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Abstract.
A procedure for the ab initio study of electron-molecule collisions at intermediate energies

is presented in detail. The molecular
�

-matrix with pseudostates method (MRMPS) is based
on the inclusion of discretized continuum states in the close-coupling expansion. This method
allows, for the first time, the calculation of totally ab initio cross sections for electron impact
ionisation of molecules as well as for electronic excitation above the first ionisation threshold.
The method is general and can be applied to multielectron targets. Results for collisions with
H �� and H � are presented. Numerical considerations necessary for performing a successful
calculation are detailed.

PACS numbers:

1. Introduction

The theoretical study of electron molecule collisions has developed greatly over the last 20
years. Low-energy processes (rotational, vibrational or electronic excitation, dissociative
recombination and attachment, electronic excitation to low lying states, etc.) are regularly
investigated for small molecular targets. Their study is not without problems, but a variety of
well tested approaches such as the R-matrix method, the complex Kohn variational method
and the Schwinger multichannel method, are available (Huo and Gianturco 1995). At the
high end of the energy range, perturbative methods can be successfully applied to the study
of electronic excitation and ionisation.

In contrast, the intermediate energy regime has remained virtually untouched. This
regime straddles the first ionisation threshold and extends to a few hundred of eV. Perturbative
methods are not valid and ab initio methods based on a close-coupling expansion (such as
the R-matrix and complex Kohn variational methods) require, in principle, the inclusion
of an infinite number of states. For a complete description of the electronic part (that
is, neglecting nuclear motion) of electron-molecule collisions in the gas phase, successful
treatment of this regime is a fundamental step. A few semi-empirical methods, available for
determining the ionisation cross section in electron-molecule collisions, have been applied at
intermediate energies. These include the Binary encounter Bethe (Kim and Rudd 1994) and
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its improvements (Huo 2001) and the Deustch Märk method (Deutsch et al. 2000). These
methods provide a simple way of estimating the cross sections for ionisation, but are unable
to provide information about excitation to bound states.

The same difficulties arise in the study of electron collisions with atoms at intermediate
energy. It is only in the last 10 years that methods have been proposed and applied to
near threshold ionisation. Indeed, only very recently has agreement been achieved for
electron impact ionisation cross sections of H. For simple targets, the ab initio Convergent
Close-Coupling method (Bray et al. 2002) and Intermediate Energy R-matrix method (Burke
et al. 1987) have proved highly successful. More recently, other methods have been
developed, among which the most significant are the R-matrix with pseudostates (RMPS)
(Bartschat et al. 1996), Exterior Complex Scaling (Rescigno et al. 1999) and Time-dependent
Close-Coupling (Pindzola and Robicheaux 2000) procedures. Of these, only the RMPS
method has been successfully applied to a variety of single and many electron targets.

We have developed an RMPS procedure to treat the general electron-molecule collision
problem at intermediate energies as part of the UK R-matrix polyatomic code (Morgan
et al. 1998). This method is based in the use of a set of states, known as pseudostates, that are
not true eigenstates of the systems but that represent a discretized version of the continuum.
Pseudostates have been used in collision studies for more than 30 years as a way of completing
the close-coupling expansion not only in electron and positron-atom collisions but also in
ion-atom ones. However, no systematic use of pseudostates for molecular systems has been
reported. Our implementation, that we call molecular RMPS or MRMPS differs significantly
from the atomic one. What simplifies the treatment in the atomic case (although it remains
extremely complicated) is the fact that the continua are single-centred. Molecular continua
are much more difficult to represent due to the lower symmetry and multicentre nature of the
interaction potential.

In a previous letter (Gorfinkiel and Tennyson 2004), we reported results for H
�� and

gave an outline of the method. H
�� is the smallest polyatomic ion and, more significantly,

the dominant one in low-temperature hydrogenic plasmas. It plays a fundamental role in
interstellar chemistry and has been observed in planetary aurora and diffuse interstellar media
(McCall et al. 1998) where significant populations of energetic electrons are to be found.
The interaction of H

�� with thermal (McCall et al. 2003, Kokoouline and Greene 2003) and
higher energy (Kalhori et al. 2004) electrons remains an active area of study. Calculations of
rotational excitation (Faure and Tennyson 2002a) and electronic excitation for energies up to
20 eV are available (Orel 1992, Faure and Tennyson 2002b). However, there is no published
information about collisions with intermediate energy electrons, although such experiments
have been performed (Ghazaly and et al in preparation).

More recently, we have performed some initial calculations for H � . This is a benchmark
system and a variety of experimental and theoretical data is available, not only for rotational,
vibrational and electronic excitation processes but also ionisation, electron impact dissociation
and dissociative recombination as well as detailed studies of its resonances (for a compilation
of recent work on H � see Brunger and Buckman (2002)).

In this paper, we present a detailed and complete description of the MRMPS method
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(section 2). In section 3 we present the results for H
�� ; section 4 presents our preliminary

results for H � and the conclusions are outlined in Section 5.

2. Method

2.1. Standard Fixed-Nuclei R-matrix method

The application of the � -matrix method to polyatomic molecules within the fixed-nuclei
approximation has been described in detail elsewhere (Morgan et al. 1997, Morgan et al. 1998,
Tennyson and Morgan 1999). Briefly, the standard � -matrix method is based on dividing
configuration space into two regions. The boundary between these regions is defined by
a sphere of a given radius � centred at the centre of mass of the molecule. In the inner
region, exchange and electron correlation are taken into account using rigorous quantum
chemistry methods. In the outer region, where these effects are negligible, the use of a long-
range multipole potential suffices to describe the electron-molecule interaction. When the
electronic part of the problem is very complex (as is the case at intermediate energies) R-
matrix calculations are so far restricted to the use of the fixed-nuclei (FN) approximation.
In this approximation, the nuclear motion is neglected and the electronic wavefunctions are
calculated at the ground state equilibrium geometry of the molecule.

In the inner region, the basis state wavefunctions for the N-electron target 	 electron
system are expanded in the following way:
�� ��� ��������� � ��� ��� �����  �!�!� � �#"%$ �&�'�(� � �� " 	 �)�+* � �-, �����  �!�!� � � �� " (1)

where � is the antisymmetrization operator, $ ���.���/� " are continuum orbitals and
�0�

are the
spatial and spin coordinates of electron 1 ; � � are target wavefunctions, which are expressed in
terms of a configuration interaction (CI) expansion and , � are known as 2 � functions. These, � are multi-centre quadratically integrable functions constructed from the target occupied and
virtual molecular orbitals (MOs) and are used to represent correlation and polarization effects.
They should be carefully chosen: the target wavefunctions and the N+1 wavefunctions must
be of equivalent quality. The wrong choice of 2 � functions can lead to overcorrelation of
the N+1 wavefunctions and an unbalanced calculation (for a discussion of this problem see
Tennyson 1996).

In the polyatomic R-matrix suite, both the molecular and the continuum orbitals are
expanded in terms of Gaussian Type Orbitals (GTOs). The basis sets for the molecular
orbitals are normally adapted from standard quantum chemistry basis sets (obtainable, for
example, from the NIST website (NIST 2001)). The basis set for the continuum orbitals is
obtained by fitting numerical Bessel or Coulomb functions over a finite range (Nestmann and
Peyerimhoff 1990) using the program GTOBAS (Faure et al. 2001). The ’continuum’ GTOs
are centred at the centre of mass of the system whereas the ones for the molecular orbitals are
centred on the nuclei.

The most important element in the expansion (1) is the target wavefunctions � � .
As already mentioned, these wavefunctions are normally obtained using the configuration
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interaction method. The configurations included in the expansion are generated as products of
molecular orbitals. How many and what sort of configurations depends mainly on the system
studied. The hierarchy of quantum chemistry calculations for the electronic structure of small
molecules is well established. A full CI can only be performed for few electron molecules,
if a small basis set is chosen; a CASCI (complete active space configuration interaction: all
excitations are performed among a set of orbitals that normally span the valence space of the
target), CASS, CASSD or CASSDT (CAS plus single, double and triple excitations into a
chosen set of virtual orbitals) are used for larger molecules. It has generally proven easier
to maintain the balance between the N-electron target representation and the (N+1)-electron
collision complex when a simple CAS model is used. In this model, M 3 N/2 orbitals 4 � are
selected; these normally comprise all those occupied in the main ground state configuration,
plus a selection of orbitals that are presumed to be required for a good representation of the
excited target states included in the expansion. If the orbitals 4 � are non-degenerate, each of
them will generate two spin-orbitals 54 � ; baring this in mind we can write:� 54  546�754 � �8�9� 54;: " � (2)

to indicate that the N electrons are distribute among all the 2 < spin-orbitals. It is understood
that these orbitals will belong to different irreducible representations of the point group
used in the calculation, and will be multiplied so that the configuration has the space and
spin symmetry of the required target state. For target molecules with many electrons, it is
customary to freeze the pairs of electrons that are most tightly bound (for example, those that
correspond to closed inner shells or subshells). In this case the CAS is performed for less than
the total N electrons, leaving the lowest energy orbitals doubly occupied in all configurations.

2.2. Molecular R-matrix with pseudostates method

The central idea of the RMPS method is the inclusion in the close-coupling expansion of
a number of wavefunctions � � that represent pseudostates. These pseudostates are not true
eigenstates of the target, but if chosen carefully, will represent a discretized version of
the electronic continuum. Pseudostates are normally obtained by diagonalising the target
electronic Hamiltonian expressed in an appropriate basis of configurations. When this is the
case, three types of states are obtained:

(i) accurately represented bound states. These are states associated with eigenvalues that are
close to the ’exact’ energy of one of the target states.

(ii) pseudostates whose excitation energy lies below the ionisation threshold (I.T.). These
states poorly represent bound states and their energy and character may not correspond
to any true eigenstate of the system.

(iii) pseudostates associated to excitation energies lying above the I.T.. These states represent
a discretized version of the target continuum.

The pseudostates with excitation energies above and below I.T., and in particular those
close to it, can have a mixed bound/continuum character. Therefore, and although (in
principle) transitions into states of type (iii) are often assumed to represent ionisation, it may
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be necessary to project out the bound component of these states (Kernoghan et al. 1995). This
can only be done if a set of very accurate bound states can be generated, something that is far
form easy for multielectronic systems, in particular molecules. In most of the atomic RMPS
calculations reported to date, no projection method is used.

It is evident that for the � � to represent the continuum (albeit in a discretized fashion)
some of the configurations included in the CI expansion must be able to represent the
electronic density of an ionised state, that is, of the target with an extra positive charge and
an electron that is no longer bound. This can be achieved by the appropriate choice of target
orbitals and inclusion of specific configurations in the CI expansion, as will be explained in
the next subsection.

2.2.1. Target states and pseudostates In order to generate configurations that describe an
ionised target, we introduce in our calculations a new set of orbitals that we call pseudo-
continuum orbitals (PCOs). These orbitals are used to describe the ionised electron. Hence, on
top of the usual configurations (where all the electrons occupy molecular orbitals) another set
in which one of the electrons occupies a PCO is included in the CI expansion. The following
configurations are added to those generated by a standard CAS model (see equation 2):� 54  546� 54 � �8�9� 54>= ? " �A@ CBD� 1 �FEHG �8�8�9� GJI (3)

where
B �

represents a PCO. Notice that only excitations from the main ground state
configuration are allowed (this is why only N/2 orbitals are occupied by N-1 electrons).
This choice of configurations does not allow for the representation of the excitation-ionisation
process, but simplifies the determination of the pure ionisation cross section. Of course, other
choices of configurations are possible and excitation-ionisation can also be studied, provided
a clear distinction between ionisation and excitation-ionisation states can be made.

In our implementation, the PCOs are expanded in terms an even-tempered basis set
(Schmidt and Ruedenberg 1979) of GTOs centred at the centre of mass of the system. In
this type of basis sets, the exponents of the GTOs follow:K � � KMLON;P � @ RQ 1 �FEHG �9�8�9� G 2 (4)

where by choosing different values of the parameters K7L and N different basis sets can
be systematically generated. This is very useful when an averaging procedure is used to
eliminate pseudoresonances (see below). Additionally, even-tempered basis sets approach
completeness as L approaches infinity, provided K;L and N fulfil certain conditions (Schmidt
and Ruedenberg 1979).

It is a necessary requirement for the R-matrix method to be valid that the electronic
density of all the target states included in the close-coupling expansion (1) is contained inside
the R-matrix box. This means, in practise, that the amplitudes of the basis functions used to
expand the MOs must be negligible (normally S 10

@ �
) at the boundary. This must also hold

for the GTOs expanding the PCOs thus imposing a lower limit on the values of KTL that can be
employed. The choice of N is dictated by two contradicting trends: smaller values provide a
better distribution of pseudostates but make it more difficult to avoid linear dependence.



Electron impact ionisation of small molecules 6

The fundamental problem that arises when including pseudostates in the calculation
is that of linear dependence amongst the basis functions. To avoid extra difficulties in the
orthogonalisation, we ensure that:KVU0W/X0Y� Z K6[�\^]-_ � ]�`a`ab� c 1 G�d (5)

This implies removing some GTOs from our standard continuum basis sets but does not
undermine the representation of the scattered electron, as it is shown in the next section.

In the standard R-matrix polyatomic treatment (Morgan et al. 1998), the continuum
orbitals are Schmidt orthogonalised to the already orthogonal target MOs. The resulting set of
continuum orbitals are then made orthogonal using a symmetric orthogonalisation procedure.
Several continuum orbitals may be deleted in this step; for this purpose, a deletion threshold,e _gfOh%Yif , must be provided. For completeness,

e _gfOh%Yif is usually kept at a low value unless
linear dependence problems require it to be raised. In standard R-matrix calculations

e _gfOh%Yif
varies with � (and hence, with the continuum basis set) and is normally set to

e _gfOh%Yif =10
@kj

for� =10 � L . To allow for the inclusion of PCOs we implemented an extra orthogonalisation step:
the PCOs are first Schmidt orthogonalised to the MOs and then symmetric orthogonalised
among themselves (again, several PCOs may be deleted). The resulting set of MOs and PCOs
is then treated as the MOs set in the standard calculation. We find that use of a bigger value
of
e _gfOh%YRf is required both for PCOs and continuum orbitals in our MRMPS calculations.

2.2.2. Scattering Model Having represented, discretely, the bound and continuum states of
the target, it is then necessary to construct the related target plus scattering electron (or N+1)
wavefunctions inside the R-matrix sphere. When the CI model chosen to describe the target
states is that given by expressions (2) and (3), the following configurations are included in the
N+1 expansion:� 54  546� 54 � �8�9� 54;: " �Al � dm�FEnG �9�8� G�o� 54  546� 54 � �8�9� 54>= ? " �A@ CBD� l � 1 �FEnG �9�8� GJI dm�pEHG �8�9� G�o (6)

where
l �

represents a continuum orbital; and for the 2 � functions:� 54  546�754 � �8�9� 54;: " � ��� 54  546� 54 � �8�9� 54;: " � B � 1 �FEHG �8�9� GJI� 54  546�754 � �8�9� 54>= ? " �A@  � B a�9�8� B0q " � (7)

hence keeping a balance between the N and N+1 calculation. As can be seen, some of the 2 �
functions are such that 2 electrons (the ionised and the scattered one, one could say) occupy
a PCO. Therefore, the PCO basis provides short range GTOs for the representation of the
scattering electron. It could be argued that the second type of 2 � functions can supplement
the correlation given by the target model. Nevertheless, tests showed that using only
configurations of the type

� 54  547� 54 � �9�8� 54r= ? " � B � undercorrelated the wavefunctions unbalancing
the calculations.

The practical question that arises is how many and which states and pseudostates should
be included in the calculation. The criterion we use is to include all the states obtained in
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our target calculation whose energy difference from the ground state is smaller than a certain
value E [(`a_ . Here, we take E [(`s_ as being around 10-15 eV above the (vertical) I.T. of the target
under study. Larger values of E [(`a_ are in principle possible but computationally too time
consuming to be easily treated with the computers and program implementations currently
available. Besides, at sufficiently high energies, other methods are equally accurate and more
efficient.

An important consequence of the inclusion of pseudostates in the target expansion is the
convergence of the polarizability. The slow convergence of these expansions is well known
(Gil et al. 1994); so is the importance of accurately representing the polarizability of the
target for low energy collisions. Tests for H

�� and H � showed that increasing the number of
target states in the expansion without the use of pseudostates does not lead to a converged
polarizability. Inclusion of a discretised representation of the target continuum is clearly
essential. We also use the converge of the polarizability as a test to ensure that an adequate
number of pseudostates has been included in the calculation.

2.2.3. K-matrix and cross section calculation The collision information (eigenphase sums,
resonance parameters, cross sections, etc..) is determined by propagating the R-matrix from
the boundary between the inner and outer region to an asymptotic distance where the form
of the radial part of the wavefunction describing the scattering electron is well known. In the
outer region, each of the target states generates a number of channels that together describe
all the possible outcomes of the collision. The more target states that are included in the
calculation, the larger the number of channels in the outer region. In a standard R-matrix
calculation, the diagonalisation of the N+1 Hamiltonian to determine the wavefunctions of
equation (1) is computationally the most demanding step. But for the MRMPS, the number
of channels greatly increases, and it is the propagation step that takes the longest therefore
restricting the number of target bound and pseudostates that can be used in the close-coupling
expansion.

The inclusion of pseudostates in a calculation introduces unphysical, spurious resonances
above the ionisation threshold known as pseudoresonances. For cationic targets each
pseudostate supports a series of Feshbach type pseudoresonances associated with the Rydberg
series converging to them. Below the I.T. these (pseudo)resonances give an approximate
representation of real resonance series of the system. Several methods have been proposed
to deal with above I.T. pseudoresonances in electron-atom collisions. In atomic RMPS
calculations, they are eliminated by performing a weighted average of several calculations
with different basis for the PCOs (Bartschat and Bray 1996). This method was not effective
in the case of H

�� , due to the large number of pseudoresonances (see section 3). We found that
a convolution procedure similar to the one proposed by Meyer et al. (1995) followed by an
averaging of the convoluted results, is the best suited to deal with the problem in the ionisation
cross section. A Gaussian function of variable width was used to convolute each cross section
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(for each PCO basis) and the results were then averaged to produce our final cross section:

t q X � �Ru " � Evxw yz {
|�}�+~ {��{k��� @ z { P {/� @ { Q ? t � \^]� �iu���� KVL � "C� u�� (8)

Here,
u b is taken to be 0.5 E f smaller than the I.T. and

u : is at least 0.5 E f bigger than
the maximum energy for which t q X � is presented. This method eliminates all resonances,
including physical ones; a different technique should be used if these resonances need to be
preserved. Because virtually no pseudoresonances where present in the H � ionisation cross
section, the simple averaging procedure was sufficient to produce a satisfactory final result.

3. Calculations on H
��

As mentioned in the introduction, we chose to first apply the method to H
�� , the smallest

polyatomic ion. Being positively charged, its electronic states are fairly compact and that
ensures that we can use the standard � =10 a L radius for the R-matrix box. By keeping �
small, we keep the calculation within the bounds of what we can treat. The larger � , the larger
the number of continuum basis functions necessary for correctly representing the scattering
electron and hence the larger the CI performed to obtain the N+1 wavefunctions. Besides, our
tests show that as � increases the single centre GTO expansion becomes increasingly poor at
representing the (oscillating) continuum near the R-matrix boundary. It is unlikely that we
would be able to use � Z 15 � L with the current implementation of the method.

Earlier theoretical work on electronically inelastic processes (Orel 1992, Faure and
Tennyson 2002b) provided cross sections for electronic excitation for energies up to 20 eV
and widths and positions for the lowest-lying resonances. Both these calculations include
6 bound electronic target states in the close-coupling expansion and the agreement between
them is fairly good.

From a full CI calculation we determined the vertical I.T. of H
�� to be 33.47 eV. We

have calculated cross sections for electronic excitation both above and below the I.T. and
ionisation cross sections up to 43 eV. The characteristics of our calculation are the following:
for the MOs, we followed Faure and Tennyson (2002b) and used the basis set from Orel (1992)
removing from it the two GTOs with the smallest exponents. In contrast to previous studies,
we built MOs corresponding to H � �� . In this way we tried to ensure that configurations with
single excitations into PCOs represented an electronic distribution similar to that of an ionised
state of H

�� .
Several PCO bases were tested: we needed to avoid linear dependence problems and,

as discussed below, we required a fairly homogeneous distribution of pseudostates. The
first bases tested (with N =1.5 and K6L =0.14,0.15,0.16,0.17) had few pseudostates associated
with the open channels in the energy range 33-43 eV. Furthermore, the first pseudostate
corresponding to a continuum state was 2 eV above the I.T.. These calculations resulted in
cross sections that showed a ’step’ behaviour and displayed a threshold for ionisation that was
2 eV above the true threshold. Reducing N was shown to improve the pseudostate distribution,
also reducing the gap between the first continuum state and the I.T.. The best calculation was
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performed using N =1.3, since N =1.2 caused linear dependence problems. The same set of KTL
mentioned before, K6L =0.14,0.15,0.16,0.17, was used. The minimum value for KTL was selected
to ensure that the target states did not leak outside the R-matrix box. In all cases we restricted
the PCO basis to �6S�� due to computational limitations.

The calculations were performed using the C ��� point group (H
�� in its equilibrium

geometry belongs to the D � f point group). Using the notation for the irreducible
representations of C ��� , the CI model can be expressed in the following way:� E���� a  E���� b  E���� b � E a � " �E a  �R� ����� a  v ��E)� b  v ��E!� b �A� ��� a � "  (9)

where the orbitals in the first line are MOs and the ones between brackets in the second
line are PCOs. The excitation thresholds are in reasonable good agreement with previous
calculations, as shown in Table 1. In figure 1 we have plotted the energy distribution of (bound
and pseudo) states obtained with different ( K7L , N ) values. As can be seen, the lowest bound
states have almost the same energy. As the energy increases, the changes in the distribution of
states (with changing K6L ) become more significant. All the distributions for N =1.3 show the
desirable property of having one or several states just above the I.T.. This is in contrast to the
state distribution obtained with N =1.5, also shown in the figure for K;L =0.14.

For the continuum we adapted the basis set from Faure and Tennyson (2002b). In order to
ensure that condition (5) was fulfilled, the largest exponents were moved from the continuum
to the PCO basis. The third type of configurations from (7) compensates for this thus
maintaining the quality of the continuum representation. We find that use of

e _gfOh%YRf Z 2 � 10
@��

was required to avoid linear dependence both for PCOs and continuum orbitals. The close-
coupling expansion included 64 target bound and continuum states, which corresponds to
using at least

u [(`s_ =45 eV. We chose to keep the number of states of each symmetry included
in the close-coupling constant: as the distribution of states is different for each PCO basis,
different

u [�`a_ values are then implied for each PCO basis. Using 64 states also ensures that
the polarizability has converged (see Table 1 in Gorfinkiel and Tennyson (2004)). Our tests
showed that K7� does not converge unless pseudostates, that is a discretised representation of
the target continuum, are included in the expansion. Inclusion of 64 target states brings both
components of the polarizability to within 2 � of the high accuracy result.

Our low energy eigenphase sums are in general agreement with previous 6 state
calculations (Orel and Kulander 1993, Faure and Tennyson 2002b). However, the positions
of the low-lying Feshbach resonances are all shifted, mostly downward. Resonance positions
depend on threshold positions, so a more consistent comparison is that of the quantum defect
parameters, presented in Table 2. Since the Faure and Tennyson (2002b) calculations was
performed, a bug affecting the treatment of degenerate states has been corrected in the R-
matrix suite. For this reason, we re-ran the 6 state calculation with 5 a  ,3 b  , 3 b � and
1 a � MOs corresponding to H

�� . As can be seen, the K parameters of the calculation that
includes pseudostates are about 0.05/0.06 bigger that those of our 6 state calculation. This
result is probably a consequence of our correct representation of the polarizability and could
be significant for processes such as ion-pair formation in the dissociative recombination of
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H
�� (Kalhori et al. 2004).

Figure 2 shows our cross section for excitation into the two lowest electronically excited
state. These are the

�
E’ and


E’ that in the C ��� point group each splits into A  and B � . The fourN =1.3 bases for the PCOs give almost identical results below the I.T. so only one is shown in

the figure. Above the I.T., the position of the pseudoresonances is different for each basis. The
averaging plus convolution procedure used for the ionisation cross section did not produce a
smooth result for the above I.T. cross section. Large bumps were still visible where bunches
of resonances converge to a pseudothreshold in the non-averaged results. This is probably a
sign that the contribution of the resonant process is more significant for electronic excitation
than ionisation. Hence, a cubic fit to the average of the four N =1.3 pseudostate calculations is
shown in the figures as our recommended value in this energy region.

The ionisation cross section is shown in figure 3. Several results have been plotted here:
figure 3a shows the ionisation cross section for each PCO basis with N =1.3 ( t � \^]� (

u�� KML � )
in equation 8). It is noticeable that the pseudoresonances are in different positions for
the different PCO basis. Also plotted in figure 3a is t � \^]� (

u �O¡ � E v " for N =1.5. The non-
physical step behaviour of this cross section, caused by the unsatisfactory distribution of the
pseudostates, is clearly visible. Figure 3b shows the average of the N ��E � � t � \^]� (

u�� KML � "
showing that the pseudoresonances do not disappear when the average is performed. When the
convolution plus averaging procedure of equation 8 is applied, we obtain the t q X � plotted in
figure 3c. The pseudoresonances have disappeared in this result, but some mild non-physical
oscillations persist; we consider these to be within the error of our calculations. Finally,
also plotted is a low energy fit following the Wannier threshold law (Wannier 1953) that
gives an exponent of 1.05589 for this process. The agreement with our non-convoluted cross
section is reasonable. However, the convolution process modifies the very near-threshold
behaviour: this is just a numerical problem, related to the width of the Gaussian included in
eq. (8). Hence, this method should not be used to provide results for I.T. ¢ E ¢ I.T.+ £ , where£ =0.5 eV for H

�� but may vary with the target.

4. Calculations on H �
For a benchmark calculation, H � is, in principle, the best choice. Nevertheless, the diffuse
character of its low-lying excited states means that an R-matrix radius � =20 a L (Branchett
and Tennyson 1990) is needed if one is to include several of these states in the calculation.
This being beyond our means and considering that our interest was to calculate ionisation
cross sections, we chose a simpler model. As a first approximation to the problem, only the
ground and first excited states were represented accurately. The remaining states are (bound
and continuum) pseudostates. Within this model, we are able to set � =10 a L .

We used a fairly small 6-31G** basis set (Hariharan and Pople 1973) and built H
�� MOs.

For the PCOs it was again necessary to test different basis sets. We started with the most
diffuse PCO basis used for H

�� , that with N =1.3 and K6L =0.14, but found it to give linear
dependence. After various test calculations, we found that N =1.4 and KTL =0.17,0.18,0.19 gave
the right pseudostate distribution while avoiding linear dependence provided

e _gfOh%YRf =2 � 10
@ |

,
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much bigger than for H
�� , was used. For the orthogonalization of the continuum GTOs, the

same
e _gfah�YRf =2 � 10

@��
was sufficient. The point group D � f was used and CI model was the

following: � E��¤� a ¥ E b � ` E b � ` E�� � b  ` E b ��¥ E b � ¥ " �E a ¥ � v � � ¡ a ¥¦� ��� b � ` � ��� b � ` E���� b  ¥ ����§ b  ` � � �
b ��¥¦� � �

b � ¥ "  (10)

where again the orbitals in the first line are MOs and the ones between brackets in the second
line are the PCOs. The distribution of states can be seen in figure 4. Again, the larger
differences between different PCO bases occur for the pseudostates above the I.T.. The ground
state energy for all KVL was -1.165 E f , compared to the very accurate value of -1.1744 E f from
Kolos and Szalewicz (1986). The threshold for vertical excitation into the b

�a¨ �` , the lowest
excited state, is 10.45 eV again in excellent agreement with the accurate value of 10.62 eV
provided by Kolos and Wolniewicz (1965).

The continuum basis set was the standard for neutral targets from Faure et al. (2001)
and again some of the highest exponents were moved to the PCO basis. Choosing an E [(`s_ Z
35.5 eV, 30 states were included in the close-coupling expansion. The polarizability obtained
with these states is fairly good, each of the components being within 5 � of the accurate value
(see Table 3).

The cross section for excitation into b
� ¨ �` , the first excited state of H � , is plotted in

figure 5. The three PCO bases give very similar results, and show a peak around 13.7-
13.9 eV that corresponds to a � ¨ �¥ and a � ¨ �` resonance which are very close together. The
parent states of these Feshbach resonances are poorly represented in our calculation, their
thresholds being at least 1.5 eV higher than those of Trevisan and Tennyson (2002). Hence,
the resonances appearance at much higher energies than in their calculation. (The calculation
of Trevisan and Tennyson (2002) is similar to that of Branchett and Tennyson (1990), but
with consistent phases (Tennyson 1997) in the N and N+1 calculation). None of the other
previous calculations (Lima et al. 1985, Baluja et al. 1985, Lima et al. 1988) show a resonance
structure, and the few experimental points available (Hall and Andric 1984, Nishimura and
Danjo 1986, Khakoo et al. 1987, Khakoo and Segura 1994) are insufficient to describe any
resonances. Our biggest calculation, that includes 41 states using KTL =0.17, shows a reasonable
agreement with experiment at 40 eV; it also shows that the 30 state results are converged for
E ¢ 30 eV.

In figure 6 we have plotted the ionisation cross sections for the three different PCOs. The
first significant difference with H

�� is the absence of visible pseudoresonances: one can just
about see a few spikes that are probably extremely narrow resonances. This means that in
this case, a simple averaging of the cross sections provides our ’recommended value’ result,
also plotted in the figure. The agreement with the experimental data (Krishnakumar and
Srivastava 1994, Straub et al. 1996) and the cross section obtained by the Binary Encounter
Bethe method (BEB, Kim and Rudd 1994) is extremely good, even up to almost 15 eV above
the I.T..

In our calculations, we have used the adiabatic I.T., 15.4 eV, as the cut-off value to
distinguish between bound and continuum states. This choice, albeit somewhat inconsistent
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with the fact that our calculations are performed in the FN approximation, is necessary to
get the correct threshold. There is a gap (see figure 4) of around 2 eV in the pseudostate
distribution just above the vertical I.T.,16.4 eV, that produces a non-physical cross section if
that threshold is used. Unfortunately, none of the PCO basis tested gave a better pseudostate
distribution, partly due to do the fact that linear dependence problems are more severe than
for H

�� . It is possible that the pseudostates lying just below the vertical I.T. have a large
continuum character. In this case, a projection method would produce a non-zero ionisation
cross section even below the vertical threshold. In any case, to obtain cross sections showing
the adiabatic I.T. one would need to include the nuclear motion in the calculation, something
achievable for a diatomic like H � .
5. Conclusions

The MRMPS method has been used to calculate ionisation cross sections as well as electronic
excitation cross sections above the ionisation threshold. Results for H � show excellent
agreement between experimental data and the MRMPS calculations, confirming its validity.
The difficulty in using the MRMPS method lies in the correct choice of K7L and N for the PCO
basis and the corresponding

e _gfah�YRf . More systems need to be studied to establish whether it is
possible to define some rules or systematic strategy for the choice of these parameters. At the
moment, a trial and error procedure must be used to test for the presence of linear dependence
in the calculations and to obtain a good distribution of pseudostates. Similarly, some further
developments would still be desirable. The difficulties with the pseudostate distribution for
H � point to the need for a procedure to project out the bound component of the pseudostates
that lie very close to the ionisation threshold. Likewise, a method to top-up the partial wave
expansion will certainly be needed if higher energies are to be explored. For example, an
approach similar to that used in RMPS calculations (Bartschat and Bray 1996b) where a no-
exchange approximation is used for hight angular momentum, could be implemented.

The MRMPS method could also prove very useful for determining cross sections below
the ionisation threshold. Inclusion of pseudostates has been shown to significantly improve
the convergence of the polarizability for both systems studied. This has an effect on the
resonance parameters (very relevant for dissociation processes) as well as the excitation cross
sections. Finally, the method is fully general and has been implemented as part of the UK
polyatomic R-matrix code. We believe that it will enable the study of electron collisions with
molecular anions as well as excitation to high lying electronic states.
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Ehlerding A, Hellberg F, Kalhori S, Neau A, Thomas R, Sterdahl F and Larsson M 2003 Nature 422, 500.
Meyer K W, Greene C H and Bray I 1995 Phys. Rev. A 52, 1334.
Morgan L A, Gillan C J, Tennyson J and Chen X 1997 J. Phys. B: At. Mol. Phys. 30, 4087.
Morgan L A, Tennyson J and Gillan C J 1998 Computer Phys. Commun. 114, 120.
Nestmann B M and Peyerimhoff S D 1990 J. Phys. B: At. Mol. Phys. 23, L773.
Nishimura H and Danjo A 1986 J. Phys. Soc. Jpn. 55, 1986.
NIST 2001 ‘Nist, standard reference database 69 - july 2001 release: Nist chemistry webbook,’

webbook.nist.gov/chemistry.
Orel A E 1992 Phys. Rev. A 46, 1333.
Orel A E and Kulander K C 1993 Phys. Rev. Lett. 71, 4315.
Pindzola M S and Robicheaux F J 2000 Phys. Rev. A 61, 052707.
Rescigno T N, Baertschy M, Isaacs W A and McCurdy C W 1999 Science 286, 2474.
Schmidt M W and Ruedenberg K 1979 J. Chem. Phys. 71, 3951.
Straub H C, Renault P, Lindsay B G, Smith K A and Stebbings R F 1996 Phys. Rev. A 54, 2146.
Tennyson J 1996 J. Phys. B: At. Mol. Phys. 29, 6185.



Electron impact ionisation of small molecules 14

Tennyson J 1997 Computer Phys. Commun. 100, 26.
Tennyson J and Morgan L A 1999 Phil. Trans. A 357, 1161.
Trevisan C S and Tennyson J 2002 Private communication. Unpublished.
Wannier G H 1953 Physical Review 90, 817.
Bartschat K and Bray I 1996 J. Phys. B: At. Mol. Phys. A 29, L577.



Electron impact ionisation of small molecules 15

Tables and table captions

Table 1. Ground state (in E © ) and vertical excitation energies for H �� (in eV) for (a) the PCOs
basis with ªk« =0.14 and ¬ =1.3, (b) 6 state calculation without pseudostates (b) and (c) Orel
(1992).

Electronic state Vertical excitation
D � f C ��� a b c 

A’  
A  � 1.3242 � 1.3049 -�

E’
�
A  +

�
B � 14.65 14.16 14.81

E’

A  +


B � 19.35 19.04 19.61�

A” � �
B  20.41 19.99 20.73

Table 2. Complex quantum defect parameters of the lowest nine resonances of H �� at the
equilibrium geometry. Column A corresponds to a 64 state calculation; column B corresponds
to a 6 states calculation with no pseudostates. Powers of ten are given in parentheses.

Symmetry This work A This work B
D � f C ��� n- K N n- K N
� E’ � A  + � B � 1.52 0.037 1.57 0.041� A’  � A  1.64 0.015 1.72 0.016� A’ � � B � 1.88 7.9(-5) 1.96 6.7(-5)� E” � B  + � A � 1.89 0.012 1.96 0.012� E’ � A  + � B � 1.92 0.013 1.96 0.016� E’ � A  + � B � 2.67 0.028 2.72 0.026� A’  � A  2.76 0.010 2.82 9.3(-2)� E’ � A  + � B � 2.87 5.3(-3) 2.92 5.0(-3)� E” � B  + � A � 2.91 0.012 2.96 0.012� A’  � A  - - 2.97 7.7(-2)
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Table 3. Polarizabilities of H � using a PCO basis with ¬ =1.4 and ª « =0.17. Seven state result
from Branchett and Tennyson (1990). Accurate ab initio value from Augspurger and Dykstra
(1998).

States in close-coupling expansion K¦® KV�
7 (bound states) � 5.08 0.00
30 (states up to E [(`a_ =35.5 eV) � 6.117 � 4.488
66 (states up to E [(`a_ =38 eV) � 6.144 � 4.543
120 (30 for each symmetry) � 6.145 � 4.544
Accurate ab initio value � 6.445 � 4.507
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Figure captions
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Figure 1. Target state distribution for H �� for ¯%°8©²±�³�© =5 ´ 10 µn¶ and the ( ª « , ¬ ) values indicated
in the figure. The dashed line indicated with V corresponds to the vertical ionisation threshold.
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excited state ( ¸ E · ) of H �� . The arrow indicates the ionisation threshold (I.T.).
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Figure 3. Total ionisation cross section for H �� . Panels (a) and (b) show results for four
different PCO basis with ¬ =1.3 and the ª « values indicated in the graph. In (a) dashed line
correspond to PCO basis set with ª « =0.14 and ¬ =1.5. In (b) the dark full line corresponds to
the averaged cross section also plotted in (c). In (c) and (d) thick smooth full line is an average
of the four ¬º¹�»s¼ ½ convoluted cross sections and the light full line corresponds to ª « =0.14.
Thick dashed line in (d) is a low energy fit following the Wannier threshold law: ¾À¿ E ¸�Á «�Â^ÂRÃ^Ä
(Wannier 1953).
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Figure 5. Integral cross section for excitation into the first excited state of H � , b
�ÇÆ �È , for ¬ =1.4

and the ªk« indicated in the figure. Previous theoretical and experimental results as indicated
in figure. Trevisan and Tennyson (2002) are unpublished results.
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