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1 Business Data Analytics with Graphical Models

In many real-life businesses, the service provider/seller keeps a log of the visitors’ behavior as a way
to assess the efficiency of the current business/operation model and find room for improvement. For
example, by tracking when visitors entering attractions in a theme park, theme park owners can detect
when and where congestion may occur, thus having contingency plans to reroute the visitors accordingly.
Similarly, a Cable TV service provider can track channel switching events at each household to identify
uninteresting channels. Subsequently, the repertoire of channels up for subscription can evolve over time
to better serve the entertainment demand of subscribers. All tracking activities can be done anonymously
so as to protect the customers’ privacy. Given a large amount of data about customer behavior, we would
like to succinctly represent it so that insights can be inferred more quickly and conveniently.

Graphical models [3] is a promising option to serve this purpose. In such a network, the nodes rep-
resent the services presented to customers, whereas the value-attached edges represent the customers’
usage behavior of these services. Note that the mentioned models are not limited to binary graphs; they
can be hypergraphs. For example, in the domain of theme park, as the nodes represent attractions, the
strength of a hyperedge that connects multiple nodes indicate how often the involved group of attrac-
tions are visited. These models act as query-able knowledge bases that can be further augmented with
properties of business interest such as profit or operation cost to aid the sellers’ decision making.

In the next section, we zoom specifically into the problem of bundle design in the domain of revenue
management; the goal is to bundle resources or services offered to customers in order to maximize
revenue [1, 2, 4] In particular, given information on profit and appealingness of items, we introduce a
new mathematical formulation to model the practical problem of creating service packages that are, on
the one hand, appealing to customers, while on the other hand maximally profitable. In our work, profit
and appealingness information is represented graphically from logs of customers’ usage behavior.

2 Interacting Knapsack Problem

Similar to the classic 0/1 Knapsack problem (KP), the Interacting Knapsack Problem (IKP) is concerned
about selecting a set of items such that their total weight fits within a budget whereas the total reward
is maximized. However, the weight and reward functions in IKP are conditioned on the bundle in con-
sideration, reflecting the intra-bundle interactivity effect. Using the same formulation as KP, IKP is
characterized as Formulation (1), in which in which x is an 0-1 vector that indicates the item to be
picked, and pi and wi are individualized profit and weight functions for item i. Note that the second
constraint in Formulation (1) reflects the fact that the total number of items in the bundle is limited to K.
Clearly, when pi and wi are not conditioned on the selected items, the problem is reduced to classic KP.


maxx

∑
i pi(x)xi

s.t.
∑

iwi(x)xi ≤ c,∑
i xi = K, 1 ≤ K ≤ n

xi ∈ {0, 1}, i ∈ N = {0, ..., n}

(1)


max

∑|YK |
j=1 yj

∑
i pi(yj = 1)

s.t.
∑|YK |

j=1 yj
∑

iwi(yj = 1) ≤ c,∑
j yj ≤ 1,

yj ∈ {0, 1}, j = 1, ..., |YK |

(2)

In the general case, since pi and wi change with different configurations of x, the formulation can be
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nonlinear. To linearize the formulation, let us denote YK as the set of all K-sized bundles constructed
from the set N of n items, and j ∈ [1, |YK |] uniquely identifying one such bundle. In Formulation (2),
the equivalent linearized form of Formulation (1), variable yj is used to indicate whether bundle j is
selected, and pi(yj = 1) the profit of item i in bundle j.

IKP can be used to model the resource bundling problem in revenue management. For example, in
the context of bundling attractions in a theme park, if the appeal of an attraction is interpreted to the
weight of that attraction, IKP formulates the problem of how K attractions can be packaged and offered
to the consumers such that its monetary yield is maximized while remaining appealing to the consumers,
i.e., the total appeal exceeds a certain threshold c. Similarly, IKP naturally models the bundling problem
of channel TV subscriptions or sightseeing passes in a City Tour.

3 Complexity of IKP and its subclasses

Note that in the general case when pi and wi take arbitrary forms, we need to describe these functions
explicitly in tabular form. Since it takes a constant number of bits to indicate the weight and value of
each K-sized bundle, the description length L of IKP is O(nK). The optimization problem can then
be solved trivially since an exhaustive, comparison-based search through YK suffices to obtain the most
profitable bundle that satisfies the budget constraint; this takes time polynomial in L. IKP in its tabular
form is therefore in the P complexity class.

The problem becomes much more interesting in cases when pi and wi are structured and can be
compactly represented. For instance, Proposition 3.1 posits that IKP-poly, a class of IKP in which pi and
wi can be represented in space polynomial to the number of items n, is NP-hard.

Proposition 3.1. IKP-poly is NP-hard.

Note that the complexity increment in solving IKP-poly is due to the efficient representation of the
profit and weight functions, which reduces the encoding length exponentially. Consider another class of
IKP, in which the profit and weight functions have locality effects.

Definition 1. An IKP is called locally interacting, abbreviated as LIKP, if there exists a subset Bi ⊂
N, ∀i such that pi(x) = pi(x(Bi)) and wi(x) = wi(x(Bi)),∀x; x(Bi) indicates the setting of variables
in Bi with respect to x.

The idea of local interactivity is akin to the concept of Markov Blankets in probabilistic graphical
models [3], whereby the conditional probability of a node only depends on its immediate neighborhood.
The existence of Bi imposes some degree of factoredness on the profit and weight functions, giving
rise to a compact representation of the profit and weight function. Indeed, if we denote b = maxi|Bi|,
Proposition 3.2 posits an upper bound on the number of encoding bits required to describe an LIKP.

Proposition 3.2. The description length of LIKP is O(n2b + logK + log c).

If we treat b, c as constants and K = O(n), LIKP is a subclass of IKP-poly, and similar complexity
argument as Proposition 3.1 thus applies, showing that LIKP is also NP-hard. LIKP is an interesting
subclass of IKP; it can compactly represent the optimization problem while appropriately reflecting
the local intra-bundle interactivity. From the perspective of bundle design in revenue management, the
weight of items can represent the items’ appeal to customers, as the seller tries to create packages that
achieve a certain level of appealingness while maximizing profits. Oftentimes, an item’s attractiveness is
affected by the types of items already in the bundle. For instance, in some cases, the existence of similar
types boost the bundle’s desirability, while in others, type variety is more sought after by the customers.

4 Heuristic Solutions for IKP

Formulation 2 can be implemented using Integer Programming (IP), the solution of which is optimal.
However, it requires O(nK) time, which can be exponential in n if K is large, e.g., K = n/2. In
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this section, we detail two heuristic approaches in solving IKP that yield better running time: Greedy
Bundling with time O(nK2), and Local Search O(nKT ); T is the number of search steps.

Greedy Bundling (Greedy). This algorithm constructs the solution bundle by adding items into an
initially empty set, one item per step, greedily with respect to profit while making sure the partial weight
constraints are satisfied at all steps. The partial constraint is such that Lc

K ≥
∑

i∈BL
wi(x(BL) = 1, x(N \

BL) = 0) with BL being the partial bundle of size L. Greedy therefore incurs only O(n + 2n + ... +
Kn) = O(nK2) time, much more scalable than IP. However, that is achieved at the expense of losing
guarantees on solution quality. In fact, because of the way the partial threshold constraint is constructed,
it is possible that greedy may not find a solution even when one exists.

Local Search (LS). The method starts with an initial choice of the bundle and tries to improve this
set incrementally, one attraction at a time. At each iteration where the bundle does not satisfy the weight
constraint, we replace the item with the most weight contribution with one that helps satisfy the con-
straint; otherwise, a random walk is taken. Each time an improved bundle is encountered, it is saved as
the current best solution. Since the algorithm takes at most nK time in considering items to swap in and
out at each step, its total running time is O(nKT ). LS is guaranteed to converge to the global optimal
solution given sufficient time, as it always keeps track of bundles with non-descending rewards.

(a) Time in IKP instance 1 (b) Profit in IKP instance 1 (c) Time in IKP instance 2 (d) Profit in IKP instance 2

Figure 1: IP, Greedy Bundling and Local Search in IKP of size 15. Figures 1a and 1c show the average
running time in milliseconds, displayed in log-scale, while 1b and 1d respective profit.

Numerical Experiments. Figure 1 depicts the preliminary performance comparison of Greedy, LS1

and IP in two randomly generated, synthetic IKP instances with 15 items2. As demonstrated in Figure 1,
with small values of K, IP always succeeds in producing optimal solutions. However, this comes at the
cost of exponential running time, making the approach unfeasible for K > 7. Greedy and LS on the
other hand are very efficient in terms of running time, i.e., less than one second for any K. However,
both Greedy and Local Search (LS) bear the risk of not being able to obtain a feasible solution (instance
1). For Greedy, the short-sightedness in selecting items can produce partial bundles that satisfy partial
weight constraint early on, but are impossible to build upon at the later stage. For LS, while guaranteeing
to reach a feasible solution if there exists one, the limited number of search steps might be insufficient
for such purpose, hence leading to its failure.
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1For Local Search, we use Greedy to initialize bundles and set the maximum number of steps T to 100.
2The profit and weight functions are randomly generated with values in the interval (0, 1).
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