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The architectures of seeing and going:
Or, are cities shaped by bodies or minds? And is there a syntax of

spatial cognition?
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Abstract

In my first paper to this Symposium, it was argued that the human cognitive subject
played a key part the shaping and working of the city. The key mechanism was the
synchronisation of diachronically experienced (and usually diachronically created)
information into higher order pictures of spatial relations, the guiding form for which
was an abstracted notion of a grid formed by linearised spaces. This notion was
argued to be both perceptual and conceptual, serving at once as an abstracted
representation of the space of the city and as a means of solving problems, such as
navigational problems. In this paper, the question addressed is where the notion of
the ideal grid comes from, why it has the properties it does, and what it has to do
with the real grids of cities, which are commonly of the ‘deformed’ or ‘interrupted’
rather than ‘ideal’ kinds (Hillier, 1996). The answer, it is proposed, lies in the very
nature of complex spaces, defining these as spaces in which objects are placed so as
to partially block seeing and going, and, in particular, in certain divergences in the
logics of metric and visual accessibility in such spaces. The real grid, deformed or
interrupted, is, it is argued the practical resolution of these divergent logics, and the
ideal grid its abstract resolution. In both resolutions, however, the resolution is more
on the terms of the visual than the metric, suggesting that cognitive factors are more
powerful than metric factors in shaping the space of the city. The question is than
raised: do people have or acquire the concept of the grid, perhaps as some kind of
perceptual-conceptual invariance of spatial experience in complex spaces, and do
they use it as a model to interact with complex spatial patterns of the urban kind?
This possibility is examined against the background of current opinion in the cognitive
sciences.

Introduction and problem definition

In my first paper to this Symposium, it was argued that the human cognitive subject

played a key part the shaping and working of the city. The key mechanism was the

synchronisation of diachronically experienced (and usually diachronically created)

information into higher order pictures of spatial relations, the guiding form for which

was an abstracted notion of a grid formed by linearised spaces. This notion was
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argued to be both perceptual and conceptual, serving at once as an abstracted

representation of the space of the city and as a means of solving problems, such as

navigational problems.

In this paper, the question addressed is where the notion of the ideal grid

comes from, why it has the properties it does, and what it has to do with the real

grids of cities, which are commonly of the ‘deformed’ or ‘interrupted’ rather than

‘ideal’ kinds (Hillier, 1996). The answer, it is proposed, lies in the very nature of

complex spaces, defining these as spaces in which objects are placed so as to partially

block seeing and going, and, in particular, in certain divergences in the logics of

metric and visual accessibility in such spaces. The real grid, deformed or interrupted,

is, it is argued the practical resolution of these divergent logics, and the ideal grid its

abstract resolution.

In both resolutions, however, the resolution is more on the terms of the visual

than the metric, suggesting that cognitive factors are more powerful than metric

factors in shaping the space of the city. The question is than raised: do people have

or acquire the concept of the grid, perhaps as some kind of perceptual-conceptual

invariance of spatial experience in complex spaces, and do they use it as a model to

interact with complex spatial patterns of the urban kind? This possibility is examined

against the background of current opinion in the cognitive sciences.

Seeing and going

From an experiential point of view, cities seem to be about both seeing and going.

Syntactic analysis confirms this by showing they are structured both to make the

physical movement of bodies efficient, and to be intelligible to minds. We say that

cities are about movement, but also that seeing is the mentor of movement. Concepts

like syntactic ‘intelligibility’ (Hillier et al., 1987; Hillier, 1996a) build on this relation

to construct a picture of the ease or difficulty with which we come to understand the

shape of a complex space by seeing a part of it at a time through movement within it.

But on the face of it, seeing and going are very different concepts. Movement

requires the expenditure of energy to move bodies, and so must be critically related

to distance. Seeing is an informational concept, and involves cerebral rather the

physical effort. A straight line, for example, has a certain length, and requires so

much energy to move along it from one end to the other, but has only one visual

field (at this stage, we ignore, conveniently, some might say, the fact that visibility

decays with distance, but this is because as we move along the line this adjusts itself

automatically and we continue to see the same field only more clearly) and so only

one unit of information effort is required (Figure 1a). If we hold length constant and

Figure 1 
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break the same length of line into segments and connect them at angles which prohibit

continuous visibility (Figure 1b), we do not add significantly to the energy effort

required to move along it, but we do add greatly to the informational effort required.

So defining a complex space as one in which one or more objects are located

so that seeing and going are partially blocked, whether objects in a gallery, counters

in a department store or islands of buildings in a city, we can index physical

accessibility by metric integration (in fact, ‘metric total depth’ in Alasdair Turner’s

Depthmap software in a version which gives true metric distances), that is the real

‘universal distance’ from all points to all others, and therefore the energy effort that

must be used to go from all points to others; and visual accessibility by visual

integration, (currently labelled ‘total depth’ in Depthmap) in the same software,

which indexes how many fields of view we have to take into account to see the

whole system, and therefore the informational effort required to see all points from

all others (Turner, 2001, 2002). Any object placed in a space will both add universal

distance to the system and so require additional physical effort to go to all points

from all others, that is decrease its metric integration, and at the same time will

increase the number of views which must be taken into account to see the whole

system from all points to all others, and thus add to the informational effort required,

that is decrease its visual integration.

Metric and visual integration: a real case

We can begin by looking at a real case so see

how metric and visual integration behave, and

what kinds of pictures they give of the complex

space formed by a real urban system. Figure 2 is

a metric integration analysis of an arbitrary chunk

of London centred on the City, and Figure 3 is a

visual integration analysis of the same area.

Metric integration forms a pattern of concentric

rings, while visual integration finds an edge to

centre network of lines. The reasons for this are

clear enough. Metric integration is based on

elements that are uniform and as small as possible

(the smaller the more accurate the metric measure)

and so must hug the geometric centre of the

system. (Hillier, 2001, 2003) Visual integration

is based on elements which are as large and as

variable as the distribution of objects allows, and

Figure 2

Figure 3
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As representations of the spatial and functional properties of the city, it is

clear that the visual analysis is much more persuasive. Although the two kinds of

analysis find their centres in the same region of the grid, metric integration identifies

as its focus a functionally unimportant intersection, and then identifies minor streets

and even back alleys close to this centre as being more integrated than much more

important streets remote from it. Visual integration, on the other hand, differentiates

different types of street close to the focal point, and extend the integration core to

cover  important streets some way from the visual integration centre. This is essentially

why a metric integration analysis cannot predict movement as well as a line analysis

(Hillier et al., 1986). It overestimates syntactically insignificant lines close to the

geometric centre, and under-estimates significant lines remote from it. It is too tied

to the abstract overall geometry of the system, and too little affected by the spatial

configuration.

Does this mean then that the visual prevails over the metric in the shaping of

cities, and that metric factors can be discarded? We will in due course show that

something like the first is the case, but that the second is not. Cities are shaped by a

subtle and complex interplay between visual and metric factors, and in key senses

the one will be shown to lead to the other. To show this we must first undertake

some theoretical explorations into the formal behaviour of visual and metric

integration in simple – defining these as convex spaces without objects – and complex

spaces.

in this case, the disposition of objects in such as to creates a visual integration core

in the form of the edge to centre network.

Metric and visual integration in simple spaces

So let us first look at simple convex spaces

without objects. We can anticipate, of course, how

metric integration will behave: it will form

concentric rings from centre to edge. Figure 4

shows the effect on metric integration of varying

a convex shape from square to increasingly

elongated. As we expect (Hillier, 1996a), the

square is the most metrically integrated shape

overall, with an internal distribution from centre

to edge and from centre edge to corner, and the

most elongated shape the least integrated overall,

but in each case integration goes from centre to

edge and from centre edge to corner.

Figure 4
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What about visual integration? There is of course a problem. All points can

see all others so the four shapes seem to be undifferentiated, either in mean differences

between them or differences in locations within the shape. But intuitively to see

spaces easily we need to be at their edges or corners where the whole space can be

within a single field of view. Is this intuition mistaken? It is not, and we can see this

by looking at what happens visually as we move from the centre to a corner location,

by using a crude device which I call a ‘metric j-graph’, much inferior to Alan Penn’s

geometrical j-graphs (Penn, 2003), but simpler to illustrate the point that needs to be

made here. We cover a shape with a uniform tessellation, then take a root cell in the

tessellation and align all cells face-wise contiguous with it one layer above, then

those contiguous with the ‘one deep’ set on the next alignment above and so on until

the limits of the system are reached. The result is a shape which looks like a j-graph

without its links, and whose shapes indexes the ‘manhattan’, or ‘taxicab’ distance

from that points to all others. The results would be similar with true distances but

the ‘metric j-graph’ would be more time-consuming to construct.

This will always necessarily be the case in a simple convex space. By moving

an observer from the centre towards the edge, we are necessarily both increasing the

distance from that point to all others, that is we are making the system more metrically

segregated from that point, but at the same time we are narrowing the system by

making the cells more asymmetric from the observer, and thus focusing the field of

view and making it easier to see the whole system. Seen another way, more area is

being brought into single point of view, though at the cost of making it farther away.

This is the fundamental relation between seeing and going in a simple convex space.

The more metrically segregated our position, that is, the more energy effort we need

In the centre of the space the visual field

in 360 degrees, so the shape of the metric j-graph

is as in Figure 5a. The four cells at the top are the

corners, and those at the widest point those where

the shape of the graph most closely approximates

the circle. On the right is the equivalent metric j-

graph for the corner location. The j-graph has

become much deeper, reflecting the greater mean

distance to be travelled to all other points from a

corner location, but by the same token, the j-graph

has also become much narrower, that is, it has

moved into a more focused field of vision. Figure 5

GEOMETRIC J-GRAPHS: without vertex joins

from the centre from a corner

GEOMETRIC J-GRAPHS: without vertex joins

from the centre from a corner
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to go to the whole system, then the more visually integrated the system, that is the

more we see at once and the less informational effort we need to see the whole

system.

A key implication of this is that a notion of the directionality of vision is built

into the fundamental relation between the metric and visual properties of spaces: the

more segregated our locations, the more what we see is focused into a single view.

Since we define visual integration in terms of the number of view we have to take

into account to see the whole of a system, then it is clear that in this sense a corner

location is more visually integrated than a central location where we must take more

views into account. This makes linear spaces highly interesting, since the more

elongated the shape the more the focusing of vision will be the case, and the more

distance will be overcome by vision. This limit of this tendency is of course the line

itself. We will explore the consequences of this in due course.

Metric and visual integration compared: some simple cases

But let us look first at what happens in complex spaces, beginning with the simplest

kind, those with a single object. One effect, of course, is that as soon as we put an

object in the space we can measure visual integration since the system is no longer

uniform. How then do metric and visual integration relate to each other in such

spaces? Figure 6 shows the effect on metric integration of moving an object from

the corner first to centre edge and then to centre. The systems are processed together

so the colours (or dark to light shading) represent the same numerical values in each

case. We can easily see that as we move the object towards the centre the degree of

metric integration in the system falls. Figure 7 then shows the effect on metric

integration of changing the shape of a central object while maintaining the area of

the object constant. As theory predicts (Hillier, 2001, 2003) the elongated object

decreases metric integration much more than the square object. Note that the focus

of metric integration with the elongated shape is split between the two ends of the

shape.

Figure 6 Figure 7
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Figures 8 and 9 then show the effect on visual integration

of the same series of changes in block position and shape. Once

again, as we move the square block from corner to centre edge and

then to centre the visual integration of the shape decreases, and

when we change the shape of the central object from square to

elongated holding area constant, visual integration is again

decreased. However, in terms of the internal distribution of

integration within the space, the two measures are almost inverses.

While metric integration is maximal in the metric centre of the

object, visual integration is highest on the periphery, and would be

in the corners if the central object were circular or octagonal rather

than square (the visual integration from the corner is reduced

compared to the sides because the amount of blocking from the

object is defined by the length of its diagonal rather than that of its

sides). So, in this simple case, metric and visual integration are

directly proportional to each other in terms of their degree, but

inversely related in terms of their distribution within the space.

Figure 10 summarises these effects.

We can see then that the visual integration of a point is

affected by two things: where the object is in the space and where

the point – or observer perhaps – is in relation to the object. This is

clarified in Figure 11. On the top line, we locate the observer in the

corner, and move the object from centre to corner. The black area

of unseen points shrinks as the object moves away, and the area of

seen points increases proportionately, with the boundary between

the two given by a line drawn from the root point. On the bottom

line, we move the observer from the vertex of the object to the

corner of the space. Once again, the area of seen points grows and

that of the unseen points shrinks. The common denominator is the

distance of the observer from the object. It is this that determines

the ratio between the seen and unseen areas, and this determines

visual integration.

Figure 8

Figure 9

Figure 10

Figure 11
The top line shows that the propotion on un-

seen space shrinks as the object moves from

centre to corner.

The bottom line shows that the propotion of un-

seen space shrinks as the observer moves from

centre to cprner.

The key variable is the distance between ob-

server and object.

The priority of the edge

for visual integration is then in

this case not the same as in the

simple space, but depends on

metric factors, namely the total

number of points, or total area, The top line shows that the proportion on unseen space shrinks as the object moves from centre to corner.

The bottom line shows that the proportion of unseen space shirnks as the observer moves from centre to corner
The key variable is the distance between observer and object
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Looking closely at what happens inside visual integration

To the syntactic analyst, it is of interest that lines featured in both of these accounts

of visibility, in the case of simple spaces as the limiting shape for directional visibility,

and in complex spaces as the means by which the boundaries were drawn which

yielded the visual integration value. However, apart from the obvious fact that for a

visual relation to exist between two points, visual integration seems to be based on

the analysis of the relations between point isovists, and to have little to do with

lines. But looking more closely at what happens inside visual integration, this will

turn out not to be the case. What visual integration does initially (before factoring

for the metric areas at each level of depth) is to calculate the visual depth between

points, and it does so by implicitly identifying virtual line like elements, which it

then treats as discrete elements, discarding all intrinsic information whether metric,

geometric or configurational. This is surprisingly similar of course to what axial

analysis does, but here it is done between pairs of points, and implicitly as well as

algorithmically. What follows has close analogies to Peponis et al (1998), though

differences in the way it is put allow perhaps a wider theoretical embedding of the

consequences of the ideas, so this particular re-invention of the wheel is set out in

the form in which it was conceived, rather than trying to adapt itself to the excellent

text of Peponis and his colleagues.

Formally speaking the visual integration calculation is made by filling the

complex space with an arbitrarily fine square tessellation, then taking the centre of

each cell in turn, a depth one connection exists if another point is in the isovist of the

selected root point, and a connection at depth two wherever a point not in the first

isovist from the root point is in the isovist of one of the points in the first isovist, and

so on until all points in the system are covered. On the face of it, this process seems

to have little to do with lines, apart from the fact that each connection between

a visually integrated (left) and visually segregated (right ) point 
showing total area at each level of deptth from the point

Figure 12

at each level of depth from the root point. This has an important

implication. While the visual depth between a visually integrated

and visually segregated point will be the same in either direction,

the visual integration values are different because the large and

small areas have changed places depending which point we are

looking from. If we represented total area as a strip of a certain

length, we could again represent the visual integration value

metrically by a technique analogous to j-graph. An integrated point

would look like a pyramid, with a wide strip at the first level and

narrower strips at succeeding levels, while a segregated point would

look like and inverted pyramid, as in Figure 12

a visually integrated (left) and visually segregated

(right) point showing total area at each level of depth

from the point
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points implies a line. But there are a huge number of such implicit lines in the system,

so to think of them seems a move in the direction of additional – and therefore

unnecessary – complexity.

But this does not quite settle the matter. The initial value that is calculated in

visual integration, and the one that is eventually factored by the metric area at each

level, is the visual depth between any two pairs of points, that is the number of

isovists that must be passed through to see one from the other. But what does this

actually mean? We can see this graphically by looking at the complex space shown

in Figure 13, where the point highlighted bottom left is our root, and the point top

right the target point whose visual depth from the root we are calculating. In the

figure we have calculated visual point depth from the root point, so the system is

coloured from dark blue to red (or shaded dark to light) from the root outwards in a

series of depth layers. The dark blue area around the root point is the depth one

isovist, depth two is then the ‘isovist of the isovist’ of all the points in the depth one

isovist, and so on. With this representation, it is easy to see how the sequence of

isovists ‘gets to’ the destination point, and in this case it does so in two different

ways in six steps, so the visual depth is 6.

In effect, the visual depth of any point to

any other is established by finding routes from

one to the other, and visually the ‘route’ is as clear

as a j-graph.  The route seems to be made by

isovists, but it is not quite the case. If we look at

the relation between any two levels in the isovists

along the route - say between the first and second

- the relation that is part of the route from root to

destination is not made by the whole isovist but

only by a subset of its points. This will always

necessarily be the case. If we then consider the relations across three levels rather

than two – say the first and third levels in Figure 13 - the relation between the first

and third layers is made by a space defined between two subsets of points, one in the

first layer and the other in the third layer. This section of the route from root to target

will be, necessarily, a convex strip or wedge-shape connecting these two subsets of

points, and the same will be the case for all relations between triples of levels. To the

extent that the complex space is densely filled with objects, these linking strips will

more and more approximate lines, and indeed the limiting case will be a sequence of

lines.

Figure 13
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These connecting elements are not of course real, but virtual, but the fact that

they are connecting element means that they are then treated as discrete elements, in

that all their intrinsic properties are discarded and only the fact of making the

connections is taken into account. The fact that all information bar making the

connection is discarded about these virtual elements implies that only the fact of

making the simplest linear connection is taken into account. To all intents and purpose,

the virtual elements are treated as virtual lines. This sounds, of course, analogous to

axial analysis, which calculates only the extrinsic topological relations between line

element, but on reflection we can see that technically speaking it is its dual. In axial

analysis, the lines are the nodes and the intersection the links of the graph. Here the

points are the elements and the virtual lines are the links. Indeed, it is precisely

because the virtual lines are the links in the graph that they are treated as a discrete

elements and their intrinsic properties ignored. But what visual integration is doing

in effect is identifying the least sequences of virtual lines from root to target, and

find these algorithmically, if implicitly, and then treating these lines as discrete units

and calculates only their extrinsic properties1. The fact that the initial representation

is the dual of an axial line system should not distract our attention from the similarity

of what is going on in the two forms of analysis.

The paradox of the line

So visual integration analysis is in an important sense all about lines, and lines,

moreover, treated extrinsically in terms of their topological relations, with no reference

whatsoever to metric or geometric factors. As soon as this is clear, a possible relation

to metric properties comes into view. A line is not only a direct visual connection

between two points: it is also the shortest distance between them. Any break in a line

or making two lines into one will cause metric and visual integration to co-vary

positively in terms of overall degree. The co-variance will not be linear, since a

marginal change in alignment may make a step change visually but a marginal change

metrically. Even so, there will be change in both and it will be in the same direction.

It follows that by discarding intrinsic metric information about lines and treating

them as line topologies, visual integration comes to reflect at least some metric

properties of the system.

We can clarify this through what we might call the paradox of the line. In the

Euclidean world which we inhabit in everyday life, the most obvious thing that can

be said about the line is that it is the shortest distance between two points. However,

in syntax we know, and have just reminded ourselves of, something else about the

line: considered configurationally in terms of the universal distance from all point

to all others, that is, in terms of its intrinsic properties from all points to all other, the

line has the largest sum of distances for any way of arranging that set of points in a
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shape. Seen in terms of its intrinsic configurational properties as a simple space,

then, the line is the ‘longest’ not the shortest distance. It is extrinsically that it is the

shortest distance. This is the paradox of the line. We can also say that metrically

speaking, the centre of the line is the most integrated location and the ends of the

lines the least, so the two points between which the line is the shortest distance are

also intrinsically the farthest from all other points along the line. The paradox, it

seems, has some twists and turns. Seen in terms of its intrinsic properties, the line is

the inverse of its extrinsic properties.

How does this compare with the visual behaviour of the line? In terms of the

inversion of visual and metric properties for simple spaces what we saw earlier, the

line is most easily seen from its two ends. In this it is comparable to metric integration

from its two ends, that is extrinsically. How then does it compare to metric integration

intrinsically as a simple space in terms of the visual relations between all points and

all others within it? The intrinsic metric properties were calculating the distance

from all point to all others in a convex shape. We have not yet seen how this can be

done for visual integration, though we did show the priority of edge and corner

locations for directional vision. We need some more theory.

Intrinsic visual integration

We are familiar with the effect on metric

integration of moving a cell placed between two

end cells from the centre to periphery (Hillier,

2001, 2003). (Figure 14) Metric integration along

the line increases (that is, the mean distance

between pairs of points, or ‘universal distance’,

decreases) as we move the blocking cell from

centre to edge of the line between the two end

cells. (Hillier, 2001, 2003) This followed from

the ‘centrality principle’ for partitions set out in

(Hillier, 1996a).

How then does visual integration behave?

Figure 15 shows a simple linear space with a

partition that is progressively moved from centre

to edge. Regardless of where we put the partition,

the total visible area in the two cells taken together

remains of course the same. But if we take a

‘configurational’ point of view, and consider the

area, or, equivalently, the number of other points,

total deviations: 14

  7               1      1      1      1      1      1      1    

total deviations: 24

    6      6               2     2      2      2      2      2

total deviations: 30

   5      5      5              3      3      3      3      3

total deviations: 32 

   4      4      4      4               4      4      4      4 

INTER-ACCESSIBILITY from all points to all others

MEAN AREA SEEN FROM ALL POINTS so mean number of other points visible from each point

Four points see four cells on both sides, so 

2(4)2 = 32 or half of the potential for 8 cells

Five points see 5 cells on one side, and three 

see three on the other, so 52 + 32 = 34, or 
.53125 of the potential 

Six see six, and two see two, so 62 + 22 = 40 
= .625 of the  potential 

Seven see seven and one sees one, so 72 + 
12 = 50 or .71825 of the potential

Eight see eight, so 82 + 02 = 64 or all of
the potential

Figure 14

Figure 15
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The total co-visibility of points from others in the system is not then a constant

like area, but a variable depending on where we place the partition. If we hold total

area constant, there is more visibility from points to all others in a large space plus a

small space than in two similar sized spaces of equal total area, and this will hold

whether or not the spaces are connected to each other. This is not immediately obvious

to reflection, but it is experientially and mathematically clear. We can say

experientially, because it implies that people spread evenly throughout the space see

more others in a large and small space, than in two evenly sized space. It follows

that we can also say that if an individual who moves in the space will also see more

points over time in a large and small space than in the same area divided equally. It

is not just the sense that points are more co-present with each other in a large and

small space than in evenly sized spaces. For mobile individuals or groups of

individuals it is a mathematical fact.

Once we have the principle, we can see that this also applies to directional

vision. If from a central space we have two (or four, it does not matter) fields of

view of equal size, as we approach the corner we increasingly have one large and

one small space, and this means that the potential co-presence of points – and therefore

of other people - from a near corner location is greater than for the central location,

and greater from a corner than from a near corner location, since we will see the

whole space in one view. Intrinsic visual integration is then very much the inverse

of metric.

We must be clear what is going on here, and how it differs from the visual

integration we have seen do far. What we are doing here is summing visibilities

from points, or sets of points, and so we are dealing with space as a set, but not as a

that can be seen from each point within each of the two cells, we find that the

mean increases as we move the partition from centre to edge. The reasons for this

are shown in the figure, and are quite similar to those for the effect on metric

integration. If we have a line of n cells and define area as the number of cells that

can be seen from a point (though it could equally be the points making up those

cells), then with a centrally placed partition four cells can see four others on each

side, so the total for all points is 2(n/2)2 = 32 and the mean is 4. If the partition is

moved one cell along, then on one side five will see five and three will see three,

so 52 + 32 = 34, and so a mean of 4.25. Since n2 + n2 must always be a smaller

number that (n-1)2 + (n+1)2, and (n-(1+m)2+(n+(1+m)2 must always be smaller

than (n-1)2 + (n+1)2 it follows that the mean area, and therefore the mean number

of points, seen from all points must increase as the partition moves from centre to

edge.
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pattern, of visual experiences available from particular points. In that sense the

measure is perceptual in a way that the patterns brought to light by visual integration

are not. It is about what it is like to be in a space or a set of spaces, but it does not

give a picture of the relations between those spaces or their relation to the rest of the

system which elude direction perception.

But having said this, we can apply this measure to movement and therefore

to routes by seeing them as a sum  - but not as a structure – of experiences.  Given a

journey of a certain length, we see more space on a journey composed of a long and

short lines than of even length lines, and more on one made up of a single line than

any made of a sequence of lines. We can show this through simple sequences of

numbers representing line lengths. For example, suppose we have a journey of length

8 made up of two lines of 4, so in terms of what we see along the route we will have

from successive points a view of 4-4-4-4-4-4-4-4 other points, giving a total of 32.

If we have lines of 5 and 3 we have 5-5-5-5-5-3-3-3 = 34, so we actually see space

more on the way through time, and so on for  6-6-6-6-6-6-6-2-2 = 40, 7-7-7-7-7-7-

7-1=50 to 8-8-8-8-8-8-8-8 = 64.

If we limit what we see directionally, so that what we see is just ahead of us

and so decreases as we move along each line, the outcome is similar. For two lines

of length 4, we have 4-3-2-1-4-3-2-1=20 and for lines of length 5 and 3 we have 5-

4-3-2-1-3-2-1=21 and so on through 6-5-4-3-2-1-2-1=24 and 7-6-5-4-3-2-1-1=29

to 8-7-6-5-4-3-2-1 =36. These calculations will of course be the same whichever

direction we take. Of course it could be said that as we go along the line, we are

receiving smaller and smaller amounts of the same information, whereas when we

change lines we receive new information. This however suggests a natural way of

link linking space to the mathematics of information theory (Shannon and Weaver,

1948): the length of lines controls the amount of information theoretic redundancy,

or structure, in the system, and the number of changes the amount of information, or

unpredictability. We will return to this theme in due course.

This then is a pervasive, though hidden, effect of all our experience of moving

in space. We actually see more in moving through large and small spaces that equal

sized spaces of the same total area, and it has different effects on our sense of how

space is structured. We find similar effects with time. Suppose we have a morning

during which we want to work on, say, a paper, but we have a couple of tutorials

which must be fitted in somewhere. Where should we put the tutorials? Intuitively,

it is quite likely that we would seek to make the working periods as long as possible

so as to sustain concentration. We would do this by clustering the tutorials either at

the beginning or the end of the morning. The opposite would be to time the tutorials
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at even intervals throughout the time period, since this would seem to create the

greatest amount of interruption.  But why exactly do we think this, when whatever

we do the total time available for work and tutorials is the same. The answer lies in

the same simple maths that increases ‘co-presence’ of points as we move the partition

from centre to edge. When we say we want as long a period as possible of sustained

effort, what we are formally saying is that we want to maximise the co-presence of

as many points in time as possible within the same time frame, and this is what is

achieved by clustering the tutorials at the beginning or end. In this case, the place of

movement in space is taken by passage through time. Spacing the tutorials evenly

throughout the period, so that each tutorial was in the centre of the time period of its

two neighbours, would minimise the co-presence of points in time within the same

time frame. There is, quite objectively, more time co-presence in a long and short

time period that in two equal length periods of the same total duration, and this is

how we experience it through the passing of time.

The intrinsic properties of lines

This means that the line has important intrinsic visual properties. In terms of all

round visibility, of course, the line is uniform: each part can see each other part. But

if we consider its intrinsic properties in terms of directional visibility – and above all

else a line is directional - it is structured. On a pure line there are two visual fields to

be taken into account from the centre (as opposed to the postulated four in a two

dimensional strip), and one from each end, with point co-presence on the line

increasing as the observer moves from centre to end. The line is therefore intrinsically

more visually integrated, and requires less visual information, than any convex two-

dimensional space, and the more a convex strip approximates a line, then the stronger

this effect will be. Practically speaking, we could say that the longer and narrower

the convex linear strip, the more the lateral views needed to see all round will be

small spaces to set alongside the long linear spaces, and this will then maximise

visual integration. In other words, the more a convex strip approximates the line, the

more intrinsically visually integrated the shape in terms of its whole area as well as

from its two ends. Up to certain practical limits imposed by the focusing of vision,

narrowness as well as length increases visual integration2.

We can say then that for metric integration the intrinsic behaviour of the line

– having the greatest distance from all points to all others – is inversely related to its

extrinsic behaviour – being the shortest distance between its two end points - while

for visual integration the intrinsic and extrinsic are positively related: it has maximum

intrinsic point co-presence along the line, which increases with increasing length,

and maximum visibility from end to end, and therefore optimises extrinsic visibility,

and again this increases with length. We can pretty well say theoretically that for
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intrinsic all to all (and directional) visual integration the longer the line the more

integrated it is, while for all to all metric integration the less integrated it is. At the

same time in terms of extrinsic properties metric and visual integration agree that

the line is optimal.

Intersection

Both metric and visual integration, then, prioritise the line extrinsically, that is in

terms of relations between discrete spatial elements. The longer the line, the more

extrinsically efficient it will be both from a visual and metric point of view, but the

more intrinsically inefficient it will be from a metric point of view. Intrinsically,

longer lines increase visual integration but decrease metric integration, and visual

integration integrates from edges while metric integrates from centres. How can

these divergences be resolved?

Both, in fact, are resolved at once by the simple device of line intersection.

As soon as a pair of lines intersect, intrinsic visual integration is refocused from the

edge of the system to its centre, that is at the point of intersection, and this is also the

point of highest metric integration in the combined system. Since the paradox of the

line arises from the fact that metric integration decreases with increasing length of

line, by cutting the line in two we in effect halve the effect, at least with respect to

the combined system of two lines. Line intersection then the simple device which

can be used to create and control the pattern the pattern of both metric and visual

integration, and to do so in such a way as effect on one will tend to positively co-

vary with effects on the other. Since any pattern of intersection will form the topology

of the grid, and since any complex space that becomes densely filled with discrete

objects will construct such a pattern, it follows that some kind of topological grid

formed by more or less linearised spaces – though as yet without an angular structure

- but see below – is inherent in the nature of complex spaces, and serves as a means

of defining the pattern of metric and visual integration together. Since a fully linearised

grid is, other things being equal, the form that optimises both metric and visual

integration extrinsically (in that any breaking of lines will reduce both), then it follows

that the linear grid arises conjointly from two properties of complex spaces that

most closely interact with human behaviour: that is, their metric and visual properties.

The ‘other things being equal’ clause, is necessary because there are in fact

two ways in which the linear grid can be improved on in terms of both metric and

visual integration.  One is by the creation of open spaces; and the other is by reducing

the size of blocks. Each of these of course locally in real grids, the former by the

creation of ‘squares’ and open spaces, the second is by local grid intensification, as

found in local ‘live centres’ (Hillier, 2000). But these occur only as local features of
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grids. The global structure of the grid is given by the pattern of intersections between

more or less linearised spaces. This is why it is possible to say that the grid in

general is implied by the interaction of metric and visual integration in complex

spaces, and that the structure of real grids is given by their the topological patterns

formed by their intersection, and in particular, their degree of alignment or non-

alignment into longer or shorter sequences, and so longer and shorter lines.

The perceptual and the conceptual

Having arrived at the grid, however, as a way of resolving relations between metric

and visual integration by intersecting lines, we immediately find another issue: our

two different versions of visual integration – the point based directional version and

the all round, all-points-to-all-others version – tell us rather different stories about

the grid. We can perhaps, an indicated earlier, think of the first as perceptual, since

it refers to visual fields from points or sets of points seen additively rather than as a

structure, which would only in limiting cases be available from a single point, and

the second a conceptual since it refers not to the experience of visual fields from

particular points, but to the structure of relations from all points to all others.

Let us begin with the perceptual version. If we think of an intersection as a

point isovist, and analyse it for its intrinsic, or perceptual, visual integration, then

point co-visibility is maximal where the isovist is maximally asymmetric, that is

when one branch of the isovist is longer than the others, This implies that perceptually

an intersection of a long and short line in a kind of L-shape where the point of

intersection is close to the end of each line, is optimal. This seems initially alien to

the concept of a grid, but in reality the relation between long and short line seems to

be the fundamental building block of the city, whatever its geometric form. At

whatever scale we look, we find that the city is made up of a few long lines and

many short lines, and it is this relation which gives rise both to ease of direction

finding in the city, and to the overall structure of the urban grid (Carvalho, 2003;

Hillier, 2001, 2003).  We can say then that the point based perceptual version of

visual integration leads us what is empirically a pervasive spatial relation of the

city: the intersection between a long and short line.

What then of all-round visual integration, that is, the measure that seems to

give such a persuasive account of the overall structure of the grid, and does to in

striking contrast to metric integration which identifies little more than the geometric

shape of the overall system? First, we can say that because all round visual integration

proceeds in all directions simultaneously by identifying virtual lines leading to all
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points, integration will be optimal where long lines move in all directions from a

point, giving a preference for an X-shaped intersection. To the extent then that routes

to all points are linear and intersect in the X-relation, integration will be increased.

This suggests that the two kinds of visual integration seem to relate to the

two kinds of movement that are found in urban systems: (Hillier, 1999). Point to

point movement, such as is found from edge to centre, is directional, and tend to be

supported by the L-shaped intersection where one direction is prioritised, and all to

all movement is omni-directional and tends to be supported by the X-shaped

intersection. Looking at axial maps, we see a greater occurrence of the L-shaped

relation in outer areas where the overall grid structure is less resolved, and movement

is more point to point, and a greater occurrence of the X-relation in the centre and in

local centres, where movement is from all points to all others.

From the perceptual to the conceptual

However, both versions of visual integration seem to play a role in

the process of ‘description retrieval’, as outlined in my previous

paper (Hillier, 2003b), by which individuals come to form a picture

of a complex space by moving through its parts. We have already

suggested that this is an information theoretic process in which

line length controls the amount of information theoretic redundancy,

or structure, in the system, and the number of changes the amount

of information, or unpredictability. If this were the case, then there

are a number of implications.

The first is that cities, like language, work as intelligible

systems because there is a balance between structure and

unpredictability. In the case of cities, the place of linear structure

in language is taken by movement through space, which is similarly linear through

time. This would suggest that the deformed and interrupted grids that are found in

real cities are language-like in this respect: they balance the structure obtained from

longer lines with the information from changes in direction. This seems to be

supported by our notion of ‘labyrinthine’ space. Labyrinthine tends to mean that

lines are uniform and short, and lack the longer lines to structure the system. It is of

interest that we can create a labyrinthine complex space by simply arranging blocks

so as to reducing the length of lines and make them as uniform as possible. This will

have the effect of compressing visual integration down to the level of metric. For

example, in the discrete T-shaped pattern of block aggregation shown in Figure 16,

the visual integration pattern in the bottom figure is virtually identical to the metric

in the top figure.

Figure 16
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The second implication is that the metric factor of line length is the decisive

variable in defining how easy or difficult is it to retrieve a description of the system.

Where the same total length of line is divided into a few long lines and many short

ones, as we typically find in cities, then the moving observer sees more space over

the time spent in movement than if the lines are of even length, and the information

obtained from the longer lines is more redundant and therefore more structural.

Metric factors are thus critical to the way in which the city constitutes a field of

information with both structure and unpredictability. The degree to which we can

arrive at an abstract conception of the system as a whole from series of perceptions

of its parts depends then on is metric organisation, or perhaps more accurately, on

the topological organisation of metric properties.

The  third implication is that if the series of perceptions made by the moving

observer are the information in the system, and the conception which we arrive at

through description  retrieval is about the structure of the system, and if the structure

of the system is a function of the organisation of line lengths, then it would seem to

follow that the distribution of all round visual integration in the system is in an

important sense a picture of its structure. It would seem to follow then than by

giving a view of the system which does not prioritise directions but proceeds

indifferently from each point to all others, and by this means identifying an overall

structure in the grid, the ‘conceptual’ visual integration measure in some sense

modelling the means by which the perceptual is synchronised to become the

conceptual in urban space, that is the means by which an accumulation of perceptions

is aggregated into a picture of the whole system which is at once perceptual and

conceptual. Precisely because it describes the topology of line lengths in the whole

system, and not just the accumulation of perceptions of the parts, it describes the

objective structure of the system as whole which description retrieval seeks to grasp.

One could perhaps add a rider to this. Since the critical information that visual

integration extracts from the system of space is linear, and since we know that two

dimensional variation can affect the pattern of visual integration quite strongly, it

may be that the simpler least line map, or axial map, is a simpler and truer

representation of the properties of the grid that give rise to the conceptual picture of

the grid as a whole.

And from the real to the ideal grid

But whichever is the case, this picture, because it is both conceptual and built up

from perceptions, and so retains both perceptual and conceptual dimensions, also

has another important property. It is in its nature allocentric, that is, it is not tied to

a particular point of view from which the system is seen, but works as a representation

of all points from which the system can be seen. By being synchronised from the
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perceptions from which it was derived, and becoming an all at once concept of the

whole, the notion of the structure of a grid seems to be projected outside ourselves

and, as it were, laid on the real world. The concept of the grid is ‘out there’ as a

representation of a system independent of our point of view on it, even though the

perceptions that make it up are not.

This is a critical property from the point of view of spatial cognition, since

allocentric representations of space have, as we will see below, become a key theme

in the study of space in the cognitive sciences in recent years. At a common-sense

level too allocentric models seem necessary to our ability to navigate grids other

than from and to a single point. In learning our urban surroundings we not only learn

routes from one point to others, though this may well be all that happens in the

initial stages, but also we begin to form some kind of picture of the relations between

destinations.

However, the notion of allocentricity also lead in another interesting direction:

the ideal grid. We have already seen that a grid which is perfectly linear optimises

both metric and visual integration. However, if we analyse it for all round ‘conceptual’

visual integration we find that it is homogenous: all intersections and all alignments

of them have the same value (though ‘intrinsic analysis of intersection isovists will

prioritise edges and corner rather than centres). This lack of differentiation creates

difficulties for the perception-based information theoretic process we have described

by which a conceptual structure is retrieved from differences in the visual integration

pattern, but it does have interesting implications for allocentricity. Precisely because

the ideal grid does not differentiate parts visually, and prioritise one location and

another, it seems to offer gives a general abstract model for allocentricity. The ideal

grid is perhaps ideal because it has ideal allocentricity. In this sense may offer itself

as the abstract allocentric model for all grids prior to their acquisition of structure.

Does this have implications for spatial cognition?

It is clear than that visual and therefore cognitive issue play a critical role in the

shaping of the city. However, at each stage of our argument we noted that the visual

was dependent on the metric: in the computation of visual integration; in the notion

of perceptual (or intrinsic) visual integration of a space from a point or series of

points; and in the way in which we pass from the perceptual to the conceptual in

forming a picture of the city. Although we can say then that metric integration does

not in itself give a plausible structure in the city and visual integration does, we must

also say that visual integration does so by adapting metric information to its own

purposes at every stage. It is not then true to say that cities are shaped by visual and

not metric factors, but by the interaction of the visual and the metric. But because
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the intervention of the metric is, while pervasive, on the terms of the visual it is

perhaps justifiable to say that cities are more shaped by the visual than the metric,

and therefore more by minds than bodies.

If then visual and the cognitive are then dominant in the formation of cities,

then clearly this raises vital question about spatial cognition. For our purposes here

the key questions seem to be these. If cities are indeed shaped by human individuals

in the light of laws governing metric and visual integration, do they in some sense

‘know’ or acquire knowledge these laws, not formally of course, but in the sense

that practical human activity often reflects physical laws? If so, do they know or

acquire the notion of the grid, and perhaps even the ideal grid, since it seems to be

implied by the spatial laws operating in the complex spatial situations we deal with

everyday. If this were the case, then we might expect human cognition to use the

conception of a more or less regular grid – through as yet without any specific

angular organisation (we will see below where this might come from) – as a kind of

reference point for dealing with complex spatial situations such as those found in

cities3.

To explore this possibility would of course require a research programme

which would cover both the empirical study of behavioural regularities under different

kinds of grid conditions, but also the neural modelling of how such a concept of

spatial knowledge might be encoded in the brain. The latter is entirely beyond the

skills available within our discipline, and must await comment – if indeed it attracts

comment – from our cognitive neuroscience colleagues. The former would require a

cross-disciplinary research programme involving both cognitive psychologists and

syntax specialists.

Pending such enquiries, and also perhaps to facilitate them, we will now

review three kinds of evidence which seem to lead in the direction of this conjecture:

first, evidence from everyday spatial behaviour and interpretation of spatial situations

which suggest that people have abstract and even theoretical knowledge of the laws

of metric and visual integration; second, indirect evidence from syntactic studies,

and one significant piece of direct evidence which suggest that the linearisation of

space and grid approximating forms play a key role in spatial cognition as reflected

in movement patterns and direction finding; and third, evidence from several sources

in neuroscience studies that suggest such a model is far from incompatible with

current theoretical positions within neuroscience on how spatial cognition works in

complex artificial environments.
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Do people know the laws of metric and visual integration?

First, we look for evidence in everyday spatial behaviour that an allocentric and

abstract, or even quasi-theoretical, understanding of the laws of metric and visual

integration underlie everyday spatial behaviour and interpretation of spatial situations.

In (Hillier, 2002, 2003) I told a story of my two year old grandson placing balloons

on strings at head height in the centre of an adult interaction space where it would

maximise visual and metric interference to the adult conversation, an adult moving

them to a corner where the effect would be diminished, and then my grandson moving

them back to the centre. This was interesting, because what the child seemed to be

doing was, although psychologically ego-centred in the sense that he was drawing

attention to himself, clearly spatially allocentric, since the placement of the balloons

suggested awareness of the relation between a set of positions independent of his

own momentary position. Barbara Tversky (Tversky, 2002) has suggested, however,

that the child’s behaviours could be interpreted more simply as the child moving the

balloons back to where he had chosen to place them. My reply would be that even if

this were the case – and having seen it happen I suspect it was not - the adult behaviour

still implies an allocentric appreciation of these laws, in that the adult reacted to the

general nuisance of the balloons, not a nuisance in relation to himself, since he was

standing at the time.

However, without trying to resolve this particular case, let us look at a richer

set of examples which seem to show evidence of a more general allocentric awareness

of the visual and metric laws of space: the social logic of table shapes. We have

already seen that in general as we go from a square shape to a very elongated shape

we increase universal distance in the shape and we changed its pattern. The more we

elongate the shape, the farther we have to go to get from all points to all other points,

but the more visually integrated the shape becomes from its most asymmetric

locations, namely the two ends. There are two aspects to this: the pattern of integration

of the interior; and that of the edge. The more elongated the form, of course, the

higher the ratio of edge to interior, so a long thin form maximises the edge to interior

ratio, so holding area constant you can have more people around a long thin table

than a square or round table for that amount of surface area. These are simple facts

of the spatial world ‘out there’, although easily discovered by anyone who seeks

both to seat people at a table and also to place a large number of objects on the table.

Let us then look at the ‘social logic’ of table shapes considering two things:

first where different kinds of people sit at differently shaped tables in different

circumstances; and second, at where the camera typically tends to locate to take

picture of the table, since it is argued that this will always give emphasis to the key

metric and visual relationships – implying, by the way, that cameramen and directors
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Saddam

angle of camera

maximises status of 
person at end by 
segregation and also 
minimises metric
integration of others. 
Also  maximises visual 
asymmetry i.e. 
maximises surveillance 
from one point

goodfor speeches, 
bad for 
conversation

duke duchess

angles of camera

uses distance to maximise status and
surveillance dominance by visual asymmetry 
- in the joke version, no one else is there

King Arthur, first amongst equals

angle of
camera

maximises metric
integration and visual
symmetry

best for one conversation
for a table of a given area
but fragment s if too big. 
Can be dominated by 
high status  individual 
while giving illusion of 
equality

Tony Blair/ Margaret Thatcher

angle of
camera

maximises metric asymmetry of one point without making 
overall shape too metrically segregated - good for controlling 
conversation. Ttable shaped to optimise  metric integration of 
centre of side before further elongation diminishes it

know the laws of space just as much as those sitting at tables. Human beings of

course sit around the perimeter of the table, but their metric and visual integration

with others is determined by the whole table, not just its periphery. So let us look at

perimeter locations in the context of the whole table shape in terms or visual and

metric relations and consider the effects of varying the shape of the table. The key

argument here is that in interpreting the social ‘meaning’ of table shapes we are

implicitly using knowledge of the laws of metric and visual integration.

We start top left in Figure 17: the simple case of a circular table. This is the

most integrated shape possible, and the only one in which all points on the periphery

are equally metrically and visually integrated. We therefore associate round tables

with equality, as in the ‘knights of the round table’, though with the caveat that in a

spatially equal situation any inequalities in status will tend to become powerful

even without being reinforced by privileged edge locations. In the square shape,

which is also metrically integrated, some inequalities are introduced into the situation

in that the mid points on the side are more metrically integrated than the corners, but

have less visual integration. The centre-edge locations are then better if you want to

have one conversation at the table. In the corners you are more likely to talk to your

neighbour, or survey the scene from a distance. But every hostess knows that you do

not place the key conversation makers in the corners but in the centre edge locations

if you have a square table. However the square table is still broadly egalitarian

compared to other shapes, and in both the circular and round cases the position of

the camera would be diagonal, since any end-on view would suggest a symmetrical

distribution or people around a focal person and this would go against the egalitarian

ideology (not the practice) of round tables. So we do not see King Arthur head-on,

with knights on either side, since this would suggest a spatial focality which was

alien to the table shape and its social logic.

Figure 17
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However, this is the only way we are ever permitted to see Saddam: in a

head-on view at the end of a long thin table, with cabinet member disposed either

side of him. Note that we never see the other end of the table. This maximises the

status of the person at the end by maximising metric segregation from others while

also maximising visual asymmetry i.e. it maximises surveillance from one point and

minimises it from all others. One could note that this is the best shape for

Not all leaders opt for this social logic. Tony Blair – and Margaret Thatcher

previously - is always pictured diagonally at the centre of the long side of a broad

rectangular or oval table. We can see why by referring back to Figure 4 and exploring

the changing shapes a little more. As we move from a square to a more and more

elongated shape, the actual metric integration value of the centre of the long sides

first increases, because the decrease in metric integration of the whole object is at

first compensated by the fact that the centre of the whole object is moved closer to

the edge, then decreases as the effects of elongation become stronger than these

initial effects. There is therefore a definite ratio of the long to the short sides of a

rectangle where the metric integration of the centre of the long edge is optimised.

More experimentation (or a theorem) will be needed to pinpoint exactly what this

ratio is, but a first approximation suggests it is in the region of 9:4. With a broad

rectangular table approximating the optimal ratio, the advantage of the centre edge

locations is increased as the mid points on the long side become more integrated

than any in the square, but the short sides have become more segregated. At the

same time the visual integration has become much less good from these centre-edge

locations, especially when compared to the centres of the short sides. However, this

is where Tony Blair and Margaret Thatcher sit, because it is metric integration that

gives advantage in controlling a conversation, and this is also where a hostess with

a table this shape will place her key conversation making guests, while retaining the

end location for either herself or high status low conversation persons since this

give advantages for surveillance rather than conversation. These effects will of course

still be present in an oval table which conserves something like the optimal ratio,

though with increases both in metric and visual integration from all peripheral points.

If we elongate the rectangular shape more, then and the whole periphery

becomes more segregated, and the advantage of the centre of the long side disappears.

So we find that the duke and duchess sit at either end of a very long table to emphasis

their status through metric segregation and maximise visual surveillance through

visual integration. The joke is of course that even when there are no other guests, the

duke and duchess still sit at the two ends where they cannot converse. But jokes are
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of course about structure, and only work if we know what the structures are. And of

course we do. In this long thin case, unlike the one-ended Saddam case, the camera

angle is likely to be diagonal in order to see both ends.

There are other aspects to the social logic of table shapes. For example the

long thin refectory table by minimising both metric and visual integration for those

along the sides minimises the opportunity for anything but the most localised

interaction; or the school version of the same table where the monitor sits at the end

to establish status and maximise surveillance. But already we can see that in all

these cases space is a social strategy of knowledgeable agents. Patterns of metric

and visual integration are lawful properties of shapes, and because they are so, their

potentials can be exploited by knowledgeable individuals as social strategies, in

much the same way as we make use of the intuitively know the laws of physics in

throwing an object to that it lands in a certain place.

Is there evidence that people use an allocentric cognitive grid in wayfinding?

Next we consider indirect evidence from syntactic studies that grid regularity may

play a role in spatial cognition in that where the grid is overly broken up and de-

linearised the relation between local integration structure and movement, which is

robustly approximately in most ‘normal’ urban environment patterns, breaks down.

In the series of studies reported in 1987 (Hillier et al., 1987), the first published

reporting of a systematic relation between grid structure and movement, it was argued

there where environments became unintelligible, as measured by the degree of

agreement (indexed by the r2 value) between the connectivity and integration values

of the lines making up the axial map of the grid, the relation between movement and

local space structure was no longer found, but replaced by a relation reflecting the

depth of lines from the surrounding grid (and so partially reflected in the global

integration pattern of the wider context, since internally this reflected the layers of

depth in the local system). The geometric means by which syntactic unintelligibility

was created involved the breaking of alignments in the local grid, more or less on

the lines outlined theoretically in (Hillier, 2001, 2003) where it is shown that if at

least some line lengths are not increased to a certain proportion of the diameter of

the system as it grows larger, then unintelligibility is the inevitable result.

In the light of these results, an experiment was constructed by Ruth Conroy-

Dalton which deserves greater fame than it has so far achieved. During her PhD

(Conroy, 2000) which sought to answer the question how far movement in immersive

virtual worlds resembled that in real worlds, she took two theoretical exemplars that

had been previously constructed to illustrate the notion of an intelligible and

unintelligible urban environment, as in Figures 18 (top left and right), and turned
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them into navigable 3D immersive worlds. The difference between the two worlds

was simply that in the intelligible world, blocks were arranged so as to create urban-

type linear continuity between spaces, whereas in the unintelligible world the blocks

 were slightly moved so as to break the linear continuities. Simply breaking these

alignments seems enough to make the latter environment appear unintelligible and

even labyrinthine even in plan.

However, Conroy-Dalton’s concern was with how people would navigate

this environment internally. Accordingly, she constructed an experiment in which

30 subjects were asked to start outside the world around the mid-point on the left,

then to find their way to the monument (which was always invisible due to the

height of the buildings, until the points where it became wholly visible) in the main

open space (half right) and then to return to their starting point by another route. The

results are shown in Figures 18 (bottom left and right). They show that while in the

intelligible environment the traces of subjects’ navigations were largely confined to

a relatively narrow envelope between the origin and destination points, those in the

unintelligible world were spread all over the system, including parts well beyond

the destination. While only a single study, Conroy-Dalton’s results strongly support

the conjecture that our cognition of the urban environment depends in some way on

its linear, and even on its grid, organisation.

These findings offer preliminary, though strongly suggestive, evidence for

the conjecture that a linearised grid serves as a cognitive model for negotiating spatial

complexity of the urban type. Similar evidence seems to come from the simple facts

of direction-giving. Although it is customary within our subject area to assign direction

finding to landmarks and their inter-relations, this seems obviously wrong (perhaps

a product of the lack of a formal language for the formal description of spatial patterns)

Figure 18
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when we consider every day behaviours in appropriate detail. For example, such

common or garden instructions as: ‘carry straight on down this road (even if it is not

really straight), then fork right in about 200 metres, and take second on the left at the

petrol station and then third right opposite the Dog and Duck’ clearly implies some

kind of general – though often highly inaccurate – geometrical picture of the local

grid with the landmarks in a clarifying role - since they would make no sense without

the underlying geometry to link them. Equally clearly, the same direction-giver would

be able to give comparable directions from and to other locations in the same grid,

and this shows clearly that the spatial representation being used is transformable for

different ego-centred position, and therefore allocentric. Indeed, it is because the

model is both allocentric and relatively abstracted from concrete details (though

these undoubtedly serve to hold it in place), that it can be used in this way as a basis

for configurational - all points to others - problem solving – which is what direction-

giving really is (see Hillier, 1997, 1999 for a further discussion).

Between the body and the universe: one view from cognitive science:

It has to be acknowledged, however, that this line of thought seems at first sight to

be to some degree at variance with some recent opinion in the cognitive sciences. In

her review at the Third Symposium (published in more extended version in Tversky

et al., 1999, to which reference is made here), Barbara Tversky described the spatial

knowledge of the ‘navigational space’ in which we move as a ‘cognitive collage’ in

preference to a ‘cognitive map’, because it seemed to be ‘not Euclidean’ and

‘represented qualitatively, in terms of elements and the coarse spatial relations among

them’. This seems initially hard to reconcile with the position being advocated here,

but closer examination of the argument suggest it may not be. In their paper, Tversky

et al describe ‘three spaces of spatial cognition’: the space of the body, the space

surrounding the body, and the ‘navigational space’ in which we move. They also

make extensive reference to a fourth level: the vital role in spatial cognition played

by universal and macro-geographical frameworks, most notably the sense of global

orientation that come from the cardinal points of the compass. Properly speaking,

navigational space seems to come between the body and the universe, that is between

the spatial models we project from out bodies into our immediate surroundings, and

the macro-awareness we have of large scale all-round directionality.

Now according to Tversky et al the first space between the body and the

universe, that around the body, has a clear geometry, in that ‘people construct a

mental spatial framework from the extensions of the three axes of the body (front-

back, left-right, and up-down) and associate objects to it’. So does the macro-picture

that we derive from the cardinal direction, and Tversky et al show how powerful

this is cognitively, since it leads people to misrepresent the relation of Europe to the
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US as east-west, and North to South America as north-south, when neither is the

case. In the Tversky et al model, however, neither the small not the large geometry

seems to penetrate the structure of the navigational space between the body and the

universe to any extent. One a priori reason for expecting that some degree of

penetration might occur would be that if we move a person with geometric body

axes from point to point within a space where overall directionality is governed by

a macro-geometric model of the universe, then part of the outcome would seem to

be some kind of conceptual grid, without dimensionality, it is true, but a grid

nonetheless. Indeed, in the concept of the grid which has been derived from the

metric and visual laws of space earlier in this paper, the angularity which was missing

from this grid seems to be most naturally supplied by Tversky et al’s bodily and

universal geometries.

It was partly to test this possibility that I took the opportunity offered by my

recent move to the City of London to conduct a year long experiment in finding my

way on foot from the Barbican to the Space Syntax Laboratory in UCL, deliberately

not consulting maps, until after several months of trial and error and failing to find

a way that satisfied both my cognitive model of the area (I know London extremely

well) and my stop-watch which over several repeats of the same route I expected to

give fairly reliable information on total route length. Route finding was essentially a

matter of conceptualising the position of UCL in relation to my starting point and

then using my almost complete knowledge of the intervening grid to find the shortest

route. What essentially happened is the more I tried to follow Ruth Conroy’s principle

that at every point one tries to minimise the angle of deflection from the conceived

target (I believe she is quite correct in this in terms of what people seek to do,

although as we will see in certain kind of local grid conditions it can be precisely

this that misleads people), the longer it seemed to be taking me, and the more I

routed myself around the southerly edge of the grid. as I conceived it, the less time

I was taking. Conversely, the more I tried to navigate what I took to be the northern

edges of the intervening grid, the longer it took me.

After months of error, and unable to reconcile my intuitions with my timing,

I decided to make a careful study of the map. A number of things immediately became

clear, some very much in accordance with the Tversky et al model, though others

not obviously so. First, in my cognitive map of the area, I clearly conceptualised the

overall direction from the Barbican to UCL as south-east to north-west, when in

reality, and to my astonishment as a knowledgeable agent in London, it is almost

due west. I had also conceived of the alignment of the Holborn-Oxford Street axis

as being east west, when it is closer to west-south-west to east-north-east, and of the

alignment of Gower Street as north-south, when it is closer to north-north-west to
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south-south-east. Both of these seem cases of the type of error that Tversky et al

describe as resulting from the imposition of an external reference frame – the cardinal

directions - on the area to be navigated.

However, it was also clear that other errors followed from this, notably that

the cognitive model I had imposed on the area, perhaps partly under the influence of

my understanding or the cardinal directions, took the form of a consistent Euclidean

grid, and this turned out to be even more misleading than the cardinal directions

error itself. Most importantly, I had completely misrepresented two key intrinsic

facts about the grid: that different parts of the grid were offset against each other by

being differently oriented; and that different lines in the grid has different angular

connections when compared to each other. I had in fact used the cardinal directions

model to construct not a collage but a Euclidean misrepresentation of the local grid,

and it was this tidied up grid that was the clear source of most of my errors.

It was, for example, the errors in my model of the larger scale that led me to

believe that in navigating from the Barbican to UCL I should continually try to

‘climb’ the grid to avoid seemingly orienting myself more and more away from my

destination. However, this would not have mattered had the structure of the grid

been consistently Euclidean as it was in my mental model. It was the fact that the

grid shifted orientation from one part to the next that made me unaware that in

climbing the grid to maintain the conceived orientation towards UCL all I was doing

was adding distance because one grid converged on the other. The greatest single

error in the mental map with assuming that Holborn and Theobalds Road were more

or less parallel, when in fact they were rapidly converging – a fact that was fully

familiar to me through extensive past travel in the area but for some reason did not

register on my model.

My problem in short was that my mental model was Euclidean, but the

environmental reality was not. Nor did it seem that my errors lay in the topology of

the model, since that was more or less correct. My errors were decidedly geometrical.

Moreover, although my model was wrong, it was a the same time clearly allocentric,

as it involved continuous experimention with the local microstructure of the grid,

and attempts to move to sub-destinations from sub-origins throughout the experiment.

So my allocentric model was both the means by which I could address the

environment to solve problems within it, and also erroneous. In fact a model that is

allocentric, Euclidean, and erroneous, is precisely what some opinions in cognitive

neuro-science would lead us to expect. Let us then examine some of these opinions.
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Other views from cognitive neuroscience

Although most cognitive theories of space influential in the built environment have

been decisively ego-centred, for example ‘personal space’ and ‘human territoriality,

and even the ways in which cognitive maps have been brought into our field has

placed undue emphasis on the position of the subject at the centre of the map, not

least by requiring the map to be loaded with value (and other) information (O’Keefe

and Nadel, 1978: 75), in the cognitive neuro-science the distinction between

allocentric and ego-centred models of cognition is a principle theme. As Petersen et

al argue in the final chapter of a recent neuroscience reader on spatial cognition and

language: ‘It is now well established that the vertebrate hippocampus subserves a

spatial mapping function that is both multimodal and allocentric; that is, external

space is represented independent of the momentary position of the organism, in

terms of the relations between objects and the places they occupy in what appears to

be an objective, absolute framework’. (Petersen et al., 1996: 556)

Advocacy of an allocentric view goes back at least to one of the seminal

books in cognitive science in the last quarter of the of the twentieth century – O’Keefe’

and Nadel’s ‘The Hippocampus as a cognitive’ map which focused on issues which

are very close to our theme here. O’Keefe and Nadel contrasts ‘routes’ to ‘maps’ as

cognitive entities and as metaphors for different cognitive bases for spatial behaviour.

Routes are associated with the taxon system, and can be seen as connected series of

specific behaviours implying landmarks and specific responses to them. Maps are

associated with the ‘locale’ system, and imply the availability of ‘an aggregate of

interrelated information with no necessary specification of guides’. The ‘cognitive

maps’, which he argues make up much of the hippocampus, are of the latter kind,

and generate that he calls ‘place hypotheses and exploration’. Although both maps

and routes are clearly used in different mixes in different circumstances, routes having

the advantage of being very specific in particular circumstances, and the disadvantage

of being inflexible – for example, they cannot easily be reversed or used to solve

other direction-finding problems with – and of being highly vulnerable to partial

loss of information, while maps have the disadvantage of being much less specific,

but also the advantages of being much more flexible – they can be used to solve the

whole range of local direction-finding problems – and much more robust under

partial loss of information.

What then are these allocentric spatial representations like ? In contrasting

the respective roles of ‘conceptual structure’ and ‘spatial representation’ at the

interface between spatial cognition and language, Jackendoff argues that spatial

representations are not images, but ‘geometric (or even quasi-topological) in character,

rather than algebraic’, and must be ‘independent of spatial modality’ and ‘suitable
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for encoding the full spatial layout of a scene and for mediating among alternative

perspectives (“What would this scene look like from over there”), so it can be used

to support reading, navigating and giving instructions’. (Jackendoff, 1996: 9). It

seems that although these spatial representations have the capacity to organise and

inter-relate items from the physical world, they are not in themselves anything like

representations of physical entities, but have a more abstract character.

Johnson-Laird is more explicit. He argues that we use spatial ‘models’ to

mediate our relation with circumstances, but he emphases the formal aspects of the

models. Talking of how we solve problems of a series of propositions describing the

relative location of objects, he argues: ‘The most likely way in which an inference is

made involves setting up an internal representation of the scene depicted by the

premises. The representation may be a vivid image or a fleeting abstract delineation

– its substance is of no concern. The crucial thing is that its formal properties mirror

the spatial relations of the scene, so that the conclusion can be read off in almost as

direct a fashion as from an actual array of objects’ (Johnson-Laird, 1996: 437) – my

emphasis). He goes on: ‘The key feature of spatial models is not that they represent

spatial relations – propositional representations also do that – but rather they are

functionally organised on spatial axes and, in particular, that the information in them

can be accessed by way of these axes’ (Johnson-Laird, 1996: 445-6) . He even takes

the argument one step farther: ‘Human reasoners use functionally spatial models to

think about space, but they also appear to use such models in order to think in general’

(Johnson-Laird, 1996: 460).

Bowman extends this theme arguing a fundamental role for spatial cognition

in structuring thought in general: ‘If any domain has plausible claim to strong

language-independent perceptual and cognitive organisation, it is space…..Our mental

representations of space are constrained not only by our biology but also by their fit

to the world ‘out there. ….Little wonder it has seemed likely to many investigators

that the language of space closely mirrors to contours of non-linguistic spatial

understanding. Several kinds of empirical evidence support the assumption that

children know a great deal about space before they can talk about it, and that they

draw on this knowledge in acquiring spatial words.’ (Bowman, 1996: 387).

Finally we come back to Petersen et al: ‘Some, but not all, of the spatial

maps identified by neurobiological and behavioural research impose a structure that

goes beyond, and in consequence alters, our interpretation of the information available

in the input alone. For example, the hippocampus appears to impose a Euclidean

framework onto non-Eucllidean inputs (O’Keefe and Nadel, 1978) who see in this

process the instantiation of a Kantian a priori notion of absolute space…. We propose
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that in ‘distorting’ the sensory inputs these spatial maps may impose an order and a

structure that our spatial conceptual representations require.’ And finally: ‘We point

out the importance of a careful analysis of the intrinsic ‘organising factors’ that

interact with spatial information to structure our knowledge of the spatial world.

These organising factors act like a kind of ‘syntax in accord with which inputs to

spatial systems are ordered, and in doing so they contribute meaning to the spatial

representations themselves. This is perhaps clearest in the allocentric map observed

in the hippocampus, but is also observable in other cases’ (Petersen et al., 1996:

569)

So, is there a syntax of spatial cognition?

It is of course something like a syntax that our model proposes. In arguing that

people use acquired knowledge of metric and visual integration as a means of both

structuring and understanding the artificial spatial environments constructed by

architects and planners, and of the allocentric grid as a limiting form, we are in

effect proposing something like a syntax of spatial cognition. Is this possibility worth

exploring? At least one important body of opinion would oppose this idea in principle.

In making the case for the ‘embodied’ mind (in contrast to the Cartesian disembodied

mind), Lakoff and Johnson argue that elementary schemes of spatial relations, such

as those found in the English propositions, are both perceptual and conceptual, and

as such offer powerful structuring devices for thought in general. But this works,

they argue, not by creating a syntax, but by the metaphorisation of the elementary

spatial schemes. Their opposition to the idea of a more complex formal development

is summed up in their critique of Chomsky, who they regard as only the latest inheritor

of the Western a priori philosophies of the disembodied  mind: ‘Syntax’ they argue,

‘is real enough, but it is neither autonomous nor constituted by meaningless,

unintepreted symbols. Rather it is the study of symbolisation – the pairing of meaning

with linguistic expressions, that is, with phonological forms or categories of

phonological forms….from a neural perspective, symbolisation is just a way of

discussing neural connectivity’ (Lakoff and Johnson, 1999: 498).

If we were to proceed by strict analogy between a syntax of space and that of

language – and I have strongly argument elsewhere that no such analogy can be

made (Hillier and Hanson, 1984: Chapter 1) – this would seem to imply that Lakoff

and Johnson would be at least sceptical of the idea that even architectural and urban

space was accessible through a cognitive syntax. However, on closer examination,

it is not obvious that Lakoff and Johnson’s argument is fully consistent in these

respects. For example, they argue that at the level of elementary schemes of spatial

relations, such as that involved in the word ‘contain’, the traditional distinction

between the perceptual and the conceptual is obliterated. They do not say so explicitly,
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but this is clearly because what we are seeing is a relational scheme, and relational

schemes are in their nature ‘conceptual’ – indeed the difficulty philosophers always

found in granting reality to relations was their conceptual rather than visual nature.

The problem with Lakoff and Johnson’s argument is why should the

obliteration of the distinction between the perceptual and the conceptual be confined

to elementary schemes of relations and not re-appear to some degree at least in the

more complex spatial situations that typify everyday life, whether in forests or cities.

It seems a priori (this is not intended as a provocation) far more likely that what is

the case with elementary schemes of relations should also be found to some degree

in more complex situations. The obvious question then arises: might not the

elementary schemes themselves form the basis for some kind of syntax (as was

suggested in Hillier and Hanson, 1984: Chapter 2), and on what grounds would be

expect that they would not? Why should their extension from elementary situations

be confined to metaphorisation?

The second point at which Lakoff and Johnson’s arguments might be turned

around concerns learning. ‘Why’, they ask, ‘is it possible for our concepts to fit so

well with the way we function in the world. They fit so well because they have

evolved from our sensorinotor systems, which have in turn evolved to allow us to

function well in our physical environment.’ (Lakoff and Johnson, 1999: 44). If this

is the case, then surely we would expect spatial learning to go beyond elementary

spatial schemes, and begin at least to engage with some of the configurational

complexity that is necessarily involved both in living in the material world and in

living with others in that world. No one who has watched lions hunt can doubt that

complex configurational calculations involving several lions and at least one prey,

are made throughout the hunt. To propose that this reflects some kind of relation

between the lawful behaviour of spatial configuration and the brains of discrete

beings inhabiting them is no more surprising than we internalise enough of the laws

of physics to throw an object to that its parabola leads it to fall or strike at a particular

point. If our spatial knowledge were not in this sense lawful, then we would surely

not be here.

By far the most likely reason for the acquisition of lawful knowledge of

spatial configuration would seem to be of the kind that Lakoff and Johnson describe:

what we learn is the invariance of the spatial behaviour of the complex environments

in which we live. To learn to throw a projectile so that its parabola leads it to strike

a certain point in three dimensional space surely depends on having learnt the spatial

invariance of the material world. It would surely not be unlikely if something similar

turned out to be the case with space. This suggests a fundamental link to Gibson
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(Gibson, 1986), whose core concept for perception is that what we learn to see is the

invariants of objects. What we learn about space, perhaps, are the invariant behaviours

that space adopts as we experiment with it and interact with it by moving about in it

and placing objects in it. These are of necessity configurational properties which

affect how we see and how we go.

We do not there need necessarily to agree with O’Keefe that the spatial

cognition that we impose on our surroundings is a pure Kantian system, since its

most likely origins would seem to lie in the invariance that is found to underlie our

spatial transactions with our ambient world However since such cognitive models

seems to have been crucially involved in the construction as well as the understanding

of the spatial order of the city, this may prove to be a route to save the Kantian

hypothesis.

Notes
1 This analysis of visual integration also seems to offer a possible redefinition of the question of whether

or not least line maps might be algorithmically defined. Visual integration clearly offers a way to define

the fewest and longest lines between any pair of points in a complex space. The general question then

becomes: is there a set of lines which would serve all pairs?
2 In terms of the constraints on real space patterns of course we must also take into account the contrary

geometries of moving in and occupying spaces, as set out in Chapter 8 of Hillier 1996a, since this will

always be a factor promoting the greater width of at least some spaces in the system, as will of course

also movement capacity issues. Here we are dealing with theoretical limits.
3 If we do seek to assign a cognitive role to the orthogonal grid as a reference point for dealing with

complex urban spaces, does this then challenge the syntactic idea of intelligibility, which is expected to

be weaker in a pure grid than a deformed grid. It does not. The grid we are proposing here is a synchronic

conceptual model, giving an all at once – and probably simplified - picture of the space of a system.

Syntactic intelligibility is about the ease which with a synchronic picture of the grid can be built up step

by step by moving about in it and seeing it from different points, and this, it would seem, might actually

involve this abstract conceptual model as a reference point. So if anything, the theory of the grid as a

conceptual model seems to clarify the concept of syntactic intelligibility.

References

Bowman, M., 1996, “Learning how to structure space for language”, in P. Bloom, M. Petersen, L. Nadel

and M. Garrett (eds.), Language and Space, Cambridge, MA, MIT Press

Carvalho, R., Iida, S., and Penn, A., 2003, “Scaling and universality in the micro-structure of urban

space”, Proceedings of the Fourth Space Syntax Symposium 2003, London

Conroy, R., 2000, Spatial Navigation in Immersive Virtual Environments, PhD thesis University of London

(UCL)

Gibson, J., 1986, The Ecological Approach to Visual Perception, Lawrence Erlbaum Associates

Hillier, B., et al., 1986, Spatial configuration and use density at the urban level: appendix on distance

factors, Unit for Architectural Studies, UCL

Hillier, B. et al., 1987, “Creating life; or, does architecture determine anything”, Architecture & Behaviour,

Editions de la Tour

Hillier, B., 1996a, Space is the Machine, Cambridge, Cambridge University Press

Hillier, B., 1999, “Centrality as a process: accounting for attraction inequalities in deformed grids”,

Urban Design International, Volume 3/4



 The architectures of seeing and going

06.34

Hillier, B., 2001, 2003a, “A theory of the city as object”, Urban Design International, 2003, also

Proceedings of the Third International Space Syntax Symposium 2001, Atlanta, http://

undertow.arch.gatech.edu/homepages/3sss/

Hillier, B., 2003b, “The knowledge that shapes the city”, Proceedings of the Fourth Space Syntax

Symposium 2003, London

Jackendoff, 1996, “The architecture of the linguistic-spatial interface”, in P. Bloom, M. Petersen, L.

Nadel and M. Garrett (eds.), Language and Space, Cambridge, MA, MIT Press

Johnson-Laird P, 1996, “Space to think”, in P. Bloom, M. Petersen, L. Nadel and M. Garrett (eds.),

Language and Space, Cambridge, MA, MIT Press

Lakoff, G. and Johnson, M., 1999, Philosophy in the Flesh, Basic Books

O’Keefe, J. and Nadel, L., 1978, The Hippocampus as a Cognitive Map, Oxford, Clarendon Press

Penn, A., 2003, “The shape of habitable space, Proceedings of the Fourth Space Syntax Symposium

2003, London

Petersen et al., 1996, “Space and language”, in P.  Bloom, M. Petersen, L. Nadel, M. Garrett (eds.),

Language and Space, Cambridge, MA, MIT Press

Shannon, C. and Weaver, W., 1948, The Mathematical Theory of Communication, Chicago, IL, University

of Illinois Press.

Tversky, B., Morrison, J.,Franklin, N. and Bryant D.,1999, “Three spaces of spatial cognition”, Profes-

sional Geographer, 51 (4)

Tversky, B. 2002, in conversation

Turner, A, 2002, “Depthmap, v2.11 (computer program) UCL”, London, introduced in Turner, A, 2001,

“Depthmap: a program to perform visibility graph analysis”, Proceedings of the Third

International Symposium on Space Syntax 2001, Atlanta, GA, pp. 31.1-31.9


