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Abstract
Biological modelling is an increasingly complex and diverse field. As
well as developing new models for biological phenomena, there is a need to
integrate existing models and scale up to investigate higher level behaviour.
To achieve this integration, techniques and tools are required to catalogue
and understand existing models, and to support the development of new
models ready for integration. We describe our approach to this problem

and validate the approach with examples.

1 Motivation

One of the major challenges of contemporary science is to ‘scale-up’ our knowledge
of micro-level phenomena to yield an understanding of macro-level phenomena.
This challenge is particularly evident in biology where our growing knowledge
of molecular and cell biology has still to be harnessed in such a way as to give
a better understanding of gross physiological issues such as the behaviour of
organs. Obviously such an understanding would be important in medicine and
drug design.

To address the challenge of scaling up, the principal method used by scientists
is the construction of models. From a scientific standpoint the primary problem
that has attracted attention is the validity of the models, that is the extent to
which the behaviour of the models, and the assumptions the models embed, cor-
respond to the ‘real-world’ as established by experiment and observation. From a
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computational standpoint the primary problem that has attracted attention has
been the performance and scaling demands associated with composing fine grain
models. This problem fits well with interests in large-scale distributed computing
environments and middleware, broadly characterised as GRID architectures.

This paper takes a different stance. It looks instead at the ‘managerial’ prob-
lems inherent in scaling up modelling. The paper envisages a modelling ‘environ-
ment’ in which a wide variety of models are produced within a common domain
of interest. These models may be at different levels of abstraction; may deploy
different representations; may focus on different, albeit interacting phenomena.
Further, the process of modelling and of validation may give rise to model versions
and variants that will require management.

The ultimate goal of this work would be the integration and synergy of mod-
els addressing phenomena down at the level of individual cell features scaling up
through tissue and organ models to a model of a complete organism, such as a
human being. Models at every level of this structure could be developed and val-
idated by groups and individuals all over the world using a plethora of techniques
mathematical, computational and experimental.

2 Current Approaches

Current approaches to modelling do not take account of the potential plethora
of different models nor to how to ‘orchestrate’ the resulting models - that is how
to use them in a synergetic manner. Instead, they assume standalone models or
small collections of models with arbitrary handcrafted integration mechanisms.
These integration mechanisms are commonly at the program code level. A good
example of this approach is the work on the heart carried out by Denis Noble and
his team [10]. The models on which this work is based have yielded significant
insight and confirmed experimental findings. The complexity and ongoing evolu-
tion of this work has however drawn attention to the size of the systems biology
challenge and to the pressing limitations of the ad-hoc approach.

The Systems Biology Workbench Project is an example of a response to this
[8]. It comprises two distinct components: the Systems Biology Markup Lan-
guage (SBML) and the Systems Biology Workbench (SBW). SBML is an XML
based language for representing biochemical network models. The use of SBML
is a significant step forward, potentially making the exchange of models between
different tools much simpler. However, the current Level 1 proposal for SBML
does not provide metadata support and SBML does not address model man-
agement, problems directly. SBW is a software framework that supports the
integration of the heterogeneous tools and resources used in biological modelling.
This is achieved by way of a relatively low-level message passing and brokering
architecture. This tool interoperability constitutes an important practical step,
but SBW has nothing to say about the relationships between models nor how



these relationships are managed. The Systems Biology Workbench project is
driven forwards by the need to integrate particular tools and models. As such
it is a pragmatic step but it does not, nor could it expect to address the larger
orchestration problems of systems biology.

The Physiome Project [9] is a leading effort in the area of systems biology. It
aims to collect together models categorise them and associate with them a small
amount of static metadata. To facilitate this it has developed an XML based
language known as CellML. CellML is well designed and makes good use of the
XML namespace mechanism in order to integrate with other markup languages
such as MathML. It has taken a sensible approach to metadata. Indeed, cur-
rent proposals for SBML incorporate the CellML metadata definitions. Though
CellML is a more ‘principled’ attack on model-management it is less widely used
than SBML. It could be said to fall between two stools — less useful for tool
integration than SBML but still taking a limited view of the full scope of the
challenge of managing and integrating models. CellML is a step forward but
does not in our view constitute a systematic attack on the problems of model
management entailed in scaling-up.

Both approaches rely on the relative scarcity of models, the homogeneity of
the way in which such models are constructed, and the extent to which the models
are ‘orthogonal’, or at any rate very loosely coupled to each other; an assumption
we believe to be false or at least invalid.

As well as modelling approaches, there is significant work in the cataloguing of
biological information in online databases. There are now a number of repositories
for biological information. These include MEDLINE for medical publications [3],
the GenomeNet Database Service [2] for genomic information, BioCyc [1] for
pathway/genome information as well as others. Products such as ‘Life Science
Connect’ [4] attempt to provide a front-end for these diverse sources to allow
cross queries between them. For raw biological information, these sources are
invaluable, but they do not address biological modelling.

3 Work Context

The work described in this paper is taking place as part of a large-scale systems
biology project, involved in building an in-silico model of the human liver, scaling
up the model from the level of gene-expression through individual cells. One of
the aims of the project is vertical and horizontal integration. This may include, for
example, composing together many instances of a model of a single cell (horizontal
integration) and incorporating results and insights from this composed model into
a separately constructed model of a complete liver lobule (vertical integration)!.

!Note that composing together simple models of individual cells is often trivial, it is scaling
up with relation to the large scale behavioural changes caused by, for example, gene expression
which presents the greater challenge.



Obviously these ambitious goals motivate the need to organise and integrate
models quickly and effectively and therefore our model orchestration work.

In building a fully integrated model of the liver, existing models of various
components must be used along with newly devised models constructed using
state-of-the-art techniques. Our approach must allow flexibility not only in the
growth and evolution of current models of liver function but also in the creation of
new models and new modelling techniques. These new techniques may be closely
related to existing modelling paradigms, or not related at all. Our approach to
the orchestration and integration issues must be developed with these goals in
mind, with a view to a more generic contribution to systems biology.

To address the problems of model orchestration we draw on very substan-
tial experience from software engineering on the construction of integrated mod-
elling environments. Building complex software systems requires sophisticated
modelling and analysis and presents serious problems of scale and model orches-
tration. This has been recognised for a considerable period and there are some
established design principles and architectures for such environments. During
this paper we will outline the use of this experience and expertise in the context
of systems biology.

4 Meta-modelling

If you want to understand an activity and ultimately build a software system to
support it you need to model it. So, if you want to understand modelling . ..you
model it, constructing by way of this process a meta-model. Meta-modelling is
the first step in addressing model orchestration.

4.1 Meta-Modelling Requirements

Below we describe the set of informal requirements for model orchestration and
therefore our meta-model. These are motivated partly by the needs of the liver
project and partly by the strengths and weakness of both CellML and SBM-
L/SBW.

The requirements are divided into two categories: model organisation, how to
understand and catalogue existing models and model integration, the challenge
of collecting and linking potentially disparate models.

4.1.1 Model Organisation

Understanding and cataloguing Many biological models already exist, and
many will be created in the future using a wide variety of ideas, assumptions
and paradigms. It should be possible to understand the aims, principles
and concepts of each model quickly and how it fits into the overall gamut
of biological modelling.



Modularity and Encapsulation A model of any significant size is always built
from other constituent models. An orchestration approach must be able to
treat a model as a module which can be easily composed with other models.
The composition of two models must also constitute a model, which can
in turn be composed with other models, if appropriate. The concept of
encapsulation, where the details of one model are hidden from another, is
also important here.

4.1.2 Model Integration

Linking There are many ways in which models can be linked together. It may
be necessary to connect models which are similar or differ greatly in method
of construction, level of abstraction or overall aim. An understanding of
the features and subtleties of each model should allow many diverse models
to be integrated quickly and without unwanted side-effects.

Flexibility /Extensibility As we have described, biological modelling can use
a diverse range of modelling paradigms. Our approach must not only in-
corporate all existing modelling paradigms, but also be extensible enough
to accommodate new paradigms which may be applied in future. Ideally,
an orchestration approach should be able to deal with any paradigm used
in biological modelling, no matter how obscure or unexpected.

Compatibility Existing techniques such as SBML and CellML have already
been used to describe a number of existing models and are now known
and understood by the biological modelling community. An effective or-
chestration approach must work alongside and in conjunction with these
techniques, rather than as a direct alternative.

Ease of use To appeal to those who build and design models, our approach
must be simple and intuitive to use.

Interoperability Our approach must address the need for interoperability be-
tween modelling tools.

Dynamic and static models Just as a set of differential equations can be a
model of a biological system, so can a diagram or textual representation.
An orchestration approach should be able to incorporate these static models
into an overall framework. Static models will be described in greater detail
in section 4.4.

4.2 Meta-model Presentation

Below we set out a meta-model for systems biology modelling. This meta-model
presents a very high level ‘logical” analysis, constituting the core of a potentially
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Figure 1: Systems biology meta-model

much more elaborate model. We use a very rudimentary meta-modelling rep-
resentation, essentially entity-relationship (ER) modelling. The ER approach is
very familiar to software developers and there is no scope in context of this paper
to provide a detailed tutorial. The diagrams are however quite easy to read and
we have used the most stripped down version of the notation. We provide, for
scientists, a short account of the key elements. Each box represents an entity
class (a class of things (or objects). The lines between boxes represent relation-
ships (associations between entity classes). Each entity class, entity for short,
may have properties, known as attributes. For simplicity we have not put these
attributes on our initial diagram but they are discussed below. Relationships
have names given as labels by the lines. The small arrow heads show the direc-
tion in which these relationships can be read. Each relationship has a cardinality
(or multiplicity) that represents the number of the entity instances that can be
tied together by an instance of the relationship; this should become clearer from
the discussion below.

The model is set out in Figure 1. Note that the entities are separated into
three categories. In traditional modelling, model construction, model analysis and
biology (both experimental and theoretical) are carried out mainly by mathemati-
cians, computer scientists and biologists respectively. However, the boundaries
between these disciplines are becoming increasingly blurred.

In the remainder of this section, we will describe our meta-model with refer-
ence to a simple example.



4.3 Examples

For clarification we have devised a stripped-out biological example, along with
how it may be modelled, which we will refer to throughout our descriptions. The
example we have chosen is that of an isolated pair of cells communicating solely
via a gap-junction, opened on binding with a particular molecule. There are a
variety of techniques that could be used to model the behaviour of this system;
we have constructed models for the following three:

1. A chemical rate-equation approach, where mass-action kinetics [5] are used
to obtain differential equations governing the concentration of each species
participating in a reaction.

2. A probabilistic approach, where the behaviours of individual molecules,
including a molecule representing the gap-junction, are specified in terms
of their relative positions and probabilities to change state.

3. A process algebra approach, where the movement of molecules is modelled
by the transmission of discrete messages between processes and each process
is represented by a finite state machine. We have chosen to use Promela [7]
with its accompanying model checker Spin [6].

The models we have constructed are too small to be of any biological interest,
but will serve to illustrate the concepts salient to model orchestration. For brevity,
the example will be referred to as ‘cell-pair’.

4.4 Models and Aspects

The central concept in our meta-model is, of course, Model. A Model is a de-
scription from which detail has been removed in a systematic manner and for
a particular purpose. A simplification of reality intended to promote under-
standing. In systems biology a model may perform many roles - explanatory,
exploratory or experimental.

A Model represents, or perhaps seeks to represent, an Aspect. An Aspect
can be thought of as a coherent set of properties (or phenomena) of biological
interest. In representing an Aspect a model embeds assumptions about these
properties; this process of making assumptions is central to modelling.

In our example, the Aspect being modelled is the pair of cells, communicating
via the gap-junction. The embedded assumptions contained within this aspect
include that the cells can have no other form of communication and indeed that
modelling a pair of cells without external influences can provide any biological
insight. Many further assumptions may be made in implementing this model, as
will be seen in section 4.5.

The three types of model described in section 4.3 are examples of dynamic
models, models executed to produce results. There is also a notion of a static
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model such as a diagram, textual description or graph, commonly used to help
construct or understand a dynamic model. Although a static model cannot be ex-
ecuted, it is still a model because it constitutes a simplification of reality intended
to promote understanding.

A Model can only be relevant to a single Aspect, though as in our example,
there may be many Models that represent that Aspect. This is denoted by the
cardinality n to 1 given to the relationship represents. We may make Observations
on an Aspect, by experiment or otherwise. Such an Observation can only be
considered well-formed if it relates to a single Aspect - you may make many
Observations on a single Aspect but any Observation can be related to one,
and only one, Aspect. The role of observations in understanding and validating
models will be discussed further in section 4.6.

Aspects may interfere with one another. In other words sets of properties are
not independent (orthogonal) but rather interact. In our example, the aspect is
concerned only with the communication between the paired cells, and not any
incidental behaviour as a result of this. The species used to form the communica-
tion may interact with other Aspects of cell behaviour, which may be important
to other models.

4.5 Models and Representations

A Model is represented in a (representation) Scheme or language appropriate to
the expression and analysis of properties of particular interest. Such a Scheme is
built from Elements which are the meaning-bearing components of the language.
The Elements are assembled by way of Composition Rules that describe how the
Elements can be composed. A Model can be constructed in a Scheme by using the
Elements and Composition Rules. Intra-model relationships — mechanisms that
provide structure within a Model — are treated as instances of these Composition
Rules.

The three models of the cell-pair each use a different Scheme:

In a differential equation Scheme, the Elements are variables, terms and equa-
tions. The Composition Rules are those of mathematics: the connections of
variables and terms via arithmetic operators into a system of equations.

An individual-based Scheme also uses variables as Elements, here recording
the state and position of each molecule, and the actions governing how a molecule
may move or change state. The Composition Rules for this Scheme are how and
when the actions are applied.

In the process algebra Scheme the elements are the processes that repre-
sent the major entities in the system, in the cell-pair example the cells, and the
messages that represent the flow of information between these entities. Commu-
nication channels between processes compose these Elements.



4.6 Model Interpretation

A Model is interpreted in a Context. A Context is the data required to produce
an instance of the Model, in general the inputs to the Model and the initialisation
data for that Model. Clearly there may be many such Contexts in which a Model
can be interpreted (1 to n). A Model may, of course, be static and not require
a Context. The Model can be interpreted on (or by) an Engine. An Engine is
a ‘procedure’ for generating Interpretations — behaviours — from a Model in a
Context. The same Engine may be used for many Models and vice versa (n to
m). Again, a static model does not require an Engine.

In the differential equation Scheme, the Context is the initial values for the
rate constants and concentrations of each species in each cell. The Engine in this
case is the extremely rich background of techniques and tools, both simulation
based and analytical, to manipulate and reason about differential equations. The
simplest Interpretation of this Scheme would be the change in species concentra-
tion over time, displayed as raw data, or as a chart. This data could be further
interpreted to provide, for example, a period of oscillation of concentrations, or
the length of time until an equilibrium is reached. Our example is relatively
simple, but there may still be scope for more advanced mathematical analysis,
such as the identification of bifurcations, phase-transitions, boundary values and
SO on.

In the individual-based Scheme, the Context is the initial states of each
molecule and the probabilities for various state changes, such as a molecule bind-
ing to cause a gate opening, or molecule movement. The engine could be some
algorithm to update the states of each molecule at each time step, based on the
probabilities, most likely implemented as a piece of computer software. Analyt-
ical techniques also exist for individual-based methods. As with the differential
equation Scheme, the Interpretation of this Scheme could be the concentrations
of molecules in each cell over time. It may also be possible to derive other values
such as the probability of gate opening/closing in relation to the concentrations.

For the process algebra Scheme the Context will be initial values for the con-
centrations of species in each cell. The Engine will depend on the particular
process algebra used, but in the case of our example is the model checker Spin.
The Interpretation used here may depend on the verification of temporal prop-
erties, to identify the existence or absence of behaviours of interest. Simulations
are also possible, and repeated random simulations may be used to derive prob-
abilities for various concentrations, in the manner of a Monte Carlo approach.

An observation may validate a model only in some particular Context; it
may constrain the Context. This can lead to the ‘inversion’ of Context and
Interpretation, where we may wish to use a previous Interpretation as a Context
to analyse how certain results are obtained.

The interpretation of one model may determine the context for another. For
example, an experimental observation of a diffusion constant, which constrains



a partial-differential-equation model diffusion, is used, together with the appli-
cation of an analytical (i.e. non computational) engine to the individual based
model of diffusion to obtain the diffusion-probability-per-unit-time parameter of
the individual based model.

Some engines are restricted to analysing a model only in a given context.
Other techniques, such as the powerful analytical techniques of bifurcation theory
in dynamical systems, or the application of computing power to scan over or
sample from the possible contexts of a model, allow one to examine a model in a
multiplicity of contexts, and to explore the structure of the space of contexts of
a model.

A model Interpretation is largely what motivates the construction of a model
in the first instance. The Interpretation may lead to further models to examine
new phenomenon uncovered, or to further experimental investigation.

In addition our objective is always to ensure that the Interpretations are
biologically meaningful and relate to the Observations. The Observations serve
to test and possibly invalidate the Interpretations, or indeed the whole model.
Of course with many possible Interpretations we can use one Interpretation to
test another. In the cell-pair example, we could, for example, compare the flow
rates derived from the individual based model to the differential equation model.

4.7 Scaling up

A Model scales up a number of ‘lower-level’ Models. The concept of scale deserves
some examination. It is a heavily overloaded term with many meanings. In
biology it is often used to mean two distinct things - ‘extent’ and ‘level of scrutiny’.
Thus an organ like the liver has greater spatial extent than the lobules that
compose it. Processes within it have greater temporal extent than those within
the cells that make it up. The level of scrutiny is, by contrast, the granularity
at which a system is viewed. For the liver, in terms of components of cells (gap
junctions and so on), in terms of cells or in terms of lobules. The potential for
confusion is obvious. In general, phenomena with large extent are best viewed in
terms of relatively coarse grain elements. If not, the models themselves become
large and awkward to build and analyse. Further, phenomena of significant extent
may be relatively insensitive to changes in fine grain elements and it may makes
sense to build coarse grain models to determine gross behaviour. We use the term
scale to denote level of scrutiny alone and in a manner directly analogous to the
way in which computer scientists use the term abstraction.

If we have Models representing the same Aspect but in different Schemes or at
different levels of scrutiny, we use the scales up relationship. Scales up provides
inter-model structuring. This distinction between intra-model and inter-model
structuring may seem complex but is key to our meta-model: without making a
distinction between relationships inside and outside a particular model, it would
not be possible to understand a model as a distinct component, or to integrate it
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with other models, which may not necessarily be represented in the same Scheme
or model the same Aspect.

5 Implementation

The meta-model we have outlined is a significant first step toward providing a
comprehensive environment for scaling modelling in systems biology. The con-
struction of such an environment will be a major task and we intend to approach
it incrementally. To further validate our meta-model we will implement it as
a set of XML-based languages. These XML languages are intended as a layer
associated with existing approaches in each area.

With our approach, each model has associated with it an XML description.
This describes the model in terms of its Scheme, Aspect and the other features
described in section 4. It will also contain a variety of meta-data, including infor-
mation such as literature references and those groups or individuals responsible
for the model.

A scaled model can be described with a hierarchy of XML documents. The
top level provides the most general description of the Aspect and aims of a par-
ticular model. Below this, further XML documents refine this into the details of
assumptions made, implementation decisions and other specifics. In this way, any
model can be understood at a variety of levels of abstraction and in the context
of other models closely related and associated with it.

Analysis of an the XML description for a model can provide high level in-
formation on the aims and principles behind the model as well as more detailed
information on equations used, assumptions made and tools employed. The use
of XML makes this information easy to index, search, display and cross-reference
with existing tools. An XML description can eventually be converted into input
files for simulation and analysis tools in various modelling paradigms.

XML is ideal for our purposes because it is flexible, extensible and allows
easy embedding of data in other formats. A model described with our approach
could contain a description of that model using SBML or CellML simply using
the XML namespace system. Links to data sources and executable models can
be included using XLinks.

6 Conclusions and Further Work

We have described our method for tackling the understanding and integration
of biological models, with a view to integration. We have presented an example
as viewed by our approach and demonstrated how it can be understood with
reference to three separate modelling paradigms. We have also discussed the
implementation of our approach, and ensuring compatibility with other generic

11



modelling schemes.

As part of our work on modelling the liver, we are developing a prototype
model integration framework, based on the approach described in this paper. The
framework aims to explore the effectiveness of our approach in a real world setting
particularly when used by model builders themselves. At present, the framework
is aimed largely at the modularisation and integration requirements within a
single modelling Scheme (differential equations), but extensibility and the later
inclusion of other modelling Schemes is a strong consideration in development.
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