduced by the amount that is scattered along the length of the next
interval. Even if this process is not equivalent to the physical process of photon absorption and
emission, energy is guaranteed to be conserved. This energy is stored at discrete locations, within
the voxel in which the beginning of the interval falls. During the marching pass, only a maximum
of k di�erent voxels can be �lled up with energy. This strategy allows for less memory access and
removes the need for computing expensive ray-voxel intersections.

At the end of each step, the path direction is updated using the constant-time discretization of
the eikonal equation (see Figure 4.3.(b)):

xt+∆t
= xt +

∆t

n
vt (4.1)

vt+∆t
= vt + ∆t ∇n (4.2)

where ∆t is the integration time step, corresponding to the size of the integration interval, and xt
and vt are respectively the position and the velocity of the particle along its path at distance t
from the source, and n is the refractive index. In order to further reduce artifacts, the value ∇n
in a point inside the volume is trilinearly interpolated from the values in the material volume.

The power of a deposited photon at xt is determined by Beer's law of attenuation: [68]

Φpb = κse
−
´ t
0
κt(t

′) dt′Φb∆t (4.3)

where Φb is the power of the beam upon entering the medium and Φpb is the power of deposited
photon. A photon is deposited at each xt as de�ned by the eikonal equations with t at discrete
increments with a small initial perturbation to avoid aliasing.

The area of photon reception is a voxel, and this has volume V . Incoming radiance as deter-
mined by photons is thus:

L(x,ω) =
1

V

∑
photons

p(θb)κsΦbe
−
´ t
0
κt(t

′) dt′∆t

We switch to irradiance for storage since we are dealing with isotropic phase functions, thus,
since we know that phase functions are normalized to one, we can just add the value:

e(x) =

ˆ
4π

L(x,ω)dω =
1

V

∑
photons

Φpb

Note that this is akin to performing a photon mapping operation, using a regular grid as a
storage volume and performing a local search of photons restricted to one cubic cell per query
position. While it is true that this approach, although correct from an energy-balance point of
view, can potentially lead to artifacts, these are reduced by employing a small sampling step (in
our case it is never much more than two voxels) and a su�ciently high number of photons.

4.4.3 Parallel Implementation

Traditional serialization methods, e.g semaphores, though partially supported on the latest GPUs,
are still highly ine�cient due to the nature of the SIMD execution model. Therefore we resorted
to a custom bu�ering mechanism which is similar to the one employed by Ihrke et al.[64].

Figure 4.4 shows a C-like description of the algorithm for a ray. Each ray is assigned to a
dedicated OpenCL thread and executed in a Processing Element (PE). We start this pass by
instancing a 2-dimensional computation grid with R threads, with R the number of rays. At the
beginning, the rays are assigned to the same Streaming Multiprocessor (SM) in packets, so that, at
least at the �rst marching steps, access to global memory tends to be coherent. Unlike in [64], we
use a �xed length step, ∆t, because all threads in the same SM share the same instruction pointer.
Furthermore, to obtain maximum processing throughput, all the instances of instructions which

66 CHAPTER 4. A PARALLEL RAY TRACING AND LATTICE-BOLTZMAN METHOD

conditionally modify the control �ow (e.g. conditional jumps) must generate the same execution
path in every PEs of the SM have to complete their execution at the same time.

The material volume resides in slow global memory and it is read-only, while the LocalRay-
HistoryBu�er is a write-only vector of k positions and resides in the fast local memory of the
SM. When the i-th voxel is traversed, the program writes to this vector at position i (the po-
sition of the voxel) the amount of radiance it is carrying. The last instruction of the program,
UploadToGlobalMemory, copies the LocalRayHistoryBu�er to the appropriate slot in the global
Ray History Bu�er. When all threads terminate, we will have a bu�er in global memory, the Ray
History Bu�er, which is �lled with the index of all voxels traversed by all rays and the amount of
radiance to be left in each one (see Figure 4.1.b).

RayMarching (x , v , L0){
bu f f = 0 ; L = L0 ;
do{

(i , j , k) = voxe l conta in ing x ;
sigma , grad_n , n , occupancy =

MaterialVolume [x , v] ;
i f (occupancy != 0){
L = exp(− de l t a * (sigma)) * L ;
Loca lRayHistoryBuf fer [bu f f] =

[(i , j , k) ,L] ;
}
x=x+v/n * de l t a ; v=v+ de l t a * grad_n/n
++bu f f ;

}whi l e (bu f f < max) ;
UploadToGlobalMemory () ;

}

Figure 4.4: The algorithm executed on each thread. Note that the only potential source of
branching divergence is provided by the instruction checking the occupancy. This is not an issue
because di�erent threads generally come up with di�erent results only at the very beginning, when
entering the volume.

4.4.4 Transfer

This operation completes the marching pass by accumulating the content of the Ray History Bu�er
onto the Di�usion Volume. The di�usion volume is another grid in one-to-one correspondence with
the material volume. A voxel of the di�usion volume stores a single RGB irradiance value. We
perform the transfer operation in OpenGL by binding the di�usion volume texture as a render
target and issuing the rendering of a batch of R × k points. In a vertex shader, we fetch the
voxel coordinates and the radiance from the Ray History Bu�er, and use them as output position
and color, respectively. Since multiple rays contribute to the same voxel, we enable blending
to accumulate each contribution into a total irradiance value. The transfer is the only stage
where we use OpenGL. Note that this operation cannot be done directly in OpenCL due to the
lack of atomic �oating point operation needed for irradiance accumulation. When the OpenGL
accumulation step ends, we bind again the Ray History Bu�er as output and restart the threads
assigned to the marching pass and the threads assigned to Di�usion pass. Even though blending
is an expensive operation, it is signi�cantly faster than any other approach. Note however, that
an e�cient parallel implementation of stream compaction can perform similarly. We experiment
with this alternative approach in chapter 5.

4.5. DIFFUSION PASS 67

4.5 Di�usion pass

In this pass, we propagate the irradiance stored in the di�usion volume. As we did in the Marching
step, we want to exploit the parallelism of the GPU by breaking up the problem into subproblems
and assigning each one to a dedicated SM. Therefore, we partition the di�usion volume in blocks
of b3 voxels (highlighted in blue in �gure 4.1.b) and compute the di�usion of light within each
block. We proceed iteratively: for each iteration we run the di�usion process in parallel for each
block and store the leaving photon density in an ad hoc interfaces bu�er of size 6× b× b that will
serve as input the neighbor blocks at the next iteration.

4.5.1 Di�usion inside a block

The transport of light inside a block is computed by means of the LBL approach [47]. LBL has
proven to be a viable method to simulate the light di�usion process in a medium (see chapter
2) The transport of light is discretized in space and time, by modeling the volume with a lattice
where each node (i.e. each voxel) stores the photon density along a prede�ned set of directions and
updates these densities at discrete time steps. In the original paper, each node is connected to its
6 neighbor nodes along the principal axis, and the 12 nodes along the diagonals on the 3 planes
X = 0, Y = 0 and Z = 0. To comply with current memory limits of the SM, we use blocks of 43

voxels and only the 6 principal directions. Following the notation of the original paper, the photon
density, fi(x, t), arriving at lattice site (i.e. the voxel) r at time t along direction ci is computed
as:

fi(x+ λωi, t+ δ) = Θij fj(x, t) (4.4)

where Θij is de�ned as:

Θ0j =

{
0 j = 0

κa j > 0

Θij =


1/6 j = 0

κs/6 j > 0

1− κt + κs/6 j = i

(4.5)

The photon density is initialized from the Irradiance Volume as:

fi(x, t) =
1

6
e(x)

68 CHAPTER 4. A PARALLEL RAY TRACING AND LATTICE-BOLTZMAN METHOD

Figure 4.5: The Interface Bu�er. The swapping mechanism which avoids con�icts in writ-
ing/reading to/from the Interface Bu�er. The outgoing bu�er at a block at iteration n is the
incoming bu�er at its neighbor at iteration n+ 1

The memory consumption of the LBL data structure for b = 4 (i.e. the vector of photon
density f) is 6144 bytes (6 directions, 43 voxels, 4 channels, and 4 bytes for storing the density).
The interface bu�er requires 1536 byte for a block (b2 elements, 6 faces, 4 channels, 4 bytes for
the density). In total, 6144 + 1536 = 7680 bytes.
At the end of the Di�usion pass, the irradiance in the voxels is accumulated in a copy of the
Di�usion Volume, that we call Irradiance Volume, which will be the one ultimately used in the
View pass. Note that the Interfaces Bu�er is accessed both for reading and writing by concurrent
threads. Therefore, we must guarantee that there are no access con�icts. Figure 4.5 shows two
adjacent blocks and the Interface Bu�er among the two. Note that, within a block, we can use
the same locations in the interfaces bu�er both for reading and for writing, because each location
is read and written only by the thread controlling the single voxel corresponding to it. Moreover,
the irradiance written to the interface (h+, k) has to be read in the subsequent step by the block
h+ 1, k (and vice-versa). Therefore, we simply alternate h+, k and (h+ 1)−, k as interfaces bu�er
for the two blocks to avoid con�icts. This is shown in Figure 4.5.

4.6 View pass

4.6.1 Termination condition

Before performing the view pass and displaying the frame, we must guarantee that the system has
reached an equilibrium state. This means that performing additional steps will not signi�cantly
change the current state of irradiance on each voxel. The number of steps typically varies with
the characteristics of the volume, so it cannot be �xed beforehand. We test for convergence by
monitoring the amount of irradiance in a sparse set of points and stopping when the relative change
is under a prede�ned threshold.

4.6.2 View

The View pass is the last step of our rendering algorithm. We instantiate a 2-dimensional compu-
tation grid of the size of the framebu�er such that the calculation of the color at each pixel will
be assigned to an OpenCL thread. In this pass, the rays are shot from the observer's viewpoint
toward the irradiance volume and marched through it, taking into account refraction. At each
step of the marching, a view ray accumulates a radiance contribution from the irradiance volume,

4.7. RESULTS 69

calculating the color of the pixel. Finally, the direct lighting contribution is calculated evaluating
the BRDF of the surface (i.e. Lambertian BRDF), where shadow maps computed in the Init pass
are used for the visibility test.

Radiance is gathered back as a discretized beam query[68], i.e. at discrete steps, and attenuation
coe�cients are assumed constant throughout the query segment. Also the energy is assumed
constant trough the query segment.

L(x,ω) =

ˆ tmax

0

e−
´ t
0
κt(t

′) dt′κs(x)
1

4π
e(x(t))dt

Note that as before, we only trace those rays that hit the volume according to the depth map,
the others are immediately discarded. This has also the bene�t of allowing us to clip on the actual
mesh geometry, similarly to the method of the previous chapter.

4.7 Results

We performed several tests with di�erent materials and lighting conditions on a Intel Core2 Duo
2.66 GHz, 2 GB RAM, equipped with a NVidia GeForce GTX 465.

4.7.1 Comparison with Ground Thruth

Figure 4.6 shows a comparison between our approach and a ground truth image of a sphere of
homogeneous material lit by a spot light. All ground truth images have been produced using classic
volumetric photon mapping. Some bandization artifacts are visible because of the blockization;
moreover, due to the iterative nature of the method, propagation of energy to the far end of the
object with respect to beam entry point is slow, thus producing a slightly darker image.

Particle tracing was adapted to match the same refraction model used in our technique; more
precisely, we employed the Eikonal equation to bend photons when moving inside the medium.
However, when moving from air into the medium, the photon tracer uses the normals of the mesh
to compute Snell's equations, thus achieving higher quality renderings. The resulting di�erence
can be noticed in �gure 4.11 in details such as the Armadillo's hands or the Bunny's ears.

4.7.2 Approximation of LBL

The �rst test aims at evaluating the e�ect of the subdivision of the volumes in blocks operated
in Section 4.5. Applying LBL inside each block of voxels and transmitting the photon density
through the interfaces bu�er is not the same as performing a LBL globally over the entire volume.
Therefore, we ran a simple test with a single light in a homogeneous material to evaluate the
di�erence. Figure 4.7 shows a comparison for two di�erent albedo values, showing how the two
algorithms achieve comparable results.

Figure 4.8.(a) shows a model of a homogeneous elephant placed inside an otherwise homoge-
neous sphere. The di�erence in refractive indices between the two materials produces some caustics
within the object.

Figure 4.8.(b) shows a similar situation with two spheres inside a cube. Renderings in �g-
ure 4.8.(d,f) are computed from low scattering coe�cient materials and therefore refraction related
e�ects are more prominent. For example, caustics on the checkerboard and image of the checker-
board on the surface of the green sphere can be seen. Figure 4.8.(e) shows a bunny immersed in a
cube and Figure 4.8.(g) show 4 frames of the animation we produced of a running elephant. For
these last two examples, we also used an environment map, that we are able to easily incorporate
into our framework.

4.7.3 Performances

We conducted a number of experiments to analyze the e�ciency of our algorithm when changing
its parameters.

70 CHAPTER 4. A PARALLEL RAY TRACING AND LATTICE-BOLTZMAN METHOD

Our approach Ground truth

Figure 4.6: Comparison of our approach against a ground truth image. Di�erent values
of scattering and albedo.

An important number is the size of the Ray History Bu�er, because it determines the granularity
of the parallelization between di�usion pass and marching pass of consecutive steps and the total
number of steps to convergence. We studied the relation between the size of the Ray History Bu�er
and the total number of steps to convergence. Small values of k correspond to a dense interleaving
of marching and di�usion pass and a higher number of steps of the algorithm. Large values of
k means less dense interleaving and small number of steps. In the extreme case of unlimited
Ray History Bu�er, we would have a single marching phase followed by a single di�usion phase.
Figure 4.9.(a) shows the rendering time for di�erent sizes of the Ray History Bu�er from 2 to 64
for the bubbly cube dataset. Small sizes of the Ray History Bu�er lead to longer rendering times,
mainly due to the overhead of the OpenGL transfer. For our hardware setting, Ray History Bu�er
with size k = 16 turned out to be an optimal value. This suggests that the proposed architecture
is e�ective w.r.t. executing the two passes in a sequence, otherwise greater values of k should
correspond to shorter times.
Figure 4.9.(b) shows the dependence between the albedo of the material and the number of steps
required to reach convergence for a 1283 volume and produce a 10242 image. As expected, the
algorithm takes more steps and hence is slower with materials with high values of albedo, but it
never falls under 8 fps even for albedo approaching 1.

A test more directed to prove the e�ectiveness of the framework has been conducted by running
a sequential execution of a single marching and di�usion phase against our algorithm, which shows
that our algorithm is on the average 30% faster. Note that this gain is only due to the parallel
execution of the di�use phase of the i-th step with the marching phase of the (i + 1)-th step.
We expect a further improvement in the out-of-core implementation of our framework, where our
approach will also bene�t from the cache coherent access to memory. Note that in the present
implementation the entire dataset resided in video memory.

4.7. RESULTS 71

Albedo

LB
L

O
u

r
a
p

p
ro

a
ch

Figure 4.7: Comparison of Lattice Boltzmann Lighting with our approach for two
albedo values. Blockization artifacts disappear after few global iterations.

4.7.4 Discussion

The method presented in this chapter is capable of presenting real-time physically-based simula-
tions of volumetric e�ects. The precision of the single scattering computation has considerably
increased with respect to the previous method, and we are able to account also for Multiple
Scattering and refraction at the same speed as before but without any lengthy precomputation.
Moreover, results show that the method produces results which agree with ground truth photon
mapping simulations.

While the Marching phase and the View pass of our algorithm is mostly performed like in[122],
we were also able to add MS at little additional cost, while preserving the possibility of changing
light and material as in their method. The algorithm by Wang et al.[130] also implements multiple
scattering of heterogeneous materials and does not su�er from the limitations due to voxelization
in handling sharp features. However, it requires a complete tetrahedralization of the model which
takes several minutes of computation (10 minutes for the gargoyle model) and does not take
into account refraction. Light Propagation Maps[45] provide a more accurate solution for light
transport in participating media, but still require minutes to produce a single image. The mesh
based approach by Walter et al.[127] produces more precise refraction e�ects than ours but it
only handles single scattering and only for one boundary between two constant refractive-index
materials.

However, as the albedo reaches 1.0 (values greater than 0.8), convergence timings can become
an issue and the LBL simulation becomes less accurate, especially if the grid is not extremely dense
and if the time step of the simulation is not small enough. At the same time, the limited amount
of memory available on contemporary GPU poses a serious limit on spatial resolution which can
only be overcome by implementing an Out Of Core (OOC) system for e�ciently handling virtual
GPU memory. These considerations have prompted the development of the method presented in
the next chapter.

72 CHAPTER 4. A PARALLEL RAY TRACING AND LATTICE-BOLTZMAN METHOD

23 fps 13 fps 28 fps

Figure 4.8: A range of results computed by our method. (a,b,c) Renderings showing re-
fraction and multiple scattering. (d, f) Renderings showing refraction and multiple scattering in
heterogeneous media. (e) Including an environment map. (g) A few frames from a real time
animation (see accompanying video).

4.7. RESULTS 73

Figure 4.9: (a) Rendering time (in ms) for di�erent sizes of Ray History Bu�er k for the case of
a 1283 volume entirely �lled. (b) Performances of our algorithm for di�erent albedo values.

Figure 4.10: Multiple and single scattering. Left: The Thai model lit by a point light
placed at its right; center: The same model lit by a spot light placed at the same position, single
scattering only; right: Same as center, with multiple scattering re-enabled.

74 CHAPTER 4. A PARALLEL RAY TRACING AND LATTICE-BOLTZMAN METHOD

Our approach Ground truth

Figure 4.11: Ground Truth comparisons. On the left column, two renderings of the Bunny
and Armadillo model at 12 fps made of heterogeneous materials. On the right column the scenes
are rendered with photon mapping (228M and 63M of photons, respectively). The same spot light
was placed on the right of the Bunny and on the left of the Armadillo.

Chapter 5

A Scalable Approach to the MDOM

Abstract

In this chapter we propose an algorithm which increases the directional resolution of our
scattering solution with respect to the previously presented one, by building on a Modi�ed
Discrete Ordinates Method (MDOM) approach. Spatial resolution is also increased by imple-
menting a Not Recently Used (NRU) paging algorithm which can support datasets many times
larger than what can be currently �tted in device memory. The MDOM algorithm is then
adapted to work e�ciently on a paged volume, introducing innovations in light transmission
with respect to current state of the art techniques. Our technique is parallel, scalable and can
achieve interactive frame rates. Results demonstrate the ability of this method to render high
quality multiple scattering e�ects in heterogeneous and anisotropic materials with physical
accuracy.

The work we present in this chapter is aimed at overcoming the limitations that are inherent
in using a scattering model based on a di�usion approximation. In order to model any kind of
material, including materials with anisotropic phase functions, a more physically precise model of
computation must be adopted. We chose to build on the ideas of the Discrete Ordinate family of
methods (see chapter 2), because of their generality and accuracy.

Similarly to what we proposed in the previous chapter, the algorithm is divided in a �rst ray
tracing stage (direct component computation) and a subsequent multiple scattering pass (indirect
component computation), �nally followed by a view tracing step. In the context of the DOM
family, performing this subdivision places the method within the MDOM subfamily[84], introduced
in chapter 2.

For the direct component, we apply a similar photon marching solution as the one proposed
in the previous chapter, introducing a di�erent transfer strategy by using a sort-search-compact
algorithm.

For the indirect component, we propose a parallel wavefront propagation scheme for solving the
DOM iterations. These wavefronts propagate light from voxel to voxel along discrete directions.
Each scattering iteration constitutes eight such wavefronts propagating from each corner of the
volume.

The newly proposed method has been designed as to be compatible with data of arbitrary size.
However; contrarily on what is possible with visualization methods (see for example the technique
introduced by Gobbetti et al.[51, 50] or the Gigavoxel system[26]), when dealing with scattering
phenomena it is not possible to adaptively employ a lower resolution representation of the dataset
for those parts of it that are far from the viewer. In fact, interactions that happen on the far side
of an object have meaningful implications on the apparent surface color of the parts of the object
that are close to the viewer. For this reason it was necessary to implement an e�cient block-based
streaming mechanism for transferring data between the CPU and the GPU, with the advantage of
knowing and exploiting some of the access patterns of the algorithm on the dataset for accelerating
page pre-loading.

76 CHAPTER 5. A SCALABLE APPROACH TO THE MDOM

Moreover, in order to reduce memory requirements for the data structure that we use during
the indirect computation, we employ a lower angular resolution volume for storage and up-sample
Irradiance data to a higher resolution during propagation between voxels. A comparable approach
to this one is the one proposed by Fattal's[45]; however, we proceeded in short characteristic form
instead of his long characteristic approach. This di�erence implies, as explained in Nikolaeva et
al.[97], that we transfer indirect energy at every iteration from one face of a voxel to the face of a
neighbor one, instead of tracing it up to the boundary of the volume.

In summary, this method allows for a physically accurate, high resolution computation of
scattering in volumes at a fraction of the time of a comparable o�-line render engine. Moreover,
we add to the state of the art by introducing:

� An accurate and fast GPU implementation of the Discrete Ordinates Method capable of
interactively displaying intermediate results.

� A streaming mechanism tailored at computing Single and Multiple Scattering e�ects.

5.1 Outline of the Algorithm

The algorithm is designed to work with volumes that have already been voxelized and it is par-
ticularly suited to handle voxelized representations of participating media like smoke and clouds;
however, it can also take as input a watertight mesh together with material properties and, simi-
larly to the previous method, perform a voxelization. Together with a set of light sources of any
kind and a camera position for the viewer, the algorithm produces a realistic rendering of the
volume.

The algorithm works by performing three sequential operations, i.e. computation of the direct
component followed by computation of the indirect component and terminated with a view-tracing
pass. As with the previous method, the result of the computation of light transmission within the
volume are independent of view position, and as such a change in viewpoint leaving all other
parameters unaltered can be performed e�ciently at real-time speeds. We can conceptually divide
the operation of our algorithm in separate modules. Figure 5.1 shows the interdependence of
modules for the computation of the �nal solution. Note that the block scheduler is orthogonal to
all operations and as such will be explained contextually to these.

Geometry &

Material attributes

Image

Voxelization &

Blockification

Compute

Direct Source

Component

Compute

Indirect Source

Component

Block Request-

Handler/Schedu

ler

Final

Rendering

Pass

Camera

Lights

Figure 5.1: Pipeline Overview. Conceptual separation of our system into modules

5.2. DIRECT COMPONENT 77

5.1.1 Adapting the DOM

Recalling back the initial discretization of the RTE for m = 1 . . .M angular bins as presented in
chapter 2:

µm
∂L(x,ωm)

∂x
+ζm

∂L(x,ωm)

∂y
+ηm

∂L(x,ωm)

∂z
= −κt(x)L(x,ωm)︸ ︷︷ ︸

extinction

+κs(x)

M∑
m′=1

pm,m
′
L(x,ωm

′
)wm

′

︸ ︷︷ ︸
Gm(x)

We call Gm(x) �source term� with a slightly di�erent de�nition with respect to the customary
use in literature (see chapter 1), and the equivalent term resulting from the integration of the above
equation over the volume of a voxel (see chapter 2) will be denoted with Ḡm,i,j,k. We will not use
the superscripts i, j, k, except when needed for disambiguation, in order to keep the notation light.

As in the MDOM family, the source term is separated in a direct component, which is attenuated
direct lighting as computed in the previous method, and an indirect component resulting from the
multiple scattering of the direct component.

Ḡm = Ḡmdir + Ḡmdif

Moreover, in order to disambiguate, we will indicate with a di�erent letter, Si,j,k(ω), the
interpolation of the source components:

Si,j,k(ω) =
∑

ωm·ω>0

(ω · ωm) · Ḡm,i,j,k

Memory consumption for the Discrete Ordinates Method is in the order of m× v3 where v3 is
the spatial resolution. In order to ameliorate these requirements we allow M to be a low number
and use a di�erent number of directions N (with N �M) during propagation using sweeps. The
discretization of the interpolated source according to the propagation resolution is indicated as
Sn,i,j,k.

5.2 Direct Component

In order to compute the direct component we march photons according to the technique presented
in the previous chapter (4), with two notable di�erences. Since we are neglecting refraction e�ects
in order to be able to use the DOM method, we can trace rays with the standard parametric ray
formula instead of the eikonal equations. On the other hand, we are supporting a more precise
directional resolution; therefore, we cannot store a single irradiance value for the voxel but need
instead to store its discretized scattered directional distribution. Contribution to binm is therefore:

Ḡm,i,j,kdir = (V m)−1

ˆ
V

ˆ
Ξ(ωm)

κs(x̄)

ˆ
4π

L(x̄,ω′)p(ω,ω′)dω′dxdω

where V m = ∆x∆y∆zΩm = V Ωm is the �dimension� of the angular bin in the cross product
space of 3D Cartesian dimension and solid angles and V is the volumetric space of the voxel i, j, k,
centered in position x̄.

Calling Φp,ω the power of photon p coming from direction ω:

Ḡmdir = (V m)−1κs

ˆ
Ξ(ωm)

∑
p

Φp,ω′p(ω,ω
′)dω

where the power of Φp,ω is computed as in the previous method (equation 4.3) and Ξ(ωm) indicates
the solid angle spanned by bin m, centered around direction ωm. We will refer to the increments
on the source function induced by single photons as source deltas.

78 CHAPTER 5. A SCALABLE APPROACH TO THE MDOM

Finally, since in integration quadrature terms cancel each other out,

Ḡmdir = (V)−1κs
∑
p

Φp,ω′ p̄(ω,ω
′)

where we have introduced the normalized phase function p̄ which ensures energy conservation
when using a quadrature scheme.

Similarly to what presented before (chapter 4), we cannot directly store the contribution for
e�ciency reasons and instead store it in an intermediate bu�er. However, due to the paged nature
of the volume and the increased resolutions, the algorithm for merging the results of the bu�er
has been modi�ed with respect to the previous chapter. These modi�cations are presented in the
following subsections.

5.2.1 Tracing and Storing Light

As previously, rays are generated for every light source and their state is stored in a dedicated
global raymap. A computational grid with the same size of the raymap is launched after ray
initialization and each thread is responsible for marching a photon stream through the volume.

Instead of updating the source function volume directly, each ray writes the increments of the
source function G along with the intersecting voxel_id to an intermediate bu�er of �xed size termed
here �source_delta_bu�ers�. The operation proceeds as in the previous chapter, with a similar
use of an intermediate local bu�er which is moved to global memory at the end of the execution of
the entire WorkGroup. However, in the present variant, there are M source_delta_bu�ers, each
corresponding to a storage angular resolution of the DOM. Furthermore, voxel_id's are not stored
along with the value in each bu�er, but in a separate bu�er (the index_bu�er), the reason for
which will be clear shortly. Every ray is allocated a �xed number of slots in each of these bu�ers.
Hence, the size of these individual bu�ers equals the number of write-slots-per-ray × number of
rays in the raymap.

To compute the sum of the writes (compaction) e�ciently we sort the intermediate bu�ers
by the voxel_id and then do a binary-search for the voxel_id followed by linear compaction
operation. Figure 5.2 depicts the various steps involved in this sort-search-compact serialization
of the source function deltas. Notice that in order to reduce global memory access, sorting is
performed only on the index_bu�er which stores, for every voxel_id, also the o�set to the speci�c
source increment in every source_delta_bu�er. The resulting e�ect is that we perform the sort-
search-gather pass in unison for all storage directions. We use a customization of the open source
OpenCL implementation of the CUDPP [58] radixsort provided by the NVIDIA OpenCL SDK for
sorting the index_bu�er.

The reason for choosing this particular approach is twofold. The OpenGL blending implemen-
tation presented in the previous method is not capable of scaling well with the dimension of the
Irradiance bu�er. In particular, the cost of the blending solution is proportional to the number of
elements that need to be written. In order to support a paging system like the one presented in
the next section the entire blend operation would need to be repeated for each block in which the
volume is subdivided. Therefore transforming an O(p) solution to a O(p× b3) one where p is the
number of accessed voxels during the tracing stage, and b3 is the total number of blocks.

On the other hand, accessing directly the bu�er elements without a previous sort-compact
operation, would require scanning, for each voxel, the entire index_bu�er in order to �nd the
values that it needs to add to its own source function, an extremely expensive operation.

We �nally note that, for the hardware setting we used for testing, our experiments have shown
that the optimal value of write-slots-per-ray is 32, which is higher than the value observed in the
previous chapter. As before, the raymap dimensions used for all our experiments were 512× 512.

5.2.2 Page Handling

In order for our scattering simulations to be properly scalable, we decided to implement a page
handling mechanism. After an initial subdivision of the volume into blocks of uniform size, these

5.2. DIRECT COMPONENT 79

Search-
Compact

Scattering
Volume

Light

Index_buffer: Buffer containing the <voxel_id> and an offset in source_delta_buffer

Sort by
voxel_id

Source_delta_buffers: Buffers containing source function increments/deltas

Source func. volume

Ray_1Ray_0 Ray_2 Ray_3

Ray_4 ...

Ray_0

Ray_0

Ray_0

Ray_0

Ray_1

Ray_1

Ray_1

Ray_1

Ray_2

Ray_2

Ray_2

Ray_2

Ray_3

Ray_3

Ray_3

Ray_3

Ray_4

...
...

...

buffer 1

buffer nd
...

...

buffer 0

buffer 2

<Voxel_id, buffer_offset>

<source_func_delta>

Figure 5.2: Sort and Compact Photons marched through the volume store the angular distri-
bution of the scattered irradiance in multiple bu�ers (one per discrete direction) which are then
sorted with a parallel sorting algorithm according to the voxel_id they refer to. Afterwards a
compaction algorithm sums all write requests to the same voxel as a single request, which is then
performed directly by writing in the source function volume.

blocks are then stored in main/host memory: these are called �volume blocks�, storing the extinction
coe�cients. Space must also be allocated and cleared for the writing of the source function. We
will refer to these blocks as the �source function blocks�.

At the time of this writing, handling 3D texture is still relatively ine�cient as compared to 2D
textures. For this reason, blocks are logically stored as rectangular areas of a 2D texture, named
�block_pool�. The full memory required for the algorithm is allocated in advance, since we have
the advantage of knowing that the algorithm will eventually use the entire volume. We allocate
as much memory as it is possible, in order to minimize the expensive streaming operations, but
this can be modi�ed for real-world usages of the algorithm. In order to keep track of blocks of the
two types it is necessary to use three tables: block_request_table, block_dirty_table and
block_index_table. The �rst two are bitmaps, used respectively to �ag a block as needed and
as written. The block_dirty_table is not used for the volume blocks since only source function
blocks can be written to in this architecture. The block index table, which is a 3D texture of b3

elements (where b3 is the number of blocks) is used to store the location of the block within the
block pool. This same table indicates non present blocks by setting the table to an invalid value.

However, there is no way to predict the loading pattern of the volume/source blocks as requested
by rays; therefore, it is necessary to implement an on-demand mechanism that integrates streaming
into this phase. When a GPU thread encounters a missing block, it sets the corresponding dirty
bit and terminates its computation. However, if the thread has used up all of its slots in the bu�er,
it still has to mark explicitly that it will need the same block when computation resumes. This
allows us to implement a simple yet e�ective Not Recently Used (NRU) policy[25] when deciding
which pages to remove.

At the end of every stage of the algorithm, blocks which have been set as requested need to be
loaded. The order of preference, when having to choose where to put a block is:

� free space

� a non-dirty non-requested occupied block

� a dirty non-requested occupied block

� a dirty requested occupied block

This means that it is possible that a block will need to be swapped out even if it is requested by
some of the rays, that is, there can be a number of request that exceeds the amount of available

80 CHAPTER 5. A SCALABLE APPROACH TO THE MDOM

space. This strategy however does not induce starvation, since rays will eventually leave a block
in which they are working.

Notice also that the search-compact pass includes the block tables for the source function
blocks. It is obvious that the volume blocks visited by the light rays during the ray marching
pass correspond to the source function blocks to be written during the compaction pass, hence
we use the block_index_table of the volume blocks for pre-loading the source function blocks in
its block_memory_pool for the compaction pass. This strategy of tracking the volume blocks
streamed during the last ray marching pass and using this information to pre-load source function
blocks, facilitates a single pass compaction.

Some di�erent strategies could also have been implemented; for example, we could have ordered
swap-out preference according to the number of individual thread requests. However, this would
have required either a semaphore or a counting operation, i.e. a scan, which is still an expensive
operation. Moreover, this does not guarantee e�ciency, because it could lead to the starvation of
a single ray, lagging behind when all others move forward because it is the only one requesting a
speci�c block and eventually delaying the application.

Another conceivable strategy would be to sort rays and group them together according to
requests. This is, for example, the approach taken in ray tracing through scenes when rays are
packed together in order to speed up traversal of the data structure for the scene (Bounding
Volume Hierarchies or Octrees). However, it is reasonable to believe that the overhead induced
by the sorting operation counters any bene�t that can be had from a speedup due to coherent
memory access.

Finally, note that the blocks where it will be necessary to write source function values are
exactly the ones that have been loaded for traversal. Therefore, during the OpenCL sorting of the
bu�er values it is possible to pre-load source function blocks using the request bits of the previous
pass as indications of which block to load.

5.3 Parallel Wavefront Propagation

After rays have completed their travel through the volume and source deltas have been transfered
to the source volume, the wavefront DOM solver starts. The solution of the DOM equation for
the face to face propagation is based on the assumption that both the extinction coe�cient and
the source function are constant within a voxel. Moreover, in-scattering due to energy deposited
at the current iteration is ignored, since it will be propagated at the next iteration. Under these
assumptions, the integral equation for light transfer presented in chapter 1 reduces to

L(x,ω) = e−κt||x−x0||L(x0,ω) +

ˆ x
x0

e−κt||y−x||S(ω)dy

which can be analytically solved as

L(x,ω) = e−κt||x−x0||L(x0,ω) +
S(ω)

κt

(
1− e−κt||x−x0||

)
This equation can be used to determine the amount of radiance leaving a face along a speci�c

direction as determined by the incoming radiance at a di�erent face; and the total scattered
radiance within the voxel.

5.3.1 Radiance of the outgoing faces

We de�ne the average radiance on a face Out as

L̄nOut =
1

AOut

ˆ
Out

Lni di

where we use i to index points belonging to the face.

5.3. PARALLEL WAVEFRONT PROPAGATION 81

For a propagation direction n and a point on the surface of the outgoing face, there is exactly
one corresponding point in one of the other faces, therefore we can turn the integral on the face
into an integral on the projected faces

L̄nOut =
1

AOut

∑
In

ˆ
AIn,Out

Lni di

where AIn,Out is the area of projection of face In over face Out (see �gure 5.3)
Using the equation of the integral above, and assuming the radiance on each face to be constant,

then:

L̄nOut =
S(ωn)

κt
+
∑
In

AIn,Out
AOut

(
L̄mIn −

S(ωn)

κt

)
1

AIn,Out

ˆ
AIn,Out

e−κt||i−j||di

Languenou[84] asserts that according to experiments, if κt is small, then
1

AIn,Out

´
AIn,Out

e−κt||i−j||di ≈
e−κtsavg(In,Out) where savg(In,Out) = 1

AIn,Out

´
AIn,Out

||i − j||di, which can be easily precomputed.

Therefore,

L̄nOut =
S(ωn)

κt
+
∑
In

AIn,Out
AOut

(
L̄nIn −

S(ωn)

κt

)
e−κtsavg(In,Out)

and this is the quantity that gets propagated to an adjacent voxel during wavefront sweeps.

ωm

AX-,X+A

Δy

Δx

Δz

Ax-

X-,Y+

Figure 5.3: The AIn,Out factors. Projection of face AX− on AX+ is indicated in gray (AX+,X−)

5.3.2 Average radiance of the voxel

The average radiance is the radiance that will be deposited in the voxel after the sweep has passed
and that will be scattered back at the next iteration. Similarly to the previous section we de�ne
it as:

L̄nV =
1

V

ˆ
x∈V

L(x,ωn)dV

where L(x,ωn) is the amount of radiance reaching a point x within the volume of the voxel from
one of the boundary faces. That is,

L(x,ωn) = L̄nIne
−κt||x−i|| +

S(ωn)

κt
(1− e−κt||x−i||)

82 CHAPTER 5. A SCALABLE APPROACH TO THE MDOM

The entire volume can be divided into non overlapping zones determined by an incoming face
and an outgoing face (see �gure 5.4)

VX − ,X +

ωm

f aceZ−

f ace X −

AX − ,X + ,m

AX − ,Z+ ,m
VX − ,Z+

f ace Z+

f aceX +

AZ− ,X + ,m

VZ− ,X +

Figure 5.4: Non-overlapping zones. Bidimensional representation of the non-overlapping zones
between faces induced by a direction ωm

L̄nV =
S(ωn)

κt
+

1

V

∑
In

∑
Out

((
L̄nIn −

S(ωn)

κt

)
VIn,Out
V

× 1

VIn,Out

ˆ
VIn,Out

e−κt||x−i||dV

)

Where we approximate 1
VIn,Out

´
VIn,Out

e−κt||x−i||dV with e−κt
savg(In,Out)

2 and is precomputed

in advance for all faces and all directions.
Finally this will be added to the source term as:

Ḡmdif =
κs
4π

N∑
n=1

wmp̄m,nL̄
n
V

Note that even if propagation is carried along the N directions, re-projecting back to the
lower M directions is straightforward since we chose an angular quadrature scheme that always
incorporates its subset levels.

5.3.3 Plane Sweeping

Since every voxel solves independently the equation relating radiance at the incoming faces to
radiance at the outgoing ones, it could be reasonable to construct a parallel algorithm like the
one presented in the previous chapter, where each thread attached to each volume element runs
concurrently with every other. However, we can also notice that one of the issues with the previous
approach resides in the time that it takes for energy deposited in a voxel to reach the opposite side
of the mesh. The sweep3d method[81] reduces this issue by parallelizing within wavefronts but
sequentialzing their motion through the volume. It is based on the assumption that for any possible
propagation direction, say ωn, there can be only three faces in a cube for which this direction
represents an incoming one, casting the remaining three as outgoing faces. Therefore there exists
a diagonal dependency which can be exploited to avoid synchronization issues. Conversely, it is
possible to group directions into octants according to the face dependency they induce.

Consequently, we propagate all directions in an octant simultaneously, inducing a diagonal
propagation sweep starting from each corner of the volume. This sweep when propagated in
parallel, diagonally, is akin to propagating a wave starting from a corner. These wavefronts pick
out-scattered light at voxels and propagate it until they reach the end of the volume. Eight such

5.3. PARALLEL WAVEFRONT PROPAGATION 83

wavefronts starting from each corner of the volume constitute one scattering iteration. Figure
5.5.(a) illustrates a two dimensional version of this process. For the 3D version, this is similar to a
3D hyper-plane propagating diagonally from a grid corner to its opposite corner. A voxel indexed
by i, j, k belongs to this 3D hyperplane if it satis�es the equation.

w = i+ j + k

With 0 ≤ w ≤ 3v − 3 the wavefront step number, and v the number of voxels per side in the
total volume.

Notice again that waves do not propagate in-scattered radiance from the wave itself, but only
radiance that has been deposited during the previous cycle of eight sweeps. For this reason,
apart from maintaining the source function values Ḡm for each direction at every voxel (which
constitutes the �nal solution), we also need to maintain source function contributions from the
previous iteration (Ḡ′′

m
) and the current iteration (Ḡ′

m
). After the photon marching phase, Ḡ′′

m

is initialized with Ḡmdir and Ḡ′
m

is initialized to zero. Note that this strategy is akin to the one
employed by the Progressive Radiosity algorithm.

i W=0 W=1 W=2 W=3 W=4

j 1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

5 6 7 8 9

W=5

W=6

W=7

W=8

i Wb=0 Wb=1

j 1 2 1 2

2 3 2 3

Wb=2Wb=1

1 2 1 2

2 3 2 3

(a) (b)

Figure 5.5: Wavefront propagation. On the left: order of computation of di�erent waves (a);
on the right: order of loading of blocks and internal order of computation. (b)

5.3.4 Streaming Blocks

We avoid any necessity for wavefront collision handling by executing only one sweep at a time. This
also enables us to pre-compute the loading sequence for the Volume-blocks and Source-function-
blocks along the direction of sweep. This further implies that instead of taking the on-demand
streaming approach of the direct pass, we can simply schedule the propagation of block-wavefronts
based on the pre-computed sequence. This scheduling of the wavefronts is handled by the block
scheduler. The blocks in the current wavefront step are independent of each other and can be
loaded or operated upon in any order. This innate �exibility implies that, if there is not enough
GPU memory available, we can do the propagation only for the blocks which will �t in the GPU
memory. After completing this task, we load the next set of blocks and continue the process till
the wavefront propagation is �nished.

The propagation of a wavefront of blocks is further decomposed into a wavefront of voxels
which runs independently in each block. This decomposition is performed on the GPU, where a
WorkGroup of GPU threads operates within the con�nes of a single block. Figure 5.5.(b) illustrates

84 CHAPTER 5. A SCALABLE APPROACH TO THE MDOM

a 2D version of this approach. However, block size is larger than the available memory for a local
WorkGroup. In all of our experiments on our machine, a WorkGroup size eight times smaller than
block size proved to be optimal. The reason why this is so, is because keeping track of blocks adds
an overhead which is inversely proportional to block size. Therefore, using blocks of the same size
of WG memory would not be more e�cient.

We can �nally notice that the incoming radiances for the boundary voxels of a block is the
outgoing radiances from the ones belonging to the blocks of the previous step. To store these
outgoing radiances we maintain a 2D interface of voxels, similarly to the interface bu�ers used in
the previous chapter. These interfaces store outgoing radiance for each outgoing face along the
directions in the current octant. Hence, each interface voxel stores N

8 directions. This memory
is only accessed by voxels on the boundary of the blocks and we use local memory instead for
synchronizing and propagating information within a WorkGroup.

5.3.5 View Gathering

The �nal pass, view gathering, is essentially unchanged with respect to the previous method, with
the sole exception of having an angular distribution of radiance instead of an average isotropic
one. Blocks must be streamed again for this operation and no data on their previous usage can be
employed in this stage. However, in the view pass it could be possible to employ lower resolution
blocks through a mipmapping strategy similar to the one by Gobbetti et al.[51]. However, it is to
be noted that the view gathering stage of the computation is already the most e�cient one with
respect to the other operations.

For the tracing of rays, a small jittering is used as in the previous method in order to avoid
introducing artifacts. The equation used for view gathering is the integral formulation of the
radiative transfer equation with interpolated source function as in chapter 4.

5.4 Results

We implemented our pipeline using C++ and OpenCL. The results presented in this section are
from our implementation running on a 3.0 GHz Intel Core 2 Duo machine with 8 GB RAM and a
GeForce GTX 580 GPU with 3 GB's of physical memory.

In Figure 5.7, an isotropic botijo model is rendered with its extinction coe�cients perturbed.
The spatial grid resolution is 2563 and the propagation angular resolution is 24 directions. We
illustrate the di�erence in the multiple and the single scattering results. This di�erence is more
pronounced in areas with shorter optical depth due to a lesser exponential fall-o�. The di�erence
is most noticeable in the handles of the botijo. In Figure 5.8, we depict images of isotropic smoke
simulations rendered from our pipeline. The two images on the left show results for a 643 grid
with 24 propagation directions. The smoke grid is lit by a bright parallel projector light placed
on top of the volume. The two images on the right show results for an environment lighting of
a 1283 smoke grid using 120 propagation directions. For environment lighting, we skip the direct
component stage as we have a signi�cant number of light rays coming from all directions. As an
alternative, we use an environment irradiance map for incoming boundary radiance during the
indirect component stage. This is similar to solving the standard DOM equation with detached
angular resolutions. Since the environment light is discretized at the volume boundary, we use a
higher propagation angular resolution, 120 directions. The smoke simulations were rendered with
two multiple scattering iterations at 1.2 fps and 0.1 fps respectively.

5.4.1 Performance

5.4.1.1 Memory requirements

The Volume-blocks require n3 storage and each of the Source-function-blocks (Ḡm , Ḡ′
m
and Ḡ′′m

) require mn3 storage. For a 2563 grid with each voxel containing 3 channel extinction coe�cients
stored as �oat4 values, the Volume-blocks storage amounts to 256 MB. For isotropic media, the

5.4. RESULTS 85

Figure 5.6: Di�erences in light scattering when changing propagation directions. Top
row, left to right: Armadillo rendered with 24, 48 and 120 propagation directions. Bottom row,
left to righ: Bunny rendered with 24, 48 and 120 propagation directions. Di�erence are notable
between the 24 and 48 versions but not much between the 48 and th 120 one.

Source-function-blocks together require a 256Ö3 MB storage, making the total volumetric storage
requirement equal to 1 GB. For a 5123 grid this total increases to 8 GB. These allocations happen
on the CPU memory. The corresponding GPU memory allocations are determined by the sizes of
their respective block_pools. The block_pool sizes are con�gured in terms of number of blocks
they can accommodate and are the same for all the block_pools. For our hardware setting, our
experiments have shown that the optimal value for block_size is 323.

Grid size (n3) N Seconds/frame

1283 24 5.3
48 9.86

2563 24 41.55
48 68.39

5123 24 579
48 780.39

Table 5.1: Timings for the bunny scene (5.6). Di�erent grid sizes with 24 and 48 propagation
directions. The timings were recorded for a combined block_pool size of 2 GB. Even if several
seconds per frame are necessary in this setup to produce an image matching the ground truth, the
timings are considerably faster than comparable images produced by an o�ine path tracer (see
section 5.4.2)

5.4.1.2 Timings

Table 5.1 shows the timings for an isotropic bunny scene (�gure 5.6) with di�erent grid sizes and
propagation angular resolutions, after three scattering iterations. The timings were recorded for
a combined block_pool size of 2 GB. Since we use OpenCL for our implementation, we can also
compare timings for GPU and CPU executions of our pipeline. Graph 5.10 plots the speedup

86 CHAPTER 5. A SCALABLE APPROACH TO THE MDOM

Figure 5.7: Multiple vs Single scattering. MS on the left, SS on the right. The botijo was
rendered with a marble material and surface lighting enabled.

Figure 5.8: Rendering smoke under di�erent lighting conditions. Left: with a parallel
projector placed above the volume . Right: with environment mapping.

achieved by the GPU executions over the CPU executions of our pipeline for di�erent grid sizes,
and combined block_pool sizes. The combined block_pool size is analogous to the size of the total
streaming cache. The CPU used for these experiments had an e�ective 12 execution cores (6 core
Intel CPU with hyper-threading enabled) which execute the OpenCL kernels in parallel. As the
graph 5.10 shows, when the combined block_pool size is equal to the total memory requirement
of a particular grid size, the overhead of our streaming approach over a non-streaming solution
is negligible. It should be mentioned here that an 8X speedup is achieved for a 5123 grid with a
combined block_pool size of just 256 MB, which is less than 4% of the total volumetric memory
requirement. These results further corroborate the need for a GPU based parallel technique for
solving the DOM equations.

5.4.2 Ground Truth Comparison

We performed all a Ground Truth comparisons against the Mitsuba volumetric path tracer1 which
solves the full RTE, and with the Lattice-Boltzmann solution of the previous chapter. We choose
a heterogeneous isotropic medium for this comparison; depicted in Figure 5.11. The ground truth
result was rendered with path lengths of 12 and 64K samples per pixel and it took several hours
to compute. The corresponding result produced from our method has spatial grid resolution of
2563 and propagation angular resolution of 48 directions. Our new method took 68 seconds to
converge. For the same grid resolution, the di�usion approximation solution took few milliseconds

1The Mitsuba rendering engine http://www.mitsuba-renderer.org/

http://www.mitsuba-renderer.org/

5.4. RESULTS 87

Figure 5.9: Multiple scattering results. From left to right: with g = 0.4, 0.6 and 0.9. When
light direction is aligned with one of the storage directions (Top) and (Bottom) not aligned with
any of the storage directions.

per frame to render the scene. In the center image, there is some numerical smearing noticeable on
the right hand and right foot of the armadillo. On the rightmost image, it is possible to notice how,
since the LBL scattering is mostly localized, the result di�ers from the ground truth in thin areas
which have not been reached by the time the user speci�ed iterations come to an end. Though the
method presented in this chapter is slower than the LBL method, it is much more general and can
more e�ectively handle multiple scattering in heterogeneous media.

5.4.3 Discussion

We begin the discussion by examining the e�ect of the storage angular resolution on the quality of
results. In case of isotropic media, as the phase function is constant in all directions, the storage
resolution does not impact the quality of the results, thus agreeing with the method of chapter 4.
However, the capability of our system to handle anisotropic media is determined by the storage
angular resolution. At an 8 direction storage our system can e�ectively handle Henyey Greenstein
phase functions with values of mean cosine g up to 0.4. For values of g greater than 0.4 the results
exhibit ray e�ects as shown in Figure 5.9. The image shows the renderings of an anisotropic botijo
with homogeneous scattering coe�cients and increasing values of g, which is lit by a beam of light.
The spatial grid resolution is 1283, with storage angular resolution of 8 and propagation angular
resolution of 48. If the direction of the light beam aligns with one the storage directions (top
images in Figure 5.9), then as expected, the medium exhibits higher forward scattering e�ects as g
increases. But when the direction of light does not align with any of the storage directions (bottom
images in Figure 5.9), then the ray e�ect increases as g takes values beyond 0.4. Although this can
be mitigated by increasing the storage angular resolution, it is a matter of quality vs. performance
trade-o�.

The propagation direction resolution can also be considered as a quality vs performance trade-o�
parameter. In case of a convex geometry such as the bunny shown in Figure 5.6 (Top images), the
di�erences in the 24 and 48 propagation direction results are very subtle. This indicates that we can

88 CHAPTER 5. A SCALABLE APPROACH TO THE MDOM

Figure 5.10: GPU vs CPU. Speedup of the GPU executions over the CPU executions for increas-
ing grid sizes (x axis) and combined block_pool allocations (lines). Also, plotted are speedups for
non-streaming cases (this excludes 5123 grids, because there is not enough GPU memory available.)

Figure 5.11: Comparisons. From left to right: results rendered by a ground truth Monte Carlo
based raytracer, our method and our di�usion approximation based method.

a�ord a low resolution propagation in this case and thus a better performance without sacri�cing
too much on quality. While in case of the armadillo shown in Figure 5.6 (Bottom images), the
result for 24 directions di�er signi�cantly from the 48 or 120 direction results. However, in both
cases there are negligible di�erences between the results of 48 and 120 propagation directions.

Regarding our data streaming process, although it virtually eliminates the GPU memory limi-
tation, overall scalability is still limited by the memory available on the CPU. For example, a 10243

volume would require around 64 GB of memory allocations on the CPU. This could be ameliorated
by adding another layer of streaming, from a large scale storage device to the CPU.

In conclusion, we have presented a method which is capable of providing accurate results com-
parable to those produced with an o�ine photon tracer but at a fraction of the time. Although the
method does not match the real-time speed of our LBL proposal (chapter 4), for some simple cases
it is nonetheless capable of achieving a limited form of interactivity while still providing physically
accurate single and multiple scattering e�ects on heterveogeneous and anisotropic volumes. The
data streaming mechanism further ensures that datasets much bigger than GPU memory can still
be e�ectively visualized, which was not possible in the previously presented method.

Chapter 6

Collateral Work

Abstract

In this chapter we examine a collateral work not related to the rendering of volumetric
e�ects. In particular, we present a method designed for assisting visually impaired people in
navigating indoors environments through a partial on-the-�y reconstruction of the environment
obtained with a Kinect©device. The system compares favorably with traditional navigational
aids and is composed of cheap o�-the-shelf components.

6.1 A navigation system for visually impaired people

6.1.1 State of the Art in Computer-Assisted User Navigation

Exploiting state-of-the-art technology for improving people's everyday life is always a compelling
challenge, especially when the people in question are impaired in some way. Over the recent years,
the rapid evolution of color acquisition devices and computing hardware and their a�ordability
has spawned a number of solutions to assist blind people in indoor and outdoor mobility. Most
of the edge-breaking technologies have been applied to assist or train them: RFID [44][28][22],
haptic devices [67], ultrasonic systems [12], virtual reality [124][63]. One of the latest steps of this
evolution is the availability of low cost 3D scanners which are able to supply a three dimensional
description of the scene in front of the device. It is straightforward to connect this novelty to the
design of yet another system that would analyze the context and allow a blind person to move
freely. This has some points in common with the robot guidance immense literature (see [16] for
an application for impaired people), but the kind of feedback needed by the user is di�erent. More
speci�cally, given the 3D description of the scene, the algorithm identi�es obstacles in the path, but
there's no real way to constrain the movement of the user. Hence, the system should assist her/him
during the exploration. Several ad-hoc sensors have been developed in the past [125][104][114], even
able to recognize known features of inhabited environments, such as stairs or sidewalks. However,
when considering 3D scanning technologies, we must confront ourselves with the fact that, while
a color camera provides information that the blind person has no way to know, i.e. the colors,
a 3D scanner-based system has two strong competitors against with it should be compared: the
white cane and the guide dog. The white cane allows a person to explore the terrain in front of
his/her foot in a range of approximately one meter (it depends on the length of the cane and the
stature of the person), it is done with light weight materials, it is foldable and easily stored, it
does not need any non-human power source and therefore is extremely fault-tolerant and �nally it
is very reliable, since the human brain does an excellent job in elaborating the haptic information
returned by the cane. For this reason, some of the proposed solutions are integrated in it [22][114].
A trained guide dog does not provide a punctual information like the cane, but in this case it is not
necessary since it does the brain work and leads the way. Obviously owning a dog is much more

90 CHAPTER 6. COLLATERAL WORK

committing that owning a white cane and it may not even be possible for some people. In this
section we present an early implementation of an assistive navigation system for blind people based
on a 3D scanner. We use a recent device, called Kinect©, released in the context of videogames
and entertainment. The Kinect is essentially a low-cost short-range 3D scanner that is able to
acquire a 640 × 480 range map of the scene at the pace of 20 to 30 times per second. Since the
Kinect works in a range between 0.5 to 4 meters, it is perfect for the guidance of the movement
of a person, and the quality data it provides is su�cient for the task of analyzing and detecting
obstacles. The concept of our system is quite the same as [125] and similar works but there are
substantial di�erences. Firstly, the prototype of our system is built with o�-the-shelf technologies
and it costs less than 500 Euros while the solutions proposed in the past were essentially costly
prototypes. We consider this aspect of primary importance since, in our opinion, the market for
blind people is not big enough to scale down the cost of ad-hoc technologies [104]. Secondly, we aim
at exploiting the availability of solutions in the �eld of computational geometry to analyze 3D data
and provide accurate understanding of the scene in front of the user. As we will see later on, these
solutions are not directly applicable as they are, since almost all of them are not concerned with
time-critical interruptible computation but only with a general concept of e�ciency. We designed
a simple framework, shared in a open source repository, for time-critical computation that is able
to incorporate new algorithms in the system in a collaborative fashion.

6.1.2 System Description

Figure 6.1 illustrates the setup of the system. We �x the Kinect sensor to the belt so it can have an
ideal coverage of both �oor and object at human height. The Kinect is connected to a 12V −3mAh
battery pack and to a computing device such as a smartphone, which provides audio feedback to
the user. The use of audio as interface is a temporary solution and it will be replaced by an haptic
device currently being designed. Although the design of most systems for visually impaired people
include audio as primary interface to provide feedback to the user, there is a fairly strong argument
against this solution: we are essentially depriving the person of the use of hearing, which for a
blind person is more than one sense.

6.1.2.1 A Time-Critical Framework

The feedback from data analysis must be responsive. Unlike with a robot, we cannot make a
person freeze while waiting for system response, therefore the computation must be not only as
fast as possible but also interruptible, i.e. the control must return in the time assigned with a
meaningful, although conservative, answer. This constraint gives rise to a number of new problems
in the �eld of computational geometry. At the present time there are a large number of techniques
to analyze 3D data in order to discover regularities, symmetries, known shapes etcetera. While the
corresponding algorithms are designed to be fast, very few of them are also interruptible. In order
to make a practical example, none of the several algorithms for surface curvature computation,
which is often used as a building block for shape recognition algorithms, may be run with a time
constraint or interrupted in the middle of the computation.

Our control software is organized as a series of interruptible tasks that run concurrently (the
ellipses in Figure 6.2) and a series of data (the rectangles). Each task has its input data and
produces its output data, and it is assigned with a time lapse by which it must complete its
computation. In the current implementation we use the following tasks:

� ReadDevice: reads the data from the device and does the necessary conversion to express
it as 3D points;

� Registration: detects the �oor and registers the data in a reference system centered at the
user's feet;

� OccupancyDetector: detects the occupancy of the volume in front of the user;

6.1. A NAVIGATION SYSTEM FOR VISUALLY IMPAIRED PEOPLE 91

Figure 6.1: Illustration of the proposed system.

Figure 6.2: A scheme of our time-critical framework.

� WalkDetector: analyzes the output of the accelerometer to establish if the user is walking
and at what speed;

� Analysis: provides the feedback to the users on the base of the result of the other tasks.

In the following we provide more details on how the single tasks are carried out with time constraint.

6.1.2.2 Registration

This task consists of applying a geometric transformation to bring the 3D points from the reference
system of the Kinect, indicated with Krf in Figure 6.3, to the reference system centered at the
user's feet with the z axis passing trough the barycenter and the head of the user, indicated with
Hrf . Since the Kinect is mounted on the waist, it goes under ample movements when the user
walks, which means that the transformation between these two reference systems, a 4 × 4 matrix
called T from now on, must be recomputed many times per seconds. We do this by identifying
the points belonging to the �oor in the data input, i.e. in the frame Krf , �tting a plane to those
points and computing T as the roto-translation that express such plane in the frame Hrf . The
transformation T is computed by assuming that the normal to the plane in world coordinates

92 CHAPTER 6. COLLATERAL WORK

Figure 6.3: Coordinate frames used by the Registration task.

coincides with the z axis of Hrf . The translation part is simply the di�erence between the origin
of Hrf and the origin of Krf while the rotational part is given by:

R ~X(acos(nz))) ·R~Y (acos(
√

(nx2 + nz2)))

where n is expressed in the Krf frame, ~X and ~Y are canonical axes and Rax(r) indicates the
rotation matrix of r radians around the ax axis.

We identify the points belonging to the �oor as those closer than a threshold to the plane �tted
at the previous step. The plane at step 0 is computed in a calibration phase where the user stays
motionless without obstacles in front of him/her, so that it is easy to identify points belonging to
the �oor.
This simple technique relies on frame-to-frame coherency, therefore it is crucial that the time lapse
between consecutive plane �tting operations is minimal, which means that the task, like any other,
must complete within the assigned time interval.

Completing within the assigned time The time required for computation is directly proportional to
the size of the input depth map, i.e. the number of points, therefore the algorithm may subsample
the input data or the assigned time interval is otherwise insu�cient. The subsampling procedure
consists of a reduce operation, in which an input depth map is reduced to a smaller one using a
min operator. That is, to guarantee conservative results, i.e. that no obstacle goes undetected,
each used sample is assigned with the minimum depth among the original samples it represents.

6.1.2.3 Occupancy Detector

This tasks must tell, for each direction the user could walk, the distance to the closest obstacle.
Because the user needs a free space corresponding to his/her height and width, the task �rst com-
putes a low-resolution, one-dimensional D × 1 depth map using a conservative process as in the
Registration task. The resulting map is therefore a quantization of the space in front of the user
into D values, each one corresponding to a vertical volume spanning a range of possible directions.
The produced depth map is then used to �nd, for each direction, the farthest point reachable by
the user considering his/her width. Figure 6.4 shows a depth map of size 8, in which the most
right region is not reachable although visible from the device. Note that we have no use of a
high resolution depth map since ultimately the user makes imprecise movements. In our tests we
empirically found that a reasonable size of the depth map is 32.

Completing within the assigned time Like for the Registration task, the time for the OccupancyDe-
tector is proportional to the size of the depth-map that can be reduced to ful�ll the time constraint.
However, note that this task is very simple and fast to complete, so that its interruption was never
necessary in practical cases.

6.1. A NAVIGATION SYSTEM FOR VISUALLY IMPAIRED PEOPLE 93

Figure 6.4: Linear depth map of size 8.

6.1.2.4 Walk Detector

This task uses the accelerometer mounted with the Kinect to detect if the user is walking and
at, approximately, at what speed. Since the device is �xed at the height of the pelvis, when the
user walks it moves from left to right and vice versa. Therefore, just like any step counter does,
we track the values provided by the accelerometer and count the frequency of changes of sign of
derivatives. To avoid errors introduced by high-frequency noise, the input signal is �rst smoothed
using a simple �nite impulse response �lter.

6.1.2.5 Analysis

This task reads the input provided by the OccupancyDetector and the WalkDetector and decides
what feedback to give to the user. The algorithm consists of tracking the result of the Occu-
pancyDetector to detect if the user should be told to change direction or to stop. Note that the
occupancy of a region of space is an obstacle only if the user is moving towards said region. If, for
example, the user is walking along a corridor, the walls will occupy the space on left and right, but
they are not obstacles. Another example is represented by someone walking in front of the user
in the same direction. In this case, the distance to the occupied region will be roughly constant.
However, roughly means that we must �lter o� oscillations due to human walking which means, in
turn, that we should know if the person is walking, and this is where WalkDetector is comes into
play.
In the current implementation, the Analysis task monitors the occupancy map and tests if an
obstacle is approaching the user. If this is the case it suggests the closest direction to take to
avoid the obstacle. If there is no such direction, it noti�es the user the he/she is approaching to
a dead end. The speed estimated by the WalkDetector is used to assign the dynamically set time
constraints to the other tasks. If the user is walking slowly or is standing still, we need a lower
refresh rate than if the user is walking fast. In other words, we may say we express the update
frequency per meter. As a conservative policy, if the OccupancyData is not updated on time the
Analysis task tells the user to stop.

6.1.2.6 Audio feedback

We tried two alternative audio feedback responses. The �rst consisted in using few simple messages
(�proceed�,�keep left�,�keep right�,�stop�) that were given according to the simple goal of walking

94 CHAPTER 6. COLLATERAL WORK

towards the farthest reachable place visible from the scanner. The second was a continuous tone
used to indicate the direction to the farthest reachable place by mapping the direction on the stereo
balance, and the distance to the place in question to the tone pitch.

6.1.3 Experimental Results

We implemented our platform-independent framework in C++, using Qt for multithread/multi-
process foundations and OpenAL for audio feedback and run the system on a Eee PC 1015PD 1.66
GHz, 1 GB RAM. Note that the Eee PC is not a smart phone but it is less powerful of many cur-
rently available smarphone such as the Motorola Atrix (dual core with an NVidia Tegra 2 graphics
card). During development and test we used OpenGL to have a three-dimensional overview of the
acquired data.
We tested the system on a blindfolded, non visually impaired person. This choice was made for the
twofold reason that the system is not yet in its �nal release and that a born blind person is used to
walk without seeing and it would be harder to evaluate the actual contribution of our system. The
subject was brought to an unfamiliar location and asked to reach a point identi�ed as the source
of a sound. The location was �lled with obstacles such as chairs, desks and books on the ground
and there were other people moving in the room. As expected, the user was able to safely reach
the target place avoiding the obstacles and taking the shortest way. It is clear that this is still
a controlled environment where, for example, there are no stairs, therefore the tasks essentially
work as proximity detectors. However, even at this early stage we could observe the e�ects of
the time-critical system. After the �rst test was completed, we asked the user to do another one
by walking as fast as he felt like. In this case the system asked the user to stop when the �rst
obstacle was approaching. This happened not because the OccupancyDetector could not compute
the direction to move to, but simply because it could not do it fast enough.

We observed that, after few minutes, the use of the continuous tone for providing feedback was
more pro�table that single messages. This did not come as a surprise since the tone gives the
essentially same information processed by the Analysis task, but lets the brain do the analysis.

Conclusions

In this dissertation we have presented solutions for computing volumetric light-matter interaction
e�ects on commodity hardware. While on one hand it can be a�rmed that the majority of
fundamental challenges in Computer Graphics have been solved in the last thirty years, the intrinsic
di�culty of light simulation still keeps the design of e�cient algorithms an open problem. Even if
processing power has steadily increased, the demand for realism and speed has grown as well. It is
apparent that the e�cient exploitation of parallelism is one of the promising directions of research,
since light propagation is, by its nature, an inherently parallelizable process. As the design of
hardware changes, and restrictions are lifted on the types of operations that can be performed,
so software architecture will evolve as well. At the same time, perfect physical simulations are
not always necessary in end-user applications and for most purposes it is su�cient to achieve a
plausible rendition of lighting e�ects. Suitable approximations and reasonable assumptions seem
to be always necessary in order to ameliorate the di�culties of the rendering problem, and the
algorithms presented in this thesis conform to this approach.

The �rst method described has been based on the single scattering approximation, which is valid
for all materials with low albedo. We have presented a novel way to solve the resulting problem
by sampling the volume and storing at each sample site the directional optical depth function.
This function is compressed by projecting it on a Spherical Harmonics basis, such that storage is
reduced and evaluation at run-time can be performed e�ciently. Spherical Harmonics projection
however acts as a low pass �lter, and even if the exponential attenuation function is smooth, some
details are unavoidably lost unless a high number of coe�cients is employed. The entire algorithm
relies on a precomputation strategy, which in its current CPU implementation is very expensive;
however a GPU implementation could be substituted in that stage with relatively low e�ort. The
resulting method is capable of dealing with any mesh, even topologically problematic meshes, and
it is easy to incorporate in an existing rendering pipeline, adding to the realism of translucent
materials.

In the second method we relaxed the single scattering assumption and allowed for the presence
of multiple scattering. We decided to attain a higher spatial resolution and work on a voxel grid of
appropriate dimensions. Single Scattering in this method is computed by photon marching light
from sources and performing view-ray marching as a �nal pass. Refraction e�ects are accounted
for by employing eikonal equations instead of standard ray equations used in marching processes.
Multiple Scattering is instead computed by leveraging on the di�usion approximation, which has
been shown to be valid for highly scattering and isotropic materials. Under this assumption it is
possible to compute MS by a Lattice-Boltzmann method, which had never been used on a GPU at
the time. However, we noticed that it could be possible to parallelize e�ciently the SS computation
and the MS one. We therefore developed a parallel architecture which assigns GPU WorkGroups
to the tracing task or to the di�usion task, exploiting the load balancing mechanisms of current
generation GPUs. We further modi�ed standard LBL computation to make it compatible with a
strictly blockized structure and implementing a synchronization method using interfaces between
blocks. The resulting system produces images which are comparable to ground truth pictures
produced with a state-of-the-art o�ine stochastic photon tracer.

In the third method we dropped the di�usion approximation and worked on a method that
could be capable of capturing the e�ects on light scattering due to anisotropic phase functions. The

96 CHAPTER F. CONCLUSIONS

method can be classi�ed in the Discrete Ordinates Method family, as it performs a full discretization
of directions in addition to the discretization of space employed in the previous method. Transfer
of energy is accurately computed using the Radiative Transfer Equation not only between voxels,
but also between di�erent faces of the same voxel. In order to keep the dimensions of the light-
storage dataset manageable, we detach the propagation angular resolution from the storage angular
resolution, and employ a wave-like propagation scheme similar to the sweep3d algorithm. This
allows in-scattered light to be propagated at a higher resolution and at a higher distance in less
time with respect to a Lattice Boltzmann propagation. Furthermore, in order to support bigger
datasets, we developed an Out Of Core streaming mechanism that exploits known access patterns
to move volumetric data to and from GPU memory. This allows the method to accurately visualize
scattering e�ects even in datasets many times bigger than the available memory.

In a future work, we could explore the interaction of lighting e�ects with volumes de�ned at
di�erent resolutions in di�erent areas (eg. Sun et al's work[122]), especially in our multiple scat-
tering solutions. Such reframing of the problem would introduce in the �rst of such algorithms
(chapter 4) issues regarding the energy exchange between Workgroups operating at di�erent reso-
lutions, while in the second (chapter 5) it would impose a di�erent paradigm of wave propagation.
However, the presented algorithms would be more amenable to be integrated in an end-user ren-
dering engine, where dynamically switching dataset resolution is a common acceleration technique.
Furthermore, there have been little studies on the correlation between the resolution needed for
subsurface lighting data structures and the resolution of the input dataset. Among the algorithms
working in this direction, we recall here Lightcuts[1] and Light Propagation Volumes[15, 11]. On a
di�erent branch of research, further improvements could be made on the second paper, namely a
modi�ed DOM which can take into account Eikonal refraction through volumes. To the best of our
knowledge, such modi�cation has not been introduced yet. In general, few investigations has been
made on the correlation between refraction and scattering, and it is telling how, despite being two
phenomenas springing from the same physical properties, they are generally treated as mutually
independent e�ects. For example, even if a refracting reformulation of the di�usion equation has
been introduced [78], no algorithm based on such a model has yet been produced.

In conclusion, the current dissertation has added to the state of the art in the domain of real-
time rendering of volumetric e�ects and in collateral �elds, and it has resulted in the following
publications:

� [7] D. Bernabei, F. Ganovelli, N. Pietroni, P. Cignoni, S. Pattanaik, and R. Scopigno, �Real-
time single scattering inside inhomogeneous materials,� The Visual Computer, vol. 26, no.
6�8, pp. 583�593, Apr. 2010.

� [8] D. Bernabei, A. Hakke Patil, F. Banterle, F. Ganovelli, M. Di Benedetto, S. Pattanaik, and
R. Scopigno, �A Parallel Architecture for Interactive Rendering of Scattering and Refraction
E�ects,� IEEE Computer Graphics and Applications, vol. 30, no. 3, 2011.

� [6] D. Bernabei, F. Ganovelli, M. Di Benedetto, M. Dellepiane, and R. Scopigno, �Walka-
Ware : A Low-Cost Time-Critical Obstacle Avoidance System for the Visually Impaired,� in
International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2011, Short
Paper.

Bibliography

[1] Adam Arbree, Bruce Walter, and Kavita Bala. Single-pass Scalable Subsurface Rendering
with Lightcuts. Computer Graphics Forum, 27(2):507�516, April 2008.

[2] Adam Arbree, Bruce Walter, and Kavita Bala. Di�usion formulation for heterogeneous
subsurface scattering. Technical report, Cornell University, 2009.

[3] Adam Arbree, Bruce Walter, and Kavita Bala. Heterogeneous Subsurface Scattering Using
the Finite Element Method. IEEE Transactions on Visualization and Computer Graphics,
17(7):956�969, 2011.

[4] Ilya Baran, Jiawen Chen, Jonathan Ragan-Kelley, Frédo Durand, and Jaakko Lehtinen. A
hierarchical volumetric shadow algorithm for single scattering. In ACM SIGGRAPH Asia
2010 papers on - SIGGRAPH ASIA '10, volume 29, page 1, New York, New York, USA,
December 2010. ACM Press.

[5] LB Barichello and CE Siewert. On the equivalence between the discrete ordinates and the
spherical harmonics methods in radiative transfer. Nuclear science and engineering, pages
79�84, 1998.

[6] Daniele Bernabei, Fabio Ganovelli, Marco Di Benedetto, Matteo Dellepiane, and Roberto
Scopigno. WalkaWare : A Low-Cost Time-Critical Obstacle Avoidance System for the Vi-
sually Impaired. In International Conference on Indoor Positioning and Indoor Navigation
(IPIN), number September, pages 21�23, 2011.

[7] Daniele Bernabei, Fabio Ganovelli, Nico Pietroni, Paolo Cignoni, Sumanta Pattanaik, and
Roberto Scopigno. Real-time single scattering inside inhomogeneous materials. The Visual
Computer, 26(6-8):583�593, April 2010.

[8] Daniele Bernabei, Ajit Hakke Patil, Francesco Banterle, Fabio Ganovelli, Marco Di
Benedetto, Sumanta Pattanaik, and Roberto Scopigno. A Parallel Architecture for Inter-
active Rendering of Scattering and Refraction E�ects. IEEE Computer Graphics and Appli-
cations, 30(3), 2011.

[9] N Bhate and A Tokuta. Photorealistic Volume Rendering of Media with Directional Scat-
tering. In Third Eurographics Workshop on Rendering, pages 227�245, 1992.

[10] Markus Billeter, Erik Sintorn, and Ulf Assarsson. Real Time Volumetric Shadows using
Polygonal Light Volumes. In Proceedings of the Conference on High Performance Graphics.
Eurographics Association, 2010.

[11] Markus Billeter, Erik Sintorn, and Ulf Assarsson. Real-time multiple scattering using light
propagation volumes. In Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games - I3D '12, pages 119�126, New York, New York, USA, 2012. ACM
Press.

98 CHAPTER 0. BIBLIOGRAPHY

[12] Pettitt S Blenkhom P. and Evans D G. An ultrasonic mobility device with minimal audio
feedback. In 12� Annual International Conference on Technology and Persons with Disabil-
ities, 1997.

[13] James F Blinn. Light re�ection functions for simulation of clouds and dusty surfaces. SIG-
GRAPH Comput. Graph., 16:21�29, 1982.

[14] Craig F. Bohren and Eugene Edmund Clothiaux. Fundamentals of atmospheric radiation:
an introduction with 400 problems. page 472, 2006.

[15] J Borlum and BB Christensen. SSLPV: subsurface light propagation volumes. In Proceedings
of the ACM SIGGRAPH Symposium on High Performance Graphics, pages 7�14. ACM, 2011.

[16] R Bostelman, P Russo, J Albus, T Hong, and R Madhavan. Applications of a 3D Range Cam-
era Towards Healthcare Mobility Aids. 2006 IEEE International Conference on Networking,
Sensing and Control, pages 416�421, 2006.

[17] Chen Cao, Zhong Ren, Baining Guo, and Kun Zhou. Interactive Rendering of Non-Constant,
Refractive Media Using the Ray Equations of Gradient-Index Optics. In Computer Graphics
Forum, volume 29, pages 1375�1382. Wiley Online Library, 2010.

[18] Eva Cerezo, Frederic Perez-Cazorla, Xavier Pueyo, Francisco Seron, and François Sillion. A
Survey on Participating Media Rendering Techniques. The Visual Computer, 2005.

[19] S Chandrasekhar. Radiative Transfer. Dover Publications, Inc, 1950.

[20] Guojun Chen, Pieter Peers, Jiawan Zhang, and Xin Tong. Real-time rendering of deformable
heterogeneous translucent objects using multiresolution splatting. The Visual Computer,
28(6-8):701�711, April 2012.

[21] Jiawen Chen, Ilya Baran, Frédo Durand, and Wojciech Jarosz. Real-time volumetric shadows
using 1D min-max mipmaps. In Symposium on Interactive 3D Graphics and Games on - I3D
'11, page 39, New York, New York, USA, February 2011. ACM Press.

[22] S Chumkamon, P Tuvaphanthaphiphat, and P Keeratiwintakorn. A blind navigation system
using RFID for indoor environments. In ECTI-CON 2008, volume 2, pages 765�768, May
2008.

[23] P. J. Coelho. A modi�ed version of the discrete ordinates method for radiative heat transfer
modelling. Computational Mechanics, 33(5):375�388, April 2004.

[24] Robert L Cook. Stochastic sampling in computer graphics. ACM Transactions on Graphics,
5:51�72, 1986.

[25] Michael Cox and David Ellsworth. Application-controlled demand paging for out-of-core
visualization. In Proceedings of the 8th conference on Visualization '97. IEEE Computer
Society Press, 1997.

[26] Cyril Crassin, Fabrice Neyret, S Lefebvre, and E. Gigavoxels: Ray-guided streaming for
e�cient and detailed voxel rendering. Proceedings of the 2009 ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (I3D), d, 2009.

[27] Carsten Dachsbacher and Marc Stamminger. Translucent shadow maps. In EGRW '03:
Proceedings of the 14th Eurographics workshop on Rendering, pages 197�201, Aire-la-Ville,
Switzerland, Switzerland, 2003. Eurographics Association.

[28] E D'Atri, C M Medaglia, A Serbanati, and U B Ceipidor. A system to aid blind people in the
mobility: A usability test and its results. In Systems, 2007. ICONS '07. Second International
Conference on, page 35, 2007.

0.0. BIBLIOGRAPHY 99

[29] Charles de Rousiers, Adrien Bousseau, Kartic Subr, Nicolas Holzschuch, and Ravi Ra-
mamoorthi. Real-time rough refraction. In Symposium on Interactive 3D Graphics and
Games on - I3D '11, page 111, New York, New York, USA, 2011. ACM Press.

[30] E D'Eon, David Luebke, and Eric Enderton. E�cient rendering of human skin. In Proceedings
of the 18th Eurographics conference on Rendering Techniques, pages 147�157. Eurographics
Association, 2007.

[31] Eugene D'Eon and Geo�rey Irving. A Quantized-Di�usion Model for Rendering Translucent
Materials. 30(4):1�13, 2011.

[32] Yoshinori Dobashi, Kazufumi Kaneda, Hideo Yamashita, Tsuyoshi Okita, and Tomoyuki
Nishita. A Simple, E�cient Method for Realistic Animation of Clouds. In Kurt Akeley,
editor, Siggraph 2000, Computer Graphics Proceedings, Annual Conference Series, pages 19�
28. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

[33] Yoshinori Dobashi, Tsuyoshi Yamamoto, and Tomoyuki Nishita. Interactive Rendering of
Atmospheric Scattering E�ects Using Graphics Hardware. pages 1�10, 2002.

[34] Craig Donner and Henrik Wann Jensen. Light di�usion in multi-layered translucent materials.
ACM Transactions on Graphics, 24:1032�1039, July 2005.

[35] Craig Donner and HW Jensen. Rendering translucent materials using photon di�usion. ACM
SIGGRAPH 2008 classes, 2008.

[36] Craig Donner, Jason Lawrence, Ravi Ramamoorthi, Toshiya Hachisuka, Henrik Wann Jensen,
and Shree Nayar. An empirical BSSRDF model. ACM Transactions on Graphics, 28(3):1,
July 2009.

[37] Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin Legakis, and Hans Kohling Ped-
ersen. Modeling and rendering of weathered stone. In Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques - SIGGRAPH '99, pages 225�234,
New York, New York, USA, July 1999. ACM Press.

[38] Oskar Elek, Tobias Ritschel, and Hans-Peter Seidel. Real-Time Screen-Space Scattering in
Homogeneous Environments. IEEE Computer Graphics and Applications, pages 1�1, 2013.

[39] Thomas Engelhardt and Carsten Dachsbacher. Epipolar sampling for shadows and cre-
puscular rays in participating media with single scattering. Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games, page 119, 2010.

[40] Thomas Engelhardt, Jan Novak, and Carsten Dachsbacher. Instant Multiple Scattering for
Interactive Rendering of Heterogeneous Participating Media. Technical Report December,
2010.

[41] KF Evans and LH Chambers. The Spherical Harmonics Discrete Ordinate Method for Three-
Dimensional Atmospheric Radiative Transfer. Program, pages 0�4, 1998.

[42] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A Comprehensive Performance Com-
parison of CUDA and OpenCL. 2011 International Conference on Parallel Processing, pages
216�225, September 2011.

[43] Shiaofen Fang and Hongsheng Chen. Hardware accelerated voxelization. Computers &
Graphics, 2000.

[44] J Faria, S Lopes, H Fernandes, P Martins, J Barroso, Lopes St, Fernandes Ht, and Barroso J.
Electronic white cane for blind people navigation assistance. In World Automation Congress
(WAC), 2010, pages 1�7, 2010.

100 CHAPTER 0. BIBLIOGRAPHY

[45] Raanan Fattal. Participating media illumination using light propagation maps. ACM Trans-
actions on Graphics, 28(1):1�11, January 2009.

[46] Guillaume François, Sumanta Pattanaik, Kadi Bouatouch, and Gaspard Breton. Subsurface
texture mapping. In SIGGRAPH {'}06: ACM SIGGRAPH 2006 Sketches, page 172, New
York, NY, USA, 2006. ACM.

[47] Robert Geist, Karl Rasche, James Westall, and Robert Schalko�. Lattice-Boltzmann Light-
ing. In Alexander Keller and Henrik Wann Jensen, editors, Eurographics Symposium on
Rendering, pages 355�362, Norrkoping, Sweden, 2004. Eurographics Association.

[48] Robert Geist and Jay Steele. A lighting model for fast rendering of forest ecosystems. 2008
IEEE Symposium on Interactive Ray Tracing, pages 99�106, August 2008.

[49] Robert Geist and James Westall. Lattice-Boltzmann Lighting Models. In Wen-mei W. Hwu,
editor, GPU Computing Gems Emerald Edition, chapter 25. Morgan Kaufmann, 2011.

[50] Enrico Gobbetti and Fabio Marton. Far voxels. ACM Transactions on Graphics, 24(3):878,
July 2005.

[51] Enrico Gobbetti, Fabio Marton, and José Antonio Iglesias Guitián. A single-pass GPU ray
casting framework for interactive out-of-core rendering of massive volumetric datasets. The
Visual Computer, 24(7-9):797�806, June 2008.

[52] Chunye Gong, Jie Liu, Zhenghu Gong, Jin Qin, and Jing Xie. Optimizing Sweep3D for
Graphic Processor Unit. pages 416�426, 2010.

[53] S. Gortler, M.F. Cohen, and P. Slusallek. Radiosity and relaxation methods. IEEE Computer
Graphics and Applications, 14(6):48�58, November 1994.

[54] Tom Haber, Tom Mertens, Philippe Bekaert, and Frank Van Reeth. A computational ap-
proach to simulate subsurface light di�usion in arbitrarily shaped objects. In Graphics In-
terface, Proceedings of the Graphics Interface 2005 Conference, May 9-11, 2005, Victoria,
British Columbia, Canada, pages 79�86. Canadian Human-Computer Communications So-
ciety, 2005.

[55] David W Hahn. Light Scattering Theory. (July):1�13, 2009.

[56] Pat Hanrahan and Wolfgang Krueger. Re�ection from layered surfaces due to subsurface
scattering. of the 20th annual conference on, page 174, 1993.

[57] Xuejun Hao and Amitabh Varshney. Real-time rendering of translucent meshes. ACM
Transactions on Graphics, 23:120�142, 2004.

[58] Mark Harris, S Sengupta, and JD Owens. Parallel pre�x sum (scan) with CUDA. GPU
Gems, (April), 2007.

[59] Mark J Harris and Anselmo Lastra. Real-time cloud rendering. In Computer Graphics
Forum, pages 76�84. Blackwell Publishing, 2001.

[60] Kyle Hegeman, Michael Ashikhmin, and Simon Premoºe. A lighting model for general par-
ticipating media. Proceedings of the 2005 symposium on Interactive 3D graphics and games
- SI3D '05, page 117, 2005.

[61] Nicolas Holzschuch and Jean-Dominique Gascuel. Double and Multiple-scattering e�ects in
translucent materials. IEEE Computer Graphics and Applications, 3:1�1, 2013.

[62] H. C. Hottel and A. F. Saro�m. Radiative transfer. AIChE Journal, 15(5):794�796, 1969.

0.0. BIBLIOGRAPHY 101

[63] Andreas Hub and Joachim Diepstraten. Augmented indoor modeling for navigation support
for the blind. CPSN'05-The International Conference on Computers for People with Special
Needs, 2005.

[64] Ivo Ihrke, Gernot Ziegler, Art Tevs, and Christian Theobalt. Eikonal rendering: e�cient
light transport in refractive objects. ACM Transactions on Graphics, 26(3), 2007.

[65] T Imagire, H Johan, N Tamura, and T Nishita. Anti-aliased and real-time rendering of scenes
with light scattering e�ects. The Visual Computer, 2007.

[66] A Ishimaru. Wave propagation and scattering in random media. 1978.

[67] G Jansson, H Petrie, and C Colwell. Haptic virtual environments for blind people: Ex-
ploratory experiments with two devices. Journal of Virtual Reality, 3:10�20, 1999.

[68] Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. A com-
prehensive theory of volumetric radiance estimation using photon points and beams. ACM
Transactions on Graphics, 30(1):1�19, January 2011.

[69] Henrik Wann Jensen and Juan Buhler. A rapid hierarchical rendering technique for translu-
cent materials. In SIGGRAPH '02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 576�581, New York, NY, USA, 2002. ACM.

[70] Henrik Wann Jensen, S.R. Marschner, Marc Levoy, and Pat Hanrahan. A practical model
for subsurface light transport. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 511�518, New York, NY, USA, 2001. ACM New
York, NY, USA.

[71] Henrik Wann HW Jensen and PH Per H. Christensen. E�cient simulation of light transport
in scences with participating media using photon maps. In Proceedings of the 25th annual
conference on Computer graphics and interactive techniques, pages 311�320, New York, NY,
USA, July 1998. ACM.

[72] Jorge Jimenez, Veronica Sundstedt, and Diego Gutierrez. Screen-space perceptual rendering
of human skin. ACM Transactions on Applied Perception, 6(4):1�15, September 2009.

[73] Daniel Jönsson, Erik Sundén, Anders Ynnerman, and Timo Ropinski. State of The Art
Report on Interactive Volume Rendering with Volumetric Illumination. Star, 1, 2012.

[74] James T. Kajiya. The rendering equation, 1986.

[75] James T. Kajiya and Brian P Von Herzen. Ray Tracing Volume Densities. In Computer
Graphics (ACM SIGGRAPH '84 Proceedings), volume 18, pages 165�174, July 1984.

[76] Anton Kaplanyan and Carsten Dachsbacher. Cascaded light propagation volumes for real-
time indirect illumination. In Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games - I3D '10, page 99, New York, New York, USA, 2010. ACM Press.

[77] Alexander Keller. Instant radiosity. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques - SIGGRAPH '97, pages 49�56, New York, New
York, USA, 1997. ACM Press.

[78] T Khan. On derivation of the radiative transfer equation and its di�usion approximation for
scattering media with spatially varying refractive indices. Clemson University Mathematical
Sciences Technical Report, 2003.

[79] Khronos OpenCL Working Group. OpenCL Speci�cation. Technical report, 2011.

102 CHAPTER 0. BIBLIOGRAPHY

[80] Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multi-Dimensional Transfer Func-
tions for Interactive Volume Rendering. IEEE Transactions on Visualization and Computer
Graphics, 8(3):270�285, July 2002.

[81] K.R. Koch, R.S. Baker, and R.E. Alcou�e. Solution of the �rst-order form of the 3-D discrete
ordinates equations on a massively parallel machine. January 1991.

[82] Jens Krüger, Kai Bürger, and Rüdiger Westermann. Interactive Screen-Space Accurate
Photon Tracing on GPUs, 2006.

[83] Eric P Lafortune and Yves D Willems. Rendering Participating Media with Bidirectional
Path Tracing. In Xavier Pueyo and Peter Schröder, editors, Rendering Techniques '96,
Eurographics, pages 91�100. Springer-Verlag Wien New York, 1996.

[84] E. Languénou, Kadi Bouatouch, and M. Chelle. Global illumination in presence of partici-
pating media with general properties. In Proceedings of the Fifth Eurographics Workshop on
Rendering, pages 69�85, 1994.

[85] P Lecocq, S Michelin, D. Arques, and A. Kemeny. Mathematical approximation for real-time
lighting rendering through participating media. Paci�c Graphics Short Papers, pages 2�3,
2000.

[86] Hendrik P A Lensch, Michael Goesele, Philippe Bekaert, Jan Kautz, Marcus A Magnor,
Jochen Lang, and Hans-Peter Seidel. Interactive Rendering of Translucent Objects. Computer
Graphics and Applications, Paci�c Conference on, 0:214, 2002.

[87] Marc Levoy. Display of Surfaces from Volume Data. D:1�10, 1988.

[88] Dongping Li, X Sun, Z Ren, Stephen Lin, Y Tong, B Guo, and K Zhou. TransCut: Interactive
Rendering of Translucent Cutouts. pages 1�11, 2012.

[89] Hongsong Li, Fabio Pellacini, and Kenneth E. Torrance. A hybrid monte carlo method for
accurate and e�cient subsurface scattering. Eurographics Symposium on Rendering, pages
283�290, June 2005.

[90] Erik Lindholm, Mark J. Kligard, and Henry Moreton. A user-programmable vertex engine.
Proceedings of the 28th annual conference on Computer graphics and interactive techniques
- SIGGRAPH '01, pages 149�158, 2001.

[91] J Lopez-Moreno, Angel Cabanes, and Diego Gutierrez. Image-based participating media.
Proc. CEIG, 5, 2008.

[92] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3D surface
construction algorithm. SIGGRAPH Comput. Graph., 21:163�169, 1987.

[93] Morgan McGuire and David Luebke. Hardware-accelerated global illumination by image
space photon mapping. Proceedings of the Conference on High Performance Graphics, 2009.

[94] Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth, and Hans-Peter Seidel. Ef-
�cient Rendering of Local Subsurface Scattering. Computer Graphics Forum, 24(1):41�49,
March 2005.

[95] Tom Mertens, Jan Kautz, Hans-Peter Seidel, Philippe Bekaert, and F. Van Reeth. Interactive
rendering of translucent deformable objects. In Proceedings of the 14th Eurographics workshop
on Rendering, pages 130�140, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics
Association.

[96] Jonathan T Moon, Bruce Walter, and Steve Marschner. E�cient multiple scattering in hair
using spherical harmonics. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, pages 1�7,
New York, NY, USA, 2008. ACM.

0.0. BIBLIOGRAPHY 103

[97] OV Nikolaeva and LP Bass. Radiative transfer in horizontally and vertically inhomogeneous
turbid media. In Light Scattering Reviews 2. Springer Praxis Books, 2007.

[98] Tomoyuki Nishita, Yasuhiro Miyawaki, and Eihachiro Nakamae. A shading model for atmo-
spheric scattering considering luminous intensity distribution of light sources. In SIGGRAPH
'87: Proceedings of the 14th annual conference on Computer graphics and interactive tech-
niques, pages 303�310, New York, NY, USA, 1987. ACM.

[99] SN Pattanaik and SP Mudur. Computation of global illumination in a participating medium
by monte carlo simulation. The Journal of Visualization and Computer Animation, 4(3):133�
152, 1993.

[100] Mark Pauly, T Kollig, and A Keller. Metropolis light transport for participating media. 2000.

[101] Vincent Pegoraro. A closed-form solution to single scattering for general phase functions and
light distributions. 2010.

[102] Vincent Pegoraro. A mathematical framework for e�cient closed-form single scattering. In
Proceedings of Graphics Interface 2011, pages 151�158. Canadian Human-Computer Com-
munications Society, 2011.

[103] Vincent Pegoraro and Steven G. Parker. An Analytical Solution to Single Scattering in
Homogeneous Participating Media. Computer Graphics Forum, 28(2):329�335, April 2009.

[104] F G Peris, L Dunai, P V Santiago, and I Dunai. CASBliP - a new cognitive object detection
and orientation aid system for blind people. CogSys2010 Conference, 2010.

[105] Matt Pharr and Pat Hanrahan. Monte Carlo evaluation of non-linear scattering equations
for subsurface re�ection. Proceedings of the 27th annual conference on Computer graphics
and interactive techniques - SIGGRAPH '00, pages 75�84, July 2000.

[106] Rudolph W Preisendorfer. Hydrologic Optics. U.S. Department of Commerce - National
Oceanic and Atmospheric Administration Enviromental Research Laboratories, 1976.

[107] Simon Premoºe, Michael Ashikhmin, and Peter Shirley. Path integration for light trans-
port in volumes. In Proceedings of the 14th Eurographics workshop on Rendering, page 63.
Eurographics Association, 2003.

[108] Ravi Ramamoorthi and Pat Hanrahan. Frequency space environment map rendering. In
SIGGRAPH '02: Proceedings of the 29th annual conference on Computer graphics and in-
teractive techniques, pages 517�526, New York, NY, USA, 2002. ACM.

[109] M.a. Ramankutty and A.L. Crosbie. Modi�ed discrete ordinates solution of radiative transfer
in two-dimensional rectangular enclosures. Journal of Quantitative Spectroscopy and Radia-
tive Transfer, 57(1):107�140, January 1997.

[110] Kirk Riley, David S Ebert, Martin Kraus, Jerry Tessendorf, and Charles Hansen. E�cient
Rendering of Atmospheric Phenomena, 2004.

[111] Holly Rushmeier. Realistic Image Synthesis for Scenes with Radiatively Participating Media.
PhD thesis, 1988.

[112] Holly E. Rushmeier and Kenneth E. Torrance. The zonal method for calculating light in-
tensities in the presence of a participating medium. ACM SIGGRAPH Computer Graphics,
21(4):293�302, August 1987.

[113] Musawir A. Shah, Jaakko Konttinen, and Sumanta Pattanaik. Image-space subsurface scat-
tering for interactive rendering of deformable translucent objects. Computer Graphics and
Applications, 29(1):66�78, 2009.

104 CHAPTER 0. BIBLIOGRAPHY

[114] Shraga Shoval, Iwan Ulrich, and Johann Borenstein. Computerized obstacle avoidance sys-
tems for the blind and visually impaired, pages 413�448. CRC Press, Inc., Boca Raton, FL,
USA, 2001.

[115] François X. Franqois X Sillion. A uni�ed hierarchical algorithm for global illumination with
scattering volumes and object clusters. IEEE Transactions on Visualization and Computer
Graphics, 1(3):240�254, 1995.

[116] Peter-Pike Sloan, Jesse Hall, John Hart, and John Snyder. Clustered principal components
for precomputed radiance transfer. ACM Transactions on Graphics, 22:382�391, 2003.

[117] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance transfer for real-
time rendering in dynamic, low-frequency lighting environments. In Proceedings of the 29th
annual conference on Computer graphics and interactive techniques - SIGGRAPH '02, page
527, New York, New York, USA, 2002. ACM Press.

[118] Ying Song, Xin Tong, Fabio Pellacini, and Pieter Peers. SubEdit: a representation for editing
measured heterogeneous subsurface scattering. ACM Transactions on Graphics (. . . , 2009.

[119] Jos Stam. Multiple scattering as a di�usion process. In Eurographics Rendering Workshop
1995, pages 41�50. Citeseer, 1995.

[120] J Steele and Robert Geist. Relighting forest ecosystems. Advances in Visual Computing,
pages 1�12, 2009.

[121] Bo Sun, Ravi Ramamoorthi, Srinivasa G Narasimhan, and Shree K. Nayar. A Practical
Analytic Single Scattering Model for Real Time Rendering. In ACM SIGGRAPH 2005
Papers, number c, page 1049. ACM, 2005.

[122] Xin Sun, Kun Zhou, Eric Stollnitz, Jiaoying Shi, and Baining Guo. Interactive relighting of
dynamic refractive objects. In ACM SIGGRAPH 2008 papers, page 35. ACM, 2008.

[123] Nelson Max This, F L July, Istribution Of, This Document, and Nelson L. Max. E�cient light
propagation for multiple anisotropic volume scattering. In Proc. of the Fifth Eurographics
Workshop on Rendering, volume pages, pages 87�104. Citeseer, 1994.

[124] M A Torres-Gil, O Casanova-Gonzalez, and J L Gonzalez-Mora. Applications of virtual
reality for visually impaired people. W. Trans. on Comp., 9(2):184�193, February 2010.

[125] Tatsuro Ueda, Hirohiko Kawata, Tetsuo Tomizawa, Akihisa Ohya, and Shin'ich Yuta. Visual
Information Assist System Using 3D SOKUIKI Sensor for Blind People, System Concept and
Object Detecting Experiments. IECON 2006 - 32nd Annual Conference on IEEE Industrial
Electronics, pages 3058�3063, November 2006.

[126] Biri Venceslas, Michelin Sylvain, and Didier Arques. Real-Time Single Scattering with Vol-
umetric Shadows, May 2003.

[127] B Walter, S Zhao, N Holzschuch, and Kavita Bala. Single scattering in refractive media with
triangle mesh boundaries, 2009.

[128] Jiaping Wang. Modeling and rendering of heterogeneous translucent materials using the
di�usion equation. ACM Transactions on Graphics, 27:1, 2008.

[129] Rui Wang, John Tran, and David Luebke. All-frequency interactive relighting of translucent
objects with single and multiple scattering. ACM Transactions on Graphics, 24(3):1207,
2005.

[130] Y. Wang, J Wang, N Holzschuch, K. Subr, J.H. Yong, and Baining Guo. Real-time Rendering
of Heterogeneous Translucent Objects with Arbitrary Shapes. In Computer Graphics Forum,
volume 29, pages 497�506. John Wiley & Sons, 2010.

0.0. BIBLIOGRAPHY 105

[131] D White K. . Cline and P Egbert. Poisson disk point sets by hierarchical dart throwing.
Symposium on Interactive Ray Tracing, pages 129�132, 2007.

[132] Turner Whitted. An improved illumination model for shaded display. Communications of
the ACM, 23(6):343�349, June 1980.

[133] Chris Wyman. An approximate image-space approach for interactive refraction. ACM SIG-
GRAPH 2005 Papers on - SIGGRAPH '05, 1:1050, 2005.

[134] Chris Wyman and Shaun Ramsey. Interactive volumetric shadows in participating media
with single-scattering. In Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium on,
pages 87�92. IEEE, 2008.

[135] Kun Xu, Yue Gao, Yong Li, Tao Ju, and Shi-Min Hu. Real-time homogenous translucent
material editing. Computer Graphics Forum, 26(3):545�552, September 2007.

[136] Kun Zhou, Qiming Hou, Minmin Gong, John Snyder, Baining Guo, and H.Y. Shum. Fogshop:
Real-time design and rendering of inhomogeneous, single-scattering media. PG '07: Proceed-
ings of the 15th Paci�c Conference on Computer Graphics and Applications, pages 116�125,
2007.

[137] Kun Zhou, Zhong Ren, Stephen Lin, Hujun Bao, Baining Guo, and Heung-Yeung Shum.
Real-time smoke rendering using compensated ray marching. ACM Transactions on Graphics,
27(3):1, August 2008.

106 CHAPTER 0. BIBLIOGRAPHY

Appendix A

Spherical Harmonics and Legendre

Polynomials

A.1 Spherical Harmonics

Spherical Harmonics are a set of twice continuously di�erentiable orthogonal spherical functions
which satisfy Laplace Equation ∇2f = 0. They can be de�ned from Legendre Polynomials as
follows,

Yl,m(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pl,m(cos θ)eimϕ

where l is called the degree and m the order of the harmonic. Pl,m(x) is an Associated Legendre
Polynomial . For the sake of notation simplicity, we introduce the scaling factor Kl,m, de�ned as

Kl,m =

√
2l + 1

4π

(l −m)!

(l +m)!

Spherical Harmonics have Complex domain; since we intend to use them to approximate real
valued functions, we will restrict to Real Spherical Harmonics only, indicated as yl,m(θ, ϕ). They
are de�ned from Complex Spherical Harmonics as follows:

yl,m(θ, ϕ) =


1√
2

(
Yl,m(θ, ϕ) + Y ∗l,m(θ, ϕ)

)
m > 0

Yl,0(θ, ϕ) m = 0
−i√

2

(
Yl,|m|(θ, ϕ)− Y ∗l,|m|(θ, ϕ)

)
m < 0

where Yl,m(θ, ϕ) is the Complex Spherical Harmonic and Y ∗l,m(θ, ϕ) its conjugate. Separating
the real part from the imaginary one, we have,

< (Y (θ, ϕ)) = Kl,mPl,m(cos θ) cos(mϕ)

= (Y (θ, ϕ)) = Kl,mPl,m(cos θ) sin(mϕ)

Finally, the real Spherical Harmonics are,

yl,m(θ, ϕ) =


√

2 < (Yl,m(θ, ϕ)) m > 0

Yl,0(θ, ϕ) m = 0√
2 =

(
Yl,|m|(θ, ϕ)

)
m < 0

108 APPENDIX A. SPHERICAL HARMONICS AND LEGENDRE POLYNOMIALS

with

Yl,0(θ, ϕ) = Kl,0Pl,0(cos θ)

Spherical Harmonics have many application domains. Their main use in Computer Graphics
is to approximate spherical functions, in a manner similar to the Fourier Transform. Any function
f(θ, ϕ) can be projected on the Spherical Harmonics basis by integrating its product with the basis.

fl,m =

ˆ
Ξ

f(θ, ϕ)yl,m(θ, ϕ) d(θ, ϕ)

The resulting coe�cients fl,m may be used to reconstruct the original function in the following
manner

f̃(θ, ϕ) =

n−1∑
l=0

l∑
m=−l

fl,myl,m(θ, ϕ)

Spherical Harmonics act as low-pass �lters on functions, producing smooth, anti-aliased ap-
proximations.

A very useful property of SHs is that they considerably speed up the operation of integrating
the product of two functions. If f and g are both projected on the Spherical Harmonics basis, then

ˆ
Ξ

f(θ, ϕ)g(θ, ϕ) d(θ, ϕ) =

n−1∑
l=0

l∑
m=−l

fl,m(θ, ϕ)gl,m(θ, ϕ)

This means, essentially, that any integral of such form can be reduced to a dot product of two
vectors of coe�cients.

A similar property allows for the partial precomputation of a product of two functions in the
SH basis. Suppose function a(θ, ϕ) is known while function b(θ, ϕ) will be known only at a later
time. Let us call c(θ, ϕ) = a(θ, ϕ)b(θ, ϕ). It is then possible to build a matrix that represents the
multiplication by a(θ, ϕ)(in the SH basis) as follows:

Ai,j =

ˆ
Ξ

a(θ, ϕ)yi(θ, ϕ)yj(θ, ϕ) ds

so that the coe�cients of c can be obtained by

ci =

n2∑
j=1

Ai,jbi

Spherical Harmonics have other interesting properties regarding rotations and convolutions of
functions, which will not be covered in this text.

A.2 Legendre Polynomials

Associated Legendre Polynomials are solutions to General Legendre Di�erential Equation, and they
can be de�ned from Legendre Polynomials using recurrence relations.

The �rst two Legendre Polynomials are:

P0(x) = 1

P1(x) = x

To compute successive polynomials in the series, the following recurrence relation can be used:

Pl+1(x) =
(x(2l + 1)Pl(x)− lPl−1(x))

l + 1

A.2. LEGENDRE POLYNOMIALS 109

Regarding Associated Legendre Polynomials, the following recurrence relations are used,

Pl,0(x) = Pl(x)

Pm,m(x) = (−1)m(2m− 1)!!
√

(1− x2)l

Pm,m+1(x) = x(2m+ 1)Pm,m(x)

Pm,l+1(x) =
(x(2l + 1 +m)Pm,l(x)− lPm,l−1(x))

l + 1−m

	Introduction
	Physics of Light Transfer
	Radiometry
	Radiant Flux
	Irradiance
	Radiance
	Irradiance from Radiance

	Material Properties
	Cross-sections
	Coefficients
	Index of refraction
	Phase Functions

	Light transmission
	Refraction Equations
	Beer-Lambert law and Optical Distance
	Volume Rendering Equation (Integro-Differential Form)
	Source Function Formulation
	Volume Rendering Equation (Integral Form)
	Separation of Single and Multiple Scattering
	Bidirectional Functions

	Literature Review
	Discrete Ordinates Method
	Discretization of the RTE
	Modified DOM and SHDOM
	Light Propagation Volumes

	Multiple Scattering as a Diffusion Process
	The Diffusion Equation
	Solvers to the Diffusion Equation
	Lattice-Boltzmann Diffusion

	The Dipole Model
	Real-time Rendering with the Dipole Method
	Screen space Subsurface Scattering

	Volume Rendering
	Ray Marching
	Splatting and Slicing

	Single Scattering Integral and Closed Form Solutions
	Air Light Integral
	A closed form Integral Solution

	Precomputed Radiance Transfer
	Refraction

	Efficient Compression of Material Properties for Single Scattering
	Algorithm Overview
	Reformulating the Radiative Transfer Equation

	Point Sampling Algorithm
	Sampling Algorithm
	Offset Surfaces Construction
	Density Heuristic
	Poisson Disks Sampling

	Setting Samples Parameters
	Spherical Harmonics Compression
	Gaussian Functions Width

	Rendering Algorithm
	First Pass
	Second Pass

	Results
	Comparison with ground truth
	Efficiency
	Discussion

	A Parallel Ray Tracing and Lattice-Boltzman Method
	Overview of the algorithm
	GPU Parallel Programming
	Init pass
	Ray tracing
	Initializing photon rays
	Marching Pass
	Parallel Implementation
	Transfer

	Diffusion pass
	Diffusion inside a block

	View pass
	Termination condition
	View

	Results
	Comparison with Ground Thruth
	Approximation of LBL
	Performances
	Discussion

	A Scalable Approach to the MDOM
	Outline of the Algorithm
	Adapting the DOM

	Direct Component
	Tracing and Storing Light
	Page Handling

	Parallel Wavefront Propagation
	Radiance of the outgoing faces
	Average radiance of the voxel
	Plane Sweeping
	Streaming Blocks
	View Gathering

	Results
	Performance
	Ground Truth Comparison
	Discussion

	Collateral Work
	A navigation system for visually impaired people
	State of the Art in Computer-Assisted User Navigation
	System Description
	Experimental Results

	Conclusions
	Bibliography
	Spherical Harmonics and Legendre Polynomials
	Spherical Harmonics
	Legendre Polynomials

