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� Reliability of a system is considered where the components’ random lifetimes may be
dependent. The structure of the system is described by an associated “lattice polynomial”
function. Based on that descriptor, general framework formulas are developed and used to
obtain direct results for the cases where a) the lifetimes are “Bayes-dependent,” that is, their
interdependence is due to external factors (in particular, where the factor is the “preliminary
phase” duration) and b) where the lifetimes’ dependence is implied by upper or lower bounds on
lifetimes of components in some subsets of the system. (The bounds may be imposed externally
based, say, on the connections environment.) Several special cases are investigated in detail.
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1. INTRODUCTION

A semicoherent system consisting of nonrepairable components with
random lifetimes can be associated with a Boolean function called the
structure function of the system. It expresses the “on” indicator of the system
through the “on” indicators of the components based on the logic of
connections. In turn, the structure function can be extended to a lattice
polynomial function called the life function of the system, which expresses
the system lifetime in terms of the component lifetimes using minimum
and maximum in place of conjunction and disjunction, respectively.

In this article we use the results on lattice polynomial (l.p.) functions
from a series of our recent articles to obtain formulas for system reliability
where the components’ lifetimes are dependent random variables.
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In the current literature, including such prominent sources as
Refs.[2,3,10,17], that case is explored only under the additional assumption of
exchangeable components (Barlow and Proschan[2,3]) which presupposes
that the marginal distributions of components’ lifetimes are identical.
Meanwhile, in many realistic systems that assumption cannot be applied.

Using l.p. functions we derive a general formula for system reliability
that yields specific results for some important special cases of dependence
among components.

One is the case where the dependence can be ascribed to the
simultaneous influence on all components of some random factors
(such as, say, the system’s environment physical parameters: pressure,
temperature, moisture level, etc). For any given set of values of those
factors components’ lifetimes are conditionally independent (but their
probability distributions depend on the factors’ values). We will refer to
this case as “Bayes-dependence.”

In particular, of special interest is a model where there is a
preliminary period (“pre-phase”) of random duration and all components
are guaranteed to survive it. Once it is over, the components’ individual
“after-phases” are independent and their probability distributions depend
on the “pre-phase” duration.

Another pattern of dependence arises when there are collective upper
or lower bounds on lifetimes of certain subsets of components imposed
by external conditions such as physical properties of the assembly or its
environment. Say, when some components of the system are connected to
the same power source, the lifetime of the source (or the fuse) becomes
a collective upper bound for those components’ lifetimes. Or, when a part
of the system is backed up by a reserve standby device (too expensive,
perhaps, for a regular duty) that instantly picks up duties of any failed
component in that subset, the device’s lifetime becomes a lower bound for
the components’ lifetimes in that subset. A “senior” air traffic controller
could serve as an example here.

To our knowledge, models with such patterns of components’
interdependence have not been analyzed in the literature. Using l.p.
description of a system in this article presents a natural framework for
such analysis because each component’s service duration can be easily and
naturally represented using an l.p. function involving the component’s
own lifetime and bounding random variables.

Moreover, the case where the collective bounds are constant can be
analyzed through so-called weighted lattice polynomial (w.l.p.) functions.

This article is organized as follows. In Section 2 we introduce the l.p.
function of a semicoherent system and use it to present a number of
reliability formulas for a system with generally dependent components’
lifetimes.
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In Section 3 we describe the case of “Bayes-dependence” of
components’ lifetimes and present exact formulas for the system reliability.
In turn, those formulas make it possible to provide exact formulation of
reliability parameters such as the mean time-to-failure of the system.

In Section 4 we analyze systems with “pre-phase” dependent
components. In particular, we present closed-form results for the case
where the “after-phase” durations of components are assumed to have
exponential distributions with failure rates depending on the “pre-phase”
duration. We consider this model as giving a system analyst an alternative
to using Weibull distributions, more complex both analytically and
statistically.

In Section 5 we consider systems with lower and/or upper bounds
on service duration of (subsets) of components. There, we show how the
system’s reliability can be computed as reliability of another, “augmented”
system with added components and connections but without subset
bounds. Based on that representation, when the original components
intrinsic lifetimes are independent, the augmented system’s reliability is
given by formulas of Sections 2 and 3.

For any numbers �, � ∈ � = [−∞,∞] and any subset A ⊆ [n] =
�1, � � � ,n�, let e�,�A denote the characteristic vector of A in ��, ��n , that is,
the n-tuple whose ith coordinate is �, if i ∈ A, and �, otherwise.

2. LATTICE POLYNOMIAL FUNCTION AND RELIABILITY
OF A SYSTEM

Consider a system consisting of n components that are interconnected.
The state of a component i ∈ [n] can be represented by a Boolean variable
xi defined as

xi =
{
1, if component i is functioning,
0, if component i is in a failed state.

For convenience, we also introduce the state vector x = (x1, � � � , xn).
As is common in the literature, the state of the system is described from

the component states through a Boolean function � : �0, 1�n → �0, 1�,
called the structure function of the system and defined as

�(x) =
{
1, if the system is functioning,
0, if the system is in a failed state.

We shall assume throughout that the structure function � is
nondecreasing (the system is then said to be semicoherent) and nonconstant,
this latter condition ensuring that �(0) = 0 and �(1) = 1, where 0 =
(0, � � � , 0) and 1 = (1, � � � , 1).
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As a Boolean function, the structure function � can also be regarded
as a set function v : 2[n] → �0, 1�. The correspondence is straightforward:
We have v(A) = �(e0,1A ) for all A ⊆ [n] and

�(x) =
∑
A⊆[n]

v(A)
∏
i∈A

xi
∏

i∈[n]\A
(1 − xi)� (1)

We shall henceforth make this identification and often write �v(x)
instead of �(x). Clearly, the structure function �v is nondecreasing and
nonconstant if and only if its underlying set function v is nondecreasing
and nonconstant.

Another concept that we shall often use in this article is the dual of the
set function v, that is, the set function v∗ : 2[n] → �0, 1� defined by

v∗(A) = 1 − v([n]\A)�
For any event E , let Ind(E) represent the indicator random variable

that gives 1 if E occurs and 0 otherwise. For any i ∈ [n], we denote by
Ti the random time-to-failure of component i and we denote by Xi(t) =
Ind(Ti > t) the random state at time t � 0 of component i . For simplicity,
we introduce the random time-to-failure vector T = (T1, � � � ,Tn) and the
random state vector X(t) = (X1(t), � � � ,Xn(t)) at time t � 0. We also denote
by TS the random time-to-failure of the system and by XS(t) = Ind(TS > t)
the random state at time t � 0 of the system.

The structure function � clearly induces a functional relationship
between the variables T1, � � � ,Tn and the variable TS . As we will see in
Theorem 2, TS is always an l.p. function of the variables T1, � � � ,Tn .
Just as for the structure function, this l.p. function provides a complete
description of the structure of the system.

Let us first recall the concept of l.p. function of real variables; see
for instance Birkhoff[4] and Grätzer[8]. Let L ⊆ � denote a totally ordered
bounded lattice whose lattice operations ∧ and ∨ are respectively the
minimum and maximum operations. Denote also by a and b the bottom
and top elements of L. We assume that a �= b.

Definition 1. The class of lattice polynomial (l.p.) functions from Ln to L
is defined as follows:

(i) For any k ∈ [n], the projection t = (t1, � � � , tn) 	→ tk is an l.p. function
from Ln to L.

(ii) If p and q are l.p. functions from Ln to L, then p ∧ q and p ∨ q are
l.p. functions from Ln to L.

(iii) Every l.p. function from Ln to L is constructed by finitely many
applications of the rules (i) and (ii).
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Clearly, any l.p. function p : Ln → L is nondecreasing and
nonconstant. Furthermore, it was proved (see for instance Ref.[4]) that
such a function can be expressed in disjunctive and conjunctive normal
forms, that is, there always exist nonconstant set functions wd : 2[n] → �a, b�
and wc : 2[n] → �a, b�, with wd(ø) = a and wc(ø) = b, such that

p(t) =
∨
A⊆[n]

wd (A)=b

∧
i∈A

ti =
∧
A⊆[n]

wc (A)=a

∨
i∈A

ti � (2)

Clearly, the set functions wd and wc that disjunctively and conjunctively
define the l.p. function p in (2) are not unique. However, it can be
shown[11] that, from among all the possible set functions that disjunctively
define p, only one is nondecreasing. Similarly, from among all the possible
set functions that conjunctively define p, only one is nonincreasing. These
special set functions are given by

wd(A) = p(ea,bA ) and wc(A) = p(ea,b[n]\A)�

The l.p. function disjunctively defined by a given nondecreasing set
function w : 2[n] → �a, b� will henceforth be denoted pw . We then have

pw(t) =
∨
A⊆[n]
w(A)=b

∧
i∈A

ti =
∧
A⊆[n]

w∗(A)=b

∨
i∈A

ti ,

where w∗ is the dual of w, defined as w∗ = � ◦ (�−1 ◦ w)∗, the function
� : �0, 1� → �a, b� being a simple transformation defined by �(0) = a and
�(1) = b.

Remark 1. From any nonconstant and nondecreasing set function w :
2[n] → �a, b�, define the set function uw : 2[n] → �a, b� as

uw(A) =
{
b, if w(A) = b and w(B) = a for all B � A,
a, otherwise�

The disjunctive and conjunctive representations of the l.p. function pw
having a minimal number of terms are given by

pw(t) =
∨
A⊆[n]

uw (A)=b

∧
i∈A

ti =
∧
A⊆[n]

uw∗ (A)=b

∨
i∈A

ti
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(see Proposition 8 in Ref.[11]) and are exactly those minimal paths and cuts
representations of pw (as given, say in Theorem 3.5 of Ref.[2]), namely

pw(t) =
r∨

j=1

∧
i∈Pj

ti =
s∧

j=1

∨
i∈Kj

ti ,

where P1, � � � ,Pr are the minimal path sets and K1, � � � ,Ks are the minimal
cut sets.

The following theorem points out the one-to-one correspondence
between the structure function and the l.p. function that expresses TS

directly in terms of the variable T1, � � � ,Tn . It is the latter fact that makes,
in our opinion, the l.p. function a preferable system descriptor.

As lifetimes are [0,∞]-valued, we shall henceforth assume without
loss of generality that L = [0,∞], that is, a = 0 and b = ∞. Recall
that the coproduct of n Boolean variables x1, � � � , xn is defined by
�i xi = 1 − �i(1 − xi).

Theorem 2. Consider an n-component system whose structure function � is
nondecreasing and nonconstant. Then we have

TS = pw(T1, � � � ,Tn), (3)

where w = � ◦ v. Conversely, any system fulfilling (3) for some l.p. function pw :
Ln → L has the nondecreasing and nonconstant structure function �v , where v =
�−1 ◦ w.

Proof. The proof mainly lies on the distributive property of the indicator
function Ind(·) with respect to disjunction and conjunction: for any events
E and E ′,

Ind(E ∨ E ′) = Ind(E) ∨ Ind(E ′),

Ind(E ∧ E ′) = Ind(E) ∧ Ind(E ′)�

Thus, for any t � 0 we have

Ind(pw(T) > t) = Ind
( ∨

A⊆[n]
v(A)=1

∧
i∈A

Ti > t
)

=
∨
A⊆[n]
v(A)=1

∧
i∈A

Ind(Ti > t)

=
∐
A⊆[n]
v(A)=1

∏
i∈A

Xi(t)

= �v(X(t))�
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Hence, we have TS = pw(T) if and only if XS(t) = �v(X(t)) for all t � 0,
which completes the proof. �

The reliability function of component i is defined, for any t � 0, by

Ri(t) = Pr(Ti > t) = Pr(Xi(t) = 1) = E[Xi(t)],

that is, the probability that component i does not fail in the time interval
[0, t ]. Similarly, for any t � 0, the system reliability function is

RS(t) = Pr(TS > t) = Pr(XS(t) = 1) = E[XS(t)],

that is, the probability that the system does not fail in the time interval
[0, t ].

Based on representation (1) and its dual form, we present general
formulas for the system reliability function in case of generally dependent
variables T1, � � � ,Tn (first presented in Ref.[6]).

Theorem 3. We have

RS(t) =
∑
A⊆[n]

v(A) Pr(X(t) = e0,1A ), (4)

RS(t) = 1 −
∑
A⊆[n]

v∗(A) Pr(X(t) = e0,1[n]\A)� (5)

Proof. By (1), we have

RS(t) = E[�v(X(t))] =
∑
A⊆[n]

v(A)E
[ ∏

i∈A
Xi(t)

∏
i∈[n]\A

(1 − Xi(t))
]

=
∑
A⊆[n]

v(A) Pr(X(t) = e0,1A ), (6)

which proves (4). Formula (5) can be proved similarly by using the dual
form of �v (i.e., the second expression in Table 1). �

More reliability function formulas can be obtained based on other
structure function representations. Any Boolean function has a unique
expression as a multilinear function in n variables,

�v(x) =
∑
A⊆[n]

mv(A)
∏
i∈A

xi (7)
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TABLE 1 Various forms of the structure function

Name �v(x)

Primal form
∑

A⊆[n]
v(A)

∏
i∈A

xi
∏

i∈[n]\A
(1 − xi)

Dual form 1 − ∑
A⊆[n]

v∗(A)
∏

i∈[n]\A
xi

∏
i∈A

(1 − xi)

Primal Möbius form
∑

A⊆[n]
mv(A)

∏
i∈A

xi

Dual Möbius form
∑

A⊆[n]
mv∗ (A)

∐
i∈A

xi

Disjunctive normal form
∐

A⊆[n]
v(A)

∏
i∈A

xi

Conjunctive normal form
∏

A⊆[n]
v∗(A)

∐
i∈A

xi

(see Ref.[9]), where the set function mv : 2[n] → � is the Möbius transform of
v, defined by

mv(A) =
∑
B⊆A

(−1)|A|−|B| v(B)�

By using the dual set function v∗ we can easily derive further useful forms
of the structure function. Table 1 summarizes the best known forms of the
structure function.

Remark 2. Since �v is a Boolean function, we can always replace in its
expression each product � and coproduct � with the minimum ∧ and the
maximum ∨, respectively. Thus, Theorem 2 essentially states that �v is also
an l.p. function that has just the same max-min form as pw but applied
to binary arguments. More precisely, �v is similar to pw in the sense that
� ◦ �v = pw ◦ (�, � � � , �).

Consider the joint distribution function and the joint survival function,
defined respectively as

F (t) = Pr(Ti � ti∀i ∈ [n]) and R(t) = Pr(Ti > ti ∀i ∈ [n])�
By using the same argument as in the proof of Theorem 3, we obtain two
further equivalent expressions of RS(t).

Theorem 4. We have

RS(t) =
∑
A⊆[n]

mv(A)R(e0,tA )

RS(t) = 1 −
∑
A⊆[n]

mv∗(A) F (et ,∞[n]\A)�
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Proof. By (7), we have

RS(t) = E[�v(X(t))] =
∑
A⊆[n]

mv(A)E
[ ∏

i∈A
Xi(t)

]

=
∑
A⊆[n]

mv(A) Pr(Ti > t ∀i ∈ A)

=
∑
A⊆[n]

mv(A)R(e0,tA )�

Similarly, using the dual Möbius form of �v (i.e., the fourth expression in
Table 1), we have

RS(t) = E[�v(X(t))] =
∑
A⊆[n]

mv∗(A)E
[ ∐

i∈A
Xi(t)

]

= 1 −
∑
A⊆[n]

mv∗(A)E
[ ∏

i∈A
(1 − Xi(t))

]

= 1 −
∑
A⊆[n]

mv∗(A) Pr(Ti � t ∀i ∈ A)

= 1 −
∑
A⊆[n]

mv∗(A) F (et ,∞[n]\A),

where we have used the fact that
∑

A⊆[n] mv∗(A) = �v∗(1) = 1. �

Remark 3. Based on the minimal path/cut sets representations (see
Remark 1), one can find in Ref.[1] and further in, say, Ref.[5] and
Ref.[13] linear representations of RS(t) in terms of reliability functions
“series” and/or “parallel” subsystems. In this article we chose to use
the representations of Theorem 3, among other reasons, in order to
use the Möbius transform and obtain two further equivalent expressions
of RS(t).

The mean time-to-failure of component i is defined as MTTFi = E[Ti] and
similarly the mean time-to-failure of the system is defined as MTTFS = E[TS ].
These expected values can be calculated by the following formulas (see
Ref.[18])

MTTFi =
∫ ∞

0
Ri(t)dt and MTTFS =

∫ ∞

0
RS(t)dt �
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It is noteworthy that Theorem 4 immediately provides concise
expressions for the mean time-to-failure of the system, namely

MTTFS =
∑
A⊆[n]

mv(A)
∫ ∞

0
R(e0,tA )dt ,

MTTFS =
∑
A⊆[n]

mv∗(A)
∫ ∞

0

(
1 − F (et ,∞[n]\A)

)
dt �

Theorem 4 may suggest that the complete knowledge of the joint
survival (or joint distribution) function is needed for the calculation of the
system reliability function. Actually, as Theorem 3 shows, all the needed
information is encoded in the distribution of the indicator vector X(t).
In turn, the distribution of X(t) can be easily expressed (see Refs.[6,7]) in
terms of the joint distribution function of X(t), which is defined by

Pr(X(t) = e0,1A ) =
∑
B⊆A

(−1)|A|−|B| F (et ,∞B )�

That is, the joint distribution function needs to be known only where its
arguments are equal to t or ∞.

In the case when T1, � � � ,Tn are independent, which implies that the
indicator variables X1(t), � � � ,Xn(t) are independent for all t � 0, from (6)
we immediately obtain (see Ref.[18]):

RS(t) =
∑
A⊆[n]

v(A)
∏
i∈A

Ri(t)
∏

i∈[n]\A
(1 − Ri(t))� (8)

By extending formally the structure function �v to [0, 1]n by linear
interpolation, we define the multilinear extension of �v (a concept
introduced in game theory by Owen[15]), that is, the multilinear function
�v : [0, 1]n → [0, 1] defined as

�v(x) =
∑
A⊆[n]

v(A)
∏
i∈A

xi
∏

i∈[n]\A
(1 − xi)� (9)

We then observe that each of the alternative expressions of �v

introduced in Table 1 can be formally regarded as a function from [0, 1]n
to [0, 1], which then identifies with the multilinear extension of �v .

Combining Eq. (8) and (9), we retrieve the classical formula (see
Refs.[16,18])1

RS(t) = �v(R1(t), � � � ,Rn(t))

1A similar expression was obtained for the general case in Section 5 of Ref.[14]
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where the function �v is called the reliability polynomial. Thus, both
RS(t) and MTTFS can be expressed in different forms, according to the
expressions of �v corresponding to Table 1. For instance, using the primal
Möbius form of �v , we obtain

RS(t) =
∑
A⊆[n]

mv(A)
∏
i∈A

Ri(t),

MTTFS =
∑
A⊆[n]

mv(A)
∫ ∞

0

∏
i∈A

Ri(t)dt �

Consider the special case when the reliability of every subset A ⊆ [n]
depends only on the number |A| of components in A (which happens, for
example, when the component lifetimes are exchangeable). That is,

R(e0,tA ) = R(e0,tA′ ) whenever |A| = |A′|,
and similarly for F (et ,∞[n]\A).

Defining R(k, t) = R(e0,tA ), F (k, t) = F (et ,∞[n]\A), where k = |A|, and

mv(k) =
∑

A⊆[n] : |A|=k

mv(A),

from Theorem 4 we derive the following corollary.2

Corollary 5. If the reliability of every subset depends only on the number of
components in the subset, then

RS(t) =
n∑

k=1

mv(k)R(k, t)

RS(t) = 1 −
n∑

k=1

mv∗(k) F (k, t)�

3. SYSTEMS WITH “BAYES-DEPENDENT” COMPONENT
LIFETIMES

Consider a system where components’ functioning is influenced
by certain (perhaps, random) factors that may be both internal and
external to the system. Say, failure rates of individual components may
be influenced by the system’s current environment conditions, such as

2For the case of exchangeable component lifetimes, this corollary was actually obtained in
Ref.[13] by using the concept of signature.
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temperature, pressure, precipitation, etc. Or, the whole assembly is made
of subsystems that have “central” units and their status directly affects the
other units of the subsystem.

One way to model that situation is to introduce a set of (random)
factors U1, � � � ,Um whose joint probability density function g (u1, � � � ,um)
defined on a domain Dg is known. Given a fixed set of the factor’s
values, the system’s components’ lifetimes are assumed independent with
individual conditional cumulative distribution functions Fi(t ,u1, � � � ,um)
depending on the factors’ values. In that case, the joint probability
distribution function of the components’ lifetimes acquires an “integrated
product” form:

F (t) =
∫
Dg

g (u)
∏
i∈[n]

Fi(ti ,u) du� (10)

We will refer to such interdependence pattern as “Bayes-dependence.”
Clearly, when values of factors U1, � � � ,Um are fixed, since T1, � � � ,Tm are

(conditionally) independent, the indicator variables X1(t), � � � ,Xm(t) are
too, so using (10) in Eq. (6) with fixed u the same way as in the derivation
of Eq. (8) we then integrate over all possible values of u and obtain a
generalization of Eq. (8):

RS(t) =
∫
Dg

g (u) Pr(TS > t |u) du

=
∫
Dg

g (u)
∑
A⊆[n]

v(A)
∏
i∈A

Ri(t ,u)
∏

i∈[n]\A

(
1 − Ri(t ,u)

)
du,

where Ri(t ,u) = 1 − Fi(t ,u).
In turn, it leads to a generalization of the classical reliability formula

RS(t) =
∫
Dg

g (u) �v(R1(t ,u), � � � ,Rn(t ,u)) du�

Once again, both RS(t) and MTTFS can be expressed in different
forms, according to the expressions of �v corresponding to Table 1. In
particular, it is very convenient for calculations to use the primal Möbius
form of �v :

RS(t) =
∑
A⊆[n]

mv(A)
∫
Dg

g (u)
∏
i∈A

Ri(t ,u) du, (11)

MTTFS =
∑
A⊆[n]

mv(A)
∫
Dg

g (u)
∫ ∞

0

∏
i∈A

Ri(t ,u)dt du� (12)
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In some cases it is natural to think of the “intrinsic randomness” of
a unit’s lifetime (expressed in the shape of its distribution) as specific to
the unit itself, while the overall parameters of the lifetime (mean, variance,
etc.) can be influenced by the external factors. One way to model that is
to consider only the distribution parameters as functions of those factors
(without changing the form of the distribution).

For example, the assumption of constant unit failure rate is widespread
in the literature and often justified by data. At the same time, external
factors, physical or societal, often influence values of the rates. In the
framework of Bayes-dependence, one can model that situation by setting
Ri(t ,u) = e−	i (u)t .

Computing the integrals in the formulas above, one obtains:

RS(t) =
∑
A⊆[n]

mv(A)
∫
Dg

e−	A(u)t g (u) du,

MTTFS =
∑
A⊆[n]

mv(A)
∫
Dg

g (u)
	A(u)

du,

where 	A(u) = ∑
i∈A 	i(u).

Remark 4. The above results actually require merely that the joint
distribution function of the components’ lifetimes should have the
integrated product form of (10) only when the arguments of the
distribution function are either equal to t or ∞.

4. SYSTEMS WITH PRE-PHASE

In practice and literature many cases emerge where the units’ failure
rates should be modeled as nonconstant, say, increasing with elapsed time.
A popular way to address that issue is to present the rates as functions
of the elapsed time using, for example, Weibull distribution. However,
so constructed models are, for obvious reasons, much harder to analyze
mathematically and provide reliable estimates of parameters statistically.
Moreover, in the context of reliability systems it is impossible to ignore the
influence of joint functioning and interaction on individual units’ failure
rates.

The framework of Bayes-dependence yields a natural way to make a
model where both the joint functioning and elapsed time are accounted
for and the analytical convenience of exponential distribution can be
retained.

Let each component’s lifetime Ti consist of a random variable (“pre-
phase”) U common for all components followed by, once the pre-phase
is over at some time u, the subsequent individual “decay” phase Yi .
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Thus, both the variability of the system’s failure rate and the in-system
interaction effect can be modeled through the pre-phase distribution,
leaving the analyst enough room to model the residual lifetime of the
system separately.

We will denote by G(u), g (u), and E [U ] the distribution and density
functions and expectation of U . The conditional distribution function of
each decay phase given that U = u will be denoted by Fi(y,u).

This case, too, belongs in the class of Bayes-dependence, where the
pre-phase duration U plays the role of an external factor and

Ri(t ,u) = 1 − Fi(|t − u|+,u), (13)

where we denote |x |+ = max(x , 0).
Substituting (13) in (11) and using the identity

∑
A⊆[n] mv(A) = 1, we

obtain

RS(t) =
∑
A⊆[n]

mv(A)
∫ ∞

0
g (u)

∏
i∈A

Ri(t ,u)du

=
∑
A⊆[n]

mv(A)
∫ ∞

t
g (u)du +

∑
A⊆[n]

mv(A)
∫ t

0
g (u)

∏
i∈A

(
1− Fi(t −u,u)

)
du

= 1 − G(t) +
∫ t

0

∑
A⊆[n]

mv(A)
∏
i∈A

(
1 − Fi(t − u,u)

)
g (u)du�

Thus, we have

RS(t) = 1 − G(t) +
∫ t

0
R ∗

S (t − u,u) g (u)du,

where

R ∗
S (y,u) =

∑
A⊆[n]

mv(A)
∏
i∈A

(
1 − Fi(y,u)

)
�

From this result we obtain

MTTFS =
∫ ∞

0
RS(t)dt

=
∫ ∞

0

(
1 − G(t)

)
dt +

∫ ∞

0

∫ t

0
R ∗

S (t − u,u) g (u)du dt

= E [U ] +
∫ ∞

0

∫ ∞

u
R ∗

S (t − u,u)dt g (u)du

= E [U ] +
∫ ∞

0

∫ ∞

0
R ∗

S (t ,u)dt g (u)du
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and hence

MTTFS = E [U ] +
∫ ∞

0
MTTF∗

S(u) g (u)du,

where

MTTF∗
S(u) =

∫ ∞

0
R ∗

S (t ,u)dt =
∑
A⊆[n]

mv(A)
∫ ∞

0

∏
i∈A

(
1 − Fi(t ,u)

)
dt �

When all individual decay phases have exponential distribution
with parameters 	i(u), that is Fi(y,u) = 1 − e−	i (u)y, the formulas above
reduce to

RS(t) = 1 − G(t) +
∑
A⊆[n]

mv(A)
∫ t

0
e−	A(u)|t−u|+ g (u)du,

MTTFS = E [U ] +
∑
A⊆[n]

mv(A)
∫ ∞

0

g (u)
	A(u)

du,

where 	A(u) = ∑
i∈A 	i(u).

The previous formulas provide analytically simple results when the pre-
phase’ distribution is modeled using a piecewise constant density function.
For example, in the simplest case where the pre-phase is uniformly
distributed in an interval [a, b] and decay failure rates are constant we have

RS(t) =




1, if t < a,
b − t
b − a

+
∑
A⊆[n]

mv(A)
1 − e 	A(a−t)

	A(b − a)
, if a � t � b,

∑
A⊆[n]

mv(A) e−	At
e 	Ab − e 	Aa

	A(b − a)
, if b < t �

5. SYSTEMS WITH COLLECTIVE BOUNDS

The environment in which a system is installed typically imposes its
constraints on the functioning of the system. A power source that feeds
several components imposes an upper bound on their service duration—
it becomes a maximum of the component’s own lifetime and the source’s
one.

There is extensive reliability literature on a model where upper bounds
are imposed by fatally disabling external shocks to individual components
and subsystems. The shock emergence processes are assumed Poisson,
independent of the system and independent for different components
and subsystems. It has been shown that in the reliability terms the action
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of shocks on the system is equivalent to assuming a Marshall-Olkin type
distribution for the component lifetimes. (One can see, e.g., Ref.[12].)

In the context of insurance applications, a contract can be purchased
with an on call emergency service that backs up services of some
components. It provides a lower bound on their service duration, that is,
component’s service duration becomes a minimum of its intrinsic lifetime
and the emergency service’s one.

Today, in a complex system component services may have a complex
combination of upper and lower bounds imposed on them by the nature
of the system’s purpose and its environment. In general, the presence
of collective bounds and interaction of components with them, all the
maximums and minimums that emerge that way, can be represented as
follows.

Denote by Q1,Q2, � � � ,Qm bounding random variables and by T 0
i —the

intrinsic lifetime of the ith component (if left alone), the component’s
service duration emerging as a result of interaction of its intrinsic lifetime
and relevant bounding factors can be expressed using an l.p. function qi

Ti = qi(T 0
i ,Q1, � � � ,Qm)�

Using that in Theorem 2 and p as the l.p. function of the system, the
overall system’s time-to-failure can be written as

TS = p
(
q1(T 0

1 ,Q1, � � � ,Qm), � � � , qn(T 0
n ,Q1, � � � ,Qm)

)
� (14)

Remark 5. When all bounding variables are constant Eq. (14) presents
TS as a so-called “weighted” lattice polynomial function of intrinsic
lifetimes; see Ref.[7].

A composition of l.p. functions, it follows immediately from the
definition, is an l.p. function itself. We will denote the one in Eq. (14)
by pa . It corresponds to what we will refer to as “the augmented system”,
whose units are of two kinds: the original system’s components forming
a set [n] and the set of binding factors denoted by [m]. Now Eq. (14)
becomes

TS = pa(T 0
1 , � � � ,T

0
n ,Q1, � � � ,Qm)�

Under a natural assumption that intrinsic components’ lifetimes are
independent of the bounding factors, the augmented system falls into the
class of Bayes-dependent systems where the bounding variables play the
role of dependence-inducing factors. To apply the relevant formulas of
Sections 2 and 3 to this case the following notation will be needed.
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• Joint reliability function of bounding variables:

Rb(t) = Pr(Qj > tj ∀j ∈ [m]);
• Component subsets of the augmented system: A ⊕ B,A ⊆ [n],B ⊆ [m];
• va : the “v”-function corresponding to pa .

Now formulas (11) and (12) yield that

RS(t) =
∑
A⊆[n]

∑
B⊆[m]

mva (A ⊕ B)Rb(e
0,t
B )

∏
i∈A

Ri(t), (15)

MTTFS =
∑
A⊆[n]

∑
B⊆[m]

mva (A ⊕ B)
∫ ∞

0
Rb(e

0,t
B )

∏
i∈A

Ri(t)dt , (16)

A practically important special case arises under additional
assumptions that the original components’ intrinsic lifetimes have
exponential distributions and that bounding factors are independent of
each other. Then

Rb(e
0,t
B ) =

∏
j∈B

Rj(t)

and formulas (15) and (16) yield the following:

RS(t) =
∑
A⊆[n]

∑
B⊆[m]

mv(A ⊕ B) e−	At
∏
j∈B

Rj(t),

MTTFS =
∑
A⊆[n]

∑
B⊆[m]

mv(A ⊕ B)
∫ ∞

0
e−	At

∏
j∈B

Rj(t)dt ,

where, as before, 	A = ∑
i∈A 	i .
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