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ABSTRACT

This working paper serves as an introductory reference for those studying the application of land-
use–transportation models to the simulation of urban systems. The paper is by no means
comprehensive, but aims to provide the reader with a foundation in the basic principles underlying
land-use–transportation models and to set those principles in the context of urban management and
urban studies. The paper opens with taxonomy of urban simulation models and a treatment of
descriptive and analytical models. This serves to situate land-use–transportation models in the
context of a broader simulation environment. The paper then reviews land-use–transportation
models according to their simulation techniques and individual components. Towards the second
half of the paper, the discussion moves to a critical overview of urban simulation and deals with
model weaknesses and strengths in a holistic fashion, before concluding with a discussion of some
innovations in academic research that are likely to shape future models.

1 INTRODUCTION

Computer simulation models combine theory, data, and algorithms to arrive at an abstract

representation of the character and functioning of the land-use–transportation system. Ideally, once

a simulation has been calibrated against a known scenario, the model may be used to make

predictions about the future state of that system. Land-use–transportation models are a particular

class of model used to simulate how land-use and transportation systems operate. They were first

put to use in the management of urban systems to facilitate long-range planning, to simulate the

potential outcomes of decisions affecting the cities, and as a laboratory for testing ideas and

hypotheses relating to urban systems. Since their inception, they have steadily grown in

sophistication and their use has become widespread. However, land-use–transportation models are

uncertain tools—as with any model there is a degree of abstraction in their representation of real-

world systems and processes. Urban simulation is also a relatively unique modelling problem. The

urban systems commonly represented in urban models—economic, social, and environmental—are

notoriously difficult to simulate. Land-use–transportation models are often used to support

decisions that have profound influences upon people’s lives. Also, policies and ideas about the city

are often difficult to experiment with. Equally, the pace of change in urban areas is often such that

models have a hard time keeping up with the phenomena they are simulating.

In the past, researchers and model developers were restricted by their theoretical knowledge about

the city and how it might be simulated as well as being constrained by technological limitations.

Nevertheless, the simulation environment is now appropriate for the infusion of new ideas into

urban modelling. This paper is intended to serve as an introduction to land-use–transportation

models at a pace and level of detail that will make them accessible to the reader as well as serving
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as a reference resource.1 The paper deals largely with the techniques that are most prevalent in

operational land-use–transportation models, simply because those ideas form an important

foundation on which to advance urban modelling. Some new emerging techniques in academic

research are introduced, however.

The paper proceeds in Section 2 with a brief overview of modelling and a treatment of the

introduction of models in planning. Taxonomy of models is then developed in Section 3, setting

land-use–transportation models in the context of a broader simulation environment. Some important

descriptive and analytical urban models are mentioned in Section 4, followed by an introduction to

the general structure of the land-use–transportation model in Section 5. Some key modelling

techniques are described in detail in Section 6, providing the reader with a foundation in the

simulation methods that will feature in subsequent sections. Individual model components are then

discussed in Section 7, beginning with the land-use system, and followed by the transport system

and integrated methods for representing the two. In Section 8 the paper moves into a discussion of

the relative merits and shortcomings of land-use–transportation modelling and concludes in Section

9 with a consideration of the future of urban simulations.

2 WHY LAND -USE–TRANSPORTATION MODELS ?

2.1 JUSTIFYING URBAN SIMULATION

There are some powerful rationales for applying simulation models to the study and management of

urban systems. In Europe, concerns about the sustainability of our cities is driving a concerted effort

to model their functioning in a bid to forecast future urban patterns. Meanwhile, in the United States

there exists legislation that both directly and indirectly encourages the development of simulation

models of various urban phenomena. This legislation includes the Clear Air Act Amendments:

                                           

1 For a more thorough review of specific operational models, the reader is referred to Barra, 1989; Cambridge

Systematics, 1991; Government of Ireland, 1995; Landis, 1994, 1995; Landis and Zhang, 1998; Miller et al., 1998;

Oryani and Harris, 1996; Putman, 1989, 1992; Waddell, 1998a, 1998b; Wegener, 1983, 1994, 1996. For general

treatments of modelling principles, see Batty 1976; Putman 1979, 1983; Barra 1989; Fotheringham and O'Kelly 1989;

Putman 1989; Cambridge Systematics and Group 1991; Putman 1992; Government of Ireland 1995; Oryani and Harris

1996; Australian Bureau of Transportation Economics 1998; Miller, Kriger et al. 1998; Fotheringham, Brunsdon et al.

2000.
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CAAA (1990), the Intermodal Surface Transportation Efficiency Act: ISTEA (1991), and ISTEA’s

successor, the Transportation Equity Act for the Twenty First Century: TEA-21 (1997).

CAAA, ISTEA, and TEA-21 incorporate legislative provisions that mandate land-use–

transportation modelling mostly in its capacity to serve as decision support systems for policies

designed to mitigate urban air problems. However, other initiatives—such as the Travel Model

Improvement Program: TMIP (1992), which was established by the Federal Highway

Administration; the Federal Transit Administration; the Office of the Secretary, U.S. Department of

Transportation; and the U.S. Environmental Protection Agency—have been introduced specifically

to encourage improvements in land-use–transportation modelling.

Other justifications for urban simulation models include the functionality that they offer by

allowing us to test theories and practices about urban systems in a controlled computer

environment. Proceeding from a simulation model, we can evaluate the merits of theories relating to

urban phenomena and test the application of policy measures (such as growth management,

congestion pricing, and pollution mitigation schemes) to various scenarios for urban futures.

2.2 THE EMERGENCE OF URBAN MODELLING

Before proceeding with a discussion of the mechanics of land-use–transportation models, it is

perhaps useful to begin with a review of their history and the academic and social environments that

spawned their introduction into urban planning.

Modelling first became widely applied to urban planning at the beginning of the 1960s. Its adoption

coincided with a general transformation of the character of planning as one identified as

architecture-writ-large to one rooted less intuitively but grounded more objectively (Batty, 1994). In

short, urban modelling emerged as part of an effort to better quantify and mathematically represent

the conditions upon which decisions were made. To facilitate this, model developers, began to

poach analytical methodologies from other disciplines—human ecology, mathematics, geography,

operations research, linear programming, regional science, and economics—modellers were

relentless in their pilfering of scientific techniques that might be applied to urban phenomena. There

were a number of motivating forces driving these changes.

The 1960s was a time of insecurity about the intellectual credentials of urban studies (including

both urban geography and urban planning) as a social science (Sayer, 1979). While neighbouring
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disciplines were quantifying heavily over this period, modelling was, in a sense, a bandwagon

which urban studies researchers felt compelled to jump on in a bid to legitimize the scholarly merits

of their academic pursuits and professional activities.

Underlying and supporting this motivation was a sense of “technological optimism” (Klosterman

1994). Urban models were first used in a period in which it was felt that the scientific successes of

the time (telecommunications, medicine, agriculture, physics, chemistry, and, of course, computers)

could be applied as efficiently and, it was hoped, as successfully to the social realm.

At full swing in their popularity by the early-1960s, urban models were being developed for several

cities in the United States. Large-scale modelling projects were funded in Pittsburgh, San Francisco,

the Penn-Jersey corridor, and elsewhere. Models were also developed for several European cities.

At first they were introduced with the aim of solving land-use and transportation questions, later

being employed with the goal of addressing a wider range of urban problems.

3 M ODEL CLASSIFICATION

3.1 BASIC MODELS

Of course, urban models come in many flavours. These range in variety from basic to mathematical

in character, with a respective diversity of theoretical foundations, purposes, and functionality of

use. Nevertheless, a general taxonomy of urban models is presented here as a framework within

which the reader can situate land-use–transportation models. Basic models rarely contain the

capacity for prediction. They may be classified into three main groups: scale, analogue, and

conceptual.

Also known as iconic, scale models are amongst the most well known models. Broadly speaking,

they are scaled-down versions of reality, usually without any functional or predictive capacity.

Essentially, they differ from reality only in size. Examples include wooden block models and

architectural mock-ups.

In analogue models, size is transformed, but so are some of the properties of the thing that is

actually being modelled. The most familiar analogue model, in a geographic sense, is the map. Here

size is reduced (as with the scale model), but so also are some of the properties of the thing being

modelled. For example, in a map scale is reduced, but features are also symbolized (Thomas and

Huggett, 1980).
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A conceptual model generally expresses how we think a system works. Usually, conceptual models

are presented as arrows that illustrate links or relationships, and boxes representing system

components.

3.2 MATHEMATICAL MODELS

Mathematical models take the ideas encapsulated in a conceptual model and transform them into

mathematical symbology, enabling conceptual ideas to be tested (and in some cases, permitting

predictions to be made). The validity of mathematical models can then be evaluated by comparing

their predictions against observed data. Under the heading of mathematical models there exist a

myriad of sub-classifications, with a variety of goals and techniques. At the broadest level, we can

consider mathematical models to be either normative or deterministic in their goals.

Normative models proceed with assumptions about how a system ought to behave. Deterministic

models, on the other hand, proceed on the assumption that natural, physical laws control the

behaviour of the system being simulated; and that once these laws have been uncovered, the

behaviour of the system can be predicted. As with predictive models, deterministic models are

loosely based on a set of behavioural relationships. Their application to the land-use–transportation

problem is usually concerned with accounting for changes in the spatial pattern of land-use and

transportation systems. They may also be employed to predict or assess the impacts of changes in

exogenous variables or in policies targeted at those systems (Government of Ireland, 1995). Two

important sub-classes of predictive model are probabilistic and optimzing models.

Probabilistic models are deterministic in their assumptions, but are distinct from the broad class of

predictive models in that they express the initial assumptions of the model as a set of probabilities.

In this sense they infuse an element of chance into the simulation process, so that predictions made

by probability models are stated with a known degree of error or tolerance. In this way, probabilistic

models focus on a range of possible outcomes rather than single predictions (Thomas and Huggett,

1980).

Optimizing models apply optimization theory to urban simulation—they assume that the

distribution of urban activities can be allocated so as to optimize some objective function (e.g., the

cost of transportation). The models generally have constraints placed on them to ensure that the

system being simulated matches what can be observed.
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3.3 LAND-USE–TRANSPORTATION MODELS

Land-use–transportation models belong to the mathematical family of models. They are composed

of independent land-use and travel models, with mechanisms for coupling the two—either loosely

or in a more integrated fashion.

Land-use models are used to predict demographic and economic measures of land-based activities.

These measures describe the population (usually in terms of income and employment) and built-

space environment (e.g., floor space) for a given urban area.

Travel models (specifically, travel demand models) are used to predict travel patterns on a

transportation network. This class of models aim to simulate travel patterns as a function of human

activities (commonly considered in terms of land uses) as well as the characteristics of the transport

network (commonly considered in terms of accessibility)(Miller et al., 1998).

Integrated land-use–transportation models are used to simulate the interaction of the land use

system and the transport system. Generally, this interaction is simulated by means of feedback

mechanisms. The nature of this interaction will be explored further in later sections.

4 DESCRIPTIVE AND ANALYTICAL URBAN MODELS

Much of the contemporary land-use–transportation modelling effort has proceeded on a foundation

of descriptive or analytical models that have been steadily developed since the beginning of the

Twentieth Century. Among the more influential of these have been the von Thunen model,

concentric zone theory, wedge or radial sector theory, and multiple-nuclei theory. While many of

these models are weak in their theoretical justifications, outmoded in their capacity to describe

today’s cities, and limited in their predictive powers; they have provided both an important

environment for urban simulation and a base upon which contemporary efforts can be built. The

important differentiating factor between descriptive or analytical models and land-use–

transportation models is that descriptive or analytical models offer explanations as to how various

urban phenomena emerge, but they generally abstract from questions of why those patterns

materialize.

4.1 THE VON THUNEN MODEL

Based on a series of simplifying assumptions, von Thunen described a model that would account for

a spatial distribution of sites across a theoretical geographic area that would have varying rent-
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generating capacities dependent upon transportation costs and distance from a central site. Von

Thunen’s model was highly generalized and was based on a series of simplifying assumptions

(Krugman, 1996):

1. The space in which the model was framed was assumed to be an infinite or boundless, flat,

and featureless plane, over which climatic conditions and natural resources were uniformly

distributed

2. The central attracting area was assumed to be a central market

3. Transportation to this central market was assumed to be by horse and cart

4. An allowance for the production and sale of different goods was made, but these goods were

regarded as differing in bulk, therefore having varying costs of transportation from point of

production to the central market

5. For each of these products, transport costs were assumed to vary with distance from the point

of production to the point of sale at the central market

6. The profits to be gleaned from the cultivation of one hectare of land were assumed to be the

same for each product

Based on these assumptions, and operating over the hypothetical space that von Thunen proposed,

he argued that agricultural land uses would segregate into a spatially hierarchic structure akin to that

demonstrated in Figure 1. (As we will see later, the idea is not at all different from bid-rent theory,

which draws heavily from the von Thunen model in inspiration.)
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Figure 1. The spatial organization of agricultural land uses proposed by the von Thunen model.

4.2 CONCENTRIC ZONE THEORY

EW Burgess developed the concentric zone theory of urban land use in the mid-1920s based on an

examination of the historical development of Chicago through the 1890s. It contrasts from the von

Thunen approach in being descriptive rather than analytical (Harvey, 1996). The concentric zone

theory of urban land use is based on the assumption that a city grows by expanding outwards from a

central area, radially, in concentric rings of development.

Burgess classified the city into five broad zones (Figure 2):

1. The central business district (CBD): the focus for urban activity and the confluence of the

city’s transportation infrastructures

2. The zone of transition: generally a manufacturing district with some residential dwellings

3. The zone of factories and working men’s homes: this zone was characterized by a

predominantly working class population living in older houses and areas that were generally

lacking in amenities

4. The residential zone: this band comprised newer and more spacious housing for the middle

classes
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5. The outer commuter zone: this land use ring was dominated by better quality housing for

upper class residents and boasted an environment of higher amenity

Figure 2.The Burgess model of Chicago (after EW Burgess, 1925; Carter, 1981).

While useful in a descriptive sense for explaining the location of land uses in a monocentric city,

both the work of Burgess and von Thunen has (by extrapolation to urban cases), not surprisingly,

come under heavy criticism. Amongst the complaints levelled have been accusations that the

models are too rigid to ever accurately represent actual land patterns (the monocentric city

assumption is perhaps the largest flaw). They have also been accused of overlooking the important

influence of topography and transport systems on urban spatial structure and have been criticized

for failing to accommodate the notion of special accessibility and ignoring the dynamic nature of

the urban land use pattern (Harvey, 1996).

4.3 WEDGE OR RADIAL SECTOR THEORY

Development of the wedge or radial sector theory of urban land use is generally attributed to the

work of Hoyt (1939). Hoyt’s model concerns itself primarily with the location of residential uses

across urban areas; it refers to business location only in an indirect fashion. The model seeks to
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explain the tendency for various socio-economic groups to segregate in terms of their residential

location decisions. In appearance, Hoyt’s model owes a great deal to Burgess’s concentric zone

model: Hoyt presents wedge-like sectors of dominant urban land use, within which he identifies

concentric zones of differential rent. The model suggests that, over time, high quality housing tends

to expand outward from an urban centre along the fastest travel routes. In this way, Hoyt transforms

Burgess’s concentric zones into radial or sectoral wedges of land use (Figure 3).

Figure 3.  Hoyt’s sector model (after H. Hoyt, 1939; Carter, 1981).

The innovative element in Hoyt’s model was in considering direction, as well as distance, as a

factor shaping the spatial distribution of urban activity. Hoyt’s model also goes further than its

predecessors in recognizing that the CBD is not the sole focus of urban activity (Kivell, 1993). One

major criticism, however, is that the model overlooks the location of employment, which itself is

the major determinant of residential location (Harvey, 1996).

4.4 MULTIPLE-NUCLEI THEORY

The work of Harris and Ullmann (1945) in developing a multiple-nuclei theory of urban land use is

amongst the most innovative descriptive or analytical urban models. Their model is based on the

premise that large cities have a spatial structure that is predominantly cellular. This, they explain, is

a consequence of cities’ tendencies to develop as a myriad of nuclei that serve as the focal point for

agglomerative tendencies. Harris and Ullmann propose that around these cellular nuclei, dominant

land uses and specialized centres may develop over time.
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The novelty in multiple-nuclei theory lies in its acknowledgement of several factors that strongly

influence the spatial distribution of urban activity: factors such as topography, historical influences,

and special accessibility. The theory is also innovative in its recognition of the city as polycentric

(Figure 4). In this sense, it moves closer to explaining why urban spatial patterns emerge.

Our attentions will now switch to land-use–transportation models—a class of predictive

mathematical simulations that take many of the theoretical concepts introduced by descriptive and

analytical models and operationalize them by infusing them with empirical data and testing them in

practice.

Figure 4. Diagram illustrating Harris and Ullman’s multiple nuclei model (after CD Harris and EL

Ullman, 1945; Carter, 1981).

5 GENERAL STRUCTURE OF THE LAND -USE–TRANSPORTATION MODEL

As intuition would suggest, land-use–transportation models couple two distinct systems: land-use

and transport. Embedded beneath the umbrella of these two systems, however, lies an inter-

connected web of sub-models representing various sub-systems and processes at work within the

city. Depending on the peculiarities of the model in question, these sub-models may exist in

isolation from each other, they may be loosely associated, or may be well connected via such

mechanisms as feedback loops.

Generally, a number of key components underpinning the land-use–transportation model may be

described. These include, at the top-most level, a mechanism handling land-use and a separate
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model to describe transport. The land-use module depends, in varying degrees; on sub-models for

location, land development, and an equilibrium mechanism that balances forces of demand and

supply. The transport system is traditionally simulated via a four-step process beginning with

potential demand modelling and trip generation, proceeding through trip distribution and modal

split, and concluding with trip assignment (Figure 5).

Figure 5. The general structure of a land-use–transportation model.

6 M ODELLING TECHNIQUES

The discussion of land-use–transportation models will now proceed with a summary of some of the

key mathematical principles that form the mechanics of most simulations, followed by a detailed

treatment of the various components that comprise the generic model. In Section 6.1 we discuss

spatial interaction models in both their basic and constrained forms. Section 6.2 deals with spatial

choice models. Section 6.3 then shifts the discussion to bid-rent models.
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6.1 SPATIAL INTERACTION MODELS

The main engine of the generic land-use–transportation model has traditionally been the spatial

interaction model or variants thereof. The spatial interaction model features in land-use–

transportation simulation in its representation of flows of both trips and activities between areas of

the city. While many contemporary simulation packages are moving away from spatial interaction

modelling as a baseline simulation technique, it is worth examining the assumptions and

mathematics underpinning its application to land-use–transportation models, as the technique is still

quite widely used in practice.

A spatial interaction model is generally employed to predict the size and direction of spatial flows

using independent variables that measure some structural property of the spatial area being

modelled. For example, the spatial pattern of journey-to-work flows might be predicted using

structural variables such as the distribution of workers, the distribution of employment, and the

costs of travelling to work.

Based on mathematical assumptions that resemble Newton’s law of gravitational attraction, gravity

models are a particular instance of the broader class of spatial interaction models. Newton asserted

that the force of attraction, F , between two bodies is the product of their masses, 1m and 2m ,

divided by the square of the distance between them, 2
12d :

2
12

21

d
mmGF ⋅= (i)

where G is a universal constant: the pull of gravity.

Translating this into a geographical context, we could regard force as the number of flows (e.g.,

trips) between two regions and treat mass as a structural variable such as population size. With

these base calculations we can measure a region’s capacity either to generate or to attract trips,

representing distance either in physical terms or in some surrogate form (e.g., travel cost or travel

time).

There are a number of important assumptions underlying the simple gravity model. It is assumed

that the size of any flow is proportional to (∝) a structural variable iW  at the point of origin for a

trip. ( iW  measures the capacity of a region to attract trips.) For studies where the flows are numbers
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of people, iW  is often defined as the population of the origin region. Mathematically this is

represented as:

iij WT ∝ (ii)

which asserts that the magnitude of the flow leaving any region i will grow or decline linearly as the

population size ( iW ) of the region changes.

It is also assumed that the size of ijT  (the volume of flows between i and j) is proportional to a

structural variable jW  that measures the trip-attraction capacity of the region where the flow ends.

Again, attractiveness is often measured by the population size of the destination region, or

commonly as the level of employment at the destination:

jij WT ∝ (iii)

which asserts that the magnitude of the flow arriving in any zone j will grow or decline linearly as

the size of opportunities in the destination region change.

Another assumption concerns the measure of distance between the origin region i and destination

region j. It is assumed that the amount of interaction between the two regions, Tij, declines in

proportion with the square of the distance 2
ijd  between the two regions:

2

1

ij

ij
d

T ∝ (iv)

or, 2−∝ ijij dT (v)

The validity of this proposition is often justified with data for different types of interaction that

show that there is an element of distance decay in urban travel, i.e., that short-distance flows occur
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more frequently than long-distance flows do. However, apart from adhering to Newtonian

principles, there is no theoretical justification for expecting flows to decline exactly with the square

of distance between regions. For this reason, it makes more geographical sense to allow distance to

be raised to some power α  and to rewrite the assumption more generally as:

α−∝ ijij dT (vi)

The exact value assigned to α  will depend on the available empirical evidence. Raising α  to

progressively higher powers steepens the gradient of the curve such that the number of short-

distance interactions is increased relative to the number of long-distance interactions. For this

reason the value of α  is said to measure the frictional effect of distance.

When the three gravity model assumptions are woven into a cohesive framework, the basic gravity

model formula is obtained:

α
ij

ji
ij

d

WW
kT ⋅= (vii)

Put simply, this states that flows are a result of push and pull factors. Specifically, that the flow

between two places is a function of the ability of an origin to generate flows (e.g., trips), the

capacity of a destination to attract these flows, the distance over which the flow must pass, and

some weighting mechanism that discourages flows over long distances. In the above equation, the

attraction and generation propositions are incorporated by the multiplication of the terms iW  and

jW . Division by some power of distance produces the distance-decay effect, α . k  is a scaling

constant; it needs to be included because the independent variables iW  and jW  are not measured in

units of flow (Thomas and Huggett, 1980).

Significant variations on this basic description of the gravity model include the production-

constrained model, the attraction-constrained model, the production-attraction-constrained model,

and the entropy-maximizing model. The motivation behind applying these enhancements to the

basic framework is to provide some form of balancing or accounting in the predictions that the
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model makes. Or, put another way, the notion of the constraint serves as a proxy for the theoretical

notion of market equilibrium. (Although the inclusion of constraints in the gravity model is perhaps

more a function of its weakness in matching observed and predicted flows than of any desire to

reconcile the technique with urban economic theory.) The mechanics of the constrained gravity

model will be explored in detail next.

6.1.1 Production constraints

Essentially, constraints serve to straightjacket a model into reconciliation with known information.

A production constrained gravity model is one in which the total number of flows leaving an origin

i is already known. This knowledge is incorporated into the model design. To recap, let us restate

the original gravity model equation and then examine how that formulation changes with the

application of a production constraint. The basic gravity model may be formulated as follows:

α
ij

ji
ij

d

WW
kT ⋅= (viii)

The production-constrained model is a confined version of this formula, where the following

constraint is satisfied:

i

n

j
ij OT =∑ (ix)

Here, ∑
n

j

 sums the values of iO  (usually a value for the population size of a trip origin zone)

across all destinations j; ijT  is the predicted flow between origin i and destination j; and iO  is the

known total number of flows beginning in origin zone i. What the production constraint secures,

then, is that the sum of all flows predicted as originating in zone i actually conform to the total

number of flows that we know originated in that zone. We know how many trips left origins in the
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urban system in advance of beginning the simulation process, so we can constrain the model to

prevent over- or under-predicting of this figure.

Adding the production constraint to the model yields:

α−= ijjiiij cWOAT (x)

where ijT  is the predicted flow of trips (or a flow of any commodity in the urban system) between

origin i and destination j, iO  is the total known number of trips beginning in origin i, jW  is the

attractiveness of destination j for the flow (e.g., floor space or employment), and α−
ijc  is cost of

travel between i and j with a distance decay effect applied. iA  has replaced k  in the basic model.

Here, iA  is a scaling constant for each origin i that ensures that the sum of the flows leaving zone i

for destinations j sum to the known total zonal flow count. In this sense, iA  is the ratio between the

known flow from i and the sum of the unscaled predicted flows leaving origin i for destination j.

Mathematically this can be represented as:

∑ −
=
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α
(xi)

6.1.2 Attraction constraints

In an attraction-constrained model, we know how many trips have reached destinations j in an urban

system. Again, the predicted trip matrix is made to satisfy a constraint, this time in the form:

j

n

i
ij DT =∑ (xii)
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where jD  is the known number of trips reaching a destination j (e.g., the number of jobs at a

destination j, or perhaps the allure of shopping facilities there).

Incorporating the constraint fully into our basic gravity model yields the formula:

α−= ijijjij cWDBT (xiii)

where jD  is the known number of trips reaching destination j, iW  is the attractiveness of origin i as

a residential location, and α−
ijc  is cost of travel between i and j with a distance decay effect applied.

jB  is a scaling constant; for any destination zone j, jB  is calculated as the ratio between the known

number of jobs in that destination (jD ) and the sum of the unscaled unpredicted journey-to-work

flows arriving in destination zone j from each origin zone i (Thomas and Huggett, 1980).

Mathematically, jB  is derived from:

∑ −
=

n
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α
(xiv)

The attraction constrained gravity model may be considered to be a residential location model in the

sense that it uses knowledge of the distribution of jobs, the residential attractiveness of each zone,

and journey-to-work costs to assign workers to households in the city.

6.1.3 Production-attraction constraints

The singly constrained gravity model (either of the production- or attraction-constrained models in

isolation) essentially becomes a location model. However, if both flow origins and flow destinations

are constrained in the model framework, our attention returns to predicting the size of individual

flows ( ijT ) (Thomas and Huggett, 1980). In production-attraction constrained models, the predicted
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flows are asked to satisfy two constraints simultaneously (the production and attraction constraints

already discussed):

i

n

j
ij OT =∑ (xv)

and ∑ =
n

i
jij DT (xvi)

Incorporating these into the basic gravity formula yields:

α−= ijjjiiij cDBOAT , (xvii)

with the scaling properties iA  and jB  defined as before.

6.1.4 Entropy-maximizing models

The notion of entropy offers a theoretical framework for spatial interaction models. Based on

statistical mechanics, entropy is concerned with finding the degree of likelihood of the final state of

a system. Data for urban systems are not usually abundantly available. We therefore need a method

for making reasoned estimates of the likely state of an urban system using the information that we

do know. In this sense, we maximize entropy subject to constraints of known information.

There are two important concepts in entropy that are applied to urban contexts—the macrostate and

the microstate. If we consider our urban system to be comprised of flows between origins and

destinations, we may think of the macrostate description of our system as being the numbers of

individuals or items flowing between origins and destinations. This macrostate is composed of

many microstates—descriptions of the actual individuals or items that make up a macrostate. Just as

there are many possible arrangements of individuals that could make up a subway train of two

hundred commuters travelling from one location to another, there are many possible microstates

that can make up a given macrostate.
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The number of microstates associated with any given macrostate can be calculated as:

∏
=

n

i
iN

N
R

!

!
(xviii)

where R  is the number of microstates associated with any given macrostate for the system, N  is

the number of individuals or items assigned to a set of categories, iN  is the number of individuals

in a category i , !N  is the factorial value of N : ))...(3)(2)(1( nNNNNN −−−− , and ∏
n

i

 is the

product of a factorial value.

Framed in this context, the problem of modelling spatial flows then becomes one of maximizing

entropy—choosing the macrostate associated with the largest number of microstates (Barra, 1989;

Fotheringham et al., 2000; Fotheringham and O'Kelly, 1989). If we consider our flows to be trips

from origin i  to destination j , we can substitute T  (the total number of trips made in our system)

and ijT  (the individual flow of trips from an origin to destination) for N  and iN  in the above

equation:

∏
=

n

ij
ijT

T
R

!

!
(xix)

In dealing with something as complex as an urban system, a modeller can end up with many

possible states to pick from in her or his choice set. As with the basic gravity model, constraints

may be introduced into the entropy-maximizing framework, allowing us to reduce the choice set of

predicted trip matrices down to a manageable level. This constraint is placed on the state description

as:

∑∑ =
n

i
ij

n

j
ij CcT (xx)
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where ijc  is the cost of travel from zone i to zone j, and C  is the overall expenditure available for

those trips.

Once an entropy value has been approximated, it needs to be maximized to arrive at a solution to

our problem of identifying the most likely trip matrix from a potentially infinite number of possible

forms. The maximization of the entropy value is involves the use of Lagrange multipliers (a

technique for evaluating maxima or minima of a function subject to one or more equality

constraints). Essentially, the Lagrange multipliers serve as weightings to ensure that the constraints

within the model are met. Incorporating constraints, the model may be expressed mathematically as:
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where L  is the function to be maximized subject to constraints; iτ  is the Lagrange multiplier

associated with a production constraint; jα  is the multiplier associated with an attraction constraint

(and if both production and attraction constraints are included the model may be considered to be

doubly constrained); and β  is the multiplier associated with a cost constraint. The trip matrices that

maximize L , i.e., the most likely distributions of trips in the urban area, are solutions of the

calculation:

0=
∂
∂

ijT

L
 (xxii)

To solve this equation we make use of Stirling’s approximation when the values of ijT  are large:

xxxx −= log!log (xxiii)

We may also maximize Rln  instead of R  such that:
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ln (xxiv)

Setting the equation to zero and solving yields:

)exp( ijjiij cT βττ −−−= (xxv)

One of the innovative features of the entropy approach to spatial interaction modelling is that it

provides a theoretical (albeit derived from statistical mechanics) for a family of spatial interaction

models. By substituting the above equation in place of ijT  in our constraint models already explored

in Section 6.1 we derive entropy versions. For the origin constraint, the equivalent entropy model is

derived as:
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and for the destination constraint, the equivalent equation is:
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To see how this results in a full spatial interaction model, we simply add our scaling constants, iA

and jB :

jiijjiij BAcDOT )exp( β−= (xxviii)



28

This represents the entropy spatial interaction model in its general form. From that equation, four

versions may be derived: origin-constrained, destination-constrained, doubly-constrained, and

unconstrained.

6.2 SPATIAL CHOICE MODELS

6.2.1 Discrete choice models

As has already been mentioned, there is little theoretical justification to support the notion that

urban systems operate in a fashion akin to Newtonian gravity. At the start of the 1970s, some

serious criticisms were levelled against gravity-type formulations of land-use–transportation

models. In reaction to this, modellers began to develop simulations that were more behaviourally

grounded. One avenue of development that was widely embraced was that of discrete choice

modelling. Broadly speaking, discrete choice models (which derive from decision theory) are

concerned with explaining phenomena in terms of decision-making. While they function in a

fashion that resembles spatial interaction models, they are actually concerned with spatial choice.

The most widely used manifestation of the discrete choice model in urban simulation is the random

utility model and variations thereof.

Random utility models proceed on a number of assumptions. The first assumption specifies that

each decision-maker is faced with a discrete set of choice alternatives—a choice is either made or

not made. The second assumes that an individual (or a group of individuals) will settle upon one

decision from a larger set of available options in such a way that the most utility, or satisfaction, is

yielded. Contextualizing this in an urban sense, we might think of a household making a location

decision amongst a set of given locations that a city has to offer so that a combination of utilities is

maximized (e.g., cost, amenities, quality of the school system, etc.). The third assumption in

random utility models is that choices are made in a probabilistic fashion—decision-makers have a

likelihood of making certain choices. Finally, it is assumed that the utility of a decision can be

divided into two components: one measuring ‘strict utility’: the fixed and measurable attributes of

utility, and the other dealing with stochastic utility: an error or disturbance term that reflects the

unobserved attributes of a given decision (Barra, 1989; Golledge and Stimson, 1997).

Mathematically, we can build up a formula for the random utility model based on these

assumptions. The notion of utility maximization can be expressed as:
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ijik UU >     njjk ,,1, �=≠∀ (xxix)

where ikU  is the utility of a decision-maker i making choice k; ijU  is the utility of a decision-maker

i making choice j; and njjk ,,1, �=≠∀  asserts that j stands for all choices other than k. Simply

then, the above formula establishes a framework for a decision to be chosen from a set of

alternatives.

Introducing the idea of probabilistic decision-making develops the random utility formula further:

[ ]ijikik UUP >= Pr     njjk ,,1, �=≠∀ (xxx)

where ikP  is the probability of a decision-maker i choosing alternative k; and Pr is a probabilistic

expression. This assigns likelihood to various choices from a set of alternatives.

Adding the assumption that utility may be distilled to a ‘strict utility’  and stochastic component

yields the final random utility model formula:

[ ]ijijikikik EVEVP +>+= Pr     njjk ,,1, �=≠∀ (xxxi)

where ikV  and ijV  are the ‘strict utility’ components of an individual i’s  choices of k and j

respectively and ikE  and ijE  are the stochastic elements of the utility calculation for choices k and j.

Additional elements may be added to this formula to weight the probability calculation, e.g.,

variables representing the socio-economic characteristics of a decision maker.

The random utility model has many similarities to the entropy-maximizing gravity model. There are

important differences though. Their similarities may be in large part a function of the set of

assumptions upon which they are formulated, rather than their theoretical justifications or actual

mechanics. There is also a difference in the way the two approaches handle the assumptions under

which they operate, particularly in how they order them. Entropy models assume choices to be

random from the outset, then narrow the choice set with the application of constraints. Random
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utility models, on the other hand, start out with an assumption of a rational choice base, and

introduce a random element as they proceed (Government of Ireland, 1995).

6.2.2 Non-hierarchical logit models

The most common derivative of the random utility model is the multinomial logit model. The logit

model expresses the decision choice as a function of the utility of choosing one alternative over

another. The model is derived by making assumptions regarding the random component of utility,

ijE .

A common assumption is that the distribution of ijE  follows a Weibull distribution (also known as a

double exponential or extreme value type I distribution). The assumption of a Weibull distribution

affords the utility calculation a greater degree of mathematical tractability. Applying the Weibull

function to the random component of utility leads to McFadden’s logit model, in the form:
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where kX  and jX  are the choice specific attributes of choices k and j respectively (e.g., in terms of

trip-making, this could represent costs, time, etc.); and iS  is the individual-specific attributes of

choice k (e.g., the decision-maker’s income, level of auto ownership, etc.). In short then, the

McFadden logit model states that the probability of a decision-maker choosing an alternative k from

a set of available alternatives is a function of the attributes of the available alternatives and the

decision-maker’s own characteristics (Government of Ireland, 1995).

The non-hierarchical logit formulation suffers from some serious weaknesses however.

Behaviourally, the logit framework assumes that individuals evaluate every available alternative to

their decision before settling on an optimal one. In practice, cities generally offer far too many

competing alternatives to any given decision to be completely evaluated in this manner. Rather,

decision-makers, be they individuals or groups, are more likely to settle on a final decision from a

small subset of the available alternatives that are globally available to them throughout the entire

urban system. A hierarchical decision-making strategy is thus more likely to be employed than an

optimizing strategy (Fotheringham and O'Kelly, 1989). Structurally, logit models exhibit
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weaknesses owing to the independence from irrelevant alternatives problem and the assumption of

regularity. The problem of independence from irrelevant alternatives (popularly known in transport

modelling as the ‘red-bus-blue-bus conundrum’) lies in the fact that logit models assume that the

ratio of probabilities of an individual selecting two alternatives is irrelevant from the addition of an

extra alternative. Yet, the introduction of additional alternatives is generally quite relevant in spatial

terms. Closely related to this is the idea of regularity, which refers to the notion that within the logit

framework  it is not possible to change the probability of selecting an alternative by adding another

alternative to the choice set (Fotheringham and O'Kelly, 1989). In the context of an urban system

this assumption holds little value; it leaves the decision-making process unaffected by any offer of

additional choices to a decision-maker.

6.2.3 Nested logit models

The nested logit model departs from the basic logit formulation by introducing hierarchy into the

decision-making process. Nested models assume that decision-makers process information about

choices in a chained fashion and that the modeller is aware of the form of that chain. In this sense

they attempt to circumvent the weaknesses of the non-hierarchical model by assuming that decision

makers make choices sequentially, rather than wading through every available option at once.

A common application of the nested model is to travel choice. Various sequential stages in the

decision to travel can be identified, e.g., whether or not to make a trip; where to go; by what mode a

trip should be made; and on what route to travel. This method of simulation abstracts from

irrelevant (or less relevant) information regarding the decision, and focuses the choice on the set of

alternatives that are most applicable. Mathematically, this results in a set of conditional probabilities

for each of the sequential stages in the decision-making process. Aggregating these probabilities

yields the likelihood of a choice being made such that:

( ) ( ) ( ) ( ) ( )cbadPbacPabPaPdcbaP ,,|,||... = (xxxiii)

where a, b, c, and d refer to the four sequential stages in the decision hierarchy (e.g., whether to

travel, destination, mode, and route). It is important that the estimation process begin with the last
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step in the hierarchy and work its way back to the beginning in order to ensure that the strict utilities

are preserved throughout the process (Government of Ireland, 1995).

Formulating the nested model in spatial terms, decision-makers can be regarded as choosing options

from a set of clusters. Continuing with our trip-making analogy, we now have individual trip-

makers (or perhaps groups of trip-makers) who make decisions about their trips but also have to

consider a range of spatial options in which to focus those choices. Mathematically, this can be

represented as:
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where isP  is the probability that a decision-maker i will select a particular spatial cluster s to focus

its decision in; ( )∑
∈

n

sk
ikVexp  is termed an ‘inclusive value’ and describes the attractiveness of a

cluster as a function of the individual alternatives available within that cluster (Fotheringham and

O'Kelly, 1989); and σ  represents the extent to which decision-makers process their information

hierarchically, and ranges in value from zero to one, with 1=σ  denoting decision-makers who do

not process their information hierarchically at all.

Once a decision-maker has selected a given spatial cluster, s, to narrow her choice set, all that

remains is for an option (or alternative), k, to be settled upon. The likelihood of a decision-

maker selecting a particular alternative k, within the selected spatial cluster s, is then calculated as:
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and the probability of a decision-maker selecting k from the set of all alternatives is:
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sikisik PPP ∈= (xxxvi)

Spatial choice models are perhaps more appropriate representations of how land-use and

transportation systems organize than spatial interaction models, but they suffer from weaknesses.

Notably, it is widely understood that the distinctions between choice categories may often be fuzzy

rather than discrete. Spatial choice models do not commonly accommodate this.

6.3 BID-RENT THEORY

Figure 6. Diagram illustrating land use patterns distributed spatially across a theoretical city

according to bid-rent theory

The final modelling technique, which along with spatial interaction and spatial choice, underlie the

most common land-use–transportation models is bid-rent theory. Bid-rent theory (popularized by

Alonso) owes a great deal to the von Thunen model that we explored in Section 4, as Figure 6

illustrates. Proceeding from a set of simplifying assumptions (notably, monocentric cities and a

limited range of land uses), bid-rent theory offers an explanation of the spatial distribution of urban

activities. The central argument of bid-rent theory is that land uses will organize geographically

based on their capacity to compete for land rents. That capacity to compete is controlled by the
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value, profit, or utility that an activity places on accessibility to a central urban core. Given these

considerations, land uses will tend towards a spatial arrangement akin to that illustrated in Figure

6—with businesses located close to the urban core and industry and residences situated towards the

urban periphery.

While the notion of bid-rents has enjoyed a wide application in urban modelling, and has a limited

theoretical justification, the theory does not easily transfer to practice. The utility function, in

particular, can be difficult to calculate. Often, it involves a monetary component (e.g., travel time

and/or travel cost related to distance from work). But in many circumstances the utility function

also contains non-monetary conditions that are difficult to cost—the availability of space, fresh air,

peace and quiet; location prestige; neighbours; family ties; etc. (Balchin and Kieve, 1977).

Nevertheless, bid-rent theory enjoys a pivotal position in many operational land-use–transportation

models and is an important ingredient in their formulation.

A variant of bid-rent models—hedonic price models—has gone further towards operationalizing

some of the factors that weigh into the bid-rent calculation. Hedonic price models distil real estate

values into constituent components (e.g., land value, structure value, number of bedrooms in

property, proximity to schools, etc.), each of which has an associated value. Often these models can

be incredibly disaggregated. However, they are weakened to some extent by their reliance on price

as a framework for formulating ideas about the dynamics of urban systems. Also, because of

privacy concerns, price data can be difficult to obtain, especially data spanning multiple time

periods. Moreover, many things are difficult to price.

7 INDIVIDUAL MODEL COMPONENTS (SUB-MODELS)

With a grounding in the important modelling principles common to land-use–transportation models

behind us, the discussion now moves onto a treatment of the various sub-models that make up land-

use–transportation models. In Section 7.1 simulation of the land use system will be described in

terms of location, development, and equilibrium; then the focus will shift in Section 7.2 to a

representation of the transport system, discussed in terms of potential demand modelling and trip

generation, trip distribution, modal split, trip assignment, accessibility, and the generalized costs of

travel. Ways of integrating the land-use and transport systems in a simulation are then mentioned in

Section 7.3, as are the introduction of policy elements to the modelling framework in Section 7.4.
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7.1 THE LAND USE SYSTEM

The essential components of the land use system, in terms of land-use–transportation modelling, are

location and development.

7.1.1 Location

The urban land use system is largely modelled by simulating the mechanisms that affect the spatial

location of urban activities in a city. The most important of these location factors for simulation

purposes—accessibility—will be discussed in more detail in later sections. A number of other

important geo-economic concepts underpin land-use–transportation models, serving as proxies for

the complex interactions and motivations driving urban location. Among these are the ideas of bid-

rent, travel costs, inertia (stability in the occupation of land), topography, climate, planning, and

size.

As the discussion surrounding bid-rent theory alluded to, not all land uses in the city have the same

location considerations. It is useful, therefore, within a land-use–transportation model, to

decompose the location decision to represent a broad classification of the most important land uses

in a city. Residential location and firm location are essential considerations, and occasionally

industrial location is modelled.

7.1.1.1 Residential location

There are three main theories explaining the rationales underlying urban residential location: bid-

rent theory, travel cost minimization theory, and travel cost and housing cost trade-off theory.

Expressing the household location decisions of two households in a monocentric city in a bid-rent

framework generates bid-rent curves such as those displayed in Figure 7.
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Figure 7. Diagram illustrating a residential bid-rent curve for a monocentric city.

When seeking out a location (in this conceptual, economic sense), each household pursues a

location on the bid-rent curve where the land price curve touches the bid-rent-curve nearest the

origin, i.e., a household seeks the location that yields the greatest utility at current market rents

(Harvey, 1996). The shape of a household’s bid-rent curve is dependent upon their particular

situation (tastes, income, etc.). For example, a young family (household B) will generally require

space and access to schools. Its bid-rent curve is likely to be relatively flat as a result (implying that

a household is more likely to locate in the suburbs). On the other hand, single people, the elderly, or

families consisting mainly of wage earners (household A), are likely to have steeper bid-rent curves,

and may favour locations closer to the CBD.

Travel cost minimization theory assumes that the only consideration in the residential location

decision is that households select locations that reduce their need to travel. If we consider a city

with jobs located in a central core, this implies that the most sought after locations would be close

to the CBD, while the less popular areas would be concentrated on the urban fringe. Socio-

economically, this would suggest concentrations of wealthy households in the central city, with

poorer households towards the urban periphery. In reality, the cost of travel is not the only

residential location factor affecting the decisions of households; factors such as open space and

quality of housing muddy the issue and the opposite is generally true: the poor end up closer to the

CBD and the rich live farther out. Also, jobs are increasingly located in the suburbs. Nevertheless,

travel cost minimization theory does have some relevance to household location (particularly

through the notion of accessibility).
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Travel cost and housing cost trade-off theory assume that households trade off the competing

influence of housing cost and travel cost in making their residential location decision. This implies,

in geographic terms, that land values will be higher close to a central business district and lower

towards the periphery. While this is largely true in practice, there are many complicating factors,

both economic and non-economic. High-income households may not have to trade off housing cost

against travel cost, because they may be able to afford both. People who can afford to live close to

the CBD may elect not to because they wish to enjoy the amenities on offer in the suburbs (e.g.,

environment, space, and for reasons of segregation). Because of the dearth of available space in

central cities, outer areas generally offer a wider range of opportunities for the construction of new

and expensive houses. Also, transportation innovations may make outer locations more accessible

to a CBD than inner suburban areas. This is significant; jobs are increasingly relocating to

peripheral sites. Additionally, location decisions may be heavily reliant on the availability of

income and mortgage finance, which is often distributed aspatially within a given metropolitan area.

And there may be a time lag before households react to changes in housing costs.

There are also many non-economic reasons that play equally important roles in affecting household

location decisions. For example, some households may have a low degree of mobility in their

decision to move. There may also be more pressing familial reasons why a household seeks to

move, and governing the type of real estate they may demand, e.g., changes in employment,

marriage, family size, and age.

7.1.1.2 Business location

Figure 8. Diagram illustrating a business bid-rent curve for a monocentric city.
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Households may desire central areas as much as other urban land uses, but they can rarely hope to

outbid uses such as industry and business (unless the residences compose multi-storey blocks of

residential units) because they cannot derive as much profit (or utility) as those other uses. In terms

of bid-rent, firms generally out-bid all other activities in the urban location decision, simply because

they can derive the most profit from occupying a particular site. In this sense, they tend to have the

steepest bid-rent curves (Figure 6). We find that firms tend to locate where the land price curve

touches the bid-rent curve. At that point, the most profitable location at current market rents is

realised, which is often in, or close to, the CBD. However, firms requiring large sites may have a

flatter bid-rent curve (firm B), and may locate in suburban areas or towards the urban periphery

(Figure 8).

7.1.1.3 Industrial location

Industrial land uses have the same need for proximity to central sites as do firms. Their location

motivation is also similar to that of firms: availability of labour, access to transportation, auxiliary

services, etc. However, their need for central locations is not as great. As a result, industries are not

as well equipped to compete for central sites and their rent gradients tend to be flatter than those of

commercial firms.

In recent years there have been significant changes in the location behaviour of most urban land-

uses because of advances in the provision of transport infrastructure, changing socio-demographics

amongst urban populations, and alterations in the spatial structure of the city. While these

reorganizations have affected all urban land uses, the impact of these changes has been particularly

profound for manufacturing industry and its location within metropolitan areas. Manufacturing uses

have been persuaded or forced out of central locations largely because of developments in the

provision of roadways—the contemporary wave of road building has focused mainly in outer urban

areas. Nevertheless, a large degree of inertia remains for centrally located manufacturing industry,

fuelled by traditional preferences for downtown sites and the benefits of external economies of

agglomeration in central areas.

7.1.1.4 Simulating location via the Lowry framework

One way of handling the idea of location in a simulation sense is via the Lowry framework.

Conceived of in his Model of Metropolis (1964), the framework proceeds on the premise that the
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place of employment governs the place of residence—jobs decide where people live. In the Lowry

framework, employment is divided into basic (mainly manufacturing) and non-basic (mainly

service) sectors. The framework takes basic employment (which must be exogenously supplied)

together with endogenously derived service employment and uses them to estimate the location of

residents. This estimate of residential location is then fed back into the model to predict the location

of service employment. The model then proceeds iteratively through these steps, assigning activities

to urban locations.

Lowry’s assumption that basic industry should be exogenously determined (outside the model) was

based on his observations that basic industry has specialized site requirements and external markets,

and that its location decisions are independent of the residential population (Oryani and Harris,

1996). However, Lowry suggested that service employment be endogenously derived (within the

model) since its location decisions are closely related to residential demand. He also assumed that

the residential location decision was made in relation to both combined service and basic

employment.

Distilling the Lowry framework to its two principal mechanisms—residential and firm location—

presents a clearer idea of how the model operates. In the residential component, population (or

households) are assigned to residential locations in origin zones based on their places of

employment in destination zones. Two main factors are used to govern this location assignment

process: zonal attractiveness and distance. For households, zonal attractiveness can be characterized

by variables such as floor space; housing prices or rents; availability of schools, shops, health

services, leisure and recreation facilities, etc. The other factor—distance between places of

residence and work—may be considered in physical terms or as the cost of traversing that distance

in monetary costs or time expenditure.

In the service employment (firm) component, firm location is directly linked to residential location,

implying that service employment is located either alongside, or soon after, residences. The major

factors driving service employment are governed to be accessibility to consumers and rental costs

for work sites.

The Lowry model is expressed mathematically as a series of singly constrained spatial interaction

models. It proceeds sequentially and iteratively through four main stages. In the first step, basic and

service employment totals are combined and this figure is used to estimate total employment in a

destination zone. (Service employment totals are usually set to zero in the first iteration.)

Mathematically this takes the form:
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s
j

b
jj EEE += (xxxvii)

where Ej is an estimate of total employment in destination zone j; b
jE is an estimate of basic

employment in zone j; and s
jE  is an estimate of service employment in zone j.

The employment estimate value (Ej) is fed into another equation in the second stage to estimate how

residents should be allocated to an origin zone i:

( )ij
r

ijjij cWBER βµ α −= exp (xxxviii)

where ijR  is the estimated number of residents that live in origin i and work in destination j; jE is

an estimate of total employment in destination zone j (supplied by the first stage); µ is a population-

to-employment ratio; jB  is a parameter that ensures that the correct number of residents is allocated

to zone i, i.e., that µjiji ER = ; α
iW is the attractiveness of zone i (e.g., in terms of floor space for

residents); rβ regulates the effect of transport costs on the distribution of residents; and ijc  is the

cost of travel from i to j.

In the third stage, service employment is allocated to destination zones j based on places of

residence in zones i (calculated in the previous step):

( )ij
s

jii
s
ij cWsARE βα −= exp (xxxix)

where s
ijE  is an estimate of the number of service workers living in zone i and working in

destination zone j; iR  is the number of residents in origin zone i; s  is a service employment-to-

population ratio; iA  ensures that the correct number of service employees is allocated to zone j, i.e.,

that sRE i
s
ijj = ; and where ( )ij

s
jji cWA βα −= exp .

In the fourth stage, calculation then passes back to the first step. Here, service employment is added

back to exogenous basic employment. At each subsequent iteration, a number of residents and
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service employees are added to the calculation, but this number grows progressively smaller with

each iteration, eventually converging to zero.

The basic framework can be extended to add realism to the model. For example, service

employment may be disaggregated within the model to accommodate a variety of services (e.g.,

retailing, education, healthcare, etc.).

7.1.2 The land development process

Another important component of the generic land-use–transportation model, along with location, is

the simulation of land development (although many models overlook this component). In

theoretical terms, a need to increase the available supply of land in a given urban area is prompted

by excess demand for urban real estate. Developers will develop a site if they judge that they can

turn a profit. A number of factors weigh in on this profit calculation, however. Developers calculate

profit margins; these are a function of the trade-off between input costs (the costs of developing a

site) and the expected selling price of the development. The actual acquisition price of the site for

development is normally valued by the residual method of valuation. If a developer is able to

acquire a site for a price below its residual value, she or he can (potentially) turn a profit by

developing that site. The residual value may be calculated according to the following equation:

PCMV −−= (xl)

where: V  refers to the residual value of a development site (often expressed per annum), M  refers

to the market value of the finished product, C refers to the full costs of development, and P  refers

to the developer’s required profit on gross development value (Adams, 1994).

There may be a range of input costs associated with land development, including expenses such as

land, labour, materials, fixed costs, marketing, the costs of capital, fees, and interest charges

(Adams, 1994; Bramley et al., 1995). (Interest charges strongly influence development on the

supply side—if interest charges go up, the cost of borrowing capital for development rises.)

However, the determination of a profit calculation is further complicated by the issue of the timing

of land acquisition in relation to the sale of the development as this impacts upon the cost of the

land and the turnover time of capital (Bramley et al., 1995).



42

7.1.2.1 Land banking

All developers will land bank (withhold land from development) to a certain degree. Land will

generally need to be held from development for a minimum of two years, simply for operational

reasons (Bramley et al., 1995). However, many developers (as well as landowners) may withhold

land from development for speculative reasons if they think that the profits to be gleaned from the

future sale price of the land can at least offset their costs in holding the land over the duration of the

development. Money invested in development is essentially dead money until it is recouped at the

time of sale. If the money used to develop a site has been borrowed, it is a liability over the time of

the development. The capital that would have been realised from the development and sale of a tract

of land could alternatively be invested by other means, potentially generating a profit over the entire

development period (which, in many cases, spans several years). Additionally, a developer must

also bear in mind the cost of property taxes that may need to be paid on the land over the timeline of

the development. The considerations influencing the decision to hold land speculatively from

development may be thus generalized in the following functional relationship:

( )Pgnsrriifto ,,,,,,, **= (xli)

where to is the optimum time period for holding land from development for speculative reasons; i is

the individual investor’s interest rate (which varies amongst individuals depending on their ability

and capacity to invest, and the quantity and quality of their investment opportunities); i* is the

discounted expected percentage return on an alternative investment; r is the net rate of return on the

land; r* is the discounted expected percentage return on the land (which should include a risk

premium); s is the marginal personal income tax rate assessed to the landowner; n is the number of

years in the speculator’s time horizon (depending on their forecast of land demand); g is a

subjective discount factor reflecting risk; and P  is a property tax (Bahl, 1968).

In terms of operationalizing these sorts of functional relationships into a simulative framework

within land-use–transportation models, traditional efforts have been weak (if existent at all).

Supply-side modelling (development and redevelopment) is, in many cases, simply absent from

simulative frameworks (notable exceptions include UrbanSim, under development at the University

of Washington (Waddell 1998a; 1998b).
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7.1.3 Supply, demand, and equilibrium

Because land-use–transportation models are overwhelmingly rooted in urban economic theories

about how urban systems work, much of their mechanics is phrased econometrically. On the

broadest economic level, urban land use manifests itself spatially through a complex trade-off

between supply, demand, and equilibrium. Because the supply of and demand for land are generally

in a state of disequilibrium, there is usually a scarcity or excess of land available for different uses

within the city at any given time.

7.1.3.1 Urban land supply

The total supply of land in any given urban area can generally be regarded as being largely fixed (or

inelastic)—for the most part, new land cannot be readily created or destroyed. Of course, there are

exceptions: land may be gained or forfeited through territorial acquisitions or losses, or through

land reclamation or destruction. Additionally, land may be brought into supply as urban areas

expand beyond their peripheries and encroach upon agricultural hinterlands. While the total supply

of land is largely static, the available supply of land at any one time is dynamic due to factors such

as intensity of use, planning policies that might permit or deny development, physical constraints,

improvements in building technology, and the behavioural choices of landowners who might

withhold land from development for various reasons.

7.1.3.2 The demand for urban land

The demand for land in a city is a function of the conceived profitability or utility of its use by

existing or potential users. Because of the relatively fixed nature of urban land supply, it reacts quite

slowly to increases or decreases in demand. Therefore, it is demand that is the real determinant of

urban land prices.

Demand itself is really determined by two factors: use value and exchange or sale value (Kivell,

1993). The use value of urban land refers to the demand that it generates from users who wish to

actually utilize the land for some purpose. Essentially, use value is derived from the functional use

of the land, e.g., as a business or a site for the manufacture of certain goods. Exchange value derives

from the sale of land at a profit to another user. Additionally, there are other factors that influence

the demand for urban land, including interest rates, allowances for risk, and expectations of capital

gain.
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7.1.3.3 Reconciling supply and demand through the urban land market

The forces of supply and demand come together in the urban land market. Ideally, at any given

time, the competition between land supply and demand would reach a state of equilibrium in which

a balance was struck between the two. In a perfectly competitive market, rapid shifts in price would

balance the demand for land with the quantity supplied. Such markets would eliminate surpluses

and overcome shortages quickly (Adams, 1994). However, the urban land market is anything but

ideal, and generally tends towards a state of disequilibrium at any moment. This tendency towards

disequilibrium (or lagged response of supply to demand) is the result of several inefficiencies in the

urban land market. These include the imperfect knowledge of buyers and sellers; the betrayal of

conditions of perfect competition (because property is often dominated by few buyers and sellers);

the uniqueness of supply (in terms of quality, age, configuration, and location); barriers to ease of

entry and exit of buyers and sellers to the market such as high transaction costs; infrequent

transactions—land and property are bulky goods, acquired infrequently; externalities (costs of

benefits arising from an activity that do not accrue to the person or group engaging in the activity);

geographical inertia; the immobility of land; time-absorption in the development of land; the

influences of conservation policies; the monopoly power of some agencies such as planning

authorities, property companies, and mortgage institutions; and the role of non-monetary factors

such as sentiment, symbolism, and pride of ownership (Adams, 1994; Balchin and Kieve, 1977;

Kivell, 1993).

7.1.3.4 Modelling equilibrium using constraints

As previously mentioned in Section 6, the application of constraints to basic models serves as a

proxy for equilibrium in the generic land-use–transportation model. Of course, the theoretical

justification for this is weak. The very notion of equilibria in urban systems is debatable.

Additionally, the introduction of constraints is likely to be a result of inadequacies in the behaviour

of the model, rather than a theoretical foundation. Nevertheless, the constraint does serve as a vague

mechanism for reconciling demand and supply within the model.

Other, more theoretically justified methods of reconciling demand and supply in land-use–

transportation include the notion of market clearing. In a simulative framework that incorporates

price information (land prices, rents, etc.), market clearing is represented by adjusting prices to
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balance the demand for space (generated by competing uses) with the supply of space in the urban

system2.

7.2 THE TRANSPORT SYSTEM

The second major component of a land-use–transportation model, simulated alongside land-use, is

the transport system. The traditional way of characterizing the transportation system in urban

simulation models is a four-stage process. This process begins with modelling travel demand and

generating an estimate of the amount of trips expected in the urban system. The second phase, trip

distribution, allocates the trips generated in origin zones to destinations in the urban area. The third

phase is modal split. Here trips are apportioned to various modes of transport (e.g., by automobile

or public transportation). The four-stage simulation process concludes with a trip assignment

module that takes estimated trips that have been generated, distributed, and sorted by mode, and

loads them onto various segments of the transport network. Transport simulation usually proceeds

sequentially amongst these four stages in the order in which they are described above (Figure 10).

Figure 10. Diagram illustrating the four-step modelling process for transport.

                                           

2 For a description of a market-clearing mechanism used in an operational model, see Waddell, 1998a, 1998b.
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7.2.1 Potential demand modelling and trip generation

Potential travel demand (an estimate of the volume of trips likely to be made in a given urban area

and time) can be derived for both journey-to-work trips, trips for other purposes (e.g., leisure, or

shopping), or aggregated as a total measure of trips for all purposes.

Demand for journey-to-work trips can be derived from location models at the land use level using

figures for residential occupation:

ij
w
ij RQ = (xlii)

where w
ijQ  is the potential demand for work trips between an origin and destination (from i to j) and

ijR  is the number of residents that live in i and work in j, i.e., the population that drives the demand.

Demand for trips for other purposes is derived from an origin-constrained spatial choice model:

( ) ( )n
ij

nn
jii

n
ij cWARQ βα

−= exp (xliii)

where n
ijQ  is potential demand for non-work-related trips from i to j for each purpose n (e.g., for

shopping or leisure); iR  is the number of residents living in origin zone i; iA  is a balancing factor

that ensures that the simulated iR  is equal to an exogenously-determined iR , and where

( ) ( ) 1
exp

−
−= n

ij
nn

jji cWA βα
; n

jW  is the attractiveness of destination zone j for activity n (e.g., the

floor space occupied by shops); and n
ijc  is the composite cost of travel from zone i to zone j.

Combining these two demand functions, we can estimate total demand for all trips across all

purposes by adding potential demand for non-work-related trips over activity n  to potential demand

for work-related trips:

w
ij

n
ijnij QQQ += (xliv)
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where ijQ  is total demand for travel from origin i to destination j.

Once potential demand has been calculated, the simulation proceeds to trip generation. The trip

generation phase transforms estimates of potential travel demand into actual trips, taking into

consideration the generalized cost of making those trips (Government of Ireland, 1995). The

function for transforming demand into actual trips often takes the form:

( )[ ]n
ij

nnnn
ij

n
ij cbaQT β−+= exp (xlv)

where n
ijT  is the total number of trips between zones i and j for activity n; n

ijQ  is the potential

demand for trips from i to j for activity n; nn ba +  is the maximum number of trips that must be

made ( na  is the minimum number of trips that must be made); nβ  regulates the slope of trips to the

cost of those trips (for work and school trips, this value is usually set to zero to illustrate their

relative inelasticity); and n
ijc  is the generalized composite cost of travel between zones i and j. Put

simply, what this function ensures is that as the cost of travel increases, the number of trips made

tends to decrease.

7.2.2 Trip distribution

The trip distribution stage takes actual trips from the trip generation model and matches them with

trips attracted to destination zones (Oryani and Harris, 1996). In this sense, the distribution phase

simulates the distribution of predicted trips (predicted for origin zones) to destinations. Often the

distribution mechanism employed is the gravity model. Here, the number of trips made between and

origin and destination is governed to be proportional to some measure of the destination zone’s

‘mass’ (e.g., the volume of activity opportunities there) and inversely proportional to some measure

of travel impedance. The formulation of the trip distribution model is the same as that mentioned in

the gravity models referred to in Section 6 and will not be detailed here.
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7.2.3 Modal split

The modal split sub-model is concerned with estimating what proportion of trips is made by each

defined mode of travel from an origin to a destination zone. In mathematical terms, this is most

commonly expressed as a multinomial logit model. The logit model represents the mode choice as a

function of the disutility or cost of using one mode of travel (e.g., private automobile) over another

(e.g., public transit). Often the logit model may be specified hierarchically to circumvent the ‘red

bus-blue bus’ conundrum. The non-hierarchical logit model will generally take the form:

( )
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where nk
ijT  is the number of trips between i and j by mode k for activity n; n

ijT  is the total number of

trips between i and j for activity n; and 
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exp
 is the share of trips made by each mode k

between i and j for activity n.

7.2.4 Trip assignment (route choice)

The trip assignment or route choice phase takes estimated trips, already sorted by mode, and assigns

them to routes on the transport network. Again, the technique used to express this mathematically is

usually by means of a multinomial logit model (although with capacity constraints added). This

may generally take the form:
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where nkp
ijT  is the number of trips between i and j made by mode k via path p for activity n; nk

ijT  is

the total number of trips made by mode k for activity n between zones i  and j; and

( )
( )∑ −

−
n

p

nkp
ij

n

nkp
ij

n

c

c

β

β

exp

exp
 is path p’s share of the total number of trips between i and j by mode k for

activity n.

7.2.5 Accessibility

The notion of accessibility is a key ingredient in many of the individual components of a land-use–

transportation model. Accessibility may be broadly defined as the ease with which activities at a

given destination may be reached from an origin location using a particular mode of transport.

Couched in land use terms, accessibility determines the profitability and utility of locating a use in a

given area of the urban expanse by affecting the cost of movement in terms of distance, time, and

convenience. Put simply, the greater the accessibility of a particular location, and the greater the

importance of accessibility to a specific land use, the higher the valuation afforded a piece of land.

Ever defiant of adhering to simple explanations, land-use–transportation models handle

accessibility in a divided fashion, bisecting accessibility into two components: general and special.

General accessibility—proximity to all other urban uses and facilities—is largely dependent upon

transportation costs. Firms require general accessibility to the factors of production and to markets,

while households require general accessibility to things like work opportunities, shops, schools, and

recreational facilities.

Special accessibility refers to a spatial clustering of activities within the broader pattern of urban

land use governed by general accessibility. Special accessibility affects location through two

mechanisms: external economies of concentration and external economies of complementarity.

External economies of concentration refer to the pooling of attractions. For firms, an external

economy of concentration could be a pool of trained labour or common services; for households

that concentration might be of a community that is large enough in size to support specialist

hospitals. Of course, diseconomies of concentration—generated by the likes of overcrowding or

traffic congestion—could have a repellent effect on location decisions. External economies of

complementarity occur when location decisions are made so as to benefit from proximity to other



50

uses or activities. For example, smaller shops situating themselves parasitically beside dominant

retailers, or households locating near to parks (Balchin and Kieve, 1977).

Mathematically, there exist a diversity of mechanisms for describing accessibility. The basic format

for measuring accessibility is as a function of opportunities in a destination zone and the cost of

travel between an origin and that destination—accessibility as a function of the attraction of the

destination and the ease of reaching it. One of the simpler expressions of this kind is the summation

of spatial separation:

∑
=

=
n

j
iji dA

1

(xlviii)

where iA  is a measure of the accessibility of an origin zone i, and ∑
=

n

j
ijd

1

 represents the distance

between origin zone i and destination zone j, summed across all destination zones j (Lee and

Goulias, 1997).

The above measure may be more closely fitted to a city by including some form of distance

decay parameter, reflecting the notion that people are less inclined to make longer journeys. There

are a number of ways in which distance decay can be added to the basic summation formula above.

The parameter may be added as a constant in the form:

kn

j
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(xlix)

where k−  represents the effect of distance decay on the accessibility of an origin zone (Lee and

Goulias, 1997). Alternatively, a negative exponential function could be applied to the basic formula

to describe a more realistic form of distance decay:
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where β−  now represents distance decay (in a negative exponential form). There are some

complications with the negative exponential expression, however. Its main failing is that it

describes distance-decay as a rapid drop in accessibility with distance from a centre. One way to

circumscribe this flaw is to describe distance-decay as a Gaussian function. The Gaussian function

has the advantage of offering a smoother characterization of distance-decay, more akin to real-

world patterns. The Gaussian description of distance-decay represents accessibility decline initially

as a slow abatement from an origin i, with a smooth tapering to zero as distance from that origin

increases:

∑
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or, rewriting the equation with all terms included we get:
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where v  is a constant, and 2•d  is the square of the distance from origin i at which accessibility is

deemed to decline at the most rapid rate (Lee and Goulias, 1997).

Other ways of expressing accessibility mathematically include measures based on gravity

formulations, and isochrones. As we have seen, gravity-type accessibility measures introduce a

weight representing the ‘mass’ of opportunities at a destination zone and incorporate some indicator

of the cost of travel between origin and destination:

∑
=

=
n

j
ijji cOA

1

 (liii)

where jO  corresponds to the mass of opportunities at destination zone j, and ijc  represents the costs

of travel between origin i and destination j.
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Isochronic accessibility measures (also known as cumulative opportunities measures) centre on the

notion of accessibility over a given travel time (Lee and Goulias, 1997; O'Sullivan, 2000b). They

answer questions of the form: given a time budget of X hours, how far can I get in the city? They

may be expressed, for example, in the following form:

∑
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0,1

1 5.0n

n
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n

R
A  (liv)

Where iA  is the isochronic accessibility of an origin zone i, nR  is the number of destinations that

can be reached within the nth annulus (i.e., in this example, between 0.5n km and 0.5*(n–1 km)

from the origin zone i), and 0.5n represents a 5 km opportunity.

Other forms of accessibility measure derive from random utility theory. As already noted, in utility-

based measures, the probability of an individual making a particular choice depends on the utility

(welfare) of that choice relative to the utility of all choices. Assuming that an individual assigns a

utility to each destination available to them in their trip-making decision (or perhaps a utility is

assigned to both destination and mode of travel) in some specified choice set, C , and that

individual selects the alternative that maximizes his or her utility, then accessibility may be defined

as the denominator of a multinomial logit model (also known as the logsum), such that:

( )( )A Vn n C
C

n

n

=
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∑ln exp (lv)

Where: An is the accessibility measure for an individual, n ; Cn  is the choice set for a person, n ;

and ( )Vn C  is the observable temporal and spatial transportation components of the utility of choice

C  for person n . The logsum, ln∑ , indicates the desirability of the full choice set C . Specifying

the utility function necessitates the inclusion of variables that represent the attributes of each choice

(reflecting individual tastes and preferences: the attractiveness of the destination, the travel

impedance that must be overcome to reach the destination, and the socio-economic characteristics

of the individual or household making the trip.
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7.2.6 Generalized costs of travel

An important component of location decisions (and indeed of many of the calculations we have

already reviewed) is the idea of travel cost. There are three main ways in which the costs of travel

are considered in land-use–transportation models: travel time, composite costs of travel, and

changes in consumer surplus.

Travel time on a particular path (a proxy for travel cost) is a function of the ratio of path volume to

path capacity (the amount of traffic on a road versus the amount a road can handle).

Mathematically, this is expressed as:
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where QT  is travel time at a given traffic flow Q ; α  is a parameter to be estimated by the model;

Q  is the traffic flow expressed as vehicles per hour; and maxQ  is the practical capacity of the route.

The composite costs of travel between zones i and j by a transport mode k can be derived by

aggregating nkp
ijc  (the cost of travel between i and j for activity n, by transport mode k, along path p)

over all paths p (the subscript p denoting aggregation over all paths):
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where nk
ijc  is the composite cost of travel between zones i and j by mode k for activity n; nβ

regulates the slope of trips to their cost (this value is usually set to zero for work and school trips,

reflecting their general inelasticity); and nkp
ijc  is the composite cost of travel between zones i and j

by mode k over path p for activity n.

Similarly, the composite costs of travel between zones i and j can be obtained by aggregating n
ijc

over all modes k (the subscript k denoting aggregation over all modes k):
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where n
ijc  is the composite cost of travel between i and j for activity n; and nk

ijc  is the composite cost

of travel between i and j by mode k for activity n.

Changes in consumer surplus can be derived at both the route choice and the mode choice level.

However, to avoid double counting in models, usually only consumer surplus at mode choice level

needs to be evaluated. Again, this calculation is performed mathematically as:
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where W∆  is the change in consumer surplus; (2) is the scenario being evaluated, and (1) is the

base case against which scenario (2) is being evaluated.

7.3 INTEGRATING LAND USE AND TRANSPORTATION

In previous modelling efforts, land use variables were treated as being exogenous to the transport

system. However, in recognition of the interdependence of land-use and transportation, there have

been recent attempts to link land-use models to transport models in an integrated fashion. In such

cases there is an explicit treatment of the connective feedbacks linking the two systems.

There are two main ways of linking land-use and transport models. The first is via an instantaneous

link at the trip distribution stage of the model. Here, the land use system provides the transport

system with estimates of the location and volume of potential trips. The second is through a time-

lagged link to the activity location stage of the model via the notion of accessibility. At this level,

accessibility affects travel costs, which in turn impacts upon urban activity location. The inclusion

of these feedback mechanisms in integrated models marks an innovative departure from
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conventional four-step models, which assume a uni-directional relationship between land-use and

transport (Government of Ireland, 1995).

There are a number of reasons why land-use and transportation should be regarded as integrated and

co-dependent systems in an urban simulation framework. For many years it has been understood

that land-use (and even the expectation of land-use) has the capacity to influence transportation and

travel behaviour in urban areas, and vice-versa (Cervero, 1989). Additionally, there is quite a broad

legislative motivation supporting their representation as an integrated system, particularly in terms

of their impact on urban air quality (e.g., ISTEA, TEA-21, and CAAA).

However, the representation of the two systems in an integrated fashion within a modelling

framework has been hampered by a variety of factors, creating an unnecessary disconnect between

the two, particularly in terms of data availability and scenario evaluation. Organizational structures

often treat land-use planning separately from that of transportation planning. Additionally, the two

are often split along professional lines: land use planning is commonly the realm of urban planners

and geographers; transportation planning is often the domain of engineers and economists (Miller et

al., 1998). Some hold the belief that land-use and transportation are not actually that closely linked.

Justifications for this have been offered, claiming that in some locations road systems are so

ubiquitous that their influence on land use is minimal, and that transport is regarded as a minor

factor in firm and household location decisions (Government of Ireland, 1995).

7.4 SIMULATING PLANNING AND PUBLIC POLICY

The way in which planning and policy influences land-use–transportation systems is generally

simulated through the introduction of changes to exogenously determined variables such as

population and basic employment.

The policy scenarios commonly applied to land-use–transportation models may be classified into

four categories: regulatory, pricing, investment, and welfare (Government of Ireland, 1995).

Regulatory policy applications refer to those that place controls on the use of space or time in a city

(e.g., reserving road space for high occupancy vehicle lanes and the introduction of parking

controls). Pricing policy applications are those designed to impact the price of land, buildings, or

transport (e.g., fuel or emissions taxes, road tolls, congestion pricing, parking charges, and the

subsidization of public transit). Investment policy applications are those intended to influence
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infrastructure. Additionally, land-use–transportation models can be linked to economic modules to

assess the welfare implications of various policies.

8 THE FAILURES OF LAND -USE–TRANSPORTATION MODELS

The focus of the paper now shifts away from the nuts and bolts of land-use–transportation models.

In Sections 8 and 9 we step back from the mechanics of simulation and evaluate models from the

perspective of the user and the researcher. Section 8 considers urban models critically, while

Section 9 looks ahead and explores the emerging technologies and ideas that are likely to shape

model development in the future.

8.1 THE UNDOING OF URBAN MODELING

“Much as in any aspect of social science, mathematical modelling has its enthusiasts and its
skeptics. The enthusiasts accuse the skeptics of not understanding the models, and the
skeptics in turn accuse the enthusiasts of not understanding the reality” (Smith, 1998).

Having been developed with fervour at the beginning of the decade, by the close of the 1960s,

efforts to develop successful large-scale land-use–transportation models had deteriorated and the

novelty value of the models had waned substantially. Few large-scale urban models had been

completed, and those that had fell short of their goals.

There are a variety of possible explanations as to what environment engendered such scepticism

regarding urban simulation. Batty (1979) contends that the early-1960s represented a phase of

immaturity in the evolution of planning as a discipline and that the turbulent popularity of

modelling characterized growing pains of a sort. To many in the planning profession, he argues,

urban models were perceived as a threat. Urban models were treated with growing hostility because

they represented a “clash of cultures” between advocates of the idea of planning as science (the

quest for pure knowledge) and those who believed in planning as design (the basis for effective

action). Compounding these negative feelings were broader trends sweeping America and Europe in

the 1970s and a general rejection of the scientific optimism that had been so prevalent in the 1960s.

In the social sciences, these changing times impacted heavily upon the nature of academic inquiry.

Within planning there was a shift from efficiency to equity (Batty, 1994). The quantitative methods
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developed in the 1960s to address questions of efficiency simply had little relevance in a discipline

now concerned largely with equity.

As the social climate changed, so too did the character of the city. Urban structure was changing:

monocentric cities spawned additional nuclei, which in turn began to challenge the traditional

dominance of the downtown and infrastructure provision switched its emphasis towards the

suburbs, altering the spatial pattern of urban accessibility. Urban modelling efforts, which were

slow to adapt to rapid changes in the character of the city, became outmoded in many instances.

It is perhaps useful to explore the criticisms levelled at urban models at the end of the 1960s, as a

benchmark against which we might consider contemporary land-use–transportation models. Large-

scale urban models developed in the 1960s were at times accused of unnecessary complexity, while

at others being rebuked for their simplicity. Critics disapproved of their expense, voracious appetite

for data, hyper-comprehensiveness, mechanical organization, inadequate resolution, lack of

transparency, poor dynamics, and inability to replicate their results; while denouncing their ‘black

box’ approach to simulation. Others contended that the models were fraught with distorting error

and that they failed to advance theory while falling short of informing practice. Some argued that

the models’ reliance on the assumption of predictability doomed them to failure from the outset,

that they were unsuitable as tools to describe many urban phenomena, and that a lack of evaluative

measures undermined their effectiveness at the close of the modelling process3.

9 IN DEFENSE OF URBAN MODELLING

9.1 URBAN MODELS WEATHER THE STORM

In the contemporary modelling environment, innovations in computing and geography have largely

nullified many of the criticisms hurled at urban models. Perhaps most important have been the

dramatic advances in computer hardware. Labouring models that gobble up budgets and processing

time are now largely a thing of the past. Advances in areas such as graphics cards and parallel

processing have also enabled modellers to simulate urban systems in ways that were not previously

possible.

                                           

3 For a thorough and detailed review of this debate the reader is referred to Batty, 1979, 1994; Harris, 1994; Klosterman,

1994; Lee, 1973, 1994; Openshaw, 1979; Sayer, 1979; and Smith, 1998.
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Additionally, there has been a relative explosion in the provision of urban data since the 1960s.

Lee’s (1973) original criticism of data sets comprising 30,000 pieces of information are now

dwarfed by the contents of files commonly held on planners’ desktop machines, let alone the wealth

of information available from official agencies such as the Bureau of the Census. Additionally, the

wealth of digital imagery and land coverage at fine scales has quite successfully mitigated

resolution concerns. While this has meant that models have become far more consumptive in terms

of data, some would argue that the proliferation of urban information has improved models. As

Harris 1994 notes, “The need for and the use of extensive data sets result from planners’

responsibility to act with full information and not from the nature of the models”.

With advances in computing power and data provision have come other innovations in computing

that have helped urban modellers to overcome some of their previous difficulties. Improvements in

software (particularly geographic information systems), programming methods, modelling skills,

and knowledge have greatly facilitated this. A proliferation of technical journals devoted to urban

modelling, coupled with improvements in the volume and quality of modelling literature has

contributed substantially to the greying of the ‘black box’ approach. These innovations have also

reduced the cost of developing and using urban models. Indeed, models may be less costly than

other planning alternatives that might achieve the same goals.

Modelling has also benefited from advances in what we know about urban systems. Particularly,

modellers have, in recent years, become better equipped to handle the complexity of the systems

that they simulate. The incorporation of notions of self-organization, chaos theory, fractal geometry,

catastrophe theory, bifurcation, and non-linear dynamics in urban models has greatly improved their

capabilities in this regard. (Although it should be noted that these particular innovations are, for the

most part, academic rather than operational ventures.)

Of course, some would argue that the criticisms aimed at urban models were largely unfair to begin

with. The main thrust of this argument lies in the idea that much of the failures of urban modelling

to advance planning practice are the fault of professional practitioners themselves. Users commonly

put models to uses for which they were never intended. Additionally, there is a tendency for users to

attribute real-world interpretation to model results. In this sense assumptions of predictability are

not always those of the modellers, but are instead a function of users’ oversights. Additionally, the

integration of urban models with practice is often hindered by organizational limitations. In this

sense, it is not the computer hardware or software that is flawed, rather it is difficulties with

“orgware” that makes it difficult for organizations to embrace urban models (Batty, 1994).
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Much of urban modelling’s deficiency in informing theory is in large part a by-product of

deficiencies in theory itself rather than urban modelling. Many of the difficulties that have plagued

urban models are a manifestation of a deeper flaw in the underlying theory of cities. Also, the idea

that there was an optimal plan, one best answer to an urban problem, has passed through theory to

urban models. Such naive beliefs fail to recognize that the solution space of all plans is, in most

cases, infinite (Batty, 1994). As a discipline rooted in societal concerns, planning is often

pressurized to supply immediate solutions to urban problems. Hence, planning is at a disadvantage

relative to other disciplines. Sciences such as urban modelling should be allowed to develop slowly

from theory, not as quick-solutions to pressing problems.

Nevertheless, a portion of the guilt must be attributed to urban modellers, especially those in

academia. Users get little advice about how to apply models to real-world problems. While there

exists, in great detail, an extensive methodology for the construction of models, a methodology of

model use is comparatively scarce (Openshaw, 1979). Equally, there are still many challenges

facing urban models.

9.2 ADVANCING URBAN MODELLING

A good point of reference for contemporary advances in urban modelling (as well as fault-finding)

is the Travel Model Improvement Program. In assessing what is needed from urban models, the

Program has outlined several avenues for development for future modelling ventures. Amongst the

key points raised by the Program are the need to better represent dynamics in models, the

appropriate level of detail that the models should address, issues of interfacing with the model user,

the flexibility of land-use–transportation models, incorporating an enhanced degree of behavioural

capacity, and re-evaluating the treatment of zonal geography.

9.2.1 Dynamics

Land-use–transportation models must have the capacity to represent the city’s ability to change its

character over time. These dynamics are generally ill represented in models. Dynamic

functionalities usually enter the model in an indirect sense. Cross-sectional data—data that span

dates, with little information about the intervening period—are commonly used as a proxy for

dynamics. Clearly, this is a poor substitute, but is often the only available option. At best, cross-

sectional data across multiple time periods, perhaps yearly on an incremental basis spanning two
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fixed dates,  is used. While this is rich in the information that it offers, there are logistical problems

with its application to land-use–transportation models: these data sets have become available only

relatively recently and for calibration purposes may not offer much of a historical record to evaluate

model results against. Ideally, dynamics should enter the model in a more explicit fashion, perhaps

through simulation techniques like cellular automata or agent-based modelling, which are inherently

dynamic and spatial in their formulation.

9.2.2 Detail

Land-use–transportation modellers need to determine an ‘optimal’ level of spatial resolution for

their simulations. In particular, the models would do well to disaggregate their representations of

various components; notably households, land-use, and employment. Households should be broken

down into several socio-economic groupings, land-use into a more diverse range of activities, and

employment into a wider collection of sectors. There are a number of ways in which this could be

achieved within the land-use–transportation modelling structure, most notably through the micro

simulation of land markets and the manipulation and transformation of data to the required level of

detail using geographic information systems.

9.2.3 Interfacing with the user

It is vitally important that models be developed with the end-user in mind. In particular, models

should be presented in a way that makes them easier for decision-makers and the public to digest.

This could be achieved through linkages with geographic information systems and remote sensing

software packages. Indeed, models could be developed entirely within a visual framework such as

the Virtual Reality Modelling Language (VRML) (Bell et al., 1999). Land-use–transportation

models should also be more responsive to public policy, including sub-models addressing issues

such as the environment, poverty, criminal justice, and public health and safety.

9.2.4 Flexibility

Future modelling efforts should accommodate an improved degree of flexibility. Here there are two

main issues: scaling and modularization. It is important that land-use–transportation models cater to

a variety of scales in an integrated and seamless fashion, representing the phenomena impacting
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upon urban systems at all levels from global through to local. Linking macro scale dynamics to

local processes through mechanisms such as cellular automata and agent-based modelling will be

key to this. Additionally, land-use–transportation models could be rendered more flexible were they

modularized into a set of sub-models and constituent components that could be independently

tested, as well as being integrated on a broader level as a complete package.

9.2.5 Behavioural realism

Advances in land-use–transportation modelling are moving closer towards incorporating a more

realistic representation of the behavioural systems that make up an urban system. Techniques such

as agent-based modelling and activity-based representations of the transport system will be an

important factor in integrating the behavioural dynamics of individuals, governments, developers,

and investors in the modelling framework.

9.2.6 Zonal geography

The current geographical characterization of spatial objects within land-use–transportation models

(commonly the traffic analysis zone) is useful but lacking in its ability to honestly simulate urban

systems. At the heart of this deficiency is the failure of the model to realistically characterize the

spatial extent of neighbourhoods and sub-markets within which development and location decisions

might be formulated.

The Modifiable Areal Unit Problem (MAUP) is a concept that was popularized by Openshaw in the

1980s, but which has plagued geographic research for quite some time. At the heart of the MAUP is

the fact that there are an almost infinite number of spatial objects that can be defined and modified

for any given area of inquiry, but few, if any modifiable entities. A practical example that may help

to illustrate this point is that of the Bureau of the Census. Census data are collected for essentially

non-modifiable entities (e.g., people and households) but are reported across modifiable areal units

(e.g., counties, ZIP code boundaries, census tracts, census block groups, etc.). At best the spatial

delineation of these areal units is decided based on some operational requirements (administration,

data collection, etc.); at worst they are arbitrarily defined “and subject to the whims and fancies of

whoever is doing, or did, the aggregating” (Openshaw, 1983). Closely related to the MAUP is the

ecological fallacy problem. An ecological fallacy occurs when it is inferred that results based on

aggregate data can be applied to the individuals who form the aggregated group.
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If the areal units governing geographic research are arbitrarily contrived, then the value of any work

based on them must be questioned. Specifically, the MAUP creates twinned problems of scale and

aggregation in geographical studies. With respect to scale, quantitative results for zones are

dynamic. Correlation coefficients for a zone-based regression calculation, for example, become

artificially inflated with increasing scale. In terms of aggregation, zonal calculations are equally

sensitive to the specific configuration of zonal geography. Correlation coefficients in a regression

analysis increase as the number of zones in a study falls. It should be clear then that there is a strong

need for a more functional and geographically relevant description of zones within land-use–

transportation models.

Recent research has begun to address this problem (Thurstain-Goodwin and Unwin, 2000), but this

has not been incorporated into land-use–transportation models. Models have circumvented the

MAUP by simulating at the micro-level and aggregating up, but there is clearly room for

improvement, e.g., through the use of patch-based metrics for delineating zones of activity or the

identification of local submarkets (Torrens and Alberti, 2000).

10 CONCLUSIONS

Section 10 draws the paper to a close with a discussion of some innovative simulation techniques

that are likely to shape the development of land-use–transportation models in the future. The

discussion focuses particularly on techniques from complexity theory as well as urban

visualization—topics occupying much of the author’s present research in urban simulation (Torrens,

2000).

10.1 WEAVING COMPLEXITY INTO THE SIMULATION FRAMEWORK

In modelling urban systems such as land-use and transportation, we are faced with a dilemma. The

intellectual apparatus with which we model urban systems evolved in a time when the city was very

different from contemporary manifestations. Single-centre cities built with raw materials, labour,

and trade have given way to polycentric cities restructured by automobiles, services, and

information technology. It is clear that many of the tools with which we study the city today are

deficient in their ability to fully simulate and describe the changing character of urban areas.

Consequently, there is a need for models that are as flexible and dynamic in their simulation

capabilities as is the city in its ability to evolve. Many land-use–transportation models are on a
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weak theoretical footing. In many cases they depart from what we know about the way in which

urban systems evolve and the dynamic forces that shape them. In short, there is much room for

improvement. One feasible remedy to the these problems is to weave ideas from complexity

theory—a synthetic approach to simulation—with existing techniques to arrive at a hybrid, modular

simulation strategy for modelling urban systems. Such an approach would build upon those areas of

traditional land-use–transportation models that work well (particularly at the macro- and the meso-

levels), but would delegate the micro-scale dynamic simulation to sub-models derived from

complexity theory.

Reductionist science, a method of inquiry that is largely analytic, breaking down problems into their

constituent components in a bid to understand them, has been widely used in investigating urban

issues. A problem with the reductionist approach, however, is that it ignores many features of how

things work in the real world. By breaking down problems, the interactions that may give rise to

aggregate structures may be lost. Synthetic science, on the other hand, is concerned with studying

phenomena from the bottom up, by combining individual components together to create structures,

rather than dissecting them. This is closely allied with ideas from complexity theory, particularly

the concept of emergence.

With emergent phenomena, a small number of rules or laws, through local-scale interactions, can

generate complex global systems. Furthermore, this emergent behaviour occurs without the

direction of a centralized executive. This complexity is not just the complexity of random patterns;

in fact, recognizable features may emerge. Cities are prime examples of emergent systems. From

local-scale interaction such as individual movement patterns and social biases emerge regular

patterns such as traffic congestion, economies of agglomeration, and social segregation. There is an

argument, therefore, for approaching urban simulation from the local level. However, as suitable to

the simulation of urban systems as models based on complexity theory are, there are some things

that they cannot model well, most notably constraints such as planning restrictions that are applied

to urban systems from the top down. In light of this consideration, perhaps a hybrid approach—

taking what is useful from traditional techniques and fusing them with ideas aligned with

complexity theory—is where the future of urban modelling lies. Cellular automata and agent-based
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models, although in their infancy in application to urban phenomena, show promise in remedying

some of the shortcomings of earlier urban models.4

At the most rudimentary level, a cellular automata model can be described as a two-dimensional

array of regular spaces (cells) which are, at any given time, in a state that is determined by the

attributes of neighbouring cells according to some uniform transition rules. Adjacent cells alter their

states through the recursive application of these rules. In this way, cellular automata replace the

traditional mechanics of urban models with rule-based mechanisms. Cellular automata have been

widely employed in fields such as physics, chemistry, computer science, and biology, and there has

also been quite an impressive range of application to urban systems, including urban growth, spatial

structure, segregation, land-use dynamics, and sprawl. However, the technique is still very much in

its early stages as an urban simulation tool. 5

The agent-based approach to simulation seeks to represent individual actors (or groups) in a given

system. Agents may interact with each other and/or with an environment. From these interactions,

macro-scale behaviours emerge in the aggregate. Agent-based models have been used to simulate

insect behaviour, search the Internet, and to manipulate financial data. Agent-based approaches

have also been used to simulate urban systems, including traffic dynamics, pedestrian movement,

and lines of sight. Equally, we might envisage agent-based models that represent the agents that

compose the land-use–transportation system—migrating households, firms, or individuals; socio-

economic groups; commuters; pedestrians; developers; etc.6

                                           

4 For a more detailed picture of the broad and interdisciplinary field of complexity theory, the reader is referred to these

works: Adams, 1994; Arthur, 1990; Batty and Longley, 1994; Cartwright, 1991; Casti, 1997; Holland, 1998; Krugman,

1996; Langton, 1992; Levy, 1992; Resnick, 1994a; 1994b; 1996; 1999; Schelling, 1978; Sipper, 1997; Taylor, 1992;

and Wolfram, 1994.

5 For a more detailed review of the applications and mechanics of cellular automata, the reader is referred to Allen,

1997; Batty, 1991; 1997a; 1997b; 1998; 1999; Batty and Xie, 1994; 1997; Batty et al., 1999; Benati, 1997; Clarke,

1997; Clarke et al., 1997; Couclelis, 1985; 1997; Faith, 1998; Hegelsmann and Flache, 1998; Nagel et al., 1996a; 1999;

1996b; Nagel and Schrekenberg, 1995; O'Sullivan, 2000a; Phipps and Langlois, 1997; Portugali et al., 1997; Sanders et

al., 1997; Sembolini, 1997; Torrens, 1998; Wagner, 1997; Webster et al., 1998; White and Engelen, 1993; 1997; White

et al., 1997; Wu, 1998; Wu and Webster, 1998; and Xie, 1994.

6 While the application of agent-based techniques has not been as widespread as cellular automata approaches,

examples exist, notably the work of Batty and Jiang, 1999; Batty et al., 1998; Bonabeau et al., 1999; Epstein and Axtell,

1996; Nagel et al., 1999; Resnick, 1999; and Schelhorn et al., 1999.
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Cellular automata and agent-based models have the potential to greatly enhance our ability to model

urban systems. They directly address five of the six avenues of improvement specified in Section

9.2: dynamics, detail, user concerns, flexibility, and behaviour. They better represent our theoretical

and practical knowledge of how complex urban systems emerge from local interactions. In this

sense they add an improved behavioural element to the models. Also, their inherent dynamism may

help to overcome traditional weaknesses in land-use–transportation models. They are particularly

adept at handling urban systems at a detailed level, while retaining the ability to scale up to global

levels. Their formulation is perhaps more intuitive than many of the traditional techniques described

in this paper. This, alongside with their visual presentation makes them appealing to model users.

Moreover, they can be applied flexibly across many scales and are well suited to modularization

and linkages with other simulation techniques.

10.2 ENGAGING THE USER THROUGH VISUALIZATION AND APPLICATION

A pressing problem facing land-use–transportation models is their general inability to engage the

vast majority of their users—and, indeed, the people whose lives they influence—in a meaningful

and intuitive fashion. In recent years, significant advances have been made in the development of

intelligent 3D models of the built environment. Technology exists today that enables us to render

visually stunning and richly detailed simulations of urban environments in a manner that renders an

ease of interaction and understanding that is not currently present in many models. These 3D

models can be used as a user-friendly interface for querying the urban environment as a geographic

information system, for hyper-linking Web-based information, for visualizing model results (Figure

12), and for accessing functional simulation models. Furthermore, the addition of a third dimension

to our knowledge base of urban systems greatly enriches the simulation capacity of predictive

models.7

                                           

7 For examples of 3D visualization efforts in urban modelling, the reader may consult Bell et al., 1999 and Centre for

Advanced Spatial Analysis, 2000.
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Figure 12. 3D representation of population density data (1997) for America’s Northeastern

Megalopolis, from Portland, Maine to Washington D.C. (Source: Torrens, 1998a).

Another way in which land-use–transportation models can better engage the user is in the questions

that they answer. Land-use–transportation models are somewhat deficient in their application to

urban systems. While their development in regard to the land-use system and transportation

questions is relatively rich, land-use–transportation models have traditionally shied away from

addressing many of the critical questions facing cities. Efforts to couple land-use–transportation

models with environmental modules have begun, but several urban problems remain largely

neglected—notably issues of social justice, segregation, and the geography of growth and decline

(Torrens, 2000). There is a pressing need for models that answer what-if questions about the land-

use and transport system and that address important policy concerns of relevance to the public.

10.3 CONCLUSIONS

Land-use–transportation models emerged in response to a need for educated forecasts of the future

pattern of urban systems, as well as a means by which hypotheses relating to cities could be tested.

While they are complicated and rely, in some cases, upon rather abstract assumptions, they remain

one of the best means by which long-term planning decisions can be made and are invaluable as

laboratories for the testing of ideas relating to the city. Nevertheless, they have evolved quite slowly

and in recent years the pace of change in urban systems has begun to outstrip them. Moreover,

many of the foundations upon which models have been developed (including several of the

simulation techniques discussed in this paper) were conceived in a time in which the city was very
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different from its present manifestations. Those techniques are ill equipped to describe the dynamics

shaping urban evolution and are in many respects ill-suited to supporting the policy decisions that

must be made in order to manage large urban systems. Techniques such as spatial interaction

modelling focus largely on location as the driving force behind land-use and transportation patterns.

There is no doubting the significance of location in influencing these systems, but there are

additional factors that are important to consider; interaction is a crucial factor. Also, spatial

interaction models are generally static (dynamics enter these models only in an indirect fashion)

when the city is quite obviously dynamic in virtually every regard. Moreover, the spatial interaction

approach regards the city in the aggregate when it is widely accepted that local level interactions

among individuals or groups lie behind much of the behaviour that forms urban systems.

The techniques described in this paper do have many uses in urban simulation, particularly at the

levels of geography to which they are commonly applied—the zonal, aggregate, meso-and macro-

scales. However, there is an increasing awareness that urban systems are in large part dynamical

and that many of the processes responsible for forming the patterns that characterize large cities

(traffic congestion, urban sprawl, spatial structure, environmental problems, etc.) organize

themselves from the bottom up, from the repeated and myriad local-scale interaction of several

thousands of individual agents and small-scale neighbourhoods. There is a need, therefore, for the

introduction of techniques that can simulate urban systems in this fashion. Equally, the introduction

of tools that can engage a broad spectrum of users in the simulation process is long overdue, as is

the development of modules that can investigate the most pressing problems facing urban areas.

The development of hybrid models, simulations that combine the techniques discussed in this paper

with innovative ideas from complexity theory and advancements in visualization have a great deal

to offer in addressing such issues.
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