
Contreas, Ricardo (2013). Context Aware Web-Service Monitoring. (Unpublished Doctoral thesis,

City University London)

City Research Online

Original citation: Contreas, Ricardo (2013). Context Aware Web-Service Monitoring. (Unpublished

Doctoral thesis, City University London)

Permanent City Research Online URL: http://openaccess.city.ac.uk/2723/

Copyright & reuse

City University London has developed City Research Online so that its users may access the

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are

retained by the individual author(s) and/ or other copyright holders. All material in City Research

Online is checked for eligibility for copyright before being made available in the live archive. URLs

from City Research Online may be freely distributed and linked to from other web pages.

Versions of research

The version in City Research Online may differ from the final published version. Users are advised to

check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact

with the author(s) of this paper, please email the team at publications@city.ac.uk.

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Context-aware Web-service
Monitoring

Ricardo Contreras

Professor Andrea Zisman (supervisor)

Professor Neil Maiden (co-supervisor)

A thesis submitted for the degree of

Doctor of Philosophy (PhD) in Computer Science

of the City University London

CITY UNIVERSITY LONDON

SCHOOL OF INFORMATICS

DEPARTMENT OF COMPUTING

February, 2013

Contents

Acknowledgements 15

Abstract 19

1 Introduction 21

1.1 Focus and Motivation . 23

1.2 Service-based Systems . 24

1.3 Monitoring . 26

1.4 User Context and User Interaction 28

1.5 Hypotheses and Objectives . 29

1.6 General Overview . 31

1.6.1 Methodological Approach 31

1.6.2 Context of the work . 33

1.6.3 Phases . 33

1.7 Contributions . 34

1.8 Outline of this Thesis . 36

CONTENTS

2 Background - State of the Art 39

2.1 Overview & Methodology . 39

2.2 Monitoring . 40

2.2.1 Service-based System . 41

2.2.2 Context . 48

2.2.3 Human Computer Interaction 57

2.2.4 Correspondences . 64

2.3 Context Modelling . 66

2.4 Service-based System Adaptation 70

2.5 Monitor Adaptation . 77

2.6 Summary . 83

3 Overview of the Approach for Service-based Systems 85

3.1 Context Model . 85

3.2 Model Dimensions . 86

3.3 Model Specification - Ontology . 88

3.4 Rationale, Compatibility and Benefits of the Model 92

3.5 Wo-SBS Scenario . 93

3.6 User Model Example . 94

3.7 User Interaction . 95

3.8 Framework . 98

3.9 Summary . 103

CONTENTS

4 Monitor Rules Specification: Event Calculus & Patterns 105

4.1 Event Calculus . 105

4.1.1 Advantages of Event Calculus 106

4.1.2 Events, Fluents and Predicates 107

4.1.3 Event Calculus Axioms . 109

4.1.4 Example . 109

4.2 Patterns . 113

4.2.1 Patterns Conventions & Considerations 114

4.2.2 Categories and Design Criteria 116

4.2.3 Role Patterns . 118

4.2.4 Skills Patterns . 136

4.2.5 Cognition Patterns . 150

4.2.6 Preferences Patterns . 168

4.2.7 Need Pattern . 174

4.2.8 Cognition and Role Pattern 179

4.2.9 Cognition and Time Preferences Pattern 182

4.2.10 Considerations . 185

4.3 Summary . 186

5 Monitor Rules Adaptation Process 189

5.1 Adaptation Process . 190

5.2 Annotations . 192

CONTENTS

5.3 Creation of Semi-instantiated Patterns 196

5.4 Rules Identification, Creation, Modification and Removal 199

5.5 Remarks . 206

5.6 Summary . 207

6 Experiments and Evaluation 209

6.1 Experiments Setup . 210

6.1.1 Scenarios . 210

6.1.2 Patterns and Repositories 212

6.2 Experiments Results . 214

6.2.1 Performance of the Different Context Types 215

6.2.2 Modifying the Ratio of Monitor Rules Matching the Invariant 220

6.2.3 Modifying Annotations Locations 222

6.2.4 Correctness . 227

6.3 Summary . 232

7 Conclusions and Future Work 233

Appendix A 277

Appendix B 327

List of Figures

1.1 Relation between Context, Monitoring, Adaptation and SBSs 35

3.1 User Context Ontology . 90

3.2 Example of a User Model . 96

3.3 Extract from a BPEL Specification Including two Operations: Lo-

gin, involving User Interaction and Check Access, not Involving User

Interaction . 97

3.4 Relation between context, monitoring, adaptation, and SBSs 99

3.5 Framework architecture overview 101

4.1 Service Specification Sequence for the Role of a personal user . . . 120

4.2 Service Specification for Role personal user and personal manager 125

4.3 Service Specification Sequence for a user with an average level of

Skills . 138

4.4 Service Specification Sequence for an average Cognition 154

4.5 Service Specification Sequence for Security 171

4.6 Service Specification Sequence and Need Context Type 175

LIST OF FIGURES

4.7 Service Specification Sequence, for a user with an “average” level of

cognition and role “personal user” 181

5.1 Extract of the BPEL process for “personal user” and “personal man-

ager” . 194

5.2 Example annotations . 194

6.1 Results of the performance for the role context type 216

6.2 Results of the performance for the skills context type 216

6.3 Results of the performance for the cognition context type 216

6.4 Results of the performance for the preferences context type 217

6.5 Results of the performance for the need context type 217

6.6 Performance for the role context type for the Atc-SBS scenario . . . 222

6.7 Performance for the role context type for the Wo-SBS scenario . . . 222

6.8 Performance for the need context type for the Atc-SBS scenario . . 223

6.9 Performance for the need context type for the Wo-SBS scenario . . 223

6.10 Example of the increment of operations occurring before an annotation224

List of Tables

3.1 Direct User Context Types . 88

3.2 Related User Context Types . 89

3.3 Attributes and Values for the Different Context Types 91

4.1 Event Calculus Predicates . 108

4.2 Event Calculus Axioms . 110

4.3 Initiation of fluent alive . 110

4.4 Termination (Left) and Continuity (Right) of the Fluent alive 111

4.5 Conditioning for the Occurrence of the shoot Event 111

4.6 General Pattern Template . 115

4.7 Role Rule Pattern 1 . 119

4.8 Instantiation of Role Rule Pattern 1 121

4.9 Role Rule Pattern 2 . 121

4.10 Instantiation of Role Rule Pattern 2 123

4.11 Role Rule Pattern 3 . 124

LIST OF TABLES

4.12 Instantiation of Role Rule Pattern 3 126

4.13 Role Rule Pattern 4 . 127

4.14 Instantiation of Role Rule Pattern 4 128

4.15 Role Rule Pattern 5 . 130

4.16 Instantiation of Role Rule Pattern 5 131

4.17 Role Rule Pattern 6 . 132

4.18 Instantiation of Role Rule Pattern 6 134

4.19 Role Rule Pattern 7 . 134

4.20 Instantiation of Role Rule Pattern 7 136

4.21 Skills Rule Pattern 1 . 138

4.22 Instantiation of Skills Rule Pattern 1 139

4.23 Skills Rule Pattern 2 . 140

4.24 Instantiation of Skills Rule Pattern 2 140

4.25 Skills Rule Pattern 3 . 142

4.26 Instantiation of Skills Rule Pattern 3 142

4.27 Skills Rule Pattern 4 . 143

4.28 Instantiation of Skills Rule Pattern 4 144

4.29 Skills Rule Pattern 5 . 146

4.30 Instantiation of Skills Rule Pattern 5 146

4.31 Skills Rule Pattern 6 . 148

4.32 Instantiation of Skills Rule Pattern 6 148

LIST OF TABLES

4.33 Skills Rule Pattern 7 . 149

4.34 Instantiation of Skills Rule Pattern 7 151

4.35 Expected Time Percentages According to the Cognition Level of the

User . 152

4.36 Cognition Rule Pattern 1 . 153

4.37 Instantiation of Cognition Rule Pattern 1 154

4.38 Cognition Rule Pattern 2 . 156

4.39 Instantiation of Cognition Rule Pattern 2 157

4.40 Cognition Rule Pattern 3 . 158

4.41 Instantiation of Cognition Rule Pattern 3 159

4.42 Cognition Rule Pattern 4 . 160

4.43 Instantiation of Cognition Rule Pattern 4 160

4.44 Cognition Rule Pattern 5 . 162

4.45 Instantiation of Cognition Rule Pattern 5 163

4.46 Cognition Rule Pattern 6 . 164

4.47 Instantiation of Cognition Rule Pattern 6 165

4.48 Cognition Rule Pattern 7 . 166

4.49 Instantiation of Cognition Rule Pattern 7 167

4.50 Time Preference Rule Pattern . 169

4.51 Instantiation of Time Preferences Rule Pattern 169

4.52 Security Preference Rule Pattern 171

LIST OF TABLES

4.53 Instantiation of Security Preference Rule Pattern 172

4.54 Reliability Preference Rule Pattern 173

4.55 Instantiation of Reliability Preference Rule Pattern 174

4.56 Need Rule Pattern 1 . 176

4.57 Instantiation of Need Rule Pattern 1 177

4.58 Need Rule Pattern 2 . 177

4.59 Instantiation of Need Rule Pattern 2 178

4.60 Cognition-Role Pattern . 180

4.61 Instantiation of Cognition-Role Pattern 180

4.62 Cognition Time Preference Pattern 183

4.63 Instantiation of Cognition Time Preference Pattern 184

5.1 General structure of an annotation 193

5.2 Example of Semi-instantiated Pattern for Role Context Type 197

5.3 Monitor Rules Repository Consisting of Rules R1, R2, and R3 198

5.4 Initial set of Monitor Rules Repository in the Repository 202

5.5 Monitor Rules after Modification in R4 204

5.6 Semi-instantiated Patterns for role and skills 205

5.7 Instantiated role and skills rules . 205

5.8 Monitor Rules after Removal . 206

6.1 Services and operations in the Wo-SBS scenario 211

LIST OF TABLES

6.2 Instances for the different context types in the Wo-SBS scenario . . 211

6.3 Services and operations in the Atc-SBS scenario 212

6.4 Instances for the different context types in the Atc-SBS scenario . . 212

6.5 Variations . 225

6.6 Role Rules for the Wo-SBS scenario 228

6.7 Skills Rules for the Wo-SBS scenario 229

6.8 Cognition Rules for the Wo-SBS scenario 229

6.9 Preferences Rules for the Wo-SBS scenario 230

6.10 Need Rules for the Wo-SBS scenario 231

14 LIST OF TABLES

Acknowledgements

First, I would like to extend my deepest gratitude to my supervisor, Professor Andrea

Zisman, for all her support, constant encouragement, assistance and motivation dur-

ing my research at City University. Her inspiration, specially in times of self-doubt

and frustration is something that I will - without any doubt - be grateful for the rest of

my life. Her insistence on details and clearness was always accompanied by a critic

analysis - sometimes painful - but nevertheless necessary. I am deeply honoured

to have worked with my supervisor during these four years for which I am sincere

grateful. Finally, I believe it would have been extremely difficult, if not impossible,

to finish this work without her continuing support and guidance.

Second, I would like to thank my co-supervisor Professor Neil Maiden and Pro-

fessor George Spanoudakis for their support, feedback and advices during the whole

my research. I would also like to thank the School of Informatics at City University,

the S-Cube project, and all the involved partners.

I would also like to thank my colleagues and friends, specially Maria Crociani,

Angela Kounkou, Adina Sirbu, Rafael Borges, Marco Comuzzi, Gilberto Cysneiros,

Mark Firman, Davide Lorenzoli, Khaled Mahbub, Luca Pino, Rafael Roque, Icamaan

da Silva, Igor Siveroni and Theocharis Tsigkritis. Finally, I would like to thank my

family, my parents, my sister, and my niece and nephew.

15

16

Declaration on consultation and copying

The following statement is included in accordance with
the Regulations governing the ‘Physical format, binding

and retention of theses’ of the City University London

I grant powers of discretion to the University Librarian
to allow this thesis to be copied in whole or in part without
further reference to me. This permission covers only single

copies made for study purposes, subject to normal conditions
of acknowledgement.

Ricardo Contreras

17

18

Abstract

Abstract

Monitoring the correct behaviour of a service-based system is a necessity and a key

challenge in Service Oriented Computing. Several efforts have been directed to-

wards the development of approaches dealing with the monitoring activity of service-

based systems. However, these approaches are in general not suitable when dealing

with modifications in service-based systems. Furthermore, existing monitoring ap-

proaches do not take into consideration the context of the users and how this context

may affect the monitor activity. Consequently, a holistic monitor approach, capa-

ble of dealing with the dynamic nature of service-based systems and of taking into

consideration the user context, would be highly desirable.

In this thesis we present a monitor adaptation framework capable of dealing with

changes in a service-based system and different types of users interacting with it.

More specifically, the framework obtains a set of monitor rules, necessary to verify

the correct behaviour of a service-based system, for a particular user. Moreover, the

monitor rules verifying the behaviour of a service-based system relate to properties

of the context types defined for a user.

The main contributions of our work include the general characterisation of a user

interacting with a service-based system and the generation of suitable monitor rules.

19

The proposed framework can be applied to any service composition without the need

of further modifications. Our work complements previous research carried on in

the area of web service monitoring. More specifically, our work generates a set of

suitable monitor rules - related to the user context - which are deployed in a run-time

monitor component. Our framework has been tested and validated in several cases

considering different scenarios.

20

Chapter 1

Introduction

Monitoring the behaviour of a software system is essential to ensure that the system

executes as expected. However, monitoring is a complex process that involves verifi-

cation of the system by checking specific properties describing the behaviour of the

system. Additionally several elements including logical, physical, and even environ-

mental factors can lead to unexpected behaviours or errors during the execution of

the system if they are not visualized and dealt with in advance. As a consequence the

monitor activity becomes quite challenging, especially when dealing with dynamic

and evolving systems.

Many approaches and techniques have been proposed regarding monitoring of

a software system, surveys focusing on different types of systems have been con-

ducted in [20][106][135][136][161][164][229]. These monitoring approaches and

techniques can be classified either as static analysis or dynamic analysis. Although it

is argued that the two types of analysis can complement each other, there are differ-

ences between them. An approach is classified as static analysis when the behaviour

of a system is evaluated without the execution of the system. Static analysis operates

by building a model of the state of the system and then determining how the system

21

1. INTRODUCTION

reacts to this state [90][107]. On the other hand, an approach is classified as dynamic

analysis when the behaviour of a system is evaluated during its execution. Dynamic

analysis is performed by observing the outputs of the system during its execution

[31][90]. The work in this thesis focuses in the category of dynamic analysis.

Our interest is centred on monitoring the behaviour of those software systems

encompassed in Service-Oriented Computing (SOC). SOC is an emerging computing

paradigm that utilizes services as basic building blocks to support the development

of rapid, low-cost compositions of distributed applications. SOC relies on a Service

Oriented Architecture (SOA) which is an architectural style based on loosely coupled

interacting software components that provide services [89][214][227]. A service is a

self-contained independent autonomous unit able to perform operation(s) on behalf of

a user, an application, another service or a set of services. Services can be described,

published, located, and combined with other services on a single machine or on a

large number and variety of devices distributed over a network. Additionally, the

information related to the implementation details of a service is usually unavailable

and the user of the service has no control over it.

The composition of distributed applications using services and how they are co-

ordinated in order to accomplish a certain task is called a Service-based Application

(SBA) [9]. Likewise, a system that considers a Service-based Application, the part-

ner services involved, and an underlying infrastructure for the application and the

partner services, is called a Service-based System (SBS) [9]. We are concerned with

the activity of monitoring Service-based Systems (SBSs), where information about

the execution of a SBS is collected at runtime and used to verify whether the system

is behaving correctly according to a specified set of properties. It is important to note

that in our work we take into consideration the partner services involved, but do not

address the underlying infrastructure, e.g. networking, for the application. Even con-

sidering this restriction, the evolving nature of a SBS, e.g. at some point a service

22

1.1. FOCUS AND MOTIVATION

participating in the composition might be replaced, makes it difficult to come up with

a stable model of the system and its current state.

Monitoring a SBS involves additional challenges when compared with traditional

systems. While in the latter the composition of the system is fixed, in SBS the dif-

ferent components, i.e. the services, are independent autonomous units that, during

runtime, are combined to accomplish a certain task. Services can fail, become un-

available or even be replaced by other services, e.g. a faster and cheaper service

becomes available. Furthermore, environmental contextual factors may lead the sys-

tem to provide incorrect results.

Among the contextual factors that may influence the correct behaviour of a SBS,

it is possible to identify those related to the user and the user interaction with the

system. User context and user interaction have had very little attention when deal-

ing with SBS monitoring. Furthermore, even when dealing with SBS designing and

development, only a few approaches, e.g. [29][49], have addressed these issues.

1.1 Focus and Motivation

The focus of the work described in this thesis is monitor adaptation based on con-

textual factors related to users. More specifically, we define monitor adaptation as

adaptation of the monitor rules (also known as monitor properties) used by a monitor

component to verify the correct execution of a SBS. The adaptation of the monitor

rules for a SBS involves: i) the identification of adequate monitor rules whenever they

exist, ii) the modification of existing but not completely adequate monitor rules, iii)

the creation of monitor rules when neither identification nor modification is possible,

and iv) the removal of monitor rules that become obsolete.

Whether a monitor rule is adequate or not depends on different factors, including

23

1. INTRODUCTION

the composition and logic of the SBS being analysed, the correspondence between

the elements defined in the monitor rules and the identifiable elements during the

execution of the SBS, and the involved contextual factors.

Our work takes into consideration the previous factors in a dynamic scenario

by modifying the SBS composition or by modifying the context factors from one

execution to the next one. Furthermore, it considers monitor rules suitable to verify

the correct behaviour of a SBS according to the user context characteristics, and

capable of dealing with the user interaction in the system. More specifically, our

work concentrates on context and HCI-aware monitor adaptation in which changes

in the monitor rules are based on users interaction with a SBS and different types of

user context.

In what follows, topics related to SBS, Monitoring, and User Context & User

Interaction are further discussed.

1.2 Service-based Systems

A Service-based Systems (SBS) is a composition of different independent units, i.e.

services or other service compositions, put together using a specialized language to

perform a certain task.

The composition of a SBS is performed according to the approach by which the

different elements are put together. There are two approaches by which a service

composition can be accomplished, by orchestration and by choreography. A service

composition thought as an orchestration, considers a central controller that defines

how the participant services interact with each other and covers the business logic

and execution, including conditions and exceptions, for a process [190]. In a ser-

vice composition thought as a choreography, specifications are created determining

24

1.2. SERVICE-BASED SYSTEMS

the behaviour of each participant in the process. Unlike orchestration, the overall

behaviour of the process emerges from the interaction of individual pieces [190]. In

this work we centre our attention on the monitoring activity of those systems where

the sequence of the process is specified by a central controller, i.e. orchestration.

There have been several proposals regarding the language used to describe service

compositions including, among others, the Business Process Execution Language

(BPEL) [120] and its extension the WS-BPEL Extension for People (BPEL4People)

[140], the Web Services Choreography Description Language (WS-CDL) [133], and

the Web Service Definition Language (WSDL) [65]. While BPEL and BPEL4People

focus on the orchestration of a service composition, WS-CDL and WSDL focus on

the choreography of a service composition. Nevertheless, although their focus is dif-

ferent, they can complement each other [168]. In this work we have focused on those

SBS where the composition has been specified using the Business Process Execution

Language (BPEL). The choice of BPEL is based on the following reasons.

• Its wide acceptance as the de facto orchestration language standard for exe-

cutable process specification [185]

• Its expressiveness when describing the composition behaviour [134]

• The support of the language on different engines, e.g. Apache ODE [12], Ora-

cle BPEL Process Manager [181], WebSphere Process Server [121]

• The support from different communities, including the academic one

Regardless of the task the SBS performs and its composition, it is always possible

to identify the following three components, the provider, the client and the registry

[186]. Services are made available by a third party, a provider who, from an architec-

tural perspective, hosts and controls access to services. It is important to note that the

25

1. INTRODUCTION

provider might not have ownership over individual services or information regarding

their implementation. The client is the entity that is looking for, and subsequently

invoking, a service. The registry is a searchable directory where service descriptions

can be published and searched.

In addition to the above, if the SBS is specified using BPEL, it is possible to

distinguish five main parts: message flows, control flows, data flows, process or-

chestration and fault and exception handling [186]. Message flows are related to the

invocation and response of an operation on web services. Control flows are related to

the sequence of steps required to make up a given process. Data flows are concerned

with the exchange of messages between partners. Process orchestration establishes

consumer/provider relationships. Finally, fault and exception handling deals with

errors that might occur when services are being invoked.

Probably one of the most distinguishing characteristics of a SBS is the the fact

that the owner of the SBS does generally not own the component services. Similarly,

this is often the case for the service provider regarding the offered services. Further-

more, the control in services execution is beyond the owner of the SBS or the service

provider [9]. As a consequence, the introduction of monitoring mechanisms, that are

able to verify the correct execution of service compositions are essential.

1.3 Monitoring

Monitoring is the activity concerned with the constant verification of a system. The

monitoring activity is based on the use of a set established properties, i.e. rules. These

rules are used to check whether the events occurring in the system behave as they are

expected to. The monitoring activity usually involves a component1, the monitor, in

charge of verifying the collected data against a set of defined rules. The monitor is
1In some approaches, e.g. [40][46], the monitoring activity may involve several monitors

26

1.3. MONITORING

usually a separate component, without relations with the system being analysed. In

most cases, it is limited to the run-time interception of exchanged messages; however

in some approaches, e.g. [174][175], it can be strongly related with the adaptation of

the system.

There have been several studies dealing with the activity of monitoring. In the

area of SBS, existing monitoring approaches can be classified according to the sys-

tem’s behaviour, e.g. [25][192][220], the quality of services (QoS), e.g. [69][137]

[153], or the contextual information of the services participating in the system and the

system itself, e.g. [35][47][58]. The common characteristics in all these approaches

is that the monitor rules, used for checking the correct execution of a SBS, are pre-

defined and conceived for the particular system being monitored. Furthermore the

studied approaches do not consider the fact that modifications in SBSs may cause

monitor rules to be no longer suitable (e.g. a service participating in a SBS may

become unavailable or malfunctioning with respect to certain QoS aspects, requiring

the service to be replaced). In fact, when it comes to monitoring, the verification

mechanisms are relegated to a second place once they fulfil their task, e.g. should a

modification be performed, it would only concern the service composition (see sec-

tion 2.4).

Users interacting with a SBS is another issue that has been, in most cases, ne-

glected when performing the monitoring activity. User interaction, nevertheless, may

also cause monitor rules to be no longer suitable, e.g. different user configurations

may trigger the replacement of service components, making the previous associated

rules no longer suitable.

Also in relation with SBS monitoring, it has been observed that monitor rules

specification is usually a manual task, involving the participation of someone familiar

with the logic of the SBS and the language used for representing the rules. The

27

1. INTRODUCTION

above implies that unless all possible monitor rules have been defined a priori, a very

unlikely case, an expert with the knowledge of the system logic and language used

for specifying monitor rules, will be needed.

In this thesis we tackle the problem dealing with monitor adaptation. More

specifically, we address the adaptation focusing on the monitor rules and the user

context information. As previously mentioned, contextual information could trigger

changes in the rules without causing necessarily a change in the composition of the

SBS. In order to apply the proper rules for verifying the correct execution of a sys-

tem, it is essential to take into consideration the current composition of the SBS along

with the user context.

The research we have performed over the last years shows that it is possible,

at least up to a certain extent, to identify, modify, create, and even remove monitor

rules based on the user context and the part of the system involved during execu-

tion. Furthermore, even in those cases were no modification is made in the SBS;

the identification, creation, modification, and removal of monitor rules may still be

conditioned and triggered by other factors, such as the user context. In what follows

we introduce the concepts related to user context and user interaction.

1.4 User Context and User Interaction

User context is the information regarding characteristics of a user. User interaction,

is concerned with the different ways a user communicates with a system. Both are

strongly related, for example user context is a subject of study in the field of Human-

Computer Interaction2 (HCI), which focuses on the interaction between people and

computers. In other words, user context involves user interaction.

2HCI is an interdisciplinary field including knowledge related to computer science, social science,
and communication theory among others

28

1.5. HYPOTHESES AND OBJECTIVES

While it is true that efforts have been made to include contextual information in

the activities related to the design, deployment, and operation of SBSs, e.g. [49][48]

[62], little or no importance has been given to the user context. Although in princi-

ple this may seems odd, specially considering the inclusion of human interaction in

commercial products, see [140], it can be explained by the fact that human activities

are treated as special types of basic activities within a process. The encapsulation

of a human interaction as a special activity, reduces the complication when dealing

with it. Unfortunately such encapsulation does not includes associated contextual

concepts/models.

Regarding user context and monitoring, as far as we are aware, no studies have

been conducted analysing the relation/impact that user context might have in the mon-

itoring activity. While it is true that some studies have focused context and its impact

on the adaptation of the process, e.g. [51][94][245], or on the use of context for the

identification of the appropriate services for a composition, e.g. [132][152][239], no

study tackles the existing gap regarding user context and the monitor adaptation.

1.5 Hypotheses and Objectives

In this section we present the hypotheses and objectives of the work developed over

the last years and described in this thesis report. The general hypotheses of the work

is.

It is possible to adapt monitor rules for Service-based Systems due

to users interaction with the system, the different types of user context,

and changes in the system itself in order to verify its behaviour.

The above general hypothesis can be broken down into the following sub-hypothesis:

29

1. INTRODUCTION

• It is possible to automatically identify monitor rules that should be used to

monitor SBSs due to changes in different user context types and user interac-

tion with the system.

• It is possible to create and modify monitor rules that should be used to monitor

SBSs due to changes in different user context types, user interaction with the

system, and service composition specification.

• It is possible to remove monitor rules that are not relevant to the SBS due to

changes in different user context types, user interaction with the system, and in

the service composition specification.

• It is possible to use the automatically identified, created, or modified monitor

rule in a monitor component to verify the correct execution of the system and

notify that there has been violation in the behaviour of a system that requires

changes in the system.

Given the above hypothesis, the general aim of our work is to assist with monitor-

ing activities of SBSs by automating the process of identifying, modifying, creating,

and identifying obsolete monitor rules (so they can be removed), to be used during

the verification of the system. This process will be executed due to changes in user

context, interaction of the user with the system, or changes in the system itself.

The above general aim can be broken down into the following measurable objec-

tives:

1. To provide a literature review and state of the art of the work performed in

the area. More specifically, we will focus on user context, human computer

interaction, SBS monitoring, monitoring adaptation, and their relations.

2. To identify the distinctive user context types likely to affect the execution of a

SBS and to require adaptation of monitor rules.

30

1.6. GENERAL OVERVIEW

3. To develop a model for the representation of the distinctive user context types.

4. To provide a classification for the various monitor rules with respect to the

different user context types.

5. To provide a formalism to represent the various monitor rules for the different

context types.

6. To develop techniques to support the identification, creation, modification, and

removal of monitor rules.

7. To implement a prototype tool to support objectives 5 and 6 above.

8. To evaluate the results of the work in case studies and in a suitable monitor

component.

1.6 General Overview

In this section we provide an overview of the methodology used to develop the work

reported in this thesis, an account of the context in which the work was developed,

and a description of the various phased taken to develop the project.

1.6.1 Methodological Approach

We explain the methodological approach in this work following to the classification

given in [211].

Regarding the research settings we focus on Feasibility, Characterisation, and

Method. Regarding feasibility, we examined the potential for success of a an ap-

proach dealing the monitor adaptation when involving user context. More specifi-

cally, i) we analyse the advantages (strengths) and the disadvantages (weaknesses)

31

1. INTRODUCTION

that underlie existing monitoring and adaptation approaches, ii) we identified user

context types and analyse whether the existing approaches considered the impact

these contexts during the monitor activity, and iii) we proposed a viable solution cov-

ering the existing gap in context-aware web service monitoring and identified the

benefits of such proposal. Regarding the characterisation, we identified a set of char-

acteristics which are important for the successful monitoring of service-based system

when involving human interaction. This included: the type of service-based systems,

the types of users, and the properties that could be specified and verified. Regarding

the research methods we used, we started with the literature review, followed by the

development of a descriptive model that aimed to cover the existing gap in the area

of service-based systems monitoring and user context. More specifically, we studied

existing approaches and proposals dealing with run-time verification, analysed exist-

ing service-based systems, and found out that no work has been carried out focusing

on the run-time verification, system modification, and user characteristics. As a re-

sult, we proposed, developed and implemented procedures and techniques to carry

out tasks in order to deal with the adaptation of the monitoring process.

In relation to the validation techniques our work is prototype-based: we have de-

veloped a prototype as proof-of-concepts and to support evaluating the work. The

results show that our proposal is able to deal with the monitor adaptation of service-

based system when considering human characteristics. In our evaluation we con-

ceived and developed a set of experiments for validating our results. More specifi-

cally, we developed a prototype to demonstrate and evaluate the work developed in

this thesis. The evaluation itself considered different criteria including a descriptive

model, which was used when dealing with different configurations, and an empiri-

cal model, used to measure the performance and scalability under different loads and

configurations. We performed an analysis based on an empirical model - simulation -

in which the results were predicted in a controlled situation (statistical analysis). The

32

1.6. GENERAL OVERVIEW

evaluation was executed in two case studies in order to demonstrate the ability and

efficiency. The first case study was about users interacting in a web organiser. The

second case study considered users interacting in a air traffic control systems (chapter

6). Overall, the results show the ability and efficiency of our approach when address-

ing the problems regarding monitor adaptation and user in the loop. Furthermore,

the automation of the whole process improves the performance when adapting the

monitor - conceived most of the times a manual task - and reduces potential errors

due to human intervention.

1.6.2 Context of the work

The work conducted in this thesis covers the area of Service Systems Engineering,

with particular focus on service monitoring. The work carried out in this thesis was

developed under the EU Network of Excellence S-Cube project [33]. As part of the

project, our results complement the research carried out by the associated partners in

related areas of Service Systems Engineering, including service discovery and service

level agreement negotiation. Furthermore, as a result of the collaborations among the

different partners, we proposed and published an initial approach integrating dynamic

monitoring and service discovery features. This proposal represents the joint work of

City University, London, UK and Fondazione Bruno Kessler, Trento, Italy.

1.6.3 Phases

Our work started - in an initial phase - by analysing the state of the art in the areas of

web-service monitor adaptation and the human in the loop in service-based systems.

After the corroboration of the existing gap in the area of context-aware web-service

monitoring, we focused - in a second stage - in the identification of user context char-

acteristics that could affect the monitoring activity. We created a model for these

33

1. INTRODUCTION

characteristics. In a third stage, we studied different existing approaches and tech-

niques that could support our work. More specifically we studied proposals related

to the generation of monitoring properties and the selection based of pre-conceived

properties. We developed our own pattern strategy approach for the specification of

monitor properties. In a fourth stage we implemented a prototype tool and conducted

sets of experiments to evaluate our work. Finally in a final stage we analysed the

results and provide an overview of our work.

As mentioned in section 1.2 there are two approaches by which a service compo-

sition can be accomplished orchestration and choreography. In this work we focused

on orchestration because it is clearer in terms of control, i.e. while orchestration de-

scribes a process flow between services from the perspective of a centralized control,

choreography tracks a sequence of messages from multiple parties (a decentralized

control). Additionally, fault handling is easier in orchestration as the execution is

controlled, this is not the case with choreography. Finally, services can be easily and

transparently replaced in case of orchestration while it is more difficult in case of

choreography.

1.7 Contributions

In this thesis we propose a holistic framework that combines monitoring, adaptation,

and user context for supporting the continuous verification of a system’s behaviour.

The relation between these elements is depicted in Figure 1.1.

According to Figure 1.1 changes in user context and SBSs can trigger the monitor

adaptation. Furthermore, the monitoring activity may trigger changes in the service

composition (e.g. a service replacement) that, likewise, may trigger changes in the

monitor. Our work takes into account these existing relations3 and offers a solution
3Our work does not take into consideration those relations beyond the monitoring activity, such as

34

1.7. CONTRIBUTIONS

Changes in
service-based

systems

adaptation
Monitor

Tool

Monitor

monitor rulesviolations

Service-based
systems

user context
Changes in

Figure 1.1: Relation between Context, Monitoring, Adaptation and SBSs

to the monitor adaptation problem. The contributions of our work include:

• Identification of user context types, general enough to be applicable to most

SBSs.

• Proposal of a context model focused, mainly, on the user context types.

• Creation of an easily expandable pattern-based approach for representing the

various types of monitor rules for the different user context types.

• Development of a framework based on pre-defined patterns for the automated

identification, creation, modification, and removal of monitor rules. This frame-

work is capable of dealing with different user context configurations and dif-

ferent SBSs.

The contributions of this work have been published in the papers listed below:

the one between context and SBS

35

1. INTRODUCTION

• A Pattern-based Approach for Monitor Adaptation, 2010, IEEE International

Conference on Software Science, Technology and Engineering [71].

• Identifying, Modifying, Creating, and Removing Monitor Rules for Service-

oriented Computing, 2011, Proceedings of the 3rd International Workshop on

Principles of Engineering Service-Oriented Systems [72].

• A Framework for Dynamic Monitoring of Adaptable Service-based Systems,

2012, Proceedings of the 4rd International Workshop on Principles of Engi-

neering Service-Oriented Systems [70].

• A Context-based Monitor Adaptation Framework, 2013, Automated Software

Engineering Journal (current under review).

1.8 Outline of this Thesis

The thesis is organized in 7 chapters as follows.

In Chapter 2 we analyse existing approaches dealing with monitoring and service-

based systems, context, and human interaction. We also analyse the existing ap-

proaches dealing with context modelling, and adaptation in service-based systems

and in the monitor.

In Chapter 3 we present our context model for service-based systems. Our model

includes different dimensions when dealing with user context. More specifically, the

model represents context by means of a set of context types, we present the rationale

and benefits behind our model. In this chapter we also present a strategy for dealing

with user interaction in SBSs, introduce our framework for obtaining monitor rules,

and explain the main components of the framework.

In Chapter 4 we introduce the formalism used to specify monitor rules and present

36

1.8. OUTLINE OF THIS THESIS

a pattern approach for the specification of monitor rules. More specifically, we start

with a description of Event Calculus (EC), a language, based on first-order logic,

capable of representing the behaviour of dynamic systems. Then we present our

pattern strategy, based on EC, which serve as a template for the specification the

monitor rules for the different user context types, previously described in Chapter 3.

In Chapter 5 we describe the adaptation process. More specially, we describe

the strategy, based on the use of annotations, for the identification of the part of the

system related to a context type. We also present an example covering the different

activities (i.e. identification, creation, modification, and removal) when obtaining a

set of monitor rules.

In Chapter 6 we present the results of the experiments conducted to evaluate the

performance and correctness of the framework. We present the configuration as well

as the scenarios used in the evaluation, and analyse and explain the results obtained

from the framework.

Finally, in Chapter 7 we present the conclusions. We discuss the approach and

expose the limits of the current approach along with the future work.

37

1. INTRODUCTION

38

Chapter 2

Background - State of the Art

2.1 Overview & Methodology

The following sections present the state of the art, covering the topics previously in-

troduced in Chapter 1. More specifically, in section 2.2 descriptions of existing works

dealing with the monitoring activity are presented. These descriptions cover different

issues and have been grouped according to three different perspectives: Service-based

Systems (SBSs) perspective, Context perspective, and Human Computer Interaction

(HCI) perspectives. In section 2.3 we focus on those approaches dealing with con-

text modelling for SBSs. In section 2.4 we centre our attention on those approaches

dealing with SBS adaptation. This is followed by section 2.5 which provides a de-

scription of monitoring adaptation approaches. Section 2.6 gives a summary of the

above exposed approaches and highlights our concerns regarding HCI-context aware

monitor adaptation.

In order to perform an objective, concise, and critical analysis, we performed the

literature review of the issues above exposed. Initially, we focus on the main issue:

user context-aware monitoring, and studied the existing work. More specifically, we

39

2. BACKGROUND - STATE OF THE ART

identified the different areas and fields that could contribute to our research. We clas-

sified them by topic, e.g. monitoring, monitoring adaptation, and established whether

our main concerns and hypotheses were - at least up to some extent - covered by the

existing works. Regarding the methodology, we focused on recent work performed

in the different areas. This included general papers, journals, conferences, and theses.

We also studied existing tools (e.g. [24][175]), models (e.g. [42][105]), and projects

(e.g. [25][33]) from the last five years. Initially, we covered each area separately,

focusing on string matching for a particular topic to retrieve the relevant work. We

expanded the search by considering the conferences focused on our areas of inter-

ests, as well as related work from other authors referenced by third parties. Most of

our sources of information were obtained from digital libraries (e.g. springer, ACM),

although we also considered material ranging from technical reports, to de facto stan-

dards.

2.2 Monitoring

As described in Section 1.3, monitoring is the activity concerned with the verification

of the behaviour of a system according to a set of rules. The monitoring activity

however, presents significant differences according to what is being monitored or

how the system is being monitored. Furthermore, when performing the monitoring

activity on a specific subject, e.g. when focusing on context monitoring, differences

can also be appreciated from one approach with respect to another. On the other hand,

when classifying monitoring approaches according to a certain taxonomy, as in [33],

it is possible to observe some correspondences between the different categories. This

exemplifies just how many different views can be, when performing the monitoring

activity. Since our interest focuses on HCI, context, and SBS, in what follows we

proceed to analyse each one of them in relation with the monitoring activity.

40

2.2. MONITORING

2.2.1 Service-based System

Monitoring of SBS has been the subject of research for the last several years; var-

ious approaches have been proposed to support this activity. Approaches for SBS

monitoring can be discussed from different perspectives, including the specification

language used to express monitoring rules or the mechanism applied to perform the

monitoring process. In what follows we present and discuss some of the approaches.

In [93], the authors propose an approach to support monitoring of Service Level

Agreements1 (SLAs). The approach uses ecXML, a formalization based on XML

and Event Calculus (E.C.) [143] to represent contract rules. A reasoner called Event

Calculus State Tracking Architecture (ECSTA) is used to analyse the behaviour of

the contract rules expressed in ecXML. In this approach, the monitor is a separate

system that analyses contract rules, but does not interfere with the execution of the

system being monitored. The approach is based on pre-defined contract rules for

the services involved in an SLA and does not support changes and adaptation of the

rules to be monitored. Moreover, monitoring of context aspects is restricted to those

aspects defined in the SLAs of the involved services. The approach does not support

monitoring of users interactions with the system.

The approach described in [199] attempts to minimize human intervention in the

monitoring process. It uses a flexible formalization for SLA in which quality metrics

(e.g., security, response time) are associated with formalizations describing services

(WSDL) and process flow (WSFL, XLANG). The formalization of the SLA is made

based on its constraint and clauses contained in the service level objectives (SLO).

In this approach, agents are in charge of monitoring SLAs between web services

exchanging measurements and protocols based on the formalizations. For each web

service there is an agent managing the relationships of the service that interacts with
1A SLA is a contract between the provider of a service and a user of that service, specifying the

level of service that will be provided.

41

2. BACKGROUND - STATE OF THE ART

other agents responsible for other sites services. The instance data required for the

agents for monitoring is modelled in a high performance database that is updated for

every transaction instance. The approach does not consider monitoring of user and

context. In addition the rules used in this approach can not be changed.

The work in [37] is based on the use of an algebraic specification language to

describe service data, service operations, and properties and semantics of the oper-

ations. The approach focuses on conversational services specified in BPEL and the

monitoring of the functional behaviour of these services. In this work, monitoring is

performed over a client-service interaction where run-time behaviour of the services

is checked against their expected behaviour defined in the algebraic specification. The

checking is based on symbolic execution of the algebraic specifications and uses term

rewriting techniques. The component responsible for the checking (i.e., the Monitor)

contains a symbolic state generator and an interpreter of the formal specification. Al-

though the focus of the work has not been on context or HCI monitoring, we believe

that the algebraic specifications of the services could be extended to support context

representation.

In [23][26] an approach for dynamic monitoring of the BPEL process based on

monitoring rules is presented. More specifically, the approach supports dynamic

identification and execution of monitoring rules specified as WS-CoL (Web Service

Constraint Language). These rules are weaved into BPEL processes during deploy-

ment time, allowing an explicit and external definition of the monitoring rules. This

supports separation of business (BPEL process) and control (rules) logics. The origi-

nal BPEL process is not modified and the approach uses a copy of this process where

the monitoring rules are added. In order to define which rules should be considered at

monitoring time for a service, a monitoring definition file is used. This file provides

general information of the BPEL process to which the rules will be included, values

associated with process execution, and the monitoring rules. The latter considers not

42

2.2. MONITORING

only the expressions of the rules, but it also considers the locations and parameters

of the rules. In this approach the focus is on monitoring of non-functional aspects

(e.g. security, performance). However, the approach does not consider monitoring of

context and HCI aspects.

The work in [29] proposes BP-Mon (Business Process Monitoring) a query lan-

guage for monitoring business process that allows users to visually define monitoring

tasks using a simple intuitive interface similar to those used for designing BPEL pro-

cesses. In the approach tasks are monitored over defined activities representing the

flow of processes. These activities are composed of atomic activities that are related

to basic operations (e.g. messaging passing, value assignation). Activities are repre-

sented as a direct acyclic graph (DAG), where two nodes define an activity and edges

represent dependency between the activities. The process instances to be monitored

in the activities are specified by a graphical query language using execution patterns

that extend regular expressions (In XML) to the DAG. The queries are compiled into

the BPEL process specification, whose instances perform the monitoring task. The

user interaction is considered in the selection of the compound activities (e.g. selec-

tion of a buyer or seller process). Context however has not been considered. Finally

queries are defined for specific activities and are not able to be modified.

In [159][160][219], the authors present a framework for monitoring functional

and non-functional requirements (run-time, SLA monitoring) of web services. The

approaches are based on the use of Event Calculus (EC) [210] for the specification of

requirements to be monitored. The requirements could include behavioural proper-

ties of the system that are automatically extracted from the specification of its com-

position process. Some basic transformations are given from BPEL activities to EC

formulas. Requirements can also be expressed by system providers in order to mon-

itor a specific behaviour. Special requirements can also be created, for example, to

monitor SLAs. Requirements are checked against the events generated by the system

43

2. BACKGROUND - STATE OF THE ART

being monitored. Evaluation is performed by the monitor without interfering with

the system being monitored. The approaches do not consider the adaptation of the

monitoring rules.

Similarly in [91] another monitoring approach, based on the use of predefined

policies is presented. In this approach the requirements, to be monitored, are specified

in a WS-Policy4MACS language. This language extends WS-Policy by defining new

types of requirements and policies. The novelty in this approach is that, in addition to

the specification of policies, the language proposed also allows for the specification

of predefined adaptation actions, triggered by policies violations.

The work in [184] proposes the use of agents to perform the monitoring activity.

In this approach, agents verify the correct execution of a system according to defined

policies. More specifically, the extracted information from policies is used to identify,

configure and instantiate management agents that will be used to monitor the system.

One of the main challenges deals with the identification of relevant information and

the instantiation of agents according to the scope and constraints of the monitored

system.

The work described in [6][182][183] deals with web services monitoring, al-

though its architecture has been designed to support - via independent interfaces -

any kind of services. The focus is on SLA, more specifically, on the fulfilment of the

service level objectives (SLOs) derived from the SLAs. The architecture includes an

analyser component, which is responsible of checking whether the set of SLOs are

fulfilled, and a monitor services component, which is responsible of retrieving the

values of quality metrics of the different participating services. In order to retrieve

the quality of service (QoS) from the participating services the framework allows for

two strategies: passive monitoring, which collects data from the interaction between

provider and client, and active monitoring where an engine invokes a service in a sys-

44

2.2. MONITORING

tematic manner. The novelty in this approach is the flexibility in the retrieval of QoS

and the possibility of an easy integration with other systems. Furthermore, according

to the authors the approach has been integrated with other strategies including the

ranking of web services [53].

Numerous architectures/frameworks are found in the literature to realize runtime

monitoring. These frameworks observe the current state of a running system and

compare the observed state with the expected state of the system specified in a spec-

ification language. In [173] a model-driven methodology for a top-down develop-

ment including monitoring capabilities is presented. It is based on a model driven

orchestration design based on three layers, namely computer independent models

(CIM), platform independent models (PIM), and platform specific models (PSC). In

this approach, monitoring is based on quantitative process performance indicators

(PPI) which are defined and evaluated on the basis of business events. The business

process and the PPIs specifications are initially specified in two different models: a

functional and a monitoring model, respectively. This separation is made to treat

business process and PPI specifications separately. A business process definition

meta-model (BPMN) is used for modelling both functional and monitoring models.

In the first layer (CIM), the PPIs and the functional model are independently defined

in BPMN. In the second layer (PIM), a PPI monitor model and an orchestration model

are generated. In the third layer (PSC), a specific instrumented orchestration model is

generated based on the orchestration and the PPI monitor model. The BPEL instru-

mentation, which includes the PPIs, is extended by monitoring sensors to a monitor

infrastructure which is based on the generated monitor model in PIM. User interac-

tion is considered if the orchestration involves human participation. Such interaction

is treated as a special task inside an activity in the functional model. Context is not

taken into account in this approach.

The work in [21] proposes an approach to monitor conformance between ex-

45

2. BACKGROUND - STATE OF THE ART

pected specified behaviour of a service and the actual behaviour of the service. The

behaviour aspects of a service to be checked are concerned with time-outs, runtime

and violation of functional contracts. These aspects are described as monitoring rules

specified as comments in BPEL processes. The authors use C# and CLIX to represent

monitoring rules (i.e., comments in the BPEL processes). In the approach, the con-

tent of an invoked service is serialized as an XML fragment and sent together with

the associated rules to be monitored. The approach uses a monitor for rules specified

in C# and another one for rules specified in CLIX. These monitors have been imple-

mented as web services. The work does not consider adaptation of rules defined in

the BPEL process for the three monitoring criteria. Moreover, the approach does not

offer support for context and HCI monitoring.

The work in [11] is aimed to support fine grained identification of the causes of

incorrect behaviour (i.e. exceptions) in Web Services. It is based on A.I. Model-

Based Diagnosis (MBD) useful for reasoning on possible faults on software systems.

Each composed service is associated to a model, called local diagnoser, and all of

them are connected to a general global diagnoser. Local and global diagnosers are

themselves web services. Each local diagnoser generates a local hypothesis (based

on the MBD) which explains the exceptions of a service from a local point of view

as they occur. This is done using special WSDL operations defined for diagnosis.

The local diagnosers communicate to the global diagnoser that keeps track of each

of the local hypotheses. Thus if a local diagnoser needs extra information to explain

a failure that might be involved with another service it communicates through the

global diagnoser. The hypothesis generated in the local diagnosers are not modifiable.

46

2.2. MONITORING

Classification

Approaches for SBSs monitoring can be discussed from different perspectives includ-

ing the specification language used to express monitor rules, the aim of the monitor,

or the degree of intrusiveness of the monitor approach.

In any monitoring process, monitor rules need somehow to be expressed. The

characteristics of the rule specification language can affect the computational com-

plexity of the monitoring process or constrain the expressiveness when formulat-

ing rules. There are several works in the literature focusing on the development of

rule specification languages aiming to facilitate the SBSs monitoring process, e.g.

[108][232][24].

Depending on the monitor approach and the specification language rules may be

formulated, for example, aiming to monitor the Service Level Agreements (SLAs) or

quality metrics, e.g. security, response time. Monitor approaches also include, most

of the times, some kind of formalization for the representation of rules. Such formal-

ization could be expressed in a logic-based language suitable to support behaviour

representation of dynamic systems, e.g. [210], or in some type of algebraic specifi-

cation language describing service data, operations and properties/semantics of the

operations, as in [37].

Another important aspect of monitoring approaches deals with their level of in-

trusiveness. A monitor approach can be classified as intrusive if it interferes with the

execution of the SBS, e.g. rules weaved into the process specification of a system

during deployment time, or non-intrusive if it does not interfere in the execution of

the SBS.

From the analysed monitoring approaches we have observed that,

• None of them really focused on the user interaction when monitoring a SBS.

47

2. BACKGROUND - STATE OF THE ART

• Context, and in particular user context, has not been considered as an influential

factor when formulating monitor rules.

• Monitor rules were assumed to be pre-defined

• None of the approaches dealt with changes in the monitor activity, e.g. creation

of new rules.

We believe that automatic retrieval of context information is another major con-

cern when monitoring a SBS. This is based on the fact that manual identification of

relevant context for a SBS would force the users to express all the relevant informa-

tion for a given situation, which could end up being a difficult and tedious task for

the users. Moreover users may not know which information is potentially relevant

for a situation. None of the above approaches involving SBS monitoring, considers

automatic identification of relevant context for a system.

2.2.2 Context

Context can be defined as “interrelated conditions in which something exists or oc-

curs”. It characterizes the state of a certain entity by the identification of all factors

surrounding the entity. In fact, several definitions and characterizations of context

can been found in the literature and, from these definitions, different context models

have been proposed.

Context models are classification structures, e.g. [75][79][171] [204][206][207],

with different categories (also called dimensions) that altogether try to cover the char-

acteristics of an entity, e.g. an individual, the environment, an object. Some context

models are formulated as hierarchical models, e.g. [206][207], where main context

types, i.e. the main classes, are expressed at the top level of the structure and further

48

2.2. MONITORING

fine-grained specification is done at sub levels of the main context types. In fact, sev-

eral context models in the literature can be viewed as a tree-shaped structure where

the root node defines the main context types and each additional child node repre-

sents a sub context of a parent node, the ancestor of all nodes - the root - would be

related to the main context types. There is no overlapping between context types.

It is also possible to find context model studies focusing on the operational def-

initions, e.g. [80], the evaluation of the context models and applications, e.g. [42],

and the analysis of the different context types and models, e.g. [60], checking the

overlapping between the different context types. In what follows, different context

monitoring approaches are presented.

A context monitoring platform, Seemon, is presented in [131]. The platform re-

duces the expensive computation and communication costs in context monitoring for

mobile devices. The reduction is achieved by translating high level context applica-

tion queries into lower level queries in order to optimize the acquisition of relevant

context. In other words in a context aware system, a single context type, e.g. location,

could determine an outcome of a query avoiding the consideration of all the involved

contexts in the query. Context information is obtained through physical sensors mea-

suring features such as energy, temperature, speed, or users heart rate. The approach

uses a query language, similar to SQL, and supports rich semantics for a wide range

of contexts. A processor evaluates different queries over a continuous stream of sen-

sor data. A sensor manager dynamically controls sensors avoiding unnecessary data

transmissions. Its job is to find minimal sets of sensors needed to answer a query. The

use of a query language capable of specifying different conditions in a SQL-type no-

tation simplifies the generation of conditions when generating rules for the behaviour.

However, the use of physical sensors is not adequate for monitoring of non-physical

context aspects such as the knowledge of a user. Moreover, the complexity for the

queries is directly proportional to the amount of sensors used.

49

2. BACKGROUND - STATE OF THE ART

In [64] a comparison between pull and push approaches is presented. The authors

advocate that in pull approaches the user is aware and in control of the systems input

and, therefore, the user is responsible to deliver contextual information. In push ap-

proaches, on the other hand, the user is relieved from the responsibility of delivering

contextual information since this information is triggered by events produced by sen-

sors. Although not explicitly mentioned in the paper, in push approaches, monitoring

is performed in order to capture the events triggered by contextual change, while in

pull approaches, the behaviour of the system varies only with the users context in-

put. These approaches are not mutually exclusive. For example, the pull approach

could help define general context types in order to use a push approach for each of

these general context types. For instance, in a tourism information system, once the

location is explicitly set by the user in a theme park, an advance tourist guide system

suggests attractions based on the attractions estimated adrenaline levels, the users

heart rate, and the specified location in the park. While the pull approach monitoring

assumes a simpler context acquisition (directly from the user); it is more prone to

errors, e.g. a user forgets to change his location.

A software platform, ContextPhone, is described in [193]. The focus is on mobile

devices and its interaction with the environment. It is assumed context information

can be sensed, processed, stored and transferred within the mobile device or outside

it. This is done by physical and logical sensors grouped into specific types relevant

to mobile devices including location, user interaction, communication behaviour, and

physical environment. The grouping into specific relevant types is actually a context

sub-type classification that aims to characterize all the relevant context factors when

developing a mobile application. The sensors type classification is general enough to

allow flexibility when developing applications. The platform allows a design, based

on the available sensing capabilities of a device, which includes context monitoring

capabilities. However, due to the nature of the sensing devices and the fact that

50

2.2. MONITORING

interaction is focused on the device and the environment, monitoring is performed

over environmental context types and no user context is considered.

In [35] an approach is described for monitoring distributed context to support

internet services. It is based on an architecture [2] consisting on three key entities,

namely a user, an operator, and a service provider. For each entity a set of context

parameters is specified in a defined notation, generating what is called a profile man-

ager for each of these entities. Rules can be defined, in order to report when a change

in context information has occurred for a defined entity. When a context change

occurs, it is reported to a special component that evaluates the change and contacts

the service provider by using pre-defined policies. The approach not only manages

distributed context but establishes, trough a series of mechanisms, when to perform

an action based on defined policies. For each of the profile managers a monitor is

in charge of processing the entities events. Also for each profile manager the same

type of monitor operates using defined parameters and notation. Rules established

for each monitor cannot be applied to different ones since they are based on a specific

context. Hence the reuse of rules for similar situations, but different contexts is not

possible.

A lightweight approach to context-sensitivity is presented in [111]. It consid-

ers the middleware limitations in dynamic mobile. The approach proposes gen-

eral guidelines that should be followed in a context-aware application development.

The work aims to provide application developers with access to context information

through simplified interfaces that facilitate the programming tasks and construction

of context-aware systems in resource-constrained devices. In the approach, context

information is accessed through two components namely sensing and sensor moni-

toring. The approach assumes the existence of a special element called host, which

contributes to context information in a network, with concrete monitors and sensors.

The sensing component allows software systems to communicate with sensing de-

51

2. BACKGROUND - STATE OF THE ART

vices connected to a host, while the sensor monitoring component keeps a registry

of monitors available on the hosts. The idea is to make the services available on a

host accessible when building monitors; providing unified functionality and methods

to get values and react to changes. Thus a developer could use available monitors or

create his own. However, when using available monitors it is not possible to specify

the sensing device from which the information is obtained. In this approach context

monitoring is analysed from the developers point of view. It simplifies the process

dealing with context awareness offering developers a familiar way to deal with mon-

itors. No classification or distinction is mentioned referring to the different context

types and since all of the sensing devices mentioned in the study were related to

positioning, we assume the focus in the approach was oriented towards a location

context.

In [166] the authors present an approach to support context recognition and fore-

cast. The work is based on the analysis of mobile devices equipped with different

types of sensors, such as time, brightness, and Bluetooth. In this work, context is

not obtained directly from the sensors, but from states of an abstract state machine.

These states represent the result of the different sensor readings at a defined moment.

For example for a certain time t1 a state s1 is available based on the monitored sen-

sors, if in a subsequent time t2 a change in a sensor occurs, a new state s2 will be

active. More specifically, the extraction of context starts from the monitored raw

data obtained from the sensors. This data is represented as a vector that is classified

into clusters (classes), representing common patterns, in a multi-dimensional feature

space. The approach uses the notion of “class clustering” that allows grouping several

situations, determined by sensors and represented by vectors, into defined classes ac-

cording to the probability that the feature vector belongs to a defined class. Forecast

is executed by predicting other vectors base on the current one. A vector could be

assigned to several classes; therefore it would be helpful to assign descriptive names

52

2.2. MONITORING

to the classes and to classes combinations in order to ease the identification of con-

text at development time. This is a manual labelling process. The main drawback is

that the inclusion of a new sensor could trigger significant changes, modifying not

only the labelling but the cluster as well. In the approach, monitoring is performed

continuously in order to detect changes in sensors.

In [179] a study focused on wireless networks characterized by dynamicity, het-

erogeneity and mobility is presented. The authors propose the use of context aware-

ness in order to manage a distributed network in a heterogeneous environment. This

allows for a self-adaptation of the network, based on distributed analysis. The study

considers a distributed architecture that allows efficient, scalable, and distributed

management operations across a network. An administrator is in charge of context

sensors deployment, which monitor the network on each node. The context sensors

used in the approach are self-contained highly flexible software components that can

monitor specific context types such as QoS or status in a node. In this approach,

the context sensors perform both activities, sensing, and monitoring. Finally context

sensors are not possible to be modified. Every time, a re-configuration for a context

sensor is required, a new context sensor replaces the original.

An approach to represent and reason about physical contextual variability and

its impact on the requirements of a system is presented in [202]. It considers the

system may be required to adapt in order to cope with changes in the context and

fulfilment of the system requirements. The work is based on the problem frame

notation [126][201] for describing a problem in three different sets: a description of

the context in which the problem resides in terms of domain properties, the required

properties of the domain, and what a system must do to meet the requirements. State

machines are used to model the behaviour; a satisfied requirement is presented as a

final state and an unsatisfied requirement is presented as an error state. The approach

considers a scenario with separate physical domains where context variations occur.

53

2. BACKGROUND - STATE OF THE ART

However, the approach may not be suitable in scenarios where domains go beyond

physical components, e.g. user context.

In [40] a proposal is presented for discovery and execution of web services by

using contextual agents. In the proposal each agent monitors the user context and the

services capabilities so that relevant web services are made available, or suggested

to users. A service for a user is made available or suggested by an agent based

on pre-defined rules in a user profile. These rules deal with three main domains

related to context: user role, user action type and information and information type.

User role describes the nature of the users task. User action describes a specific

action. Information type delivers information of the local user. An agent searches for

services and information relevant to the users, based on the user profile. Rules are

either defined by the user or by the agents based on rules for other users. Profiles are

updated based on users preference when a particular service capability is not defined.

While the approach is adequate for discovery and execution of web services, it is not

well suited for monitoring; a considerable number of irrelevant preferences can arise.

The approach deals with context definition and acquisition in a novel manner. More

specifically the contextual agent collects information from the users interaction with

the system, correlates the collected information to generate a query. For example if

a user is repeatedly searching a product X in the internet, the agent can generate a

query based on different information of the product X, e.g. price, colour, and execute

a query to find a web service that provides relevant information of product X.

Classification

In what follows we provide a classification of context monitoring approaches. We

base our classification on the various implementation aspects and the application of

the surveyed approaches. More precisely we discuss the works according to i) Con-

54

2.2. MONITORING

text Acquisition, ii) Context model, iii) Adaptation, and iv) Architecture. It should be

noted that these categories are motivated by the monitoring and adaptation taxonomy

described in [115]. More specifically, categories context acquisition and architecture

comply with the How dimension presented in the monitoring taxonomy in [115]. The

context model category comply with the What dimension presented in the monitoring

taxonomy in [115]. The adaptation category complies with the What and the How

dimensions presented in [115].

i) Context Acquisition: This category refers to the mechanism that has been used

to collect context information for the monitoring process. It is found in the

literature that context information can be collected broadly in two ways and

these are,

a) Physical sensors, which consist of hardware devices that collect context in-

formation directly from the environment of the monitored system (e.g. tem-

perature, brightness) [131][166][201].

b) Logical sensors, which are implemented as software modules that may com-

pute context information based on the context information collected by the

physical sensors (e.g. average temperature), collect context information by

polling system parameters (e.g. battery level of a PDA), or collect context

information from user profile [35][37][40][179]. However, it is also possible

for some context monitoring approaches to apply both methods (i.e. physical

and logical sensors) to collect context information [111][166][193].

ii) Context Model: This category refers to the technique that has been used to define

and store context information in the presented works. Context can be modelled

in many ways including,

a) Simple attribute/value pairs, with predefined semantics of the attributes and

55

2. BACKGROUND - STATE OF THE ART

possible set of values. This approach allows expressing simple logical con-

ditions on the attributes [37][193].

b) Structured language that based on some formalism, e.g. predicate calculus

based language can support application of Boolean algebra [17].

iii) Adaptation: This category refers to system support for any type of adaptation

due to context change. Two types of adaptation are found in the literature and

these are,

a) Adaptation of the monitored system where the monitored system can adapt

itself according to some predefined set of policies while a change in the con-

text is identified by the monitor (e.g. for video streaming a fall in the available

bandwidth sets video quality rendering to a lower quality) [37].

b) Adaptation of the monitor where the monitor can adapt itself with respect to

a change in the context (e.g. a monitor may start monitoring a new set of

rules when a room temperature rises above a certain threshold) [131].

iv) Architecture: We use this category to discuss the implementation architecture of

the presented work. A context monitoring system can be implemented in many

ways including,

a) Middleware between application and the environment of the application, where

the middleware collects context information from the environment and eval-

uates the context conditions set by the application and returns the evaluation

result to the application [37][111][131].

b) Non distributed architecture where context information is gathered by the

application directly from the environment through sensors or input devices

[166][202].

56

2.2. MONITORING

In all of the analysed approaches the categories dealing with Context Models,

Adaptation and Architecture allowed a single classification (e.g. either simple at-

tribute/value or structured language for Context Model) or were non-applicable for

the approach (e.g. adaptation undefined for the system and for the monitor in Adap-

tation). For the category of Context Acquisition, on the contrary, around half of the

approaches considered both classifications (i.e. logical and physical sensors) to col-

lect context information.

2.2.3 Human Computer Interaction

HCI monitoring is used to design systems in such a way that a system may adapt

itself based on the interaction of the user with the system and assists the user to

accomplish his task more conveniently. In what follows we present a survey on the

Human Computer Interaction (HCI) monitoring.

A novel method for detecting interaction styles in a human-robot relation using

time series analysis is presented in [98]. It consists of an algorithm, based on a clus-

tering method for the extraction of relevant information, that recognizes on real time

pre defined tactile interaction styles between a human and a robot. Interaction styles

are defined as behaviours between the user and the machine, e.g. rudeness, frequency,

and the algorithm is able to recognize and classify such behaviours in a reduced pe-

riod of time. The relevant information extraction is possible due to the fact that as

signals occur they are grouped into a defined length set for pattern recognition using

a previous set. The authors claim the algorithm could enable real time adaptation

of machines to interaction styles. Although not explicitly mentioned, monitoring is

constantly performed, i.e. every time a set of grouped signals is compared to another

one. The main drawback with this approach is its dependency of a constant human

machine tactile interaction. A more sporadic interaction could be not appropriate

57

2. BACKGROUND - STATE OF THE ART

for the clustering method and, even worse, a single signal or event, would be almost

impossible to recognize based on the patterns.

In [99] Classroom, an automated lecture facility system, is presented. The system

watches and listens to its user (i.e. a lecturer in a classroom) and, when appropriate,

assists the user. Classroom also produces video feed suitable for distance learning and

is able to automatically focus on the point of interest during a presentation, e.g. if the

lecturer starts writing on the board, Classroom automatically focuses its presentation

camera on the words and figures been written. Classroom represents the activities

taking place as a process that contains a sequence of actions and keeps its process set

synchronized with what is actually happening by comparing the sequence of actions

in the process against the set of events collected through the sensing systems. The

approach is highly dependable on the physical interaction of the user and does not

consider user contexts.

In [157] an approach that monitors user actions in a system providing appropriate

suggestions to the user is presented. The approach infers, from the user interactions,

the interests from the users. The feedback provided to the user considers only the

information considered as of interest to the user and exclude non interesting informa-

tion. In this approach a user is modelled as a list of keywords. Keywords are derived

from user interactions (e.g. keyboard input, user email, web pages read) and then a

list is produced by determining the relative frequency of the original keywords. The

system also gathers information from the outside world (e.g. observing other running

applications). This information is compared with the user model and rated according

to how much it overlaps with the user model.

In [151] a user interface agent, Letizia, is presented. It assists users browsing

the World Wide Web according to the users interest. The above is accomplished by

tracking users browsing behaviour. The approach applies a set of heuristics to model

58

2.2. MONITORING

the users browsing behaviour. The approach relies on strategies such as assigning

a degree of interest according to the amount of time a user spends for a link or the

continuous visits from a user for a specific link. By analysing the user interest, the

approach complies a set of recommendations that the user can either to follow or re-

ject. The main drawback in this approach is that no external factors are considered

when the user interacts with the system. Furthermore the approach assumes a con-

stant level, e.g. attention, when interacting with the system that remains unchanged

during the whole interaction.

In [52] a system that monitors information requested and accessed by users in

browser applications has been proposed. Monitoring in this case is used to analyse

users interaction with the browser and, based on it, pro-actively suggest the user some

useful resources. The information sources as well as the applications involved are

connected to the monitor system via APIs, and special adaptors for each application

are available in order to exchange information. The approach considers context with

respect to tasks performed by a user. More specifically, information that has been

used by a user serve as a guide for another user. This however involves a privacy

violation since the information required and accessed by a user is kept in the system

and made it available for other users.

HCI monitoring is also exploited to produce indicative feedback for the learners

in informal learning environment, e.g. web based educational blogging or collabo-

rating writings. The approach in [104] proposes a four layer architecture to generate

feedbacks to the user. In the first layer a sensor service monitors the learners interac-

tion with the system. In the second layer an objective is created based on the learners

actions. In the third layer the objective is contextualized regarding the learning sit-

uation and learning process. Finally in the fourth layer, the generated feedback is

reported to the learner.

59

2. BACKGROUND - STATE OF THE ART

Various applications dealing with implicit HCI are discussed in [205]. Implicit

HCI is defined as any action performed by the user where the user is not intended

to interact with the system but the system can consider such action as an input along

with the explicit input to the system, e.g. a system may automatically switch on

the light when a user walks in a dark corridor. A user walking in the corridor may

not intend to interact with the system, nevertheless the system considers this user

action as an input. These type of systems rely on two major concepts, i) perception,

i.e. the ability to perceive the environment and circumstances using sensors and ii)

interception, i.e. the mechanics to understand what the sensors capture. The paper

argues implicit HCI can be applied to improve the input/output capabilities of small

appliances, e.g. PDA, mobile phones, as such appliances often suffer to offer optimal

input/output capabilities due to lack of spaces. However since interactions do not

directly depend on the user, an undesired behaviour can be easily triggered.

In [17] user interactions are analysed and compared with expected models of

user activities. The expected model of the user activities is represented as a task

model that specifies the hierarchical and sequential structure of tasks that should

be performed to achieve users goal. Task models are specified using a description

language that provides formal syntax and semantics for creating task models. The

framework contains an event database and a handler that manages user events from

instrumented applications. These events can be low level system events. e.g. a

mouse click, or higher level application events, e.g. selection of a menu item. A

task monitor receives events from event handlers and monitors the users progress by

matching the events to the user task model. The task monitor notifies the user level

services of user task related events e.g. starting or finishing a task. In the approach

a correct execution would involve the correct execution of all tasks related to the

specified goals. The approach does not consider any user factors with exception to

those related to the interaction.

60

2.2. MONITORING

In [78] a study is presented to generate, at run-time, homogeneous and coherent

user interfaces with independence of the device used by the user for the interaction.

User interface (UI) components representing small widgets are associated with busi-

ness components which contain application logical parts. The construction of an in-

terface is based on the dynamic merging/separation of UI components. An interface

adaptation is possible according to the business constraints. An interface service pre-

pares the components for interaction and an interaction server. An interaction server

is in charge of binding/unbinding components. Thus when a business component

is used, the interaction service detects it and generates the adequate interface. The

approach deals with adaptation of the interface, however it does not consider user

characteristics in the process.

A framework for multi-target user interface (UI) design is proposed in [54][228]

[226]. It includes a tool which serves as an instrument to help designers and de-

velopers structuring the development of plastic interactive systems. The idea is to

design/develop models being used in current practice and improve them according

to the variations in context, e.g. visualization from mobile devices, visualization

from a PC. In order to accomplish the above different descriptions are made speci-

fying concepts models, task models, platform models, environment models, and user

models. Concepts models describe the entities and relation between entities the user

manipulates. Task models describe how the user reaches his goals. The platform,

environment, and user model define the platform environment and user the UI should

cover. During the development process the previous descriptions are referenced. The

development process considers the combination of different models for a particular

target and the creation of bridges between the descriptions for different targets. User

context in this case is limited to the specified in the models, however these models

seem to focus on the interface, rather than the user.

Studies have been performed in the are of physiological monitoring. More specif-

61

2. BACKGROUND - STATE OF THE ART

ically in [45] a study for face expression recognition is presented. It aims to establish

the relation between user affective states, i.e. positive and negative states, and a de-

fined task to be performed. Tasks are composed of different activities with different

levels of complexity. The monitored events are captured using specialized sensors for

muscles recognition during a defined task. The study is presented as a complement

when monitoring affective responses since users facial recognition is part of phys-

iological monitoring in HCI. The approach is innovative but limited to the specific

context involving face expression recognition.

Classification

In this section we provide a classification of the HCI monitoring approaches. We

consider almost the same categories we used in section 2.2.2 to discuss context mon-

itoring approaches, except for context acquisition and context model. Instead of the

categories context acquisition and context model we use the categories event acquisi-

tion and user model respectively. This is because HCI monitoring process compares

the events produced through the users interaction with the system against an expected

model of the user activities. We discuss the works according to i) Event Acquisition,

ii) User Model, iii) Adaptation, and iv) Architecture.

i) Event Acquisition: This category refers to the mechanism that has been used to

collect runtime events for the monitoring process. In case of HCI monitoring

runtime event stream is produced by users interacting with the system and the

monitoring process may collect the events through various means including,

a) By instrumentation of the application or applying an adapter to the applica-

tion the user is interacting with [17].

b) Physical sensors can be used to collect user activities (e.g. movement of a

user in a room, eye gaze of user) [45][98][99][104][157][205].

62

2.2. MONITORING

c) Events can be captured from the interactions a user makes through the in-

put devices of the system (e.g. keyboard typing, or mouse click) [52][151].

However some approaches apply both the physical sensors and input devices

to collect runtime events [157].

ii) User Model: This category refers to the technique that has been used to define

the activities that the user should perform to achieve the goal. User model is

mainly specified in two ways and these are,

a) List of simple keywords, where each keyword signifies a user activity. In this

approach key words are defined in terms of the basic user interactions (e.g.

keyboard input, user email, web pages read) and then the lists are created by

analysing the relative frequencies of the keywords [151][157].

b) By using structured description language that specifies formal syntax and

semantics to express user activities [17][99][205].

iii) Adaptation: This category refers to system support for any type of adaptation

due to user’s interaction with the system. It is found in the literature that based

on the HCI monitoring result a system can offer two types of adaptation and

these are,

a) The system can adapt itself to assist the user in achieving the goal. For exam-

ple in an automated distant learning configuration when the monitor detects

that the lecturer is about to start speaking the system can turn on the audio

transmission, or a system may adapt its graphical interface based on the user

interaction [54][99][78][205][226].

b) The system can suggest the user a set of activities that the user may be inter-

ested in to do next. For example, if a user repeatedly visits a web page then

the system may suggest similar web pages for the user based on the content

of the current web page [52][104][151][157].

63

2. BACKGROUND - STATE OF THE ART

iv) Architecture: We use this category to discuss the implementation architecture

of the presented work. A HCI monitoring system can be implemented in many

ways including,

a) Client server architecture where the client provides a front end to the user

and collects the user interaction and the server acts in the back end as the rea-

soning engine that receives the events and compares the events with available

user models [17][104].

b) Agent based shared repository architecture where different agents collect run-

time events and store in the shared repository and the monitoring agents ac-

cess the shared repository to perform the monitoring process [52][157].

Again, in all of the analysed approaches the categories dealing with User Model,

Adaptation and Architecture allowed a single classification. For the category of Event

Acquisition, the use of more than one mechanism to collect runtime events for the

monitoring process was considerable reduced when compared to context monitoring,

in fact few of the approaches considered different mechanisms to collect runtime

events.

2.2.4 Correspondences

From the previous classifications it can be observed that those approaches dealing

with HCI and context are, most of the time, strongly related and that their differen-

tiation can be, some times, quite hectic. This problem becomes clearer when trying

to analyse approaches dealing with HCI and the monitoring activity, and context and

the monitoring activity separately. Furthermore, approaches dealing with SBSs mon-

itoring are not exempt from this relation. In fact, as long as a SBS envisages human

interaction, e.g. [37][173], correspondences can be found among the system, HCI

and context.

64

2.2. MONITORING

As a consequence of the above, the approaches previously described in sections

2.2.1, 2.2.2, and 2.2.3 can be further categorised according to different criteria. In

what follows we provide a general classification of the previous analysed approaches

based on their similitude. More specifically, the classification considers approaches

dealing with i) HCI and context acquisition and processing and ii) HCI and context

taxonomy.

The group of approaches dealing with HCI and context acquisition and process-

ing, e.g. [35][45][98][131][173][193], is characterized by the use of widgets and/or

user pre-established configurations or preferences (e.g. threshold levels). The contex-

tual information in these scenarios is obtained from the surroundings using dedicated

sensors, e.g. location sensors, and processing it according to a default configuration,

or a specific configuration defined by the user. These approaches are characterized

by their focus on a particular environment, with specific context types and associated

pre defined conditions; making them, most of the time, unsuitable even for slightly

different scenarios.

The second group, dealing with HCI and context taxonomy, aims to classify con-

text types from a high level perspective by proposing general context models (see 2.3)

and taxonomies, e.g. [37][49][42][206][201][207]. In these approaches the goal is to

categorize, if not totally, partially, the surrounding context of interest for a system.

A common characteristic in these studies is the initial and generic context classifi-

cation. This classification consists of a reduced number of context types (usually no

more than four or five), expressed in natural language. On one hand, generality of a

context type definition allows for a wide range of factors (or other sub-context types)

to be part of the definition. On the other hand generality carries the problem it may

get to be too abstract, or inadequate, for specific scenarios.

65

2. BACKGROUND - STATE OF THE ART

2.3 Context Modelling

Perhaps one of the most recent and widely accepted context definitions is the one

given in [116], where context is any information that is computationally accessi-

ble and upon which behavioural variations depend. However, besides this, several

other definitions and characterizations have been given for the term and, along with

these definitions and characterizations, different context models have been proposed.

These context models aim to provide a better understanding of the properties, as-

pects, categories, or dimensions related to context. It has been noticed that most of

the approaches dealing with context models or context modelling are general in order

to cover different scenarios. The approaches described in this section address context

modelling in SBSs. They propose new context models to cover issues ranging from

requirements elicitation to the development of context aware applications.

In [49] a context model has been proposed for the formalization of the most rel-

evant aspects characterizing a Service-based System (SBS). It consists of an XML

representation of the main context components for SBSs featuring six main dimen-

sions that are used to describe the status of an application. These dimensions include:

i) time, referring to the information about the time in which the system is accessed;

ii) ambient, related to space factors (e.g. address) or environmental conditions of

the user; iii) user, concerned with the privileges, roles, and preferences of users; iv)

service, related to information about the services in the system; v) business, which

takes into account business application factors; and vi) computing, which specifies

the available software and/or hardware characteristics.

An ontology-based context framework is presented in [18] and [19]. The work

in [18] aims to facilitate the development and deployment of context-based web ser-

vice applications. The work in [19] aims to dynamically integrate context model-

based constraints into web service processes. The context model is composed of four

66

2.3. CONTEXT MODELLING

context types, namely Functional, QoS, Domain, and Platform context. Functional

context describes the operational features of services in terms of i) syntax: input and

output parameters; ii) effect: pre and post-conditions; and iii) protocol: rules and data

flow. QoS context deals with the needs, explicitly declared by the user and require-

ments not known to users. It includes i) runtime attributes: measurable properties; ii)

financial/business attributes: assessment of a service from a financial perspective; iii)

security attributes: whether the service is compliant with security requirements; and

iv) trust attributes: relationship between clients and providers. The Domain describes

each application in its own context including i) semantics: concepts and properties;

ii) linguistics: the language used; and iii) measures and standards. The Platform

context category describes the technical environment. It involves i) devices: com-

puter/hardware platform, and ii) connectivity: network infrastructure.

An integrated context model for business process management is presented in

[242]. The approach aims for an integrated view of context data belonging to context-

aware services, workflows, human tasks and their interrelations. The model consists

of three parts: workflow model, service model, and task model. Each part is rep-

resented in terms of classes with sub-classes in some cases. For each class there

are attributes describing states and context. The workflow model is concerned with

the control flow of the application, including state of execution, processed data, and

generated tasks. The service model is concerned with services, including supported

operations, access protocol, and performed operations. The task model is concerned

with human tasks, including action, duration, origin, and destinations.

A framework for context information provisioning is proposed in [16]. The

framework relies on context service deployment on the cloud and use of context

brokers to mediate between context consumers and context services using a pub-

lish/subscribe model. A multi-attribute decision algorithm is used for the selection

of potential context services that can fulfil contexts consumers requests for context

67

2. BACKGROUND - STATE OF THE ART

information. The selection is made based on the QoS and quality of context infor-

mation (QoC) requirements expressed by the context consumer. Context information

is processed according to who, where, when, what, and why a service was invoked.

This is enough to respond to different situational circumstances, e.g. the identity of

client who invoked a service, the activity that the client is carrying out at the time it

invokes a service, and the device a client is using to invoke the service.

A service-based approach to develop context-aware automotive telematics sys-

tems is presented in [230]. Telematic systems are automotive technologies combining

advanced communications and vehicle technologies. The approach utilizes services

as a means to acquire context and assist telematics in adapting contexts. A four-layer-

architecture enables the separation of development of telematics and management of

context adaptation. The first layer supports the operation and integration between

hardware and sensors. The second layer wraps functions (from the first layer) as

physical context services that expose standard WSDL. This layer also manages dis-

covery and binding of external services provided by a third party, e.g. location ser-

vices. The third layer includes social context models that represent relationships and

interaction constraints between entities, as well as how interactions are affected by

physical context facts. Each social context is modelled using a role-oriented adaptive

design composition consisting of functional roles, interactions constraints, and orga-

nizer role. A social context model is implemented as a service that exposes WSDLs

interfaces corresponding to its functional role. The fourth layer includes context-

aware telematics that use context services (social and physical) to “sense” context

and adapt themselves in response to changes of context.

In [213] a context-based model for access control in mobile web services is pro-

posed. The work combines semantic web technologies with context-based access

control mechanisms. An ontology is used for modelling and reasoning about context,

and specifying access control policies. The context model consists of four different

68

2.3. CONTEXT MODELLING

context types covering access control: subject contexts, object contexts, transaction

contexts, and environment contexts. In the case of subject contexts, a subject is an

entity that takes action on an object or resource. Subject contexts define the specific

subject-related contexts that must be held by a subject to obtain rights to use an object

or resource. In the case of object contexts, an object is an entity that is influenced

by a subject. Object contexts are any object-related information that can be used for

characterizing the situation in which an object was created and information about its

current status. In the case of transaction contexts, a transaction involves the user,

the mobile platform, the specific resource or service, and the physical environment.

Transaction contexts specify particular actions to be performed in the system. In the

case of environment contexts, an environment describes the operational, technical,

and situational environment at the time a transaction takes place.

In [55] the work proposes a framework, a computational context modelling frame-

work (CCMF), to extend software in order to integrate context. The framework relies

on the reuse of artefacts and tools to automate analysis and development activities

related to the making of context-aware web applications. The instantiation of the

framework considers two different cases i) integration of a computational context

modelling diagram (CCMD), which allows the creation of diagrams to model con-

cepts related to computational context (it includes six different context dimensions)

and ii) the embedding of ontologies to support the representation of context structures

and the generation of context aware mechanisms. Both, i) and ii), intend to enable the

development of context-aware web applications. According to the authors, use of an

ontological approach leads to a reduced framework when compared to the CCMD ap-

proach. Whether adopting CCMD or ontologies as development framework depends

on what is the intended context information source.

In [122] a formal definition of services with context-dependent contracts is pre-

sented. The approach proposes a composition theory of services with context-dependent

69

2. BACKGROUND - STATE OF THE ART

contracts taking into consideration: functional, non-functional, legal and contextual

information. A formal verification approach transforms the formal specification of

service composition into extended timed automata that can be verified using a model

checking tool. The key concept in the approach is a package, called ConfiguredSer-

vice, in which service functionality, service contract, and service provision context

are bundled together. The ConfiguredService consists of two essential elements con-

tract and context. The context part of the ConfiguredService includes i) contextual

information and ii) contextual rules. Contextual information is specified using three

dimensions: where, when, and who, associated to location, temporal information,

and subject identities respectively. Contextual rules define information related to the

service requester; contextual rules are defined as constrains in a subset of time com-

putation tree logic (TCTL).

2.4 Service-based System Adaptation

In [51] a framework that allows to model dynamic, adaptable and context aware

service-based applications is presented. In this work, processes are modelled as

Adaptable Pervasive Flows (APFs) [50], which are an extension of the traditional

workflow language (i.e. WS-BPEL). The use of APFs makes processes more suited

for adaptation and execution in dynamic environments. In addition to the classical

workflow language constructs, APFs add the possibility to model abstract activities.

An abstract activity is defined at design time in terms of the goal it needs to achieve

and is dynamically refined at run-time into an executable process, considering the set

of available services, the current execution context and its goal. The context model

is described as a set of context properties, each modelling a particular aspect of the

application domain. Every context property is modelled with a context property di-

agram, which is a state transition system capturing all possible property values and

70

2.4. SERVICE-BASED SYSTEM ADAPTATION

value changes. A specialized engine manages the execution and adaptation of the

processes. The approach supports two different dynamic adaptation mechanisms:

vertical process adaptation by automatic service composition, and horizontal process

adaptation by context-aware re-planning. The framework supports two different dy-

namic adaptation mechanisms: vertical process adaptation [216], i.e. by automatic

service composition, and horizontal process adaptation [51], i.e. by context-aware

re-planning. Probably the main drawback in this approach is that all participating

services and the defined goals need to be manually annotated, so they can be used in

the state transition systems.

In [59] a plug-in architecture for self-adaptive web service composition is pre-

sented. In this approach adaptation features for SBSs are modularized as aspect based

plug-ins (the approach makes use of the aspect-oriented programming paradigm). An

aspect-aware orchestration engine takes care of managing all active plug-ins and their

dependencies. The orchestration engine can be extended by self-adaptation plug-ins

using extension points. Each plug-in follows a well-defined objective and consists

of several aspects and infrastructural services. A plug-in is developed by domain

experts, e.g. an administrator and can be deployed to the orchestration engine at run-

time. Finally, inside plug-ins two types of aspects are used i) monitoring aspects,

which collect information and decide based on it whether adaptation is needed, and

ii) adaptation aspects, which handle the erroneous situations and events detected by

the monitoring aspects.

The work in [49] considers context, and its evolution, as the triggering element

in the adaptation of SBSs and proposes an approach to design and develop adaptable

SBSs. The approach is based on the life-cycle proposed in [9] that highlights the

typical design iteration cycle along with a second iteration cycle, at run-time, that is

undertaken whenever adaptation is necessary. The approach includes a context model

that includes the most relevant aspects characterizing a SBS and consists of six gen-

71

2. BACKGROUND - STATE OF THE ART

eral dimensions including: time, ambient, user, service, business, and computational

context. In this model each dimension can be further refined. The context-aware de-

sign process consists of three phases: i) context modelling, ii) modelling adaptation

triggering and requirements, and iii) construction of contextual monitors and adapta-

tion mechanisms. In each phase the contextual dimensions are exploited in order to

cover the possible influential factors in the system behaviour that could lead to the

need for adaptation.

In [142] the authors propose an adaptation approach focusing on business in-

terfaces and protocols adapters, this proposal is based on their observations where

many of the differences between business interfaces and protocols are recurring. The

approach relies on the use of patterns for capturing the recurring differences and

providing solutions to these differences. The approach leverage mismatch patterns

for service adaptation with two approaches, i) by developing stand-alone adapters,

which consists on developing a third service that mediates the interactions between

two incompatible services and ii) via service modification using an aspect-oriented

approach. Guidelines are provided to help developers to decide on situations in which

strategy, i or ii, is preferable. Mismatch patterns provide a simple and effective ab-

straction for capturing and resolving differences. They include, information regarding

the type of difference captured, the needed information when instantiating an adapter

and sample usage among others.

The work in [66] proposes a framework that allows users to specify the QoS

parameters they require and undertakes the task of location and invoking suitable ser-

vices. The framework complements the BPEL execution with features that involve

i) specifying an execution policy, which comprises of restrictions for QoS attributes

and defining ranking criteria in terms of QoS characteristics ii) the dynamic choice

of the best available service according to a given policy, and iii) automatic exception

handling in the presence of system faults. The approach does not use pre-determined

72

2.4. SERVICE-BASED SYSTEM ADAPTATION

paths, instead it selects services dynamically from a registry. In order to perform the

latter, the framework includes two additional modules: an alternate service operation

binding (ASOB) and a preprocessor. The ASOB a) selects the best matching oper-

ations operations according to specified QoS, b) transforms messages and results to

tackle syntactical differences between services, and c) intercepts exceptions and re-

solve them by invoking equivalent operations. The preprocessor transforms the BPEL

scenarios allowing direct invocations, it also allows to include, in each invocation, all

the necessary information for selecting the best available operation.

In [245] a cross-layer adaptation manager (CLAM) is proposed. It tackles the

problem associated to the isolation of different layers when performing adaptation.

In other words, most of the existing approaches focus on a particular layer, e.g. appli-

cation, excluding the impact this adaptation may have in a different layer, e.g. infras-

tructure. The approach proposes a platform that integrates and coordinates different

adaptation approaches, focused on different aspects of a SBS. The adaptation man-

ager is based on a comprehensive high-level model of the application and of the layers

behind it. The approach also includes for each model element2 i) a set of analysers,

verifying whether there is a need for adaptation, ii) a set of solvers for identifying

possible solutions, and iii) a set of enactors to apply the solutions on an element.

The approach consists of five main parts: i) a rule engine, where rules are imple-

mented for the overall supervision, ii) checkers, related to the capabilities plugged in

the platform, iii) model updater, in charge of the system configuration, iv) tree con-

structor, where results of the cross-layer adaptation are continuously updated, and v)

strategy ranker, where the tree is traversed to output validated and ranked adaptation

strategies.

Another multi-layer adaptation approach is proposed in [13] and [14]. The ap-

2These elements depend on the layer, for example for the application layer an elements can be a
process activity

73

2. BACKGROUND - STATE OF THE ART

proach proposes a proactive adaptation of service-based compositions by i) the use

of techniques predicting QoS aspects, ii) the analysis of dependencies between the

different services, and iii) the consideration of groups of operations instead of sin-

gle operation for a replacement. Proactive adaptations occur when i) problems arise,

causing the composition to stops its execution, ii) an improvement in the composition

is possible, iii) there is emergence of a new requirement iv) a better service becomes

available.

In [77] a theoretical framework is proposed to cope with unplanned exceptions

in a service composition. The work includes the implementation of a process man-

agement system (PMS) which features a set of techniques to deal with unplanned

exceptions. In the work, the attention is centred on highly pervasive scenarios. In

order to provide an automatic adaptation in these scenarios the approach relies on

the use of situation calculus [195], and automatic planning. Also, an interpreter, In-

diGolog [103], is used to support on-line planning and plan execution in dynamic and

incompletely known environments. Adaptation is synthesized automatically without

relying on the intervention of domain experts or the existence of specific handlers

to cope with exceptions. Monitoring the behaviour, in order to establish when to

perform adaptation, is based on previous works which consider situation calculus

agents.

In [246] a dynamic process reconfiguration is presented. The approach consists

in the replacements of failed services by new ones, taking also in consideration the

process still meets the QoS constraints specified by the user. The approach relies in

the use of an iterative structural inspection algorithm designed to perform reconfig-

uration when a failure occurs. As a consequence, when one or more services fail at

run-time the approach tries to replace only the malfunctioning services, however if a

replacement for some failed service cannot be found, adjacent services may gradually

be taken into consideration until a satisfactory solution is found. Services candidates

74

2.4. SERVICE-BASED SYSTEM ADAPTATION

are identified for each participating service based on syntactic and semantic match-

ing.

In [10] and [22] approaches toward the self-healing for service composition are

proposed. The work in [22] proposed an adaptation based on monitor rules and es-

tablished reaction strategies. Similarly, in [10] monitor and recovery actions are used

for a system adaptation. The main issue in this approaches deals with the fact monitor

rules and recovery actions must be predefined.

In [15] a framework is described to perform run-time system adaptation. More

specifically, the framework allows for the development and the deployment of adapt-

able applications, which consume and provide services, targeted to mobile resource-

constrained devices in an heterogeneous network. This is accomplished by using

the chameleon programming model that, extending the JAVA language, permits de-

velopers to implement services in terms of generic code. This code, opportunely

preprocessed, generates a set of different Java components that represent different

ways of implementing a provider/consumer application. The framework focuses on

the fulfilment of non-functional requirements and specific context of use.

The work in [88] deals with models associated to non-functional properties and

adaptation triggered by rules associated to the models. It proposes the creation of

models their constant update at run-time. The idea is to provide a better represen-

tation of systems in dynamic environments where value of parameters change over

time. The analysis of an updated model at run-time allows for the detection or predic-

tion of a property violation. This may trigger automatic reconfiguration or recovery

actions aiming at guaranteeing established rules are not violated. The approach relies

on the use of a Bayesian estimator for the collection of data at run-time.

In [169] the authors propose the proactive adaptation of a system triggered by

prediction of failures in the process. The approach relies on a proactive adaptation

75

2. BACKGROUND - STATE OF THE ART

process, i.e. an adaptation occurs before a violation actually happens, based on a

future prediction. The approach involves augmenting the service monitoring process

with online testing, to produce failure prediction with confidence. The work covers

an area that has not been fully addressed, which deals with the problem of whether

to adapt a system based on a predicted future failure.

Classification

Approaches related to the adaptation of SBS can be classified according to different

categories including, among others, i) the type of strategy, i.e. proactive or reactive,

ii) whether the approach aims for a single layer or multiple layers, i.e. application,

service and infrastructure layers (see [163]), in the adaptation process or iii) compo-

nents involved in the adaptation.

i) Strategy

a) Reactive Adaptation: in this case the adaptation process is triggered as a

response to a known, past event.

b) Proactive Adaptation: in this case the adaptation process is usually triggered

by inference. This inference can be the result of some logical evaluation of

observed events or based on statistical analysis.

ii) Layers tackled in the adaptation

a) Single layer Adaptation: the adaptation focus on a specific layer, e.g. appli-

cation layer.

b) Multi-layer Adaptation: the adaptation focus on the different layers and eval-

uates how a change in one layer can affect the another.

iii) Components

76

2.5. MONITOR ADAPTATION

a) Variable: in this case components related to the adaptation may correspond

to modularized plug-ins, which may change even at runtime.

b) Static: in this case the components related to the adaptation correspond to

pre-defined self-adaptive features.

2.5 Monitor Adaptation

Most of the existing approaches addressing adaptation of SBSs focus, as expected,

on the adaptation of the application using service re-composition mechanisms. Typ-

ically, adaptation approaches make use of monitor components to support the identi-

fication of problems in the service-based system triggering the need for adaptation.

These monitor components are responsible of verifying the behaviour of a service-

based system with respect to some pre-defined properties and requirements. An

important problem is concerned with the support for the adaptation of the monitor

component itself. For example, the support for changes in the monitor rules due to

changes in the system, what exactly needs to be monitored at a certain time, or even

changes in the monitor component are issues normally excluded from the adapta-

tion process. In what follows, we describe some approaches concerned with monitor

adaptation.

A run-time monitor architecture for web services is presented in [46]. The work

aims to provide a holistic monitoring framework by enabling the integration of differ-

ent verification tools. The architecture is capable of integrating different monitoring

approaches and it was designed with the intention of being pluggable to support mul-

tiple concurrent monitors for different monitoring aspects. The work described in

[46] concentrates on the behaviour verification of services with respect to their ad-

vertised specification during run-time. The approach is based on stream x-machines

(SXM) to represent the behaviour of web services. SXMs are special instances of

77

2. BACKGROUND - STATE OF THE ART

x-machines capable of representing both data and control of a system. An integrated

tool in the monitoring architecture is used to process the requests/responses to the

SXM. The outputs of both SXM models and web services are compared. If there is

a match with the outputs, the service behaved as expected; otherwise a deviation oc-

curred. In this work, monitor adaptation is concerned with SMX models since a new

web service in the service composition implies the creation of a new SMX. How-

ever, it is not clear whether the creation of a SXM is a fully automated process in the

approach.

In [198] the authors present a component-based framework for monitoring and

managing features of composite SOA applications. Their proposal relies on the use

of components responsible for each activity, namely monitoring component, SLA

analysis component, decision taken component, and execution of actions component.

In the framework, the different components are attached to each service being man-

aged in order to provide the required information. For example, the monitor com-

ponent collects, stores, and filters information. The framework works by monitoring

data from each individual service and calculating a set of metrics for them. The list

of available metrics is exposed by the monitoring component and used by the SLA

analysis component which can read the metrics and check if the specified conditions

are being fulfilled or not. In the case in which a condition is not fulfilled, or has some

risks of not being fulfilled, the decision component is activated and decides on the ac-

tions to be taken. When a set of actions are identified, they are passed to the executor

component to be executed over the managed service. The work supports the addition

and removal of different components at runtime. For example, a service to which

no monitoring information is required may not need the monitoring component and

may only have an execution component to modify some parameter of the service.

The monitor component can also be adapted with respect to the use of appropriate

sensors depending on input data.

78

2.5. MONITOR ADAPTATION

The approach in [231] discusses the use of autonomic workflows (AWs) to self-

manage processes based on service composition. An AW is an extended workflow

that contains semantic information about the process to be executed, its objectives,

and all related data and constraints that may be useful for the formulation of the

process. The approach supports adaptation of autonomic workflows based on their

life-cycle, i.e. inception, binding, and execution. In the work, the adaptation is based

on the use of policies and reactions to process anomalies. Policies are pre-defined at

a high level language as event-condition-action (ECA) rules and are kept in a knowl-

edge base. The approach manages the workflow during all its life-cycle by collecting

and organizing the information from the operating environment. The collected infor-

mation is used together with semantic descriptions of services for adapting, reacting,

and improving the workflow at run-time using the ECA rules. The approach also uses

a Manager component to support some of the monitoring activities (e.g., checking ex-

ecution, handling anomalies) of a workflow. When there are changes in the workflow,

the Manager checks the new workflow using the ECA rules in the knowledge base.

In [76] a high-level model for adaptation is proposed. It focuses on the adaptation

of a service composition taking into consideration global constraints, e.g. the execu-

tion of a service-based application within a time constraint. The approach relies on

the creation of an organization model (OM) based on a BPEL specification. The OM

involves the use of agents (each agent is bounded to a different service), models of

complex collaborations between different agents, and specification of rules trigger-

ing adaptation. In the work, agents are used to establish the correct execution of a

service in a service composition and to trigger the adaptation of the service compo-

sition. This is done by checking the information of the agents and verifying whether

rules are being satisfied. When a rule is violated the agent is replaced (i.e., the re-

placing agent is bounded to a different service). In the approach, agents also contain

monitoring mechanisms that allow them to pro-actively decide to stop participating

79

2. BACKGROUND - STATE OF THE ART

in a service composition, e.g. an agent can monitor its SLO and predict than an SLA

will be violated. When an agent decides not to participate in a service composition,

a different agent is used to replace it. The approach assumes the existence of addi-

tional agents (bounded to services) for replacement. Monitoring in this approach uses

information from the participating agents and the rules for triggering adaptation.

The work in [39] tackles automated evolution, repair, and tuning of services com-

positions. More specifically, it focuses on the automation of important aspects of a

service-oriented application, including resource and service discovery, binding and

composition, deployment, and monitoring. The authors propose a roadmap outlin-

ing selected research opportunities in the context of self-organizing SOAs. The work

also suggests the concept of self-organizing service that is capable of managing its

life-cycle (i.e. discovery, composition, and execution) in an autonomic way. The

work uses an infrastructure to support self-organizing SOA to allow a user to spec-

ify desired QoS characteristics at the level of the service composition. These QoS

characteristics can be automatically broken down into requirements for individual

services.

An approach to achieve highly adaptable Web services through context-adaptable

web service policies is presented in [243]. In this work, policies are sets of one or

more monitoring rules. The work assumes that ,both policies and rules are adaptable

based on context information. It extends the Web Service Policy Language (WSPL)

to allow the specification of context at both policy and rule levels. The extended

policies are woven into the service composition. The approach uses three operations

for extending the policies, namely: i) a context specification method for specifying

policy context, ii) a policy translator method for translating a policy to a required

format, and iii) a policy integration method for applying context-based policies to

web services.

80

2.5. MONITOR ADAPTATION

An event-based framework for specifying and reasoning about monitoring prop-

erties is presented in [244]. The approach tackles the problem associated with the

definition of suitable monitoring properties at the design phase (i.e. properties known

in advance) by allowing them to be defined during design or execution times. The

approach builds upon an event-based declarative composition design that serves as a

unified framework to bridge the gaps among process design, verification, and moni-

toring. The framework has four main stages including: i) composition design, which

involves the composition specification; ii) instantiation and verification, which in-

volves finding a solution (or identifying conflicts) in the composition; and iii) exe-

cution of the process and composition monitoring, which involves verification and

recovery. The framework is based on event calculus (a language based on first-order

logic) that allows specifying and reasoning about monitoring properties in terms of

events and fluents. The approach allows definition of functional and non-functional

properties, identification of violations, and calculation of the effects that a violation

may have on the overall process execution.

In [188] a proposal to provide a solution to service compositions is presented.

It is sketched in three parts. In the first part user requirements are represented as a

goal model; in the second part functional specifications and supervision directives are

obtained from the goal model; and in the third part execution is supported through a

suitable runtime infrastructure. The proposal assumes the adoption of a live global

model that will be able to change at runtime. Goals operations can be automatically

derived. This facilitates the derivation of the functional specifications, and allows for

an automatic derivation of the supervision directives that must be applied at runtime.

The proposal also considers complementing traditional goal models with approaches

tailored to self-adaptive systems.

In [146] a business centric monitoring framework is proposed to bridge the gap

between the business and service levels in complex business applications. The ap-

81

2. BACKGROUND - STATE OF THE ART

proach uses business information invariants (i.,e., fields of information in composite

applications that remain unchanged) to define one or more monitor sets . Monitor

sets are defined as collections of attributes and mappings from each attribute to one

or more business item attributes in order to associate the service activity with the

business composition execution. The user selects the components to be monitored

from a business centric view. This allows the user to select and specify monitor sets

for a business composition by binding a monitor set with inputs/outputs of a business

component. Monitor models check the execution of business compositions using

events generated by the service components.

The approach in [222] uses a monitor manager on top of existing monitoring

tools to provide a policy driven interface for these tools. The policies describe how

the monitoring infrastructure should react, e.g. selection of a particular monitor rule,

when a modification occurs in the system. However, The rules specified in the moni-

toring tools cannot be modified.

Monitoring Adaptation Overview

We have noticed that existing approaches, which grosso modo can be classified as

monitor adaptation, rely on the occurrence of events in a SBS as the triggering mecha-

nisms for the adaptation of the monitor component. However, strictly speaking, these

approaches do not consider a modification of the monitor component, but rather:

• Replacements of the monitoring mechanisms for (another) pre-defined moni-

toring mechanisms.

• Run-time model creation, e.g. based on state machines, for the verification of

generic properties of a service composition.

82

2.6. SUMMARY

Furthermore, given that the adaptation process is triggered by events related to

the service compositions, the process ignores relevant and influential factors such as

user context.

In general, the studied approaches rely - at least up to a certain level - on the use of

pre-defined conditions and solving conflict strategies/techniques (e.g. use of agents)

to perform the monitoring activity. Moreover, in the studied approaches the monitor

adaptation is more of a means to an end than the end itself, i.e. SBS adaptation.

Furthermore, it can be observed that approaches related to monitor adaptation focus

on specific sets of factors and adaptation triggering mechanisms which are, most of

the time, inapplicable even in similar scenarios.

2.6 Summary

From the previous sections it can be observed that, although there is a considerable

amount of proposals dealing with SBS monitoring and SBS adaptation, there are still

open issues that have not been thoroughly addressed. The following points sum-

marise, in a broad manner3 the existing gaps in the state of the art, we address in our

research.

i) Depending on the scenario, there are different context factors to consider when

modelling a SBS. These context factors can be represented as context models,

where defined dimensions are used for organising contextual characteristics. Al-

though there has been a considerable amount of research involving context, e.g.

in terms of location or time, only a few have partially addressed the importance

of the user context in SBSs.

3Detailed classifications have been provided at the end of each one of the previous subsections

83

2. BACKGROUND - STATE OF THE ART

ii) Overall adaptation approaches emphasise adaptation of service-based systems

and do not tackle the issue of monitor adaptation.

iii) User characteristics and user interaction in service-based systems have not been

considered important factors for monitoring of service-based systems.

Our work focuses on the HCI context aware monitor adaptation. It is concerned

with the human interaction (iii) above) in a SBS and takes into consideration user

characteristics that are likely to be present in a SBS (i) above) when verifying the

execution of the system. It assumes the adaptation of the monitor component (ii)

above) on its own, and as a consequence of the adaptation of the service-based sys-

tem. Figure 1.1, from chapter 1, depicts the above relations.

In the following Chapter we identify a set of user context types. We present a

model we created for the representation of user context types and we also address the

issue regarding human interaction in SBSs. The information from the user is a key

component for the monitor adaptation.

84

Chapter 3

Overview of the Approach for

Service-based Systems

This chapter introduces the user context model we have developed to represent

some of the main characteristics of a user when interacting with a SBS. It takes

into consideration key aspects that should be considered when modelling context,

provides a set of suitable context dimensions centred on the user, and presents the

rationale behind our proposal. In this chapter we also describe a Web Organiser

Service-Based System (Wo-SBS) scenario, which will used throughout the thesis to

illustrate our work. We finish the chapter presenting our framework and explaining

its different components.

3.1 Context Model

In section 2.3, we presented different approaches dealing with context modelling.

Providing a classification of existing context models can, very easily, become quite a

complex task. As stated in [43], since applications are so different, context modelling

85

3. OVERVIEW OF THE APPROACH FOR SERVICE-BASED SYSTEMS

should be addressed independently according to the specific objectives. In fact, this

claim is sustained by the existing approaches. In [149][194][221][241], for exam-

ple, hierarchical structures are proposed to deal with context modelling. The aim in

this proposal includes, besides providing a general taxonomy, further extensions of

the current model according to the pre-defined classes. The latter allows for a fur-

ther level of granularity of the model. A different type approach regarding context

modelling has been proposed in [156][200], where context-dependent functionality

is encapsulated in software modules.

In addition to the above, and according to [217], there are some key aspects that

should be considered when modelling context, including:

• System boundaries, which are usually arbitrarily established.

• Definition of the context and dependencies the system has on its environment.

Taking the above into account, we provide a general context model (section 3.2)

capable of i) being further extended and ii) be applicable to most SBS involving user

interaction. It is important to notice that the main concern in this model is centred

on, but not limited to, the user.

3.2 Model Dimensions

The model is grounded on previous research related to context modelling 1, including

[81][110][162][196][212]. The main contributions of this context model are a) the

focus on the user, providing a clear identification of those characteristics that - from

our perspective - depend entirely on the user, and their separation from those char-

acteristics that are related - but not entirely dependent - on the user, b) creation of a

taxonomy that can be easily extended/complemented with additional context types.
1Including some of the approaches previously described in section 2.3

86

3.2. MODEL DIMENSIONS

It is important to note, at this point, that the proposed model is - under nor cir-

cumstance - exhaustive, and can be further extended. In fact, we believe that rela-

tions might exist between different context types. This claim is substantiated by the

research carried on in other fields (e.g. perhaps one of the most influential works

dealing with human cognition has been given in the area of psychology, see [234])

where different user configurations may trigger different actions, or cause different

behaviours. How these context types might be related goes beyond the scope of this

work, nevertheless it is an issue to consider in the expansion of a user centred context

model.

Our model proposes two general context type categories: i) direct user context

types and ii) related user context types.

i) The direct user context types represent information of the characteristics of the

users and include role, skills, need, preferences, and cognition context types.

ii) The related user context types represent information that may influence user

information and include time, location, and environment context types.

In tables 3.1 and 3.2 we provide a description of the direct and related user context

types respectively.

The aim of our context model is the formalization of the most relevant aspects

characterizing a user interacting with a SBS. Nevertheless, aware a context taxon-

omy - based exclusively on the user - can be argued to be not realistically practical2,

we proposed two general dimensions. These two dimensions allow to focus on the

user, i.e. the direct user context types, and the relevant user-related context types,

i.e. the related user context types. Furthermore, we believe, as stated in [236], that

2For example, it is highly plausible a user can be associated to a specific location, providing thus
extra contextual information

87

3. OVERVIEW OF THE APPROACH FOR SERVICE-BASED SYSTEMS

Context Meaning

Role It signifies a social behaviour of an individual within the domain
of a SBS. The roles of an individual can be concerned with the
accessibility to the system, occupation of the user, privileges that
the user may have to the system.

Skills It signifies the level of expertise of an individual with respect to
a SBS. The skills of a user are directly related to the user knowl-
edge and experience with the system. The skills can be defined in
terms of the level of expertise of the user (e.g., beginner, average,
advanced) or the years of experience.

Preferences It signifies an individuals choice over pre-established alternatives
of computational resources, of a SBS. Examples of these prefer-
ences are concerned with security, reliability, response time, and
availability characteristics of a SBS.

Needs It signifies what an individual wants or requires from a SBS.

Cognition It signifies individuals characteristics associated with the process
of thought. It is concerned with the way that individuals think,
feel, or react. Examples of these characteristics are perception,
user attention level, and user comprehensive ability.

Table 3.1: Direct User Context Types

the separation of context concerns helps dealing with hierarchical decomposition,

avoiding thus overlapping or cross-cutting issues among different context types.

3.3 Model Specification - Ontology

In our work we created an ontology to represent the different user context types and

their relation with a user.

An Ontology can be defined as a formal specification of terms, along with the

existing relations among these terms, in a given domain [109]. An ontology can be

88

3.3. MODEL SPECIFICATION - ONTOLOGY

Context Meaning

Time It signifies all possible types of information related to the moment
when the user interacts with a SBS such as hour, date, day, week,
or season.

Location It signifies information related to the place where the user inter-
acts with a SBS such as coordinates, city, and country.

Environment It signifies information concerned with the environment where
the SBS is being used. This context includes information such as
temperature, traffic conditions, or climate.

Table 3.2: Related User Context Types

used to represent any type of information, including unstructured (e.g. text), semi-

structured (e.g. web pages) and structured (e.g. database) data [155]. It can also be

used to represent the relations between the data. Furthermore an ontology allows to

reason about the information it contains.

The use of ontologies for the specification of context models is not new; in fact

there is a considerable amount of research that has been done in the area of con-

text modelling, e.g. [55][144][177]. In our work, we developed an ontology using

protégé [102][178] where the context types, previously described in section 3.2, are

represented as classes.

A graphical representation of the ontology is shown in Figure 3.1. In the figure

the different context types are represented as classes, with subclasses in cases of

preferences and environment context types, and are associated with a central class

representing the user. These associations indicate relationships between the different

attributes of a context type, e.g. occupation for context class role and the user class.

For each class their attributes and respective data types are presented inside the class.

The user class represents information about the user ranging from unique identi-

fication (i.e. user ID, user name) to profile information (i.e. sex, language, address),

and the associations between a user class and the other context type classes.

89

3. OVERVIEW OF THE APPROACH FOR SERVICE-BASED SYSTEMS

Environment0..1

has conditions according to

0..1

0..1

0..1

seeks to fulfill

Date: string

Month: integer

Year: integer
Season: string

Week: string
Hour: integer

Time

Occupation: string
Privileges:{admin|user}

Comprehensive Ability:{low|average|high}0..1
Attention Level:{distracted|focus}

Perception:{low|average|high}
Reaction Rate:{slow|average|high}

Coordinates: string
Continent: string
Country: string
City: string

0..1
situated in

1

ac
co

rd
in

g
to

re
as

on
s

11be
ha

ve
s

ac
co

rd
in

g
to

1

Address: string
ID: string
Language: string
Name: string
Sex:{male|female}

1

Level of Expertise:

Accessibility:{low|medium|full}

in
te

ra
ct

s
at

a
ce

rt
ai

n

1{beginner|average|expert}
Years of Experience: integer

posseses

0..1

Skills

User

Cognition

1

co
or

di
na

te
d

by

1

Level:{low|medium|high}

Preferences

Refreshing Rate: integer
Limit: real

Encription: boolean

Malfuntion Rate: real

Temperature: string
Climate: string

Processing:{low|medium|high}

Resources: string

0..1 Goal:{amusement|work}
Desire: string
Preciseness:{enabled|disabled}

Traffic:{slow|normal|fast}

Location

Need

VirtualPhysical

Reliability

Security
Response Time

Role

Initial operation: string
Final operation: string

Figure 3.1: User Context Ontology

90

3.3. MODEL SPECIFICATION - ONTOLOGY

Context Value

Cognition reaction:{slow, medium, fast}, comprehension:{low, average,
high}, perception:{low, average, high}, attention:{focus, dis-
tracted}

Environment resources:string Physical: climate:string; temperature:string; Vir-
tual: traffic:{slow, normal, fast} processing:{low, medium, high}

Location coordinates:string; country:string; city:string

Time year:integer; month:integer; hour:integer; minute:integer; sec-
ond:integer; date:string; day:string; week:string; season:string

Need desire:string; goal:{amusement, work}

Preferences level:{low, medium, high}; Response Time: refreshing rate: inte-
ger; Reliability: malfunction acceptance: real; Security: encrip-
tion: boolean

Role occupation:string; accessibility:{low, medium, high}; privi-
leges:{admin, user}

Skills experience level:{beginner, average, expert}; years of experi-
ence:integer

User name:string; sex:{male, female}; language: string; address:string;
id: string

Table 3.3: Attributes and Values for the Different Context Types

Some of the attributes in the ontology are defined as symbols of values (e.g., low,

medium, high; male, female; slow, normal, fast; beginner, average, expert), while

other attributes support definition of specific values represented as string, integer, or

real data types. Table 3.3 describes the different attributes for the different context

types. Note that the context types environment and preferences include sub-types.

The physical and virtual sub-types are related to the environment context type; while

response time, reliability and security sub-types are related to the preferences context

type.

91

3. OVERVIEW OF THE APPROACH FOR SERVICE-BASED SYSTEMS

3.4 Rationale, Compatibility and Benefits of the Model

As mentioned before, the use of ontologies for context modelling is not new. For

example, in [61] an ontology for context-aware pervasive computing environments

is presented. This ontology is centered on general concepts including people and

places, and defines a set of properties and relationships associated with these general

concepts. The main difference with respect to our ontology is that i) all the elements

are defined according to a specific scenario and ii) most of the identified user context

types are related to physical attributes. It is even possible to find ontologies that have

been formulated considering the user as the main element, e.g. [105][176]. Similar

to our model, in these ontologies a central class represents the user profile and is

associated to the classes concerned with other user characteristics such as skills or

abilities. However, our ontology contains more specific user context types. From an

overall perspective, our ontology:

• Allows for a clear scenario-independent classification between those context

types dependent on the user, and those that are not user-dependent.

• In relation to the user, provides a set of context types that are not only indepen-

dent to the scenario but, given their generality, likely to be applicable to almost

any user.

• Regarding compatibility, we found our ontology was semantically compatible

with previous proposed ontologies, e.g [113]. As defined in [49] an ontology

is semantically compatible with another ontology if the terms are supposed to

mean the same thing in both ontologies.

• Regarding its evolution, our ontology is by no means exhaustive. As in [172]

we consider the ontology to evolve based on further identification of context

types.

92

3.5. WO-SBS SCENARIO

3.5 Wo-SBS Scenario

In order to illustrate our work, we present a web-organizer service-based system (Wo-

SBS) that will be used throughout the thesis. The Wo-SBS provides access to user

email accounts, allows message exchange among different users logged in the Wo-

SBS, and allows users to schedule activities in virtual agendas. The Wo-SBS can be

accessed from different devices, e.g. desktops, PDAs, mobile phones. The following

scenario presents the typical interactions that a user can perform in the Wo-SBS.

Mary is a 32 years old living in London and the director of a conference support

company that helps with the organization of conferences in different parts of the

world. Mary has been commissioned to organise a conference that will take place

in one month in Oxford. Mary is going on holidays for a week in Italy, which she

has organised four months ago. Given the new commissioned project, while away

Mary wants to be able to monitor and coordinate any necessary activities for the

forthcoming conference for which Mary is in charge. In addition, while being away

Mary wants to be able to have access to her personal emails. In order to allow all the

above requirements from Mary while in Italy, she subscribes to Wo-SBS application.

Mary has not used this application before, but she heard from a colleague how good

and helpful it is. During the time Mary is away she uses Wo-SBS to assist her with the

organisation of the conference (as a “personal manager”) and also to send emails to

her family members and friends (as a “personal user”). Moreover, given that Mary

is using the Wo-SBS application for the first time during the trip, her skills with the

application are very basic. However, after three days of using WO-SBS during her

holidays, Mary started to have a better understanding of the application and used

advanced functions in the application such as creation of alarm events, link of these

events with mobile devices, and cross checking information in different documents.

At a certain point during Mary’s holidays she needs to decide about the food to be

93

3. OVERVIEW OF THE APPROACH FOR SERVICE-BASED SYSTEMS

served during the banquet event of the conference. At this moment, her role as a

user of the application changes to an “event coordinator”. She receives quotes for

five different types of possible menus and needs to cross check these quotes with the

overall budget of the conference. However, although Mary’s skills with the WO-SBS

application is quite advanced at this stage, she is deciding about the banquet dinner

for the conference in the evening after several glasses of wine and spending a whole

day on a walking tour in the heat. Mary is very tired and her cognition level is

“low”, slowing down the coordination process. At this time, the meeting schedule

service used by Wo-SBS is unavailable and a new meeting scheduler service is used

by the system.

Note that for the above scenario it is very unlikely that all the monitor rules nec-

essary to verify the correct behaviour of the Wo-SBS, have been be pre-defined or

are known in advance. For example, it is not possible to know monitor rules that are

relevant to the new meeting scheduler that is used by the system. Similarly, it may be

necessary to remove monitor rules that are specific to the original meeting scheduler

used by the system that may become obsolete when the system is replaced. It may

also be necessary to modify existing monitor rules to support the fact that the user,

Mary, is using the system at a certain time when her cognition level is “low” (after

having some wine and being on a walking tour in the heat during the day); or to au-

tomatically identify the relevant monitor rules when Mary uses the system for work

or for personal communication with her family and friends.

3.6 User Model Example

From the ontology user models are obtained, described in an XML format, specifying

user context types. We consider the concept of user models as defined in [96], i.e.

“models that systems have of users that reside inside a computational environment”.

94

3.7. USER INTERACTION

An example of the use of the ontology shown in Figure 3.1, to represent a user

model for a Wo-SBS application (see Section 3.5), is depicted in Figure 3.2. In the

user model, a user, Mary, is characterised by her name; her id: Mary01; her sex:

female; her language: english; and her address: Northampton Square London EC1V

0HB. These attributes are represented in the User class. In addition, Mary has char-

acteristics related to different context types which are represented in separate classes.

More specifically the Time class represents the time Mary interacts with the Wo-SBS:

at “17:30”, and is related to the User class by the reference interacts at a certain.The

Skills class represents Marys level of expertise: “medium”, and is related to the User

class by the reference possesses. The Role class represents the role of Mary with re-

spect to the Wo-SBS: “personal user”, and is related to the User class by the reference

behaves according to. Finally, the Cognition class represents Marys comprehensive

ability with respect to the Wo-SBS: “average”, and is related to the User class by the

reference reasons according to. Note that each attribute has a specific data type. As

shown in the ontology, all classes corresponding to user context types are related to

the central User class.

It is important to note that the information provided by the context types is essen-

tial for the specification of monitor rules (Chapters 4 and 5). Monitor rules are used

to verify the correct execution of a SBS according to the defined user context types.

3.7 User Interaction

Another aspect that needs to be taken into account, along with the user context, is the

user interaction.

User interaction, or more specifically human computer interaction (HCI), is a

field in computing dealing with the design, evaluation, and implementation of inter-

active computing systems for humans [114]. Due to its nature, it is very common to

95

3. OVERVIEW OF THE APPROACH FOR SERVICE-BASED SYSTEMS

Name: Mary
<simple instance>

</simple instance>

<name>user context ontology jul12 Class10000</name>
<type>User</type>
<own slot value>
<slot reference>interacts at a certain</slot reference>
<value value type=”simple instance”>uc Class2<value>
</own slot value>
<own slot value>
<slot reference>behaves according to</slot reference>
<value value type=”simple instance”>uc Class1<value>
</own slot value>
<own slot value>

<value value type=”simple instance”>uc Class3<value>
<slot reference>possesses</slot reference>

</own slot value>
<own slot value>
<slot reference>reasons according to</slot reference>
<value value type=”simple instance”>uc Class4<value>
</own slot value>
<own slot value>
<slot reference>name</slot reference>
<value value type=”string”>Mary<value>
</own slot value>
<own slot value>
<slot reference>id</slot reference>
<value value type=”string”>mary01<value>
</own slot value>
<own slot value>
<slot reference>sex</slot reference>
<value value type=”string”>female<value>
</own slot value>
<own slot value>
<slot reference>language</slot reference>
<value value type=”string”>english<value>
</own slot value>
<own slot value>
<slot reference>address</slot reference>
<value value type=”string”>London EC1V 0HB<value>
</own slot value> <slot reference>comprehensive ability</slot reference>

Cognition: average
<simple instance>
<name>uc Class4</name>
<type>Cognition</type>
<own slot value>

<value value type=”string”>average<value>
</own slot value>
</simple instance>

</simple instance>
</own slot value>
<value value type=”string”>personal user<value>
<slot reference>role occupation</slot reference>
<own slot value>
<type>Role</type>
<name>uc Class1</name>

Role: personal user

Skills: medium

<simple instance>

<name>uc Class3</name>
<type>Skills</type>
<own slot value>
<slot reference>level of expertise</slot reference>
<value value type=”string”>medium<value>
</own slot value>
</simple instance>

<simple instance>

Time: 17:30
<simple instance>
<name>uc Class2</name>
<type>Time</type>
<own slot value>
<slot reference>hour</slot reference>

</own slot value>
<own slot value>
<slot reference>minute</slot reference>
<value value type=”integer”>30<value>

<value value type=”integer”>17<value>

</own slot value>
</simple instance>

Figure 3.2: Example of a User Model

96

3.7. USER INTERACTION

...

inputVariable=“loginRequest” outputVariable=“loginResponse”></bpel:invoke>
...

inputVariable=“check accessRequest” outputVariable=“check accessResponse”></bpel:invoke>
<bpel:invoke name=“Check Access” partnerLink=“check access” operation=“accessChecker”

outputVariable=“check accessResponse”></bpel:invoke>

portType=“ns:CheckAccess” inputVariable=“check accessRequest”

...

<bpel:invoke name=“Login” partnerLink=“login” operation=“opSelectFeatureUserOperation” portType=“ns:login”

Figure 3.3: Extract from a BPEL Specification Including two Operations: Login,
involving User Interaction and Check Access, not Involving User Interaction

see HCI related to other areas such as psychology or social science. As a result, it is

also possible to find several definitions for HCI dealing with human interaction.

Regarding service-oriented architecture and computing, user interaction has been

- principally - studied from the design process perspective. Different proposals can

be found in the literature addressing HCI and SOA, e.g. [28][203][30]. Furthermore,

there has also been an interest from the industrial community to introduce human

interaction in SOA, e.g. [140]. Despite these efforts however, no standard has been

yet agreed.

Because of the above, in our work we rely on a specific syntax, for the identifi-

cation of those operations involving user interaction with the SBS application. More

specifically, operations involving user interactions, and only those operations involv-

ing user interactions, are specified by a name including the prefix “op” and the suffix

“UserOperation”.

Figure 3.3 shows an extract of the BPEL3 specification containing two opera-

tions: accessChecker and opSelectFeatureUserOperation. According to the prefix

and suffix in the operations; operation opSelectFeatureUserOperation corresponds to

a user interaction, while operation accessChecker does not.

3As stated in chapter 1, BPEL is the de facto specification language for business processes

97

3. OVERVIEW OF THE APPROACH FOR SERVICE-BASED SYSTEMS

There have been approaches dealing with user interaction in service-based sys-

tems. In [44], for example, a meta-model was proposed to support the user interaction

at run-time. The proposal, however, involves the extension of BPEL specification to

include input and output user interactions. Our approach, on the other hand, does not

involve further modifications to the BPEL specification, apart from the names of the

operations.

Our proposal for identifying user operations in the BPEL specification has the

following characteristics:

• It is simple.

• Relies on the name of the operations for the identification of user interac-

tions. User operations must start with the prefix “op” and finish with the suffix

“UserOperation”.

• It is based on a de facto language (BPEL) and does not require further modifi-

cation.

3.8 Framework

The overview of the process associated with the monitor adaptation activity is shown

in Figure 3.4 4. As shown in Figure 3.4 the process is iterative; changes in the SBSs

or changes in the context types of the users accessing and interacting with the sys-

tems, trigger the need to identify, create, or modify monitor rules. These monitor

rules will be used by a monitor tool to verify the correct behaviour of the SBSs. The

identification of violations of the rules in the SBS also triggers the need to adapt the

systems, which may require the creation, modification, or removal of monitor rules.

4Note that the diagram was previously introduced in Chapter 1

98

3.8. FRAMEWORK

The framework can support different types of changes in SBSs specifications. Ex-

amples of these changes are: i) replacement of an operation, or a set of operations,

by another operation or set of operations; ii) replacement of the operation types (e.g.

a user operation is replaced by a service operation, or vice versa); iii) addition or

reduction of the functionalities offered by the system represented in terms of oper-

ations, and iv) changes in other parts of the workflow of the SBS that are different

from service operation replacement, e.g. addition of a condition.

Changes in
service-based

systems

adaptation
Monitor

Tool

Monitor

monitor rulesviolations

Service-based
systems

user context
Changes in

Figure 3.4: Relation between context, monitoring, adaptation, and SBSs

The monitor adaptation process is triggered by an event representing contextual

information of a user. Based on this contextual information, the framework identifies

relevant rule patterns representing the various context types of a user (see Section 4.2)

and instantiates these patterns using the SBS specification, and time constraints rep-

resented in Service Level Agreements or historical execution time data for a service.

The instantiated patterns are compared against monitor rules that may exist in a rule

repository for a user of a certain SBS application. The framework assumes a different

99

3. OVERVIEW OF THE APPROACH FOR SERVICE-BASED SYSTEMS

rule repository for each user accessing a system. Based on the comparison of monitor

rules in the repository with the instantiated patterns, the framework a) identifies the

monitor rules to be used if such rules exist; b) modifies existing rules in the repository

that match the overall structure of the instantiated patterns, but have a mismatch with

the time constraints in the pattern; c) creates new rules in the repository when there

are no rules that match the instantiated patterns or the existing rules cannot be mod-

ified to match the instantiated pattern; or d) removes existing rules in the repository

when they are no longer suitable. This last activity is executed by traversing the SBS

specification and identifying the rules that do not match the operations in the system

specification.

When a set of monitor rules suitable for the user and the SBS is identified, created,

or modified these rules are used to monitor the system. It is also possible to have

other monitor rules previously created for a system that are not concerned with the

different context types relevant to our approach (e.g., general monitor rules regarding

a functionality of the system). These rules are maintained in the repository and are

not considered during the adaptation process.

Figure 3.5 shows an overview of the framework to support the monitor adap-

tation process. As shown in Figure 3.5, the main components of the framework

are Rule Adaptor, Path Identifier, Rule Verifier, and Monitor. The framework also

uses Rule Patterns, Semi-instantiated Patterns, Monitor Rules, User Models, Service-

based System (SBS) Specification, Annotations, and Service Level Agreements (SLAs)

or historical data.

In the framework we assume SBS specifications represented as BPEL [140] due

to its widely use and acceptance; user models represented as an XML-based ontol-

ogy; monitor rules, rule patterns, and semi-instantiated patters represented in Event

Calculus [210]; annotations represented in an XML-based format that we have devel-

100

3.8. FRAMEWORK

Semi
Instantiated
Patterns

Models
User

SBS
Specifi−
cation

Identifier
Path

SBS

Monitor

Verifier
Rule

Adaptor
Rule

Repository
Monitor Rules

Repository
Rule Pattern

Relevant
part of
SBS

SLAs or

data

Annota−
tions

Historical

event

Figure 3.5: Framework architecture overview

oped; and SLAs represented in one of the SLA formalisms (e.g., WS-Agreement [8],

SLang [147], WSLA [137]). The components of the framework are described below.

The Rule Adaptor is responsible for the identification, modification, creation, and

removal of monitor rules. It receives events about changes in the context characteris-

tics of the user or changes in SBS, and invokes the Path Identifier to identify paths in

the specification of the SBS that are relevant to the received events.

The Path Identifier identifies and retrieves the parts in the specification that are

related to the context types represented in the events. This is represented in Figure

3.5 as Relevant Parts of SBS. The identification of relevant parts of a SBS for certain

context types is executed based on the use of Annotations. The annotations are spe-

cial files containing information about context types, their instances, and the parts in

the SBSs related to these context types. Annotations are created by developers, based

on the requirements and domain of the system before the system is deployed. The an-

101

3. OVERVIEW OF THE APPROACH FOR SERVICE-BASED SYSTEMS

notation files are changed in the case of adaptation of SBSs due to new requirements

or removal of existing requirements. For example, when there are new functionalities

available for a certain context type, or even when there is a new instance of a context

type for the system (a new role is created for the system). We provide more details

about annotations in Section 5.2.

The Rule Adaptor uses context types from the events to identify relevant Rule

Patterns, and instantiates these patterns with the identified information from the SBS

specification and the User Models, representing characteristics of the users. As a re-

sult, semi-instantiated rule patterns are specified. The semi-instantiated rule patterns

are patterns with some defined values (events and fluents), but with undefined values

for time variables or time gaps. The Rule Adaptor uses information provided by SLAs

(or historical execution time data for a service, when available) to define time values.

The assumption that SLAs will be available for participating services is not unreal-

istic since SLAs are currently used to establish business agreements between service

providers and consumers. Moreover, the response times of a service or operations are

attributes that appear in SLAs.

The Rule Adaptor uses the semi-instantiated rule patterns to identify monitor

rules in the repositories. In the case where monitor rules that totally match the semi-

instantiated rule patterns are identified, these rules are either used as they stand by

the Monitor component or have their time values updated, when necessary, and sub-

sequently used by the Monitor. In the situation in which no rules that match the

semi-instantiated rule patterns are identified, new monitor rules are created based on

the semi-instantiated rule patterns. In the case in which there are monitor rules that

match invariant parts of the semi-instantiated rule patterns, the Rule Verifier checks

if these rules are still valid for the SBS. In positive case, these rules are kept in the

repository. Otherwise, these rules are removed from the repository and new rules

based on the semi-instantiated rule patterns are created. The newly created rules are

102

3.9. SUMMARY

added into the repository and used by the Monitor component to verify the behaviour

of SBS. Details about this process are described in Section 5.1.

In the framework, we use the monitor tool described in [220]. However, our

approach can be used with other monitor tools that use monitor rules represented in

Event Calculus [210]. The monitor tool receives requests from a service requester

to verify, at regular intervals, the satisfiability of properties (represented as monitor

rules) of a SBS. It intercepts run-time messages exchanged between a SBS and its

services and verifies the satisfiability of the properties against these messages. It

contains a) a service client that is responsible to invoke a service in a SBS; b) an event

collector that is responsible to gather information during the execution of a SBS and

the services deployed by the service based system, or information exchanged between

the service client and its respective services; and c) an analyser that is responsible to

check the satisfiability of the properties.

3.9 Summary

In this chapter we introduced our context model. The context model is based on the

user context types we have identified. User context types are useful for the char-

acterisation of a particular user. The characterisation for each user context type is

performed in terms of general classes and attributes, which are likely to change from

one user to another, as well as from one service composition to another.

We also described some user-related context types, which may provide comple-

mentary information. We introduced our Web Organiser Service-Based System (Wo-

SBS) scenario and presented our solution for the identification of operations involv-

ing user interactions in service-based systems. Finally we presented and explained

our framework and its different components.

103

3. OVERVIEW OF THE APPROACH FOR SERVICE-BASED SYSTEMS

In the next chapter we introduce the formalism, Event Calculus (EC), for the

specification of monitor rules. This is followed by the specification, for each user

context type, of a set of monitor rule patterns. These patterns represent templates

used for the specification of monitor rules and focus on a specific type of user con-

text.

104

Chapter 4

Monitor Rules Specification:

Event Calculus & Patterns

This chapter is divided in two parts. The first part, section 4.1, describes the

formalism used for expressing monitor rules. Then, in section 4.2, we proceed to de-

scribe, our pattern-based approach for the specification of monitor rules considering

different user context types.

The chosen formalism is Event Calculus (EC). The patterns, which are templates

for the specification of monitor rules, cover the direct user context types described in

section 3.2.

4.1 Event Calculus

Event Calculus is a formalism for reasoning about actions and changes [238]. It con-

siders a set of predicates, actions, and time-varying properties for describing different

situations - including actions and states - in a given scenario, over a defined period of

time. In our work we use EC for the specification of monitor rules.

105

4. MONITOR RULES SPECIFICATION

The use of EC [210] to describe monitor rules is not new. In fact it has been

advocated in several works, e.g. [69][71][160][220], and has shown to be appropri-

ate to support the representation of several types of rules. EC allows i) rules to be

represented as first order logic, which provides sufficient expressiveness for a large

range of applications, ii) specification of quantitative temporal constraints and rela-

tionships that are necessary to be taken into consideration when monitoring SBSs,

iii) distinction between events and states that are necessary to describe the behaviour

of a system and interaction of users with the system, iv) definition of the influences

between events and states despite the possibility of using multiple states and events.

4.1.1 Advantages of Event Calculus

According to [141][158] there are several advantages of EC over other formal lan-

guages, including:

i) Easy evaluation. This is because the axioms may easily be represented as logic

programs with negation as failure.

ii) Distinction between events and states by introducing a limited set of predicates;

whereas other temporal logic languages, e.g. Computation Tree Logic (CTL),

Linear Time Logic (LTL), Propositional Temporal Logic (PTL), allow the intro-

duction of predicates with arbitrary meanings.

iii) In addition to the clear distinction between events and fluents, EC has a specific

set of predicates that signify the occurrence of events and their effect on the

initiation or termination of states in a system.

iv) Unlike most of the existing temporal logic languages, EC has an explicit time

structure that allows users to specify complex quantitative temporal relation-

ships, such as temporal distances between events.

106

4.1. EVENT CALCULUS

v) The time structure in EC enables the expression of both, future and past proper-

ties, which is not permitted in some temporal languages such as PTL.

vi) Unlike pure state-transition representation, EC has an explicit time structure that

does not depend on any sequence of events under consideration. This character-

istic allows EC to model a wide range of event-driven systems.

4.1.2 Events, Fluents and Predicates

EC is based on a first-order predicate calculus capable of representing a variety of

phenomena. It makes use of events and fluents, over a period of time, for representing

the behaviour of a system. More specifically, an event represents an action occurring

at a specific instance of time and may change the state of a system. A fluent is a

condition of a system state and may be affected by the occurrences of events. A

fluent can be seen as anything whose value is subject to change over time. Both

events and fluents are represented in EC using predicates.

Predicates are used to (i) specify what happens when, (ii) describe an initial situa-

tion, (iii) describe the effects of an event (action), and (iv) specify which fluent (state)

holds at a given time. Table 4.1 introduces the predicates used in EC, a detailed ex-

planation of the predicates is provided below. Further information can be found in

[210].

The occurrence of an event eventa, at some time t, is represented by the predicate

Happens(eventa, t,R(t1, t2)), which means the event eventa occurs at a time t, where

t is within an interval of time defined between t1 and t2. The time boundaries rep-

resented by t1 and t2, can be specified using time variables or arithmetic expressions

over time variables, and represent the lower and upper time boundaries.

The predicate Initiates(eventb, f luenta, t) represents the initialisation of the fluent

f luenta triggered by the occurrence of the event eventb at a time t.

107

4. MONITOR RULES SPECIFICATION

Predicate Meaning

Happens(eventa, t,R(t1, t2)) Occurrence of an event eventa within a
time interval defined by t1 and t2

Initiates(eventb, f luenta, t) Initialisation of a f luenta

InitiallyP(f luentb) fluent f luentb holds from the beginning

InitiallyN(f luentc) fluent f luentc does not hold from the be-
ginning

HoldsAt(f luentd, t3) fluent f luentd holds at a time t3

Clipped(t4, f luente, t5) fluent f luente is terminated within a time
interval defined by t4 and t5

Declipped(t6, f luent f , t7) fluent f luent f is initiated within a time in-
terval defined by t6 and t7

Terminates(eventc, f luent f , t8) fluent f luent f ceases to hold at t8

Table 4.1: Event Calculus Predicates

The predicate HoldsAt(f luentd, t3), means the fluent f luentd holds, i.e. the state

f luentd represents is valid, at a time t3.

The predicate Terminates(eventc, f luent f , t8) represents the finalisation of the

fluent f luent f as a consequence of the occurrence of the event eventc at a time t8.

The predicate InitiallyP(f luentb) means fluent f luentb holds at a time-point 0.

On the other hand, the predicate InitiallyN(f luentc) means the fluent f luentc does

not hold at a time-point 0.

The predicates Declipped and Clipped means, respectively, the initialisation and

finalisation of a fluent in a given time gap.

The predicates before described, can be combined to create elaborated EC for-

mulae. In order to do so, additional relational operators are used including:

• The relational symbols less than <, greater than >, less than or equal to ≤,

greater than or equal to ≥, and is equal to =, to express time conditions. For

108

4.1. EVENT CALCULUS

example, the statement t1 < t2 is true if the time instance t1 occurred before t2.

• The implication symbol⇒; where the statement A⇒ B means A entails B.

• The logical conjunction ∧; where the statement A∧ B is true if and only if A is

true and B is true.

• The negation ¬; where the statement ¬A produces true when A is false and

false when A is true.

In order to relate the various predicates together a suitable set of axioms is re-

quired

4.1.3 Event Calculus Axioms

An axiom is defined as a set of relations called premises and a conclusion. Given the

premises an axiom unequivocally yields a relation that holds as a conclusion [41].

In EC a suitable collection of axioms relate the various predicates together and are

used to represent domains involving actions with indirect effects and actions with

non-deterministic events [210]. The EC axioms are presented in Table 4.2.

4.1.4 Example

The following example is based on the Yale shooting problem, originally described in

[112] and retaken in [210]. In this scenario a turkey is initially alive and a gun, which

will be eventually used to shoot at the turkey, is initially unloaded. The turkey will

remain alive as long as a shooter does not successfully shoot at it. In this scenario the

state of the turkey, i.e. whether it is alive or not, can be represented by a fluent alive.

In this scenario the initial state of the turkey (alive), can be expressed in EC by the

formula shown in Table 4.3.

109

4. MONITOR RULES SPECIFICATION

Axiom EC1:
InitiallyP(f luent) ∧ ¬Clipped(0, f luent, t)⇒ HoldsAt(f lt, t)
Meaning the fluent f luent holds at a time t if it held from time 0 and it was not
terminated between the interval specified between 0 and t

Axiom EC2:
Happens(ev1, t,R(t1, t2))∧Initiates(ev1, f lt, t)∧¬Clipped(t1, f lt, t3)∧t2 < t3 ⇒
HoldsAt(f lt, t3)
Meaning the fluent f lt holds at time t3 if an event ev1 initiated f lt at a time t and
the f lt was not terminated between t1 and t3
Axiom EC3:
Happens(ev1, t,R(t2, t3)) ∧ Terminates(ev1, f lt, t) ∧ t < t3 ∧ t2 < t4 ⇔
Clipped(t, f lt, t4)
Meaning a fluent f lt ceases to hold between t and t4 if an event ev1 terminates
it at a time t. Vice-versa a fluent f lt that does not hold between a time t and t4
has been previously terminated by an event ev1 at a time t

Axiom EC4:
InitiallyN(f lt) ∧ ¬Declipped(0, f lt, t)⇒ ¬HoldsAt(f lt, t)
Meaning a fluent f lt that does not hold from time 0 and has not been initiated
between a time 0 and t, does not hold at a time t

Axiom EC5:
Happens(ev1, t,R(t2, t3))∧Terminates(ev1, f lt, t)∧¬Declipped(t, f lt, t3)∧ t2 <
t3 ⇒ ¬HoldsAt(f lt, t3)
Meaning a fluent f lt does not hold at a time t3 if an event ev1 terminates it at a
time t and f lt has not been initiated between a time t and t3
Axiom EC6:
Declipped(t1, f lt, t4) ⇔ Happens(ev1, t,R(t2, t3)) ∧ Initiates(ev1, f lt, t) ∧ t1 <
t3 ∧ t2 < t4
Meaning a fluent f lt is initiated between a time t1 and t4 if an event ev1 initiates
it at a time t; vice-versa if an event ev1 occurs at a time t, the fluent f lt is initiated
between a time t1 and t4
Axiom EC7:
Happens(ev1, t,R(t1, t2))⇒ t1 ≤ t2
Meaning the time range specified for the occurrence of an event ev1 ranges from
a specific instant (if t1 = t2) to a defined range (when t1 , t2)

Table 4.2: Event Calculus Axioms

InitiallyP(alive)

Table 4.3: Initiation of fluent alive

110

4.1. EVENT CALCULUS

Turkey dies (successful shoot) Turkey lives (unsuccessful shoot)

Happens(shoot, t2,R(t1, t3))∧ Happens(shoot, t2,R(t1, t3))∧

HoldsAt(loaded, t2)∧ HoldsAt(loaded, t2)∧

Happens(succss ht, tx,R(t2, t4))⇒ ¬Happens(succss ht, tx,R(t2, t4))⇒

Terminates(succss ht, alive, tx) ¬Clipped(tx, alive, t3)

Table 4.4: Termination (Left) and Continuity (Right) of the Fluent alive

Happens(shoot, t2,R(t1, t3))⇒ HoldsAt(loaded, t2)

Table 4.5: Conditioning for the Occurrence of the shoot Event

Assume a loaded gun is represented by the fluent loaded. Assume also the ac-

tion representing the shooting at the turkey is represented by the event shoot, and

the action representing the turkey being successfully hit is represented by the event

succss ht. The two possible states of the turkey after a shoot, can be represented

by the two formulas in Table 4.4. In the Table, the formula on the left describes the

death of the turkey, as a consequence of a sequence of events and fluents leading to the

successful shooting of a loaded gun1. The formula on the right, on the other hand,

describes the turkey alive, after the shooting, as a consequence of an unsuccessful

shooting, which is represented by the predicate ¬Happens(succss ht, tx,R(t2, t4)).

From the formulae in Table 4.4, it can be observed that by the time the shoot hap-

pens (predicate Happens(shoot, t2,R(t1, t3))) the gun is loaded (predicate HoldsAt

(loaded, t2)). In fact it does not make much sense to shot an unloaded gun, i.e. shoot-

ing while fluent loaded does not hold. The condition that a gun must be loaded in

order to be shot, can be expressed in EC as shown in Table 4.5.

Furthermore, the formula expressed in Table 4.5 can be used in combination with

the formulae described in Table 4.4. Even more, since the state of the fluent loaded

is being verified to hold by the time of the shooting (by formula in Table 4.5), the

1In this example the turkey dies instantly after receiving a shoot

111

4. MONITOR RULES SPECIFICATION

formulae in Table 4.4 can be modified by removing the predicate HoldsAt(loaded, t2)

from each formula.

Considerations

From now on, we will refer to each EC formula as a monitor rule. In addition, and

following the definition given in [158], we differentiate between two parts within a

monitor rule: a body and a head.

• A body signifies the antecedent (condition) of the formula

• A head signifies the consequence (implication) of the formula

For example, in Table 4.4 the body of each formula consists of a set of EC predi-

cates including Happens and HoldsAt. The head, on the other hand, consists of the

predicate Terminates (for the case of a successful shoot) and ¬Clipped (for the case

of an unsuccessful shoot). Both, body and head, must have a predicate which may be

followed by zero or any number of predicates or time constraints (e.g. t1 < t2), each

separated by a logical operator.

In our work an event represents the invocation or response of an operation. Since

each invocation is likely to be followed by its correspondent response we differentiate

between two types of events in EC formulae, i) those events representing requests to

operations, and ii) those events representing responses from operations. An event

representing a request for an operation, can be identified by an “ic ” prefix. Events

representing responses from an operation, can be identified by an “ir ” prefix. For

example, the occurrence of an event ic getS tatus would represent the request of the

operation getS tatus. Respectively, the occurrence of an event ir getS tatus would

represent the response of the operation getS tatus.

112

4.2. PATTERNS

4.2 Patterns

Several approaches can be found in the literature dealing with patterns and their use

in software design, e.g. [100][101][208]. Most of them rely on the use patterns to

specify properties, e.g. monitor rules, verifying the correct execution of a system.

The majority of these approaches is related to distributed, concurrent, and real-time

systems, e.g [83][84][209][215]. Within these approaches, it is also possible to find

proposals focusing on SOA, more specifically, on the use of patterns in SBSs. In [38],

for example, the results of a study, analysing different specification patterns for SBSs,

are presented. The study proposes a classification for different groups of patterns in

SBSs, ranging from systems of specification patterns to service provisioning patterns.

In the particular case of EC-based pattern approaches, there have been proposals

dealing with security issues, e.g. [92][225], focusing on electronic and integrated

control systems. Likewise, it is possible to find EC-based pattern approaches, ad-

dressing security issues in SBSs, e.g. [5][218]. The work in [124] proposes EC-

patterns in HCI. In this work patterns are used to support verification of physical

interaction, where events and fluents represent general actions and physical states.

In our work we rely on the use of patterns for the specification of monitor rules.

More specifically, we propose for each one of the direct user context types (see Sec-

tion 3.2), a set of monitor rules patterns.

A monitor rule pattern specifies the structure of the monitor rule in terms of pred-

icates and time constraints, without defining specific events, fluents or time gaps.

A monitor rule pattern focuses on the property the monitor rule should verify for a

particular context type.

The main characteristics of our rule patterns are:

• They are based on the EC formalism.

113

4. MONITOR RULES SPECIFICATION

• They address specific properties of the user context types.

• They are general enough to be applicable to almost any SBS.

• They consider user interaction in the execution of a SBS.

• The pattern representing a certain context type can be easily identified based

on the pattern’s underlying (unique) structure.

• They allow for the generation of templates (see Section 4.2.1) useful for iden-

tifying, modifying, creating or removing monitor rules.

4.2.1 Patterns Conventions & Considerations

In our framework, patterns and monitor rules are described in EC [210]. Patterns

consist of two different parts, an assumption part and a rule part. The monitor rule

part represents the property, of a SBS, that needs to be monitored, e.g. the occurrence

of an event Event1 is followed by the occurrence of an event Event2 in a defined pe-

riod of time. The assumption part represents additional information about the service

composition in terms of the state of the system, e.g. the occurrence of an event Event3

triggers the initialisation of a state S tate3.

A pattern is applied to a specific part of a SBS. More specifically, a pattern is

applied to the part of the SBS that is related to the context specified for the user (see

Section 5.2).

The application of a pattern to a particular part of a SBS, results in the speci-

fication of the desired monitor rule for that part of the SBS. More specifically, the

instantiation of a pattern with information retrieved from the specification of a SBS,

i.e. pertinent events, fluents and time constraints, allows to specify all the information

needed for a monitor rule.

114

4.2. PATTERNS

Patterns are defined in a general way in order to be applicable to different types of

service-based systems. Both rule and assumption parts in a pattern have invariant and

variant parts. The invariant part in a pattern does not change with the possible instan-

tiations of the pattern. Contrary, the variant part changes with the instantiations of

the pattern and depends on the service-based system application. Table 4.6 presents

a general template for the various types of patterns used in the framework. In the

figure, the invariant part for the pattern is represented in bold, while the variant part

is not. As shown in Table 4.6, a pattern is specified in terms of implications of con-

junctions of the different EC predicates described in section 4.1.2. More specifically,

an Event Predicate represents the EC predicate Happens, an Event Fluent Predicate

represents the EC predicates Initiates or Terminates, and a Fluent Predicate repre-

sents the EC predicate HoldsAt.

Rule part
Event Predicate(event, t,R(t1, t2)) | Fluent Predicate(f luent, t)
(∧...Event Predicate(event, t,R(t1, t2)) | Fluent Predicate(f luent, t))∗

⇒
Event Predicate(event, t,R(t1, t2)) | Fluent Predicate(f luent, t)
(∧...Event Predicate(event, t,R(t1, t2)) | Fluent Predicate(f luent, t))∗

Assumption part
Event Predicate(event, t,R(t1, t2)) | Event Predicate(event, t,R(t1, t2))
⇒
Fluent Predicate(f luent, t)

Table 4.6: General Pattern Template

We have created several rule patterns to represent each of the different context

types. They have been presented in previous publications, [71][72][70] and consider

time units in seconds.

Having different types of patterns for a context type allows us to consider monitor

rules specified differently. For instance, for a context type some patterns can rely on

the use of events and fluents, while for the same context type other patterns can rely

115

4. MONITOR RULES SPECIFICATION

solely on the use of events. Furthermore, having different patterns for a context type,

also increases the possibility of identifying rules matching the patterns specified for

the context type.

In addition to the above, it should be noted that while in some cases it is possible

to specify several patterns for a context type (e.g. role), in other cases the amount

of specified patterns is reduced (e.g. need). This can be explained by the complex-

ity of the property that needs to be verified, the flexibility of the language (EC), and

the fact that the patterns need to be general enough so they can be applied to dif-

ferent service-based systems in several scenarios. In any case, we believe the set of

proposed patterns can be further expanded.

4.2.2 Categories and Design Criteria

As mentioned before, for each context type we provide a set of rule patterns. Each

pattern corresponds to a template of a monitor rule, verifying a specific property

for the particular context type. It is important to note that each set of patterns for a

context type is not intended to be complete. Each set is in fact a representative sample

of possible patterns for a context type and can be further expanded.

The design of the set of patters propose in this work was influenced by the fol-

lowing criteria:

• Global and individual rules. In order to provide flexibility in our work, some of

the rule patterns have been designed as templates of monitor rules considering

the occurrence of all events and participating states in a single specification (i.e.

a single monitor rule). In addition, since there are different ways of express-

ing the properties of a monitor rule - e.g. by decomposing it - we have also

designed rule patterns considering the occurrence of events and participating

states separately.

116

4.2. PATTERNS

• Treatment of flows. It has been observed - from several case studies - that

for most specifications, the sequence and order of the involved operations in a

service composition is known. However, for those cases in which the events

and states might be triggered in a different order - as when executing services

specified in a flow - we have created patterns capable of dealing with such

behaviour.

• Monitoring based on the occurrence of events, states of the system, or a mix of

states and evens. The consideration of events and states allows for the speci-

fication of patterns (and therefore rules) capable of verifying the behaviour of

a service composition in different ways. More specifically, when monitoring

states, it is possible (up to a certain extent) to rely on the occurrence of events

for the specification of a monitor rule concerned with states. In a similar way,

when monitoring the occurrence of events, it is also possible to rely on states

for the specification of a monitor rule concerned with events. Furthermore, it

is also possible to use a combination of events and states.

• Generalisation. It can be argued that the patterns can be further expanded,

including complex templates for the specification of monitoring rules verifying

specific behaviour for particular service compositions. However, we believe

that the specification of complex patterns would not be completely suitable for

most service compositions.

An important aspect concerned with our patterns, is their application in a service

composition. The use of our pattern approach relies on a crucial component, the Path

Identifier (see Chapter 5). This component allows to identify the part(s) of the ser-

vice composition related to a specific user context. More specifically, given the user

context (i.e. one or more defined context types), the path identifier, determines which

branch of the service composition should be executed. The selection of the branch

117

4. MONITOR RULES SPECIFICATION

to be executed involves the resolution of conflicts in which two or more branches are

related to the same context type(s).

Finally the patterns in this work do no consider loops. Although their identifi-

cation in a service composition and their representation in terms of patterns can be

specified (for example, in terms of a states), it is not possible to know a priori the exit

condition for the loop. Similar to the generality criterion, we believe that it would be

possible to specify rules associated to loop conditions, however it would also imply

an analysis and observation of the behaviour of a service composition.

In what follows we describe and provide an example for each one of the patterns

for the different user context types.

4.2.3 Role Patterns

Patterns for role context types have been created based on the fact that a specific role

of a user may activate different parts of a system. More specifically, for a certain role

of a user, different operations in the system representing the functionalities that are

concerned with that specific role should be invoked. In the approach this is repre-

sented by the fact that an event in a SBS, should be followed by the invocation of

operations related to a certain role.

Role Rule Pattern 1

Consider the extract of the part of the Wo-SBS application (see Section 3.5) associ-

ated with role “personal user”, together with the operations to be invoked and their

order, shown in Figure 4.1 in a diagrammatic way. In Figure 4.1, the nodes repre-

sent the operations and the respective amount of time that each operation should take

to be executed, while the arrows represent the sequence in which the operations are

118

4.2. PATTERNS

executed. As shown in Figure 4.1, oploginUserOperation, checkAccess, enableMes-

sagingService and opselectFeatureUserOperation represent a sequence of operations

that are invoked every time the Wo-SBS is accessed; while operations mailReview,

mailComposer and mailManagement represent operations that are invoked when a

user in the role of a “personal user” accesses the Wo-SBS. A full specification of the

Wo-SBS application in BPEL [120] can be found in Appendix A.

A pattern for a role context type is shown in Table 4.7. Table 4.8 presents the

instantiation of the pattern in Table 4.7 for a set of operations related to role “personal

user” in a web organizer SBS (Wo-SBS) application.

Rule part
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Happens(ic Event1, t2,R(t1, t1 + tn1))
∧...∧
Happens(ic Eventi, ti+1,R(ti, t1 + tni))

Assumption part
Happens(ic Event1, t1,R(t1, t1))⇒ Initiates(ic Event1, Event1, t1)
...

Happens(ic Eventi, t1,R(t1, t1))⇒ Initiates(ic Eventi, Eventi, t1)

Table 4.7: Role Rule Pattern 1

The rule part of the role pattern in Table 4.7 states that the occurrence of the

initial event in the system (ic InitialEvent) is followed by the request of a sequence

of operations (ic Event1, ..., ic Eventi) within an interval of time (ti, t1 + tni). An

ic Eventk (1 ≤ k ≤ i) corresponds to the invocation of an operation identified in the

SBS specification that is associated with the specific role of the user.

The value of each time variable tnl (1 ≤ l ≤ i) is computed as the sum of the

maximum execution times of those service operations preceding the operation of

interest in the service specification. The time variable tnl also considers small time

delays between consecutive events. More specifically, it considers small time gaps

between the response from an invocation of an operation and a request for another

119

4. MONITOR RULES SPECIFICATION

operation. In our work, we considered time gaps of ten milliseconds (see Figure 4.1)

based on our experiments and the work conducted in [158]. These time gaps can be

easily readjusted if necessary.

The assumption part of the role pattern in Table 4.7 states that each request of

an operation ic Eventi triggers the initialisation of the state Eventi, which represents

the active state of the operation. Assumptions are instantiated for each operation

identified in the part of the SBS related to the role of the user. The invariant part for

the role context type pattern in Table 4.7 is depicted in bold.

mail−
Manage−

ment
15s5s

enable−
Messagin−
gService

3s

opsele−
ctFeature−
UserOper−

ation
5s

Review

12s

mail−
Compo−

ser
9s

mail−

4s

10ms 10ms 10ms 10ms 10ms 10ms
10ms

W
O

−
S

B
S

S
ta

rt

Role personal user

UserOper-
ation

oplogin-
Access
check-

Figure 4.1: Service Specification Sequence for the Role of a personal user

The rule part in the example in Table 4.8 specifies that the request for operations

mailReview, mailComposer, and mailManagement (events ic mailReview, ic mail-

Composer, ic mailManagement) must happen at times t2, t3, and t4 respectively after

the occurrence of the initial event (ic startWoS BS) at time t1, with t1 ≤ t2 ≤ t1+17050

milliseconds (0.01s+5s+0.01s+4s+0.01s+3s+0.01s+5s+0.01s), t2 ≤ t3 ≤ t1+29060

milliseconds (0.01s+5s+0.01s+4s+0.01s+3s+0.01s+5s+0.01s+12s+0.01s),

and t3 ≤ t4 ≤ t1 + 38070 milliseconds (0.01s+ 5s+ 0.01s+ 4s+ 0.01s+ 3s+ 0.01s+

5s+0.01s+12s+0.01s+9s+0.01s). The upper bound time constraints are computed

based on the times to execute the operations preceding the request of the operation of

interest in the service-based system and the respective time gaps between operations

(see the upper bound time limits for the execution of each operation in Figure 4.1).

120

4.2. PATTERNS

Rule part
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 17.05))∧
Happens(ic mailComposer, t3,R(t2, t1 + 29.06))∧
Happens(ic mailManagement, t4,R(t3, t1 + 38.07))

Assumption part
Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

Table 4.8: Instantiation of Role Rule Pattern 1

Role Rule Pattern 2

Another role rule pattern is presented in Table 4.9. In the pattern, instead of con-

sidering all the invocations at once, a monitor rule and an assumption are generated

for each operation related to the role of the user. The reason behind this is that, it is

possible to find monitor rules specified in different ways where the semantic of a set

of monitor rules is equivalent to the semantic of a single monitor rule, e.g. a monitor

rule can be decomposed in several monitor rules. By providing variations of rule

patterns verifying the same behaviour, we increase the possibility of finding suitable

monitor rules for the monitoring activity.

Rule part
Happens(ic InitialEvent, t1,R(t1, t1)) ∧
(Happens(ic Previous Event, t2,R(t1, t2)))∗ ⇒
Happens(ic Event, t2+(1)∗ ,R(t1+(1)∗ , t1+(1)∗ + tn))

Assumption part
Happens(ic Event, t1,R(t1, t1))⇒
Initiates(ic Event, Event, t1)

Table 4.9: Role Rule Pattern 2

121

4. MONITOR RULES SPECIFICATION

The rule part of the role pattern in Table 4.9 states that the occurrence of the

initial event in the system (ic InitialEvent) followed by the invocation of an operation

related to the role of the user (ic Previous Event), must be followed by the invocation

of another operation (ic Event) related to the role of the user, in no more than tn

seconds.

The brackets ()∗ for the predicate Happens(ic Previous Event, t2,R(t1, t2)) in the

body of the rule part of the pattern, indicate the predicate instantiation is conditioned.

More specifically, the predicate is instantiated in a monitor rule only if the invocation

of the operation of interest related to the role of the user, ic Event, is preceded by

another operation invocation (ic Previous Event) also related to the role of the user.

In the case no operation related to the role of the user is identified as occurring before

the operation of interest (ic Event), the predicate is omitted.

Note the above is also valid for the time variables specified in the predicate related

to the occurrence of the ic Event in the head of the rule part of the pattern.

The event (ic Event) corresponds to the invocation of an operation belonging to

the part of a SBS specification that is associated with the specific role of the user.

The assumption part of the role pattern in Table 4.9 states that each request of an

operation (ic Event) triggers the initialisation of the state Event, which represents the

initialisation of the operation.

The value of the time variable tn is computed as the sum of the execution times

of those service operations preceding the operation of interest in the service speci-

fication related to the role of the user. In the case there are no operations related to

the role of the user occurring before the invocation ic Event the time variable con-

siders all previous operations. In the case there is a previous operation related to the

role of the user, the time variable considers the time of the previous operation. The

time variable tn also considers small time delays between consecutive events (ten

122

4.2. PATTERNS

milliseconds).

Note that the rule part and the assumption part of the pattern are repeated for all

the operations identified in the part of the SBS related to the role of the user. The

invariant part for the role context type pattern in Table 4.9 is depicted in bold.

Rule part
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 17.05))

Happens(ic startWoS BS , t1,R(t1, t1)) ∧
Happens(ic mailReview, t2,R(t1, t2))⇒
Happens(ic mailComposer, t3,R(t2, t2 + 12.01))

Happens(ic startWoS BS , t1,R(t1, t1)) ∧
Happens(ic mailComposer, t2,R(t1, t2))⇒
Happens(ic mailManagement, t3,R(t2, t2 + 9.01))

Assumption part
Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

Table 4.10: Instantiation of Role Rule Pattern 2

As an example, consider the part of the SBS related to the role of a user de-

picted in Figure 4.1. Assume a user in the role of a “personal user”. Applying the

role pattern depicted in Table 4.9 results in the pattern instantiation depicted in Table

4.10. As shown in the table, a monitor rule is generated for each operation related

to the role of the user. More specifically, the initial event, ic startWoSBS, must be

followed by the invocation of a single operation (ic mailReview, ic mailComposer,

and ic mailManagement) in a specified time constraint. In the case of ic mailReview

there is no operation related to the role of the user occurring before it, hence the pred-

icate in the body of the rule concerned with the occurrence of a previous invocation

123

4. MONITOR RULES SPECIFICATION

is excluded (see first monitor rule in Table 4.10). In the case of ic mailComposer and

ic mailManagement the invocations are preceded by the occurrence of previous op-

erations, mailReview and mailComposer respectively (see second and third monitor

rules in Table 4.10). All the time constraints consider small time delays. The time

constraints consider all the previous operations in the case of mailReview, and only

the previous operation in the case of mailComposer and mailManagement.

Role Rule Pattern 3

The role pattern in Table 4.11 concerns with the invocation of those operations related

to the role of a user and that those operations related to different roles are not invoked.

In the pattern, invocations of operations related to the role of the user are repre-

sented by events of the type ic EventR(i). Invocations of operations related to roles

differing from the one specified for the user are represented by events of the type

ic EventNR(j). Note that in the case in which an operation appears in the part of the

system related to the role of the user and in another part related to a different user

role, the operation is considered as related to the role of the user.

Rule part
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Happens(ic EventR(1), t2,R(t1, t1 + tvar(1))) ∧...∧
Happens(ic EventR(i), ti,R(t1, t1 + tvar(i))
∧...∧
¬Happens(ic EventNR(1), ti+1,R(t1, t1 + tvar(i))) ∧...∧
¬Happens(ic EventNR(j), ti+ j,R(t1, t1 + tvar(i)))

Assumption part
Happens(ic EventR(1), t1,R(t1, t1))⇒ Initiates(ic EventR(1), EventR(1), t1)
...

Happens(ic EventR(i), t1,R(t1, t1))⇒ Initiates(ic EventR(i), EventR(i), t1)

Table 4.11: Role Rule Pattern 3

The rule part of the pattern in Table 4.11 verifies the invocations of a set of oper-

124

4.2. PATTERNS

ations, related to the role of a user (ic EventR(i)). The pattern also verifies that during

the expected time for the execution of all the operations related to the role of the user,

no invocations concerning operations related to different user roles (ic EventNR(i))

occur. The time constraints tvar(i) are computed as the sum of the maximum execu-

tion times of those service operations preceding the operation of interest in the part

of the SBS related to the role of the user. The computation of the time constraints

considers small time delays (ten milliseconds) between consecutive events. The as-

sumption part of the role pattern in Table 4.11 states that each request of an operation

associated to the role of the user (ic EventR(i)) triggers the initialisation of the corre-

sponding EventR(i), which represents the active state of the operation. The invariant

part for the role context type pattern in Table 4.11 is depicted in bold.

4s

mail−

Review

12s

mail−
Compo−

ser
9s

S
ta

rt

W
O

−
S

B
S

6s

5s

enable−

ngService
Messagi−

3s 5s

ectFeatur−
opsel−

eUserOp−
eration

Manage−
ment
15s

mail−

6s

initiate−
Calendar

initiate−
Scheduler

opselect−
NeedUser−
Operation

3s

check-
Access Role personal user

Role personal manager

UserOpe-
oplogin-

ration

Figure 4.2: Service Specification for Role personal user and personal manager

As an example, consider the extract of the part of the Wo-SBS application de-

picted in Figure 4.2 where two different roles, “personal user” and “personal man-

ager”, have been specified for two different branches. Assume a user in the role of

a “personal user”. Applying the pattern depicted in Table 4.11 results in the pattern

instantiation depicted in Table 4.12.

As shown in Table 4.12, after the occurrence of the initial event (ic startWoSBS) a

set of invocations related to the operations associated to the role of the user (ic mail-

Review, ic mailComposer, ic mailManagement), should occur within the expected

125

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 17.05)) ∧
Happens(ic mailComposer, t3,R(t1, t1 + 23.06)) ∧
Happens(ic mailManagement, t4,R(t1, t1 + 29.07)) ∧
¬Happens(ic initiateCalendar, t5,R(t1, t1 + 29.07)) ∧
¬Happens(ic initiateS cheduler, t6,R(t1, t1 + 29.07)) ∧
¬Happens(ic opselectNeedUserOperation, t7,R(t1, t1 + 29.07))

Assumption part
Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

Table 4.12: Instantiation of Role Rule Pattern 3

period of time. In addition, during the invocation of the former operations, no in-

vocation should occur regarding the operations related to role “personal manager”

(ic initiateCalendar, ic initiateScheduler, ic opselectNeedUserOperation).

Role Rule Pattern 4

The role pattern in Table 4.13 verifies the invocation of those operations related to the

role of a user by using even calculus predicates related to the states of the operations.

More specifically, the pattern concerns with the states of those operations related to

the role of the user (which initially do not hold) and verifies their states after periods

of time corresponding to the time constraints in which the operations should have

been invoked. Note that the state of an operation is active (i.e. it holds) only if it has

been previously invoked.

In the pattern, the initial states of those operations related to the role of the user

(represented by predicate InitiallyN(Eventi) in the body of the rule part of the pat-

126

4.2. PATTERNS

Rule part
InitiallyN(Event1)
∧...∧
InitiallyN(Eventi) ∧
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Declipped(t1, Event1, t1 + tvar(1)) ∧ Happens(ic Event1, t2,R(t1, t1 + tMax))
∧...∧
Declipped(t1, Eventi, t1 + tvar(i)) ∧ Happens(ic Eventi, ti+1,R(t1, t1 + tMax)) ∧
t2 < ... < ti+1

Assumption part
Happens(ic Event1, t1,R(t1, t1))⇒ Initiates(ic Event1, Event1, t1)
...

Happens(ic Eventi, t1,R(t1, t1))⇒ Initiates(ic Eventi, Eventi, t1)

Table 4.13: Role Rule Pattern 4

tern) have not been triggered. The initial event (ic InitialEvent) represents the first

event in a service composition at a time t1. In the head of the pattern, the predicate

Declipped(t1, Eventi, tvar(i)) implies an operation is initiated (i.e. it has been invoked)

within a time constraint defined by t1 and tvar(i). The predicate Happens(ic Eventi,

ti+1,R(t1, tMax)) represents the invocation of an operation related to the role of the

user. Note that there is no specific time constraint for the invocation of an operation,

in fact all the invocations related to Happens predicates are constrained by t1 and

tMax. The specific time constraint for the occurrence of an invocation is specified by

the predicate Declipped (within t1 and tvar(i)). The time variable tvar(i) corresponds to

the maximum amount of expected time for the invocation of an operation (ic Eventi).

The time variable tMax corresponds to the maximum amount of time for the invoca-

tion of the last operation related to the role of the user. All time variables consider

small delays between consecutive events (ten milliseconds). The order for the occur-

rence of the different invocations is given by the last time constraint in the head of

the rule part of the pattern (t2 < ... < ti+1).

The assumption part of the role pattern in Table 4.13 states that each request of

127

4. MONITOR RULES SPECIFICATION

an operation associated to the role of the user (ic Eventi) triggers the initialisation

of the corresponding Eventi, which represents the active state of the operation. The

invariant part for the role context type pattern in Table 4.13 is depicted in bold.

As an example, consider the extract of the Wo-SBS depicted in Figure 4.2. As-

sume a user in the role of a “personal user”. Applying the pattern depicted in Table

4.13 results in the pattern instantiation depicted in Table 4.14.

Rule part
InitiallyN(mailReview) ∧
InitiallyN(mailComposer) ∧
InitiallyN(mailManagement) ∧
Happens(ic startWoS BS , t1,R(t1, t1)) ⇒
Declipped(t1,mailReview, 17.05) ∧
Happens(ic mailReview, t2,R(t1, t1 + 38.07)) ∧
Declipped(t1,mailComposer, 29.06) ∧
Happens(ic mailComposer, t3,R(t1, t1 + 38.07)) ∧
Declipped(t1,mailManagement, 38.07) ∧
Happens(ic mailManagement, t4,R(t1, t1 + 38.07)) ∧
t2 < t3 < t4
Assumption part
Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

Table 4.14: Instantiation of Role Rule Pattern 4

As shown in Table 4.14, the initial state of the fluents related to operations mail-

Review, mailComposer, and mailManagement is inactive, i.e. they do not hold. After

the occurrence of the initial event (ic startWoSBS) a set of invocations related to

the operations associated to the role of the user (ic mailReview, ic mailComposer,

ic mailManagement), should occur within a time constraint of 38.07 seconds corre-

sponding to the total maximum amount of time for the execution of the last operation

128

4.2. PATTERNS

related to the role of the user (mailManagement). The time constraints for the invo-

cation of the different operations is given by the predicates Declipped. These predi-

cates specify the states associated to the operations should hold (i.e. must have been

invoked) within specific time constraints: 17.05 seconds for mailReview, 29.06 sec-

onds for mailComposer, and 38.07 seconds for mailManagement. Finally the order

in which the invocations should occur is given by the time constraint t2 < t3 < t4.

Role Rule Pattern 5

The role pattern in Table 4.15 is a variation of the previous pattern. It verifies the

invocation of those operations related to the role of a user by using even calculus

predicates related to the states of the operations. Like in the previous pattern, it is

concerned with the state of the operations related to the role of the user, which do

not hold initially. It also verified the state of the operations after certain period of

times represented by the time constraints in which the operations should have been

invoked.

In the rule part of the pattern, the initial states of those operations related to the

role of the user, represented by predicates of the type InitiallyN(Eventi) in the body of

the pattern, have not been triggered. The initial event (ic InitialEvent) represents the

first invocation at a time t1. In the head, the predicate HoldsAt(Eventi, ti+1) implies

an operation holds at a time ti+1, this means the operation is invoked at a time ti+1

or was previously invoked, i.e. before ti+1. The time variable tvar(i) corresponds to

the maximum amount of time expected for the execution of an operation (Eventi).

The time variable tPrev corresponds to sum of the operations occurring before the

first operation related to the role of the user (Event1). All time variables consider

small delays between consecutive events (ten milliseconds). The assumption part of

the role pattern in Table 4.15 states that each request of an operation associated to

129

4. MONITOR RULES SPECIFICATION

Rule part
InitiallyN(Event1)
∧...∧
InitiallyN(Eventi) ∧
Happens(ic InitialEvent, t1,R(t1, t1))⇒
HoldsAt(Event1, t2)
∧...∧
HoldsAt(Eventi, ti+1) ∧
t1 < t2 < t1 + tPrev ∧
t2 < t3 < t2 + tvar(2) ∧
∧...∧
ti < ti+1 < ti + tvar(i) ∧
Assumption part
Happens(ic Event1, t1,R(t1, t1))⇒ Initiates(ic Event1, Event1, t1)
...

Happens(ic Eventi, t1,R(t1, t1))⇒ Initiates(ic Eventi, Eventi, t1)

Table 4.15: Role Rule Pattern 5

the role of the user (ic Eventi) triggers the initialisation of the corresponding Eventi,

which represents the active state of the operation. The invariant part for the role

context type pattern in Table 4.15 is depicted in bold.

As an example, consider the extract of the Wo-SBS depicted in Figure 4.2. As-

sume a user in the role of a “personal user”. Applying the pattern depicted in Table

4.15 results in the pattern instantiation depicted in Table 4.16.

As shown in Table 4.16, the initial state of the fluents related to operations mail-

Review, mailComposer, and mailManagement is inactive. After the occurrence of the

initial event ic startWoSBS, the set of states related to the previous operations, should

hold at times t2, t3, and t4. The time variables t2, t3, t4 are constrained by the the sum

of the previous operations, when invoking the first operation related to the role of the

user (case for the time variable t2), or by the preceding operation, when the invoked

operation is not the first one (case for time variables t3 and t4).

130

4.2. PATTERNS

Rule part
InitiallyN(mailReview) ∧ InitiallyN(mailComposer) ∧
InitiallyN(mailManagement) ∧ Happens(ic startWoS BS , t1,R(t1, t1))⇒
HoldsAt(mailReview, t2) ∧ HoldsAt(mailComposer, t3) ∧
HoldsAt(mailManagement, t4) ∧
(t1 < t2 < t1 + 17.05) ∧ (t2 < t3 < t2 + 12.01) ∧ (t3 < t4 < t3 + 9.01)

Assumption part
Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

Table 4.16: Instantiation of Role Rule Pattern 5

Role Rule Pattern 6

The role pattern in Table 4.17 verifies the invocation of those operations related to the

role of a user by using even calculus predicates related to the states of the operations.

More specifically, the pattern concerns with the states of those operations related to

the role of the user (which initially do not hold) and verifies their states after periods

of time corresponding to the time constraints in which the operations should have

been invoked. In addition the pattern concerns with the states of those operations

related to roles differing from the one of the user, i.e. operations that should not be

invoked. Note that the state of an operation is active (i.e. it holds) only if it has been

previously invoked.

In the pattern, the initial states of those operations related to the different roles of

the user are represented by predicates of the form InitiallyN(Eventi) in the body of

the rule part of the pattern. The initial event (ic InitialEvent) represents the first event

in a service composition at a time t1. Fluents and events containing the form EventR(i)

imply the fluent or event is related to the role of the user. Similarly fluents and events

131

4. MONITOR RULES SPECIFICATION

Rule part
InitiallyN(Event1)
∧...∧
InitiallyN(Eventi) ∧
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Declipped(t1, EventR(1), t1 + tvar(1)) ∧ Happens(ic EventR(1), t2,R(t1, t1 + tMax))
∧...∧
Declipped(t1, EventR(i), t1 + tvar(i)) ∧ Happens(ic EventR(i), ti+1,R(t1, t1 + tMax))
∧ ¬Declipped(t1, EventNR(1), t1 + tMax)
∧...∧
¬Declipped(t1, EventNR(j), t1 + tMax) ∧
t2 < ... < ti+1

Assumption part
Happens(ic Event1, t1,R(t1, t1))⇒ Initiates(ic Event1, Event1, t1)
...

Happens(ic Eventi, t1,R(t1, t1))⇒ Initiates(ic Eventi, Eventi, t1)

Table 4.17: Role Rule Pattern 6

containing the form EventNR(j) imply the fluent or event is not related to the role of the

user. In the head of the pattern the predicate Declipped(t1, EventR(i), tvar(i)) represents

an operation, related to the role of the user, is initiated (i.e. it has been invoked) within

a time constraint defined by t1 and tvar(i). The predicate Happens(ic EventR(i), ti+1,

R(t1, tMax)) represents the invocation of an operation related to the role of the user at

a time ti+1.

Note that there is no specific time constraint for the invocation of an operation, in

fact all the invocations related to Happens predicates are constrained by t1 and tMax.

The specific time constraint for the occurrence of an invocation is specified by the

predicate Declipped (within t1 and tvar(i)). The time variable tvar(i) corresponds to the

maximum amount of expected time for the invocation of an operation (ic EventR(i)).

The time variable tMax corresponds to the maximum amount of time for the invocation

of the last operation related to the role of the user. All time variables consider small

delays between consecutive events (ten milliseconds). The order for the occurrence

132

4.2. PATTERNS

of the different invocations is given by the last time constraint in the head of the rule

part of the pattern (t2 < ... < ti+1).

The predicates ¬Declipped(t1, EventNR(j), t1 + tMax), in the head of the rule part

of the pattern, verify that operations related to roles differing from the one specified

for the user, are not invoked.

The assumption part of the role pattern in Table 4.17 states that each request of

an operation associated to the role of the user (ic EventR(i)) triggers the initialisation

of the corresponding EventR(i), which represents the active state of the operation. The

invariant part for the role context type pattern in Table 4.17 is depicted in bold.

As an example, consider the extract of the Wo-SBS depicted in Figure 4.2. As-

sume a user in the role of a “personal user”. Applying the pattern depicted in Table

4.17 results in the pattern instantiation depicted in Table 4.18.

As shown in Table 4.18, the initial states of the fluents related to the operations

associated to the two user roles (see Figure 4.2) do not hold. After the occurrence of

the initial event (ic startWoSBS), the set of states associated to the operations related

to a “personal user” should hold at times t2, t3, and t4. In the rule predicates of the

form ¬Declipped verify operations related to the role of a “personal manager” should

not be invoked during the expected time for the execution of operations related to the

“personal user”.

Role Rule Pattern 7

Another pattern for a role context type is shown in Table 4.19. The pattern is a varia-

tion of the pattern previously shown in Table 4.7. The pattern in Table 4.19 considers,

in the rule part, the occurrence of an intermediate event (ic IntEvent) which represents

an event occurring after the initial event in the system and before the invocation of

those operations associated with the role of the user.

133

4. MONITOR RULES SPECIFICATION

Rule part
InitiallyN(initiateCalendar) ∧ InitiallyN(initiateS cheduler) ∧
InitiallyN(opselectNeedUserOperation) ∧ InitiallyN(mailReview) ∧
InitiallyN(mailComposer) ∧ InitiallyN(mailManagement) ∧
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Declipped(t1,mailReview, t1 + 17.05) ∧
Happens(ic mailReview, t2,R(t1, t1 + 29.07)) ∧
Declipped(t1,mailComposer, t1 + 23.06) ∧
Happens(ic mailComposer, t3,R(t1, t1 + 29.07)) ∧
Declipped(t1,mailManagement, t1 + 29.07) ∧
Happens(ic mailManagement, t4,R(t1, t1 + 29.07)) ∧
¬Declipped(t1, initiateCalendar, t1 + 29.07) ∧
¬Declipped(t1, initiateS cheduler, t1 + 29.07) ∧
¬Declipped(t1, opselectNeedUserOperation, t1 + 29.07) ∧
t2 < t3 < t4
Assumption part
Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

Happens(ic opselectNeedUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectNeedUserOperation, opselectNeedUserOperation, t1)

Table 4.18: Instantiation of Role Rule Pattern 6

Rule part
Happens(ic IntEvent, t1,R(t1, t1))⇒
Happens(ic Event1, t2,R(t1, t1 + tn1))
∧...∧
Happens(ic Eventi, ti+1,R(ti, t1 + tni))

Assumption part
Happens(ic Event1, t1,R(t1, t1))⇒ Initiates(ic Event1, Event1, t1)
...

Happens(ic Eventi, t1,R(t1, t1))⇒ Initiates(ic Eventi, Eventi, t1)

Table 4.19: Role Rule Pattern 7

The rule part of the role pattern in Table 4.19 states that the invocation of the

intermediate event (ic IntEvent) is followed by the request of a sequence of operations

134

4.2. PATTERNS

(ic Event1, ..., ic Eventi) at an interval of time (ti, t1 + tni). An event ic Eventk (1 ≤

k ≤ i) corresponds to an invocation of an operation identified in the SBS specification

that is associated with the specific role of the user.

The value of each time variable tnl (1 ≤ l ≤ i) is computed as the sum of the

maximum execution times of those service operations occurring after the interme-

diate event (ic IntEvent) and before the events of interest in the service specification

(ic Eventi). The time variable tnl also considers the operation related to the invoca-

tion of the intermediate event and small time delays between consecutive events (ten

milliseconds).

The assumption part of the role pattern in Table 4.19 states that each request of

an operation ic Eventi triggers the initialisation of the state Eventi, which represents

the active state of the operation. The invariant part for the role context type pattern in

Table 4.19 is depicted in bold.

The rule in Table 4.20 presents the instantiation of the pattern in Table 4.19 for

the Wo-SBS scenario considering a user in the role “personal user” (see Figure 4.1).

The rule parts in the example in Table 4.20 specify that the request for opera-

tions oploginUserOperation, checkAccess, enableMessagingService. and opselect-

FeatureUserOperation (events ic oploginUserOperation, ic checkAccess, ic enable-

MessagingService, ic opselectFeatureUserOperation) must be followed by the invo-

cation of operations mailReview, mailComposer, mailManagement. The time con-

straints for each rule in Table 4.20 are computed considering the time between each

intermediate event (ic oploginUserOperation, ic checkAccess, ic enableMessaging-

Service, ic opselectFeatureUserOperation) and the invocation of operations mailRe-

view, mailComposer, and mailManagement. See Figure 4.1 for operations sequence

and expected time. In the assumption part of the instantiated pattern, the invocation

of each operation initiates its corresponding state.

135

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 17.04))∧
Happens(ic mailComposer, t3,R(t2, t1 + 29.05))∧
Happens(ic mailManagement, t4,R(t3, t1 + 38.06))

Happens(ic checkAccess, t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 12.03))∧
Happens(ic mailComposer, t3,R(t2, t1 + 24.04))∧
Happens(ic mailManagement, t4,R(t3, t1 + 33.05))

Happens(ic enableMessagingS ervice, t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 8.02))∧
Happens(ic mailComposer, t3,R(t2, t1 + 20.03))∧
Happens(ic mailManagement, t4,R(t3, t1 + 29.04))

Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 5.01))∧
Happens(ic mailComposer, t3,R(t2, t1 + 17.02))∧
Happens(ic mailManagement, t4,R(t3, t1 + 26.03))

Assumption part
Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t11)

Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

Table 4.20: Instantiation of Role Rule Pattern 7

4.2.4 Skills Patterns

Patterns for skills context types have been created based on the assumption that users

interact with a system in different ways, depending on their skills. More specifically,

an operation requiring an interaction with a user is executed if the operation is ac-

cording to the level of skills of a user.

In our work we assume a user operation can be differentiated from an operation

that does not involve the participation of a user, based on the syntax of the name of

136

4.2. PATTERNS

the operation. More specifically, we assume the name of a user operation possesses

a prefix, corresponding to the characters “op”, followed by a variable number of

characters and a suffix, corresponding to the string “UserOperation”. Although there

are some proposals addressing user tasks and user interaction in BPEL compositions,

e.g. [130][180], there is no agreed standard for the user participation in a BPEL

process. Furthermore, our proposal is not only quite simple but, if necessary, can be

easily modified.

Skills Rule Pattern 1

A pattern for the skills context type is depicted in Table 4.21. The rule part of the

skills pattern in Table 4.21 states that between the invocation of the initial event

(ic InitialEvent) at a time t1, and last response in the system (ir LastResponse) at a

time t2, a set of user operations, i.e. operations with an “op” prefix and a “UserOper-

ation” suffix should occur. The time variable tn is computed as the sum of the maxi-

mum execution times of all the involved operations between the initial and last event

and considers small time delays between consecutive events of ten milliseconds. The

assumption part of the skills pattern in Table 4.21 states that each request of a user

operation, ic opNNiUserOperation, triggers the initialisation of the corresponding

state, opNNiUserOperation, which represents the active state of the operation.

In the case in which there are two or more user operations in the part of the SBS

related to the level of skills of the user, the predicate in the head of the rule part of the

pattern is repeated for each one of the operations. Assumptions are instantiated for

each user operation identified in the part of the SBS related to the user level of skills.

The extract of the part of the Wo-SBS application associated with an “average”

level of skills, together with the operations to be invoked and their order, is shown

in Figure 4.3. As shown in Figure 4.3, the sequence of operations that should be

137

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic InitialEvent, t1,R(t1, t1)) ∧
Happens(ir LastResponse, t2,R(t1, t1 + tn))⇒
Happens(ic opNN1UserOperation, t3,R(t1, t2))
∧...∧
Happens(ic opNNiUserOperation, ti+2,R(t1, t2)) ∧
ti+1 < ti+2

Assumption part
Happens(ic opNNiUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNiUserOperation, opNNiUserOperation, t1)
...

Happens(ic opNNiUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNiUserOperation, opNNiUserOperation, t1)

Table 4.21: Skills Rule Pattern 1

4s

mail−

Review

12s

mail−
Compo−

ser
9s

exit

4s

opstan−
dardUIM−
ailUserO−

4s
peration

15s

mail−
Manage−

ment

S
ta

rt

W
O

−
S

B
S

5s

enable−
Messagin−
gService

3s

opsel−
ectFeatur−
eUserOp−

5s
eration

check-
Access

oplogin-
UserOper-

ation

Skills average

Figure 4.3: Service Specification Sequence for a user with an average level of Skills

executed for a user with an “average” level of skills are: opselectFeatureUserOper-

ation, mailReview, mailComposer, mailManagement, opstandardUIMailUserOper-

ation, and exit. In this case operations opselectFeatureUserOperation and opstan-

dardUIMailUserOperation correspond to the user operations related to an “average”

level of skills of a user (note the “op” prefix and “UserOperation” suffix in the name

of the operations).

Table 4.22 presents the instantiation of the pattern depicted in Table 4.21 for a

user with an “average” level of skills for the previous specification in Figure 4.3.

138

4.2. PATTERNS

Rule part
Happens(ic startWoS BS , t1,R(t1, t1)) ∧
Happens(ir exit, t2,R(t1, t1 + 61.09))⇒
Happens(ic opselectFeatureUserOperation, t3,R(t1, t2)) ∧
Happens(ic opstandardUIMailUserOperation, t4,R(t1, t2)) ∧
t3 < t4
Assumption part
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.22: Instantiation of Skills Rule Pattern 1

The rule part specifies that the invocation of operations opselectFeatureUserOp-

eration and opstandardUIMailUserOperation (events ic opselectFeatureUserOpera-

tion and ic opstandardUIMailUserOperation) must occur at times t3 and t4, after the

occurrence of the initial event in the system, ic startWoSBS, at time t1, and before the

response of the last operation (ir exit) at a time t2. The response of the last operation

should occur, at most, 61.09 seconds after the initial event (ic startWoSBS).

Skill Rule Pattern 2

Another pattern for skills is shown in Table 4.23. In rule part of the pattern, a user

operation, i.e. an operation with an “op” prefix and a “UserOperation” suffix, should

occur, at a time t2. The invocation of the user operation should occur between the

initial invocation in the system (ic InitialEvent), at a time t1, and the last response

(ir LastResponse) at a time t3. In the pattern, the time variable tn, representing the

time constraint for the occurrence of the last response, is computed as the sum of

the maximum execution times of all the involved operations between the initial and

last event, and considers the small time delays between consecutive events of ten

139

4. MONITOR RULES SPECIFICATION

milliseconds. The assumption part of the skills pattern states that each request of

a user operation, ic opNNiUserOperation, triggers the initialisation of the state,

opNNiUserOperation, which represents the active state of the user operation.

In the case there are two or more user operations in the part of the SBS related

to the user skills, the pattern is repeated for each one of the user operations. The

invariant part for the skills context type pattern in Table 4.23 is depicted in bold.

Rule part
Happens(ic InitialEvent, t1,R(t1, t1)) ∧
Happens(ir LastResponse, t3,R(t1, t1 + tn))⇒
Happens(ic opNNUserOperation, t2,R(t1, t3))

Assumption part
Happens(ic opNNUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNUserOperation, opNNUserOperation, t1)

Table 4.23: Skills Rule Pattern 2

Rule part
Happens(ic startWoS BS , t1,R(t1, t1)) ∧
Happens(ir exit, t3,R(t1, t1 + 61.09))⇒
Happens(ic opselectFeatureUserOperation, t2,R(t1, t3))

Happens(ic startWoS BS , t1,R(t1, t1)) ∧
Happens(ir exit, t3,R(t1, t1 + 61.09))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3))

Assumption part
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.24: Instantiation of Skills Rule Pattern 2

As an example, consider the part of the SBS related to a user associated to an “av-

erage” level of skills, as depicted in Figure 4.3. Applying the skills pattern depicted

140

4.2. PATTERNS

in Table 4.23 results in the pattern instantiations depicted in Table 4.24. The pattern

instantiations depicted in Table 4.24 consists of two rules and two assumption parts.

Each instantiation considers the invocation of a user operation; more specifically in-

vocations ic opselectFeatureUserOperation and ic opstandardUIMailUserOperation,

which correspond to the user operations involved in the part of the Wo-SBS associ-

ated to an “average” level of skills (Figure 4.3).

In the rule part of the instantiated pattern the invocation of user operations ops-

electFeatureUserOperation and opstandardUIMailUserOperation should occur be-

tween the first invocation (ic startWoS BS) and last response (ir exit) in the system.

In the assumption part of the instantiated pattern, the occurrence of user operations

opselectFeatureUserOperation and opstandardUIMailUserOperation trigger the ini-

tialisation of the corresponding states associated to each operation.

Skill Rule Pattern 3

The rule part of the skills pattern in Table 4.25 states that after the invocation of

the initial event (ic InitialEvent) at a time t1, a set of user operations invocations

(ic opNNiUserOperation) should occur, followed by the last response in the sys-

tem (ir LastResponse) at a time t2. The time variable tn is computed as the sum

of the maximum execution times of all the involved operations between the initial

and last event, and considers the small time delays between consecutive events of

ten milliseconds. In the assumption part of the pattern, the occurrence of an invoca-

tion of a user operation (ic opNNiUserOperation) implies the corresponding fluent

(opNNiUserOperation) has been initiated, i.e. it holds.

In the case there are two or more user operations in the part of the SBS related

to the level of skills, the predicates in the pattern associated to user operations are

instantiated for each one of the operations. The invariant part for the skills pattern in

141

4. MONITOR RULES SPECIFICATION

Table 4.25 is depicted in bold.

Rule part
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Happens(ic opNN1UserOperation, t3,R(t1, t2))
∧...∧
Happens(ic opNNiUserOperation, ti+2,R(t1, t2)) ∧
Happens(ir LastResponse, t2,R(t1, t1 + tn)) ∧
t1 < t3 ∧ ... ∧ ti < ti+1 ∧ ... ∧ ti+2 < t2
Assumption part
Happens(ic opNN1UserOperation, t1,R(t1, t1))⇒
Initiates(ic opNN1UserOperation, opNN1UserOperation, t1)
...

Happens(ic opNNiUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNiUserOperation, opNNiUserOperation, t1)

Table 4.25: Skills Rule Pattern 3

Rule part
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic opselectFeatureUserOperation, t3,R(t1, t2)) ∧
Happens(ic opstandardUIMailUserOperation, t4,R(t1, t2)) ∧
Happens(ir exit, t2,R(t1, t1 + 61.09)) ∧
t1 < t3 ∧ t3 < t4 ∧ t4 < t2
Assumption part
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.26: Instantiation of Skills Rule Pattern 3

As an example, consider a user with an “average” level of skills and the extract

of the Wo-SBS application depicted in Figure 4.3. Applying the skills pattern de-

picted in Table 4.25 results in the pattern instantiation depicted in Table 4.26. Ac-

cording to the instantiation depicted in Table 4.26 the occurrence of the first event,

ic startWoS BS , should be followed by the invocation of operations opselectFea-

142

4.2. PATTERNS

tureUserOperation and opstandardUIMailUserOperation. The two user operations

should occur within the first and last event (ir exit) of the Wo-SBS. Furthermore, the

occurrence of the last event (ir exit) should occur in no more than 61.09 seconds after

the first event (ic startWoS BS). In the assumption part, the invocations of the two

user operations trigger the initialisation of the corresponding fluents.

Skill Rule Pattern 4

The rule part of the skills pattern in Table 4.27 states that after the invocation of

the initial event (ic InitialEvent) at a time t1, the invocation of a user operation

(ic opNNUserOperation) should occur at a time t2, followed by the last response

in the system (ir LastResponse) at a time t3. The time variable tn is computed as the

sum of the maximum execution times of all the involved operations between the ini-

tial and last response, and considers the small time delays between consecutive events

of ten milliseconds. In the assumption part of the pattern, the occurrence of the in-

vocation of the user operation (ic opNNUserOperation) implies the corresponding

fluent (opNNUserOperation) has been initiated, i.e. it holds.

In the case there are two or more user operations in the part of the SBS related

to the level of skills, the pattern is applied for each one of the user operations. The

invariant part for the skills pattern in Table 4.27 is depicted in bold.

Rule part
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Happens(ic opNNUserOperation, t2,R(t1, t3)) ∧
Happens(ir LastResponse, t3,R(t1, t1 + tn))

Assumption part
Happens(ic opNNUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNUserOperation, opNNUserOperation, t1)

Table 4.27: Skills Rule Pattern 4

As an example, consider a user with an “average” level of skills and the extract of

143

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic opselectFeatureUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 61.09))
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 61.09))

Assumption part
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.28: Instantiation of Skills Rule Pattern 4

the Wo-SBS application depicted in Figure 4.3. Applying the skills pattern depicted

in Table 4.27 results in the pattern instantiation depicted in Table 4.28. In the table

two monitor rules are depicted, one for each user operation. The first monitor rule

verifies that the occurrence of the first event, ic startWoS BS , should be followed

by the invocation of operation opselectFeatureUserOperation; this operation should

occur before the last event (ir exit) of the Wo-SBS. Similarly the second monitor rule

verifies that the occurrence of the first event, ic startWoS BS , should be followed by

the invocation of operation opstandardUIMailUserOperation and that this operation

occurs before the last event (ir exit). For both monitor rules, the occurrence of the last

event must be, at most, 61.09 seconds after the first event (ic startWoS BS). In the

assumption part, the invocations of the two user operations trigger the initialisation

of the corresponding fluents.

144

4.2. PATTERNS

Skill Rule Pattern 5

The pattern concerns with the states of those user operations related to the skills of the

user, initially not holding, and verifies their states after periods of time corresponding

to the time constraints in which the operations should have been invoked. Note that

the state of an operation is active, i.e. it holds, only if it has been previously invoked.

The rule part of the skills pattern in Table 4.29 states that at some point during the

invocation of the initial event (ic InitialEvent) at a time t1, and the last response in

the system (ir LastResponse) at a time t2, a set of states corresponding to the user

operations should hold. The time variable tn is computed as the sum of the maximum

execution times of all the involved operations between the initial and last response,

and considers the small time delays between consecutive events of ten milliseconds.

In the assumption part of the pattern, the occurrence of the invocation of the user

operation (ic opNNiUserOperation) implies the corresponding fluent is initiated, i.e.

it holds.

In the case there are two or more user operations in the part of the SBS related

to the level of skills, the predicates related to the user operations in the pattern is

repeated for each operation. The invariant part for the skills pattern in Table 4.29 is

depicted in bold.

As an example, consider a user with an “average” level of skills and the extract of

the Wo-SBS application depicted in Figure 4.3. Applying the skills pattern depicted

in Table 4.29 results in the pattern instantiation depicted in Table 4.30. In the table

the monitor rule verifies that the fluents related to the user operations opselectFea-

tureUserOperation and opstandardUIMailUserOperation hold after the occurrence

of the first event (ic startWoS BS) and before the occurrence of the last event (ir exit)

of the Wo-SBS. Note that in the body of the rule, the fluents related to the user oper-

ations, do not hold from the beginning. The occurrence of the last event must be, at

145

4. MONITOR RULES SPECIFICATION

Rule part
InitiallyN(opNN1UserOperation)
∧...∧
InitiallyN(opNNiUserOperation) ∧
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Happens(ic opNN1UserOperation, t3,R(t1, t2))
∧...∧
Happens(ic opNNiUserOperation, ti+2,R(t1, t2)) ∧
Happens(ir LastResponse, t2,R(t1, t1 + tn))

Assumption part
Happens(ic opNN1UserOperation, t1,R(t1, t1))⇒
Initiates(ic opNN1UserOperation, opNN1UserOperation, t1)
...

Happens(ic opNNiUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNiUserOperation, opNNiUserOperation, t1)

Table 4.29: Skills Rule Pattern 5

Rule part
InitiallyN(opselectFeatureUserOperation) ∧
InitiallyN(opstandardUIMailUserOperation) ∧
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic opselectFeatureUserOperation, t3,R(t1, t2)) ∧
Happens(ic opstandardUIMailUserOperation, t4,R(t1, t2)) ∧
Happens(ir exit, t2,R(t1, t1 + 61.09))

Assumption part
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation, opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.30: Instantiation of Skills Rule Pattern 5

most, 61.09 seconds after the occurrence of the first event (ic startWoS BS). In the

assumption part, the invocations of the two user operations trigger the initialisation

of the corresponding fluents.

146

4.2. PATTERNS

Skill Rule Pattern 6

The pattern in Table 4.31 also concerns with the states of those user operations re-

lated to the skills of the user. It verifies user operation states, initially not holding,

are active after periods of time corresponding to the time constraints in which the

operations should have been invoked. The pattern relies on the use of predicates of

the type Declipped(t1, Eventi, t2), where Eventi represents a user operation related

to the level of skills of the user. A user operation is initiated (i.e. it is invoked)

within a time constraint defined by the initial invocation and last response in the sys-

tem. More specifically, the pattern assumes the occurrence of an initial invocation

(ic InitialEvent) at a time t1 and the last response in the system (ir LastResponse)

at a time t2. All user operations related to the level of skills of the user, should occur

within the initial invocation and last response. The occurrence of the last response

is computed as the sum of the maximum execution times of all the involved oper-

ations between the initial invocation and the last response, and considers the small

time delays between consecutive events of ten milliseconds.

In the case there are two or more user operations in the part of the SBS related

to the level of skills, the predicates related to the user operations in the pattern are

repeated for each operation. The invariant part for the skills pattern in Table 4.31 is

depicted in bold. In the assumption part of the pattern, the occurrence of the invoca-

tion of a user operation (ic opNNiUserOperation) implies the corresponding fluent

is initiated, i.e. it holds.

As an example, consider a user with an “average” level of skills and the extract

of the Wo-SBS application depicted in Figure 4.3. Applying the skills pattern de-

picted in Table 4.31 results in the pattern instantiation depicted in Table 4.32. In

the table the monitor rule verifies that the fluents related to the user operations ops-

electFeatureUserOperation and opstandardUIMailUserOperation are initiated after

147

4. MONITOR RULES SPECIFICATION

Rule part
InitiallyN(opNN1UserOperation)
∧...∧
InitiallyN(opNNiUserOperation) ∧
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Declipped(t1, ic opNN1UserOperation, t2)
∧...∧
Declipped(t1, ic opNNiUserOperation, t2) ∧
Happens(ir LastResponse, t2,R(t1, t1 + tn))

Assumption part
Happens(ic opNN1UserOperation, t1,R(t1, t1))⇒
Initiates(ic opNN1UserOperation, opNN1UserOperation, t1)
...

Happens(ic opNNiUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNiUserOperation, opNNiUserOperation, t1)

Table 4.31: Skills Rule Pattern 6

Rule part
InitiallyN(opselectFeatureUserOperation) ∧
InitiallyN(opstandardUIMailUserOperation) ∧
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Declipped(t1, opselectFeatureUserOperation, t2) ∧
Declipped(t1, opstandardUIMailUserOperation, t2) ∧
Happens(ir exit, t2,R(t1, t1 + 61.09))

Assumption part
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation, opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.32: Instantiation of Skills Rule Pattern 6

the occurrence of the first event (ic startWoS BS) and before the occurrence of the

last event (ir exit) of the Wo-SBS. Note that in the body of the rule, the fluents re-

lated to the user operations, do not hold from the beginning. The occurrence of

the last event must be, at most, 61.09 seconds after the occurrence of the first event

148

4.2. PATTERNS

(ic startWoS BS). In the assumption part, the invocations of the two user operations

trigger the initialisation of the corresponding fluents.

Skills Rule Pattern 7

Another pattern for skills context type is shown in Table 4.33. The pattern is a vari-

ation of the pattern previously shown in Table 4.27. The pattern in Table 4.33 con-

siders, in the rule part, the occurrence of an intermediate event (ic IntEvent) which

represents an event occurring after the initial event in the system and before the in-

vocation of those user operations associated to the level of skills of the user.

Rule part
Happens(ic IntEvent, t1,R(t1, t1))⇒
Happens(ic opNNUserOperation, t2,R(t1, t3)) ∧
Happens(ir LastResponse, t3,R(t1, t1 + tn))

Assumption part
Happens(ic opNNUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNUserOperation, opNNUserOperation, t1)

Table 4.33: Skills Rule Pattern 7

The rule part of the skills pattern in Table 4.33 states that the invocation of the

intermediate event (ic IntEvent) at a time t1 must be followed by the request of a user

operation at a time t2 and the occurrence of the last response at a time t3. The user

operation is identified in the SBS specification as related to the specific level of skills

of the user.

The value of the time variable tn is computed as the sum of the maximum execu-

tion times of those service operations occurring after the intermediate event (ic IntEvent)

and the last response of the system. The time variable tn also considers the operation

related to the invocation of the intermediate event and small time delays between

consecutive events (ten milliseconds).

149

4. MONITOR RULES SPECIFICATION

The assumption part of the skills pattern in Table 4.33 states that a request of an

operation triggers the initialisation of a state, that represents the active state of the

operation.

If there are several user operations related to the level of skills of the user, the

pattern is applied to each one of the identified operations. The invariant part for the

skills context type pattern in Table 4.33 is depicted in bold.

The rule in Table 4.34 presents the instantiation of the pattern in Table 4.33 for

the extract of the Wo-SBS scenario considering a user with an “average” level of

skills (see Figure 4.3).

The rule parts in Table 4.34 specify that the invocations of user operations opse-

lectFeatureUserOperation and opstandardUIMailUserOperation must occur after an

intermediate event and before the last response in the system. The time constraint for

each monitor rule is computed considering the operation related to the intermediate

event and the remaining operations in the service composition (see Figure 4.3) plus

small time delays between consecutive events.

4.2.5 Cognition Patterns

There have been several studies dealing with human cognition and its importance

when a user interacts with a system, e.g. [7][87][128][167][191][237]. The focus of

the studies dealing with user cognition can range, for example, from the analysis of

the type of tasks performed during user interaction, to the composition of the user

interface. In our work we focus on a specific aspect concerning cognition and user

interaction: the expected time required by a user to perform a user operation in

the system. More specifically, we propose cognition patterns that focus on the time

required for a user to interact with a system.

150

4.2. PATTERNS

Rule part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Happens(ic opselectFeatureUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 12.03)
Happens(ic checkAccess, t1,R(t1, t1))⇒
Happens(ic opselectFeatureUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 7.02)
Happens(ic enableMessagingS ervice, t1,R(t1, t1))⇒
Happens(ic opselectFeatureUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 3.01)
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 53.07)
Happens(ic checkAccess, t1,R(t1, t1))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 48.06)
Happens(ic enableMessagingS ervice, t1,R(t1, t1))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 44.05)
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 41.04)
Happens(ic mailReview, t1,R(t1, t1))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 36.03)
Happens(ic mailComposer, t1,R(t1, t1))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 24.02)
Happens(ic mailManagement, t1,R(t1, t1))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3)) ∧
Happens(ir exit, t3,R(t1, t1 + 15.01)

Assumption part
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒ Initiates
(ic opselectFeatureUserOperation, opselectFeatureUserOperation, t1)
Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒ Initiates
(ic opstandardUIMailUserOperation, opstandardUIMailUserOperation, t1)

Table 4.34: Instantiation of Skills Rule Pattern 7

151

4. MONITOR RULES SPECIFICATION

Different studies have addressed the issues regarding cognition and user response

times, e.g. [117][118][154][187], their focus however, is on particular actions/tasks

(e.g. keystroke-level models), rather than user cognition in a broad sense. In our

work we propose a general classification, consisting of three general levels, for the

user cognition. Our classification is based on what has been proposed in previous

studies regarding user cognition, see [57][138][197]. The classification considers

three categories slow, average, and fast, where each category represents the expected

amount of time a user requires to interact with a system, according to his/her level of

cognition. More specifically, for each category a percentage represents the fraction

of the expected amount of time required to accomplish a user operation. Table 4.35

specifies the percentages according to the level of cognition of the user.

Cognition Level Expected utilisation of the specified time
Low 100%

Average 75%
High 50%

Table 4.35: Expected Time Percentages According to the Cognition Level of the User

In the case of a “low” level of cognition, the time to execute a user operation

should be up to the total amount of time specified for the operation. In the case of

an “average” level of cognition, the time to execute a user operation should be up to

75% of the time expected for the execution of the operation. In the case of “high”

level of cognition, the time to execute a user operation should be up to 50% of the

time expected for the execution of the operation. The above percentage ranges are

fixed but, if necessary, can be easily modified.

The patterns for cognition are concerned with the time it takes for a user to in-

teract with the system. Therefore the patterns for cognition focus on the invocations

and responses of user operations, and the time it takes to perform such actions. In

our work it is assumed that the time it takes for a user to perform a user operation

152

4.2. PATTERNS

is proportional to the user’s level of cognition. This assumption is a simplified inter-

pretation of studies conducted in the field of psychology, dealing with user cognitive

levels and processing capabilities, see [4][165][3], where imponderable factors, e.g.

user beliefs, may influence the user cognitive process.

Cognition Rule Pattern 1

A pattern for cognition is shown in Table 4.36. As shown in the rule part of the

pattern, the invocation of a user operation (ic opNNUserOperation) must be fol-

lowed by the response of the same operation, (ir opNNUserOperation) in no more

than tCurrent cog units of time. The time variable tCurrent cog represents the maximum

amount of time for the execution of a user operation. Its computation considers

the time specified for the user operation multiplied by the percentage associated to

the level of cognition of the user. In the assumption part of the pattern the fluent

opNNUserOperation represents the operation “opNNUserOperation” is active, i.e.

has been triggered. The initialisation of the fluent opNNUserOperation is triggered

by the invocation of the user operation (ic opNNUserOperation). The invariant part

in the pattern is depicted in bold.

Rule part
Happens(ic opNNUserOperation, t1,R(t1, t1))
⇒
Happens(ir opNNUserOperation, t2,R(t1, t1 + tCurrent cog))

Assumption part
Happens(ic opNNUserOperation, t1,R(t1, t1))
⇒
Initiates(ic opNNUserOperation, opNNUserOperation, t1)

Table 4.36: Cognition Rule Pattern 1

In the case two or more user operations have been identified in the part of the

SBS to be executed, the cognition pattern in Table 4.36 is instantiated for each one of

153

4. MONITOR RULES SPECIFICATION

them.

4s
mail−

Review

12s
mail−

Compo−
ser
9s

exit

4s

S
ta

rt

W
O

−
S

B
S

5s

enable−
Messagin−
Service

3s 5s

opsel−
ectFeatur−
eUserOp−
eration

Manage−
ment
15s

mail−opstan−
dardUIM−
ailUserO−

4s
peration

check-
Access

Cognition average

oplogi-
nUserOp-
eration

Figure 4.4: Service Specification Sequence for an average Cognition

As an example, consider the extract of the Wo-SBS scenario depicted in Figure

4.4, assume a user with an “average” level of cognition interacting with the system.

Applying the cognition pattern depicted in Table 4.36 results in the pattern instantia-

tions depicted in Table 4.37.

Rule part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Happens(ir oploginUserOperation, t2,R(t1, t1 + 3.75))

Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Happens(ir opselectFeatureUserOperation, t2,R(t1, t1 + 3.75))

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Happens(ir opstandardUIMailUserOperation, t2,R(t1, t1 + 3))

Assumption part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Initiates(ic oploginUserOperation, oploginUserOperation, t1)
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.37: Instantiation of Cognition Rule Pattern 1

154

4.2. PATTERNS

The pattern instantiations depicted in Table 4.37 consider user operations oplogin-

UserOpera-tion, opselectFeatureUserOperation, and opstandardUIMailUserOpera-

tion, which correspond to operations involved in the part of the Wo-SBS associated to

an “average” level of cognition. In the rule part of the pattern instantiations, the invo-

cation of operation oploginUserOperation (event ic oploginUserOperation) should

be followed by the response of the operation (event ir oploginUserOperation) in no

more than 3 seconds. This time constraint represents 75% of the time specified for the

execution of this operation (4∗0.75 seconds) given the “average” level of cognition of

the user. Similarly, the invocation of operations opselectFeatureUserOperation and

opstandardUIMailUserOperation (events ic opselectFeatureUserOperation and ic

opstandardUIMailUserOperation) should be followed by the operation responses

(i.e. ir opselectFeatureUserOperation and ir opstandardUIMailUserOperation)

in no more than 3.75 seconds (5∗0.75 seconds for each operation). In the assumption

part of the instantiated pattern, the user operations are initiated.

Cognition Rule Pattern 2

Another cognition pattern is depicted in Table 4.38. As shown in the rule part of

the pattern, the invocation of a user operation (ic opOperationNNiUserOperation)

must be followed by its response (ir opOperationNNiUserOperation). Each re-

sponse should occur in no more than tCurrent cogi units of time. The time variable

tCurrent cogi corresponds to the maximum time specified for the execution of a user

operation, multiplied by the percentage associated to the respective level of cogni-

tion of the user.

In the assumption part of the pattern the fluent opNNiUserOperation repre-

sents the operation “opNNiUserOperation” is active. The initialisation of the fluent

opNNiUserOperation is triggered by the invocation of the user operation (ic opNNi

155

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic opNN1UserOperation, t1,R(t1, t1))
∧...∧
Happens(ic opNNiUserOperation, ti,R(ti, ti))⇒
Happens(ir opNN1UserOperation, ti+1,R(t1, t1 + tCurrent cog1))
∧...∧
Happens(ir opNNiUserOperation, t j,R(ti, ti + tCurrent cogi))

Assumption part
Happens(ic opNN1UserOperation, t1,R(t1, t1))⇒
Initiates(ic opNN1UserOperation, opNN1UserOperation, t1)
...

Happens(ic opNNiUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNiUserOperation, opNNiUserOperation, t1)

Table 4.38: Cognition Rule Pattern 2

UserOperation). The invariant part in the pattern is depicted in bold.

The predicates for invocations and responses in the rule part of the pattern and the

initialisation of the operations in the assumption part of the pattern, are instantiated

for eachuser operation identified in the part of the SBS to be executed.

As an example, consider the extract of the Wo-SBS depicted in Figure 4.4, where

part of the extract is associated to an “average” level of cognition. Applying the

cognition pattern depicted in Table 4.38 results in the pattern instantiation depicted

in Table 4.39.

The pattern shown in Table 4.39 depicts operations oploginUserOperation, opse-

lectFeatureUserOperation, and opstandardUIMailUserOperat-ion, which correspond

to the user operations involved in the part of the Wo-SBS associated to an “av-

erage” level of cognition. In the instantiation, the invocation of operation oplogi-

nUserOperation (event ic oploginUserOperation) should be followed by the re-

sponse of the operation (event ir oploginUserOperation) in no more than 3.75 sec-

onds (i.e. 5 ∗ 0.75 seconds) given the “average” cognition of the user. Similarly,

the invocation of operation opselectFeatureUserOperation (event ic opselectFeature

156

4.2. PATTERNS

Rule part
Happens(ic oploginUserOperation, t1,R(t1, t1)) ∧
Happens(ic opselectFeatureUserOperation, t2,R(t2, t2)) ∧
Happens(ic opstandardUIMailUserOperation, t3,R(t3, t3))⇒
Happens(ir oploginUserOperation, t4,R(t1, t1 + 3.75)) ∧
Happens(ir opselectFeatureUserOperation, t5,R(t2, t2 + 3.75)) ∧
Happens(ir opstandardUIMailUserOperation, t6,R(t3, t3 + 3))

Assumption part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Initiates(ic oploginUserOperation, oploginUserOperation, t1)
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.39: Instantiation of Cognition Rule Pattern 2

UserOperation) should be followed by the response of the operation (event ir opsele

ctFeatureUserOperation) in no more than 3.75 seconds. Finally, the invocation of

operation opstandardUIMailUserOperation (event ic opstandardUIMailUserOp −

eration) must be followed by the response of the operation (event ir opstandardUI−

MailUserOperation) in no more than 3 seconds (4 ∗ 0.75 seconds).

Cognition Rule Pattern 3

Another cognition pattern is depicted in Table 4.40. In the pattern, the response of a

user operation (ir opNNUserOperation), must be preceded by the invocation of the

user operation (ic opNNUserOperation), in a period of time that does not exceed

the execution time specified for the user operation. The time constraint is specified

by the time variable tCurrent cog, which corresponds to the maximum time specified

for the execution of the user operation, multiplied by the percentage associated to

157

4. MONITOR RULES SPECIFICATION

the cognition level of the user.

Rule part
Happens(ir opNNUserOperation, t1,R(t1, t1))
⇒
Happens(ic opNNUserOperation, t0,R((t1 − tCurrent cog), t1))

Assumption part
Happens(ic opNNUserOperation, t1,R(t1, t1))
⇒
Initiates(ic opNNUserOperation, opNNUserOperation, t1)

Table 4.40: Cognition Rule Pattern 3

In the case two or more user operations have been identified in the part of the

SBS to be executed, the cognition pattern in Table 4.40 is instantiated for each one of

them.

As an example, consider the part of the SBS related to a user, associated to an

“average” level of cognition, depicted in Figure 4.4. Applying the cognition pattern

depicted in Table 4.40 results in the pattern instantiations depicted in Table 4.41.

The pattern instantiations depicted in Table 4.41 consider operations oplogin-

UserOperation, opselectFeatureUserOperation, and opstandardUIMailUserOperat-

ion, which correspond to the user operations involved in the part of the Wo-SBS asso-

ciated to an “average” level of cognition. In the pattern instantiations, the response of

operation oploginUserOperation (event ir oploginUserOperation) should have been

preceded by the invocation of the operation (event ic oploginUserOperation) within

a time range that does not exceed 3.75 seconds. This time range represents 75% of

the time specified for the execution of this operation (5 ∗ 0.75 seconds) given the

“average” cognition of the user. Similarly, the responses of operations opselectFea-

tureUserOperation and opstandardUIMailUserOperation (events ir opselectFeature-

UserOperation and ir opstandardUIMailUserOperation) should be preceded by the

invocations of the operations (events ic opselectFeatureUserOperation and ic opstan-

158

4.2. PATTERNS

Rule part
Happens(ir oploginUserOperation, t1,R(t1, t1))⇒
Happens(ic oploginUserOperation, t0,R(t1 − 3.75, t1))
Happens(ir opselectFeatureUserOperation, t1,R(t1, t1))⇒
Happens(ic opselectFeatureUserOperation, t0,R(t1 − 3.75, t1))

Happens(ir opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Happens(ic opstandardUIMailUserOperation, t0,R(t1 − 3, t1))

Assumption part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Initiates(ic oploginUserOperation, oploginUserOperation, t1)
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.41: Instantiation of Cognition Rule Pattern 3

dardUIMailUserOperation) within a time range of 3.75 and 3 seconds (4 ∗ 0.75 sec-

onds).

Cognition Rule Pattern 4

Another cognition pattern is depicted in Table 4.42. The pattern is similar to the one

shown in Table 4.40, however in this pattern all user operations are considered in a

single monitor rule. More specifically, all operations responses, i.e. ir opNNiUser −

Operation, must be preceded by the corresponding invocations, i.e. ic opNNiUser−

Operation, in periods of time that do not exceed the execution time specified for the

user operations. The time constraints are specified by the time variables tCurrent cog(i) ,

which correspond to the maximum time specified for the execution of user opera-

tions, multiplied by the percentage associated to the level of cognition of the user.

As an example, consider the part of the SBS related to a user, associated to an

159

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ir opNN1UserOperation, t1,R(t1, t1))
∧...∧
Happens(ir opNNiUserOperation, ti,R(ti, ti))
⇒
Happens(ic opNN1UserOperation, ti+1,R((t1 − tCurrent cog(1)), t1))
∧...∧
Happens(ic opNNiUserOperation, t2i,R((ti − tCurrent cog(i)), ti))

Assumption part
Happens(ic opNN1UserOperation, t1,R(t1, t1))⇒
Initiates(ic opNN1UserOperation, opNN1UserOperation, t1)
...

Happens(ic opNNiUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNiUserOperation, opNNiUserOperation, t1)

Table 4.42: Cognition Rule Pattern 4

“average” level of cognition, depicted in Figure 4.4. Applying the cognition pattern

depicted in Table 4.42 results in the pattern instantiations depicted in Table 4.43.

Rule part
Happens(ir oploginUserOperation, t1,R(t1, t1)) ∧
Happens(ir opselectFeatureUserOperation, t2,R(t2, t2)) ∧
Happens(ir opstandardUIMailUserOperation, t3,R(t3, t3))⇒
Happens(ic oploginUserOperation, t4,R(t1 − 3.75, t1)) ∧
Happens(ic opselectFeatureUserOperation, t5,R(t2 − 3.75, t2)) ∧
Happens(ic opstandardUIMailUserOperation, t6,R(t3 − 3, t3))

Assumption part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Initiates(ic oploginUserOperation, oploginUserOperation, t1)

Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.43: Instantiation of Cognition Rule Pattern 4

160

4.2. PATTERNS

The pattern instantiation depicted in Table 4.43 considers the user operations

oploginUserOperation, opselectFeatureUserOperation, and opstandardUIMailUser-

Operation which correspond to operations participating in the part of the Wo-SBS

associated to an “average” level of cognition. In the rule, the response of operation

oploginUserOperation (event ir oploginUserOperation) should have been preceded

by the invocation of the operation (event ic oploginUserOperation) within a time

range that does not exceed 3.75 seconds. This time range represents 75% of the time

specified for the execution of this operation (5 ∗ 0.75 seconds) given the “average”

cognition of the user. Similarly, the responses of operations opselectFeatureUserOp-

eration and opstandardUIMailUserOperation (events ir opselectFeatureUserOper-

ation and ir opstandardUIMailUserOperation) should be preceded by the invoca-

tions of the operations (events ic opselectFeatureUserOperation and ic opstandard-

UIMailUserOperation) within a time range of 3.75 and 3 seconds (4 ∗ 0.75 seconds).

Cognition Rule Pattern 5

Another pattern for cognition is shown in Table 4.44. As shown in the rule part

of the pattern, the invocation of an initial event (ic InitialEvent) must be followed

by the invocation and response of a user operation (events ic opNNUserOperation

and ir opNNUserOperation) at times t2 and t3. The response must occur in no

more than tCurrent cog units of time after the invocation at a time t2. The time vari-

able tCurrent cog represents the maximum amount of time for the execution of a user

operation. Its computation considers the time specified for the user operation mul-

tiplied by the percentage associated to the level of cognition of the user. In the as-

sumption part of the pattern the fluent opNNUserOperation represents the opera-

tion “opNNUserOperation” is active, i.e. has been triggered. The initialisation of

the fluent opNNUserOperation is triggered by the invocation of the user operation

(ic opNNUserOperation). The invariant part in the pattern is depicted in bold.

161

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Happens(ic opNNUserOperation, t2,R(t1, t2)) ∧
Happens(ir opNNUserOperation, t3,R(t2, t2 + tCurrent cog))

Assumption part
Happens(ic opNNUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNUserOperation, opNNUserOperation, t1)

Table 4.44: Cognition Rule Pattern 5

In the case two or more user operations have been identified in the part of the

SBS to be executed, the cognition pattern in Table 4.44 is instantiated for each one of

them.

As an example, consider the extract of the Wo-SBS scenario depicted in Figure

4.4, assume a user with an “average” level of cognition interacting with the system.

Applying the cognition pattern depicted in Table 4.44 results in the pattern instantia-

tions depicted in Table 4.45.

The pattern instantiations depicted in Table 4.45 consider user operations oplogi-

nUserOperation, opselectFeatureUserOperation, and opstandardUIMailUserOpera-

tion, which correspond to operations involved in the part of the Wo-SBS associated

to an “average” level of cognition. In each monitor rule the occurrence of the initial

event (ic startWoS BS) must be followed by the invocation of an operation and its re-

sponse. Thus after the occurrence of the initial event ic startWoS BS , the invocation

of operation oploginUserOperation (event ic oploginUserOperation) must be fol-

lowed by the response of the operation (event ir oploginUserOperation) in no more

than 3 seconds. This time constraint represents 75% of the time specified for the exe-

cution of this operation (4∗0.75 seconds) given the “average” level of cognition of the

user. Similarly, monitor rules state that after the occurrence of the initial event, invo-

cations ic opselectFeatureUserOperation and ic opstandardUIMailUserOperation

should be followed by the operation responses (ir opselectFeatureUserOperation

162

4.2. PATTERNS

Rule part
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic oploginUserOperation, t2,R(t1, t2)) ∧
Happens(ir oploginUserOperation, t3,R(t2, t2 + 3.75))

Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic opselectFeatureUserOperation, t2,R(t1, t2)) ∧
Happens(ir opselectFeatureUserOperation, t3,R(t2, t2 + 3.75))

Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t2)) ∧
Happens(ir opstandardUIMailUserOperation, t3,R(t2, t2 + 3))

Assumption part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Initiates(ic oploginUserOperation, oploginUserOperation, t1)
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.45: Instantiation of Cognition Rule Pattern 5

and ir opstandardUIMailUserOperation) in no more than 3.75 seconds (5 ∗ 0.75

seconds for each operation). In the assumption part of the pattern instantiations the

user operations are initiated.

Cognition Rule Pattern 6

Table 4.46 shows another pattern for cognition. As shown in the rule part of the pat-

tern, the invocation of an initial event (ic InitialEvent) must be followed by the in-

vocations and responses of a set of user operations (events ic opNNiUserOperation

and ir opNNiUserOperation respectively). Each operation response must occur in

no more than tCurrent cog(i) units of time after the invocation of the operation. The time

variable tCurrent cog(i) represents the maximum amount of time for the execution of a

163

4. MONITOR RULES SPECIFICATION

user operation. The computation of the time variable tCurrent cog(i) considers the time

specified for a user operation multiplied by the percentage associated to the level of

cognition of the user. In the assumption part of the pattern a fluent represents the as-

sociated operation is active, i.e. has been triggered. for example, the initialisation of

the fluent opNNiUserOperation is triggered by the invocation of the user operation

(ic opNNiUserOperation). The invariant part in the pattern is depicted in bold.

Rule part
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Happens(ic opNN1UserOperation, t2,R(t1, t2))
∧...∧
Happens(ic opNNiUserOperation, ti+1,R(t1, ti+1)) ∧
Happens(ir opNN1UserOperation, ti+2,R(t2, t2 + tCurrent cog(1)))
∧...∧
Happens(ir opNNiUserOperation, t2i+1,R(ti+1, ti+1 + tCurrent cog(i)))

Assumption part
Happens(ic opNNUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNUserOperation, opNNUserOperation, t1)
...

Happens(ic opNNUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNUserOperation, opNNUserOperation, t1)

Table 4.46: Cognition Rule Pattern 6

As an example, consider the extract of the Wo-SBS scenario depicted in Figure

4.4, assume a user with an “average” level of cognition interacting with the system.

Applying the cognition pattern depicted in Table 4.46 results in the pattern instantia-

tions depicted in Table 4.47.

The pattern instantiations depicted in Table 4.47 consider user operations oplogi-

nUserOperation, opselectFeatureUserOperation, and opstandardUIMailUserOpera-

tion, which correspond to operations involved in the part of the Wo-SBS associated

to an “average” level of cognition. In the monitor rule the occurrence of the initial

event (ic startWoS BS) must be followed by the invocation of the user operations and

164

4.2. PATTERNS

Rule part
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic oploginUserOperation, t2,R(t1, t2)) ∧
Happens(ic opselectFeatureUserOperation, t3,R(t1, t3)) ∧
Happens(ic opstandardUIMailUserOperation, t4,R(t1, t4))⇒
Happens(ir oploginUserOperation, t5,R(t2, t2 + 3.75))
Happens(ir opselectFeatureUserOperation, t6,R(t3, t3 + 3.75))
Happens(ir opstandardUIMailUserOperation, t7,R(t4, t4 + 3))

Assumption part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Initiates(ic oploginUserOperation, oploginUserOperation, t1)
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.47: Instantiation of Cognition Rule Pattern 6

their responses. Thus after the occurrence of the initial event ic startWoS BS , the in-

vocation of operation oploginUserOperation (event ic oploginUserOperation) must

be followed by the response of the operation (event ir oploginUserOperation) in no

more than 3 seconds. This time constraint represents 75% of the time specified for the

execution of this operation (4∗0.75 seconds) given the “average” level of cognition of

the user. Similarly, monitor rules state that after the occurrence of the initial event, in-

vocations ic opselectFeatureUserOperation and ic opstandardUIMailUserOper−

ation should be followed by the operation responses (ir opselectFeatureUserOper−

ation and ir opstandardUIMailUserOperation) in no more than 3.75 seconds (5 ∗

0.75 seconds for each operation). The fluents related to the user operations are initi-

ated in the assumption part of the instantiated pattern.

165

4. MONITOR RULES SPECIFICATION

Cognition Rule Pattern 7

The pattern for cognition shown in Table 4.48 verifies the response time of a user

operation after its state starts holding. More specifically, the pattern relies on the

change of states of a user operation as an indicator the operation has been invoked.

Note that the state of an operation, i.e. a fluent, starts holding when it is invoked. The

pattern verifies that the response of the user operation occurs in the time constraint

defined by the time of the operation and the level of cognition of the user.

As shown in the rule part of the pattern in Table 4.48, the changes of state of a

fluent associated to a user operation, must be followed by the response of the oper-

ation within a defined period of time. The period of time is represented by the time

variable tCurrent cog and its computation considers the time specified for the user oper-

ation multiplied by the percentage associated to the level of cognition of the user. In

the assumption part of the pattern the fluent opNNUserOperation represents the op-

eration “opNNUserOperation” is active, i.e. has been triggered. The initialisation of

the fluent opNNUserOperation is triggered by the invocation of the user operation

(ic opNNUserOperation). The invariant part in the pattern is depicted in bold.

Rule part
¬HoldsAt(opNNUserOperation, t1) ∧
HoldsAt(opNNUserOperation, t2)⇒
Happens(ir opNNUserOperation, t3,R(t2, t2 + tCurrent cog))
t1 < t2
Assumption part
Happens(ic opNNUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNUserOperation, opNNUserOperation, t1)

Table 4.48: Cognition Rule Pattern 7

In the case two or more user operations have been identified in the part of the

SBS to be executed, the cognition pattern in Table 4.44 is instantiated for each one of

them.

166

4.2. PATTERNS

As an example, consider the extract of the Wo-SBS scenario depicted in Figure

4.4, assume a user with an “average” level of cognition interacting with the system.

Applying the cognition pattern depicted in Table 4.48 results in the pattern instantia-

tions depicted in Table 4.49.

Rule part
¬HoldsAt(oploginUserOperation, t1) ∧
HoldsAt(oploginUserOperation, t2)⇒
Happens(ir oploginUserOperation, t3,R(t2, t2 + 3.75))

¬HoldsAt(opselectFeatureUserOperation, t1) ∧
HoldsAt(opselectFeatureUserOperation, t2)⇒
Happens(ir opselectFeatureUserOperation, t3,R(t2, t2 + 3.75))

¬HoldsAt(opstandardUIMailUserOperation, t1) ∧
HoldsAt(opstandardUIMailUserOperation, t2)⇒
Happens(ir opstandardUIMailUserOperation, t3,R(t2, t2 + 3))

Assumption part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Initiates(ic oploginUserOperation, oploginUserOperation, t1)
Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.49: Instantiation of Cognition Rule Pattern 7

The pattern instantiations depicted in Table 4.49 consider user operations oplogi-

nUserOperation, opselectFeatureUserOperation, and opstandardUIMailUserOpera-

tion, which correspond to operations involved in the part of the Wo-SBS associated to

an “average” level of cognition. In each monitor rule the change of state of the fluent

associated to the user operation signifies the invocation of the operations. The change

of state of the fluent oploginUserOperation, from not holding to holding, must be

followed by the response of the operation (ir oploginUserOperation) in no more

167

4. MONITOR RULES SPECIFICATION

than 3 seconds. This time constraint represents 75% of the time specified for the exe-

cution of this operation (4∗0.75 seconds) given the “average” level of cognition of the

user. Similarly, the other two monitor rules state that after the changes of states (for

fluents opselectFeatureUserOperation and opstandardUIMailUserOperation) re-

sponses from each operation must occur in no more than 3.75 seconds (5 ∗ 0.75

seconds for each operation). In the assumption part of the instantiation, the user

operations are initiated as they are invoked.

4.2.6 Preferences Patterns

In the literature it is possible to find several studies dealing with user preferences.

These studies cover different topics, ranging from preferences dealing with informa-

tion retrieval, e.g. [63][150][170] to users’ intuitive or emotional preferences, e.g.

[97][123][139].

In our work we have created a set of preferences patterns to support the represen-

tation of alternative computational resources. More specifically, we focus on the time

and security preferences of a user, for the complete or partial execution of a SBS, and

on the reliability preferences of a user, when a system is invoked. These preferences

have been addressed in several works including [34][56][74][95][127].

Time Preferences Pattern

A time preference pattern concerns with the execution of part of a SBS within a

specified time constraint. More specifically the SBS, or part of it, must be executed

within a time constraint that is specified by the user. A time preferences pattern is

depicted in Table 4.50. In the rule part of the pattern, the invocation of an operation

(ic Eventi), must be followed by the response of an operation (ir Event j), within the

time constraint specified by the user. The time constraint specified by the user is

168

4.2. PATTERNS

represented by the time variable tpre f erences. In the assumption part of the pattern the

invocation of the involved operations imply the associated fluents have been initiated.

The invariant part in the pattern is depicted in bold.

Rule part
Happens(ic Eventi, t1,R(t1, t1))⇒
Happens(ir Event j, t2,R(t1, t1 + tpre f erences))

Assumption part
Happens(ic Eventi, t1,R(t1, t1))⇒
Initiates(ic Eventi, Eventi, t1)

Happens(ic Event j, t1,R(t1, t1))⇒
Initiates(ic Event j, Event j, t1)

Table 4.50: Time Preference Rule Pattern

As an example, consider the extract of the Wo-SBS scenario depicted in Figure

4.4 and assume the user has a response time preference of 5 seconds for the execution

of operations checkAccess and enableMessagingService. Applying the time prefer-

ences pattern depicted in Table 4.50 results in the pattern instantiation depicted in

Table 4.51.

Rule part
Happens(ic checkAccess, t1,R(t1, t1))⇒
Happens(ir enableMessagingS ervice, t2,R(t1, t1 + 5))

Assumption part
Happens(ic checkAccess, t1,R(t1, t1))⇒
Initiates(ic checkAccess, checkAccess, t1)

Happens(ic enableMessagingS ervice, t1,R(t1, t1))⇒
Initiates(ic enableMessagingS ervice, enableMessagingS ervice, t1)

Table 4.51: Instantiation of Time Preferences Rule Pattern

The instantiation of the pattern shown in Table 4.51 specifies that the invocation

of operation checkAccess (ic checkAccess) should be followed by the response of op-

eration enableMessagingService (ir enableMessagingS ervice) in an interval of time

that does not exceed 5 seconds. The assumption part represents the initialisation of

169

4. MONITOR RULES SPECIFICATION

the fluents associated to the operations, as a result of the corresponding invocations.

Security Preferences Pattern

Security preferences patterns are concerned with the total or partial execution of a

SBS while properties regarding security requirements are enabled.

In the patterns, we assume enabled security properties are represented by a generic

fluent, security, and that its initialisation has been previously specified. The enabled

state of the fluent security denotes security properties hold, while the disabled state

denotes security properties do not hold.

The above assumption is necessary since states guaranteeing security properties

can be triggered by specific events, states, or combination of both. Even more, trig-

gers enabling security properties can change from one system to another.

In addition to the above, security requirements may focus, for example, on the

integrity or confidentiality of a system, e.g. [36][218][223]. In our work we con-

sider the security concept form a general perspective; more specifically we consider

security as the absence of threats in a system, as specified in [27][129][247].

A security preference pattern is depicted in Table 4.52. In the pattern, the en-

abled security property is represented by the fluent security. In the rule part of the

pattern, invocations (ic Eventi) and responses (ir Event j) of a set of operations must

occur while the security property is enabled. The set of invocations and responses

correspond to operations to which security is required. In the assumption part the in-

vocations of the different operations trigger the states corresponding to the associated

operations. The invariant part of the pattern is depicted in bold.

As an example, consider the extract of the Wo-SBS scenario depicted in Figure

4.5 and assume a user requires a secure access when authenticating into the Wo-SBS.

170

4.2. PATTERNS

Rule part
Happens(ic Event1, t1,R(t1, t1)) ∧
Happens(ir Event1, t2,R(t1, t2))
∧...∧
Happens(ic Eventi, t(2i−1),R(t(2i−1), t(2i−1))) ∧
Happens(ir Eventi, t2i,R(t(2i−1), t2i))⇒
HoldsAt(security, t1)
∧...∧
HoldsAt(security, t2i)

Assumption part
Happens(ic Event1, t1,R(t1, t1))⇒
Initiates(ic Event1, Event1, t1)
...

Happens(ic Eventi, t1,R(t1, t1))⇒
Initiates(ic Eventi, Eventi, t1)

Table 4.52: Security Preference Rule Pattern

4s
mail−

Review

12s
mail−

Compo−
ser
9s

exit

4s

S
ta

rt

W
O

−
S

B
S

5s

enable−
Messagin−
Service

3s 5s

opsel−
ectFeatur−
eUserOp−
eration

Manage−
ment
15s

mail−opstan−
dardUIM−
ailUserO−

4s
peration

check-
Access

oplogi-
nUserOp-
eration

Security enabled

Figure 4.5: Service Specification Sequence for Security

In this case the security fluent must hold during the authentication process (operations

oploginUserOperation and checkAccess).

Applying the security preference pattern depicted in Table 4.52, results in the

pattern instantiations depicted in Table 4.53.

The instantiation of the pattern shown in Table 4.53 specifies that the invocations

and responses of operations oploginUserOperation (i.e. events ic oploginUserOperation

and ir oploginUserOperation) and checkAccess (i.e. events ic checkAccess and ir checkAccess)

171

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic oploginUserOperation, t1,R(t1, t1)) ∧
Happens(ir oploginUserOperation, t2,R(t1, t2)) ∧
Happens(ic checkAccess, t3,R(t3, t3)) ∧
Happens(ir checkAccess, t4,R(t3, t4))⇒
HoldsAt(security, t1) ∧
HoldsAt(security, t2) ∧
HoldsAt(security, t3) ∧
HoldsAt(security, t4)

Assumption part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Initiates(ic oploginUserOperation, oploginUserOperation, t1)

Happens(ic checkAccess, t1,R(t1, t1))⇒
Initiates(ic checkAccess, checkAccess, t1)

Table 4.53: Instantiation of Security Preference Rule Pattern

should occur at times t1, t2, t3, and t4 and that at each occurrence the security fluent

must hold (be enabled). The assumption part represents the states associated to the

operations, have been triggered by the corresponding invocations.

Note that, as previously pointed out, it is not possible to specify which combina-

tion of states or actions trigger the security fluent. As a result, the instantiated pattern

in Table 4.53 is concerned with the state of the security fluent but not its initialisation.

Reliability Preferences Pattern

The patterns concerned with the reliability of a system focus on the expected be-

haviour of a system with respect to the desired level of performance, specified by

the user, of the system under normal circumstances. More specifically, the expected

behaviour of a service composition, expressed in terms of reliability, should be equal

or greater than the level of reliability specified by the user.

Similar to the security pattern, we consider reliability in a broad sense. More

172

4.2. PATTERNS

specifically, we consider reliability as the probability a system performs correctly its

intended functionality over a specified period of time [73][86][235].

We assume the reliability for a SBS has been computed for the whole composition

and that it is constantly updated after each execution of the system. This assumption

is based on the previous work presented in [233]. The reliability computed for a

system is represented by the holding fluent systemReliability, while the reliability

specified by the user is represented by the holding fluent userReliability.

A reliability preference pattern is depicted in Table 4.54. The rule part of the

pattern states that if the user level of reliability is specified while invoking the SBS

(ic InitialEvent), i.e. that the fluent userReliability holds at the time of the first in-

vocation, the level of reliability of the SBS (fluent systemReliability) should be equal

or greater than the one specified by the user. In the assumption part the invocation

of the initial event implies the reliability for the SBS has been defined. The invariant

part of the pattern is depicted in bold.

Rule part
HoldsAt(userReliability, t1) ∧
Happens(ic InitialEvent, t1,R(t1, t1))⇒
HoldsAt(userReliability ≤ systemReliability, t1)

Assumption part
Happens(ic InitialEvent, t1,R(t1, t1))⇒
HoldsAt(systemReliability, t1)

Table 4.54: Reliability Preference Rule Pattern

As an example consider the extract of the SBS depicted in Figure 4.5 and as-

sume a user requires the system to be reliable 90% of the time; assume also the

computed systemReliability is 0.95. Table 4.55 shows the instantiation of the pattern

previously depicted in Table 4.54. In the instantiation, the reliability of the user (0.9)

is less than the reliability computed for the system (0.95) when invoking the SBS

(ic startWoS BS), the rule will not be violated. In the case in which the level of reli-

173

4. MONITOR RULES SPECIFICATION

Rule part
HoldsAt(0.9, t1) ∧
Happens(ic startWoS BS , t1,R(t1, t1))⇒
HoldsAt(0.9 ≤ 0.95, t1)

Assumption part
Happens(ic startWoS BS , t1,R(t1, t1))⇒
HoldsAt(systemReliability, t1)

Table 4.55: Instantiation of Reliability Preference Rule Pattern

ability computed for the system is equal or less than the level of reliability specified

for the user, the rule based on the reliability pattern is violated.

4.2.7 Need Pattern

The user need can be defined as a task, objective or goal a user wants to perform and

accomplish with the help of a system [125][145][240].

The need of a user goes beyond the specification of a set of tasks to be performed,

it also considers (in order to successfully accomplish the goal) the correct execution

of a set of tasks. For example, while in the role context type the concern was on the

invocation of those operations related to the role of the user, whether the involved

operations were executed correctly or not was not an issue. More specifically, when

dealing with the need context type the concern is on the correct invocation, operation,

and termination of the involved operations.

The patterns for need context type focus on the correct execution of the part of the

SBS related to the need of the user. A way of verifying whether a system is executing

as expected, is by analysing all invocations and responses occur within expected time

constraints.

174

4.2. PATTERNS

Need Rule Pattern 1

A pattern for the need context type is depicted in Table 4.56. The rule part of the need

pattern states that after the invocation of the initial event (ic InitialEvent) at a time

t1, a set of operations invocations and responses should occur. The operations corre-

spond to those operations identified as related to the need of the user. The invocation

and response of each operation should occur at defined times. More specifically, the

time variable tFirst represents the maximum amount of time between the occurrence

of the initial event, and the invocation of the first operation associated to the part of

the SBS related to the need of the user. The operations related to the need of the user

should be executed in a defined order and the time constraint defined for the response

of each operation must not be exceeded. The time constraint for each operation is

represented by the time variable TExpOpi , which states the maximum amount of time

allowed between the invocation and response of an operation. The time constraints

consider small time delays between consecutive events of ten milliseconds. The as-

sumption part of the pattern states that each request of an operation ic Eventi triggers

the initialisation of the state Eventi, which represents the active state of the operation.

The invariant of the pattern is depicted in bold.

4s

mail−

Review

12s

mail−
Compo−

ser
9s

exit

4s

opstan−
dardUIM−
ailUserO−

4s
peration

15s

mail−
Manage−

ment

S
ta

rt

W
O

−
S

B
S

5s

enable−
Messagin−
gService

3s

opsel−
ectFeatur−
eUserOp−

5s
eration

check-
Access

oplogin-
UserOper-

ation

Need enabled

Figure 4.6: Service Specification Sequence and Need Context Type

As an example consider the sequence depicted in Figure 4.6 where operations

175

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic InitialEvent, t1,R(t1, t1))
⇒
Happens(ic Event1, t2,R(t1, t1 + tFirst)) ∧
Happens(ir Event1, t3,R(t2, t2 + TExpOp1)) ∧
Happens(ic Event2, t4,R(t3, t3 + 0.01) ∧
Happens(ir Event2, t5,R(t4, t4 + TExpOp2))
∧ ... ∧
Happens(ic Eventd(n−1)/2e, tn−1,R(tn−2, tn−2 + 0.01)) ∧
Happens(ir Eventd(n−1)/2e, tn,R(tn−1, tn−1 + TExpOpd(n−1)/2e))

Assumption part
Happens(ic Eventn, t1,R(t1, t1))
⇒
Initiates(ic Eventn, Eventn, t1)

Table 4.56: Need Rule Pattern 1

mailReview, mailComposer, mailManagement, and opstandardUIMailUserOpera-

tion are related to the need of a user. Applying the pattern depicted in Table 4.56

results in the pattern instantiations depicted in Table 4.57.

Need Rule Pattern 2

Another need pattern is specified in Table 4.58. In this pattern each operation, identi-

fied as related to the need of the user, is verified according to its invocation followed

by its response. The time variable texecution represents the time constraint between the

initial event (ic InitialEvent) and the invocation of an operation (ic Eventi) related to

the need of the user. The time constraint between the invocation of an operation and

the response of the operation (ir Eventi) is represented by the time variable tEvent.

The computed time constraints consider small delays of ten milliseconds between

consecutive events.

The assumption part of the pattern states that an invocation of an operation trig-

gers the initialisation of the associated state, which represents the active state of the

176

4.2. PATTERNS

Rule part
Happens(ic startWoS BS , t1,R(t1, t1))
⇒
Happens(ic mailReview, t2,R(t1, t1 + 17.05)) ∧
Happens(ir mailReview, t3,R(t2, t2 + 12)) ∧
Happens(ic mailComposer, t4,R(t3, t3 + 0.01) ∧
Happens(ir mailComposer, t5,R(t4, t4 + 9)) ∧
Happens(ic mailManagement, t6,R(t5, t5 + 0.01)) ∧
Happens(ir mailManagement, t7,R(t6, t6 + 15)) ∧
Happens(ic opstandardUIMailUserOperation, t8,R(t7, t7 + 0.01)) ∧
Happens(ir opstandardUIMailUserOperation, t9,R(t8, t8 + 4))

Assumption part
Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.57: Instantiation of Need Rule Pattern 1

Rule part
Happens(ic InitialEvent, t1,R(t1, t1))⇒
Happens(ic Eventi, t2,R(t1, t1 + texecution)) ∧
Happens(ir Eventi, t3,R(t2, t2 + TEvent))

Assumption part
Happens(ic Eventi, t1,R(t1, t1))⇒
Initiates(ic Eventi, Eventi, t1)

Table 4.58: Need Rule Pattern 2

operation. The invariant of the pattern is depicted in bold. The pattern is applied to

each operation identified as related to the need of the user.

As an example consider the sequence depicted in Figure 4.6 where operations

mailReview, mailComposer, mailManagement, and opstandardUIMailUserOpera-

177

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 17.05))∧
Happens(ir mailReview, t3,R(t2, t2 + 12))

Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailComposer, t2,R(t1, t1 + 29.06) ∧
Happens(ir mailComposer, t3,R(t2, t2 + 9))

Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailManagement, t2,R(t1, t1 + 38.07)) ∧
Happens(ic mailManagement, t3,R(t2, t2 + 15))

Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic opS tandardMailUserOperation, t2,R(t1, t1 + 53.08)) ∧
Happens(ic opS tandardMailUserOperation, t3,R(t2, t2 + 4))

Assumption part
Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opS tandardMailUserOperation, t1)

Table 4.59: Instantiation of Need Rule Pattern 2

tion are related to the need of a user. Applying the pattern depicted in Table 4.58

results in the pattern instantiations depicted in Table 4.59. The invocation of each

operation (i.e. events ic mailReview, ic mailComposer, ic mailManagement, and

ic opstandard-UIMailUserOperation) should occur after the occurrence of the ini-

tial event (ic start-WoSBS) and within the computed time constraint consisting of the

previous operations plus the time delays. For each operation invocation, there should

be a response (represented in each case by events ir mailReview, ir mailComposer,

ir mailManage-ment, and ir opstandardUIMailUserOperation) occurring after the

178

4.2. PATTERNS

invocation of the operation and within the time constraint specified for the operation.

4.2.8 Cognition and Role Pattern

We have also created patterns to represent more than one context type at the same time

in order to denote combinations of context types. The Cognition and Role Pattern is

concerned with the times that a user takes to interact with the system for the various

user’s operations (involving the cognition context type) and the order in which the op-

erations, requiring user participation, need to be executed (involving the role context

type). The semantic of such situation cannot be represented by patterns concerned

with the isolated context types. Moreover, if both context types are specified in an

event, the framework will identify and instantiate the patterns for each of the context

types and execute the monitor rules resulting from these instantiations. However, the

execution of these rules do not provide the semantic meaning of verifying if the user

operations are specified in a certain order and each of them are executed in a certain

amount of time depending on the cognition level of the user. As an example, con-

sider a pattern for cognition and role context types shown in Table 4.60. Table 4.61

presents the instantiation of this pattern for the extract if the Wo-SBS example with a

user with “average” level of cognition and the role “personal user”. The extract of the

part of the Wo-SBS application associated to the above example is shown in Figure

4.7.

The rule part in the pattern in Table 4.60 considers all the user operations involved

in the execution when a user, in a certain role, accesses the system. The pattern states

that between the occurrence of the initial event in the system (ic InitialEvent) and the

occurrence of the last response (ir FinalResponse) in the system, an event or set of

events, concerned with user interactions should occur in a certain order. More specif-

ically, each invocation of a user operation (ic opOperationNUserOperation) must be

179

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic InitialEvent, t1,R(t1, t1)) ∧
Happens(ir FinalResponse, t2,R(t2, t2))⇒
Happens(ic opNN1UserOperation, t3,R(t1, t2)) ∧
Happens(ir opNN1UserOperation, t4,R(t3, t3 + tcurrent cog))
∧ ... ∧
Happens(ic opNN jUserOperation, t2 j+1,R(t2 j, t2)) ∧
Happens(ir opNN jUserOperation, t2 j+2,R(t2 j+1, t2 j+1 + tcurrent cog))

Assumption part
Happens(ic opNN1UserOperation, t1,R(t1, t1))⇒
Initiates(ic opNN1UserOperation, opNN1UserOperation, t1)
...

Happens(ic opNN jUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNN jUserOperation, opNN jUserOperation, t1)

Table 4.60: Cognition-Role Pattern

Rule part
Happens(ic startWoS BS , t1,R(t1, t1)) ∧
Happens(ir exit, t2,R(t2, t2))⇒
Happens(ic oploginUserOperation, t3,R(t1, t2)) ∧
Happens(ir oploginUserOperation, t4,R(t3, t3 + 5 ∗ 0.75)) ∧
Happens(ic opselectFeatureUserOperation, t5,R(t4, t2)) ∧
Happens(ir opselectFeatureUserOperation, t6,R(t5, t5 + 5 ∗ 0.75)) ∧
Happens(ic opstandardUIMailUserOperation, t7,R(t6, t2)) ∧
Happens(ir opstandardUIMailUserOperation, t8,R(t7, t7 + 4 ∗ 0.75))

Assumption part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Initiates(ic oploginUserOperation, oploginUserOperation, t1)

Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation,
opselectFeatureUserOperation, t1)

Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 4.61: Instantiation of Cognition-Role Pattern

180

4.2. PATTERNS

4s
mail−

Review

12s
mail−

Compo−
ser
9s

exit

4s

S
ta

rt

W
O

−
S

B
S

5s

enable−
Messagin−
Service

3s 5s

opsel−
ectFeatur−
eUserOp−
eration

Manage−
ment
15s

mail−opstan−
dardUIM−
ailUserO−

4s
peration

check-
Access

oplogi-
nUserOp-
eration

Cognition average

Role personal user

Figure 4.7: Service Specification Sequence, for a user with an “average” level of
cognition and role “personal user”

followed by the response of the same operation (ir opOperationNUserOperation) in

no more than tcurrent cog units of time. Time variable tcurrent cog corresponds to the

maximum amount of time for the execution of the user operation according to the

cognition level of the user. The occurrence of two or more user operations should

follow the order specified in the identified path. The assumption part of the pattern in

Table 4.60 states that the invocation of a user operation (ic opNNiUserOperation)

triggers the initialisation of the associated state (opNNiUserOperation) which rep-

resents the active state of the user operation.

The instantiation of the pattern shown in Table 4.61 specifies that the invocation

and response of operation oploginUserOperation (i.e. events ic oploginUserOpera

tion and ir oploginUserOperation) should be followed by the invocations and re-

sponses of operations opselectFeatureUserOperation (i.e. events ic opselectFeature

UserOperation and ir opselectFeatureUserOperation) and opstandardUIMailUser

Operation (i.e. events ic opstandardUIMailUserOperation and ir opstandardUIMail

UserOperation). The time constraints for the invocations and responses of each

operation, consider the execution time for the operation and the “average” level of

cognition of the user.

181

4. MONITOR RULES SPECIFICATION

4.2.9 Cognition and Time Preferences Pattern

Another combined pattern is the cognition and time preferences pattern depicted in

Table 4.62. The rule part in the pattern considers the invocation and response of a set

of operations within a time constraint specified by the user. In the rule part the pattern

also verifies (for the participating user operations) the user responses according to the

level of cognition, and that the time constraint specified by the user (time preferences)

is greater than the sum of the time constraints of the participating user operations.

The latter ensures the time preference specified by the user can never go below the

expected time required to perform the involved user operations.

Whether the time preferences specified by the user are below the sum of time

constraints of the participating user operations is represented by the fluent TimeCon-

straintOk). In the case the fluent holds, the time preferences from the user are below

the sum of the time constraints of the participating user operations. In the case the

fluent does not hold, the time preferences are above the sum of the time constraints

of the participating user operations.

The semantic of the above situation cannot be represented by patterns concerned

with the isolated cognition and time preferences context types. Moreover, if both

context types are specified in an event, the framework will identify and instantiate

the patterns for each of the context types and execute the monitor rules resulting

from these instantiations. However, the execution of these rules do not provide the

semantic meaning of verifying if the time constraint specified by the user is in conflict

with the expected time required for the execution of the involved user operations.

In the pattern in Table 4.62 the time to invoke the first operation (ic Event1) and

to receive the response of the last operation (ir Event2) of the part of the SBS related

to the time preference, should occur within the time constraint specified by the user

(time variable tpre f erence). For each user operation, participating in the part of the

182

4.2. PATTERNS

Rule part
Happens(ic Event1, t1,R(t1, t1))⇒
Happens(ic opNN1UserOperation, t2,R(t2, t2)) ∧
Happens(ir opNN1UserOperation, t3,R(t2, t2 + tcurrent cog1)
∧ ... ∧
Happens(ic opNNiUserOperation, tn,R(tn, tn)) ∧
Happens(ir opNNiUserOperation, tn+1,R(tn, tn + tcurrent cogi)) ∧
Happens(ir Event2, tn+2,R(t1, t1 + tpre f erence)) ∧
HoldsAt(TimeConstraintOk)

Assumption part
Happens(ic Event1, t1,R(t1, t1))⇒
Initiates(ic Event1, Event1, t1)

Happens(ic Event2, t1,R(t1, t1))⇒
Initiates(ic Event2, Event2, t1)

Happens(ic opNNiUserOperation, t1,R(t1, t1))⇒
Initiates(ic opNNiUserOperation, opNNiUserOperation, t1)

Table 4.62: Cognition Time Preference Pattern

SBS concerned with the time preference, the invocation of the operation should be

followed by the response of the user operation. The response should occur within the

time constraint (tcurrent cogi) which is computed according to the time to execute the

user operation and the level of cognition of the user. The fluent TimeConstraintOk is

initiated every time the sum of the time limits of the user operations (considering the

cognition level of the user) is below the time preference specified by the user. More

specifically
∑i

j=1 tcurrent cogi ≤ tpre f erence.

As an example, consider the extract of the SBS depicted in Figure 4.7 and assume

the user specifies time preferences for the execution of operations oploginUserOper-

ation, checkAccess, enableMessagingService, and opselectFeatureUserOperation of

nine seconds. Assume also the user has an “average” level of cognition. The instan-

tiation of pattern in Table 4.62 is shown in Table 4.63.

Note that in the instantiated pattern in Table 4.63 the first and last events corre-

183

4. MONITOR RULES SPECIFICATION

Rule part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Happens(ic oploginUserOperation, t2,R(t2, t2)) ∧
Happens(ir oploginUserOperation, t3,R(t2, t2 + 5 ∗ 0.75) ∧
Happens(ic opselectFeatureUserOperation, t4,R(t4, t4)) ∧
Happens(ir opselectFeatureUserOperation, t5,R(t4, t4 + 5 ∗ 0.75)) ∧
Happens(ir opselectFeatureUserOperation, t6,R(t1, t1 + 9)) ∧
HoldsAt(TimeConstraintOk)

Assumption part
Happens(ic oploginUserOperation, t1,R(t1, t1))⇒
Initiates(ic oploginUserOperation, oploginUserOperation, t1)

Happens(ic opselectFeatureUserOperation, t1,R(t1, t1))⇒
Initiates(ic opselectFeatureUserOperation, opselectFeatureUserOperation, t1)

Table 4.63: Instantiation of Cognition Time Preference Pattern

spond to user operations, more specifically invocation ic oploginUserOperation and

response ir opselectFeatureUserOperation. This is just a coincidence, in fact the first

and last event in the instantiated pattern depend on the sequence of operations related

to the time preferences specified by the user.

Note also that the instantiation of fluent TimeConstraintOk is not shown in the

pattern. The instantiation of fluent TimeConstraintOk is the consequence of sum

of time constraints related to the user operations and its comparison with the time

preference. More specifically, the sum of the time constraints for the execution of

operations oploginUserOperation and opselectFeatureUserOperation considering an

“average” level of cognition (in both cases 5 ∗ 0.75 seconds), is less than the nine

seconds specified in the time preferences of the user. In this case the fluent Time-

ConstraintOk is initiated. As an example, where the fluent TimeConstraintOk does

not hold, consider the same scenario described above and a user with a “low” level

of cognition. In this case the time preference specified by the user (nine seconds) is

lower than the sum of the time constraints of the user operations, computed consid-

184

4.2. PATTERNS

ering a “low” level of cognition. Consequently the fluent will not be initiated.

4.2.10 Considerations

This section summarises the characteristics and considerations of our context pat-

terns.

The patterns represent templates for the generation of monitor rules concerned

with the operations defined in a BPEL specification. The patterns can be applied

whenever there is a defined sequence of operations. It is important to note that -

as mentioned before - the proposed set of patterns do not cover loops in the service

specification.

The identification of the part of a system related to a set of user context types,

depends on a specific component in our framework (see Path Identifier in Section

3.8). Patterns are applied to the part of the system in order to generate monitor rules,

only if there is a correspondence between the defined context types for the user, i.e.

the value of the contexts, and the value of context types defined for a system.

It is perfectly possible for a user to be characterised by more than one context

type. In such cases our approach is capable of dealing with them by applying the

involved context type patterns accordingly.

It is also possible to have the same context type associated to different parts of the

SBS, e.g. two instantiations of the role context type associated to two different sets

of operations in the service specification (see Figure 4.2). Furthermore, as shown

in Figure 4.7, the context types associated to the different parts of the system can

overlap each other.

Our approach depends on the differentiation between those operations involving

the participation of the user and those operations not involving the direct participation

185

4. MONITOR RULES SPECIFICATION

of the user. Our strategy is based on the syntax of the name of the operation and, if

necessary, can be easily modified.

The exposed patterns consider time delays of ten milliseconds between the occur-

rence of consecutive events. These time delays are attributed to imponderable factors,

e.g. network traffic, processing latency and their value has been established based on

the experiments we have conducted (see Chapter 6). Although the time delay for the

occurrence of consecutive events is fixed, it can be easily modified. Furthermore,

the time delay, although realistic, is not really significant when compared to the time

required for the execution of the operations, usually in the magnitude of seconds.

All patterns have an invariant, which corresponds to a predicate structure that,

despite the instantiation of the context type and the service composition (i.e. the

identified part of the SBS related to a specific context type), remains unmodified. This

invariant is uniquely identifiable in each pattern and in those monitor rules based on

the patterns. This invariant is useful in the identification, creation, modification, and

removal of monitor rules. More specifically, invariants allows for the identification of

context patterns that will be useful in the creation of monitor rules templates, called

semi-instantiated rules (see Chapter 5). Even more, invariants are also used in the

comparisons process performed to detect potentially suitable monitor rules from a

repository.

4.3 Summary

In this chapter we have introduced and explained the formalism, event calculus (EC),

used in our work for the specification of monitor rules. Based on the formalism,

and on the user context types introduced in Chapter 3, we presented and described a

set of context patterns that serve as templates for the specification of monitor rules

in EC. The resulting monitor rules depend on the operations specified in the service

186

4.3. SUMMARY

composition and the instantiated user context types. Furthermore, we showed that for

the same service specification and user context type, different monitor rules may be

generated depending on the instance of the user context. We concluded the chapter

by providing a general characterisation of the patterns.

In the following chapter we focus on the adaptation process. We present our

strategy, based on the use of annotations, for the identification of the part of the

SBS related to a user context type. We also explain the monitor rules instantiation

process, which is based on the use of patterns. Finally we present the process for the

identification, modification, creation, and removal of monitor rules and give a general

example.

187

4. MONITOR RULES SPECIFICATION

188

Chapter 5

Monitor Rules Adaptation Process

In this chapter we focus on the adaptation process of monitor rules for a given set

of user context types and SBS. We also tackle the problem regarding user interaction

with a service-based system. The contexts of concern include cognition, role, skills,

needs, and preferences of a user. The instantiated context types are represented in

user models based on the ontology we have created (see Chapter 3).

The framework relies on the use of monitor rule patterns (see Chapter 4) for the

specification of monitor rules. Patterns are concerned with parts of a SBS specifica-

tion. More specifically, a pattern is applied to a specific part of a SBS (see Section

5.2). The monitor rules, resulting from the application of the patterns, are used by

a monitor component to verify the correct execution of the SBS. Overall, patterns

are used a) to support the identification of monitor rules that need to be used for

monitoring a SBS, b) to modify monitor rules in those cases in which a monitor rule

is not completely suitable for monitoring a SBS, c) to create new monitor rules, in

those cases where neither the identification or modification is possible, and d) to re-

move obsolete monitor rules. In order to perform the above mentioned activities our

approach considers the existence of a monitor rules repository.

189

5. MONITOR RULES ADAPTATION PROCESS

The chapter is structured as follows. In section 5.1 the adaptation process is

explained; in this section we present the annotation strategy for the identification of

the part of the SBS to be executed and present the monitor rule adaptation algorithm.

We finish the chapter providing examples that cover the different activities related to

the identification, creation, modification, and removal of monitor rules.

5.1 Adaptation Process

In the framework, the monitor adaptation process is triggered by an event represent-

ing context types of a user. For example, in the case in which Mary (Section 3.5) is

using the Wo-SBS application in the first day of her holidays to organise the confer-

ence, the event represents the role of a “personal manager” with a “beginner” level of

skills.

In the framework, we assume context types represented in the events identified

by different types of sensors. Many existing approaches focus on the acquisition of

context types based on the use of sensors for specific context types, e.g. temperature,

location [47][230]. Research has also been conducted on how to identify context

types related to the user [32][68][189]. For example, Pathan et al. [189] proposed

an architecture that utilises software sensors to capture the user context in which the

model is enabled. The proposal is not only able to deal with an entity (a person or an

object) performing an action, but also considers relations among entities (e.g. a stu-

dent behaviour in a classroom). The approach presented by Cole et al. [68] suggests

that measures of physiological data (e.g., eye movement) are sources of information

of (at least) three types of cognitive information: semantics, attention, and decision

making. These claims have been supported by recent applications in portable devices

involving eye-tracking recognition. Another proposal for recognising user context

information is given by Belázquez et al. [32]. In their proposal the authors rely on

190

5.1. ADAPTATION PROCESS

the acquisition of user context from two classes of sensors: hard sensors correspond-

ing to sensors built in mobile devices, and soft sensors providing information from

social network sites to which a user is subscribed.

It is possible to have information in an event context type that is different from

the information in the user profile for that context type. For example, suppose that

a user has a “beginner” level of skills represented in his/her user model, but after

using the system for a certain time, an event representing a change of context for

this user occurs. Suppose the new context type to be an “expert” level of skills. The

framework assumes the information of an event context type as the most up to date

context type, even when it is different from the information in the user model for that

context type. In the above example, the level of skills of the user will be considered

as “expert” because of the event. The information in the event will be used to update

the user model. In the case in which the information for certain context types is not

represented in an event, the approach uses the user model to complement the context

types of a user. This is explained in what follows.

For a certain user Ui interacting with the system, the Rule Adaptor identifies the

relevant context patterns based on the event context type and the information in the

model of user Ui. For each user Ui, the framework considers all the different con-

text types used in our approach for the user that are defined in an event or in the

user model. When a context type is not defined for user Ui, the context type is not

considered in the process. In some cases, it is necessary to complement the charac-

teristics of a user with information in the user model to support the identification of

patterns that combine different context types and to provide more information about

the context of a user. For example, suppose the case in which the user, Mary, is ac-

cessing the system with the role of “personal manager” (see Section 3.5). Assume

the event context type specifying only the role of Mary (i.e. “personal manager”). In

this case, the framework will use other information specified in Mary’s user model

191

5. MONITOR RULES ADAPTATION PROCESS

for other context types of Mary (e.g. skills and cognition as specified in the model),

if such information exists. The context patterns are identified from the rule pattern

repository (see Figure 3.5). The approach also assumes the existence of a monitor

rule repository MR S BS j(Ui) for every user Ui of a service-based system S BS j.

After identifying the relevant context patterns, the adaptation process i) creates

semi-instantiated patterns, ii) updates the repository of monitor rules, or iii) selects

the monitor rules that are relevant for a user in a service-based system. The step con-

cerned with the creation of semi-instantiated patterns involves the use of the BPEL

service-base system specification and annotation files (see Section 5.2). The step

concerned with updating the monitor rule repository and selecting the relevant rules

for a user involves the activities of identifying, creating, modifying, and removing

monitor rules. The identification, modification, and removal of monitor rules for a

user Ui are executed by analysing already existing monitor rules in the repository in

order to identify if a relevant rule (a) already exists in the repository and (a.1) can

be used as it stands, (a.2) needs to be modified, or (a.3) needs to be removed. In

the case in which a relevant rule does not exist in the repository, or the repository

is empty, new rules are created. In the next subsections we explain the annotations,

the process dealing with the creation of semi-instantiated patterns, the update of the

monitor rules repository and the selection of the relevant monitor rules (steps i, ii,

and iii above).

5.2 Annotations

The use of annotation to support different activities in service-based systems has

been advocated by several authors [51][82][85][148]. For example, in the approach

proposed by Bucchiarone et al. [51] service operations are annotated with context

effects indicating the impact of the execution of a service operation due to context

192

5.2. ANNOTATIONS

changes to support adaptation of service compositions. In order to support process

level selection of service, the work of Pietro et al. [82] uses semantic annotations of

BPEL and WSDL specifications. Similarly, the work by Eberle et al. [85] annotates

groups of activities in a business process with constraints and constraints handling

capabilities. The approach developed by Le et al. [148] annotates BPEL specifica-

tions to support request of services. In our framework, we also use annotations to

support the description of the parts of a service-based system specification that are

concerned with the various context types. As in the case of the above approaches, in

our framework, service-based system designers specify the annotations based on the

requirements of the system. Moreover, annotations can be changed due to changes

in the requirements of a system (e.g., a new actor with a different role type can use

the system, new functionalities are available to the system, or certain functionalities

are removed from the system), or changes in the service-based system due to services

that become unavailable or new better services that are created.

Field Meaning
Name Specifies the context type
Value Specifies the value for the context type
startPointTag Specifies the type of tag used as a starting point in the BPEL

specification
nameStartPoint Specifies the name of the startPointTag in the specification
endPointTag Specifies the type of tag used as a ending point in the BPEL

specification
nameEndPoint Specifies the name of the endPointTag in the specification

Table 5.1: General structure of an annotation

In the framework an annotation represents the parts of the specifications that

are related to context types. Annotations are specified in separate files in order to

preserve the original BPEL specification. They are linked to the BPEL specification

through XPath expressions [67]. The framework assumes annotations specified by

the designer of the service-based system based on the requirements of the system.

Table 5.1 shows a general structure for the annotations used in the framework. An

193

5. MONITOR RULES ADAPTATION PROCESS

annotation represents i) a specific context type and its instance and ii) the part in the

BPEL specification related to the instance of the context type. As shown in Table

5.1, the context type and its instance are represented in the fields Name and Value,

respectively. The fields startPointTag and endPointTag specify the element types

(tags) in the BPEL specification composing the part of the specification related to the

context type, while the fields nameStartPoint and nameEndPoint specify the content

of the elements represented in the startPointTag and endPointTag, respectively.

mail−

Review

12s

mail−
Compo−

ser
9s

5s

ectFeatur−
opsel−

eUserOp−
eration

enable−

ngService
Messagi−

3s4s5s

6s

Manage−
ment
15s

mail−

6s

initiate−
Calendar

initiate−
Scheduler

opselect−
NeedUser−
Operation

3s

<bpel:condition><![CDATA...

<bpel:assign...
<bpel:sequence name = "Sequence9">

<bpel:condition><![CDATA...
<bpel:sequence name = "Sequence0">

<bpel:assign...

W
O

−
S

B
S

S
ta

rt

<bpel:if name = "Up−to−Date">
<bpel:condition>...

<bpel:assign validate = "no"
name = "Assign24">

<bpel:copy>...

check-
AccessUserOpe-

oplogin-

ration Role personal user

Role personal manager

Figure 5.1: Extract of the BPEL process for “personal user” and “personal manager”

Annotation 1 (role ”personal user”)
ContextType name =”Role” value =”Personal User” startPointTag =”//bpel:sequence”

nameStartPoint
endPointTag
nameEndPoint

=”//*[contains(name(),’Sequence0’)]”
=”//bpel:assign”
=”//*[contains(name(),’Assign24’)]”

ContextType name =”Role” value =”Personal Manager”< startPointTag =”//bpel:sequence”
nameStartPoint

<

endPointTag
nameEndPoint

=”//*[contains(name(),’Sequence9’)]”
=”//bpel:if”
=”//*[contains(name(),’Up-to-Date’)]”

/>

/>

Annotation 2 (role ”personal manager”)

Figure 5.2: Example annotations

As an example, consider the extract from the BPEL process depicted in Figure

5.1. The figure depicts the parts of the code of the BPEL specification, corresponding

194

5.2. ANNOTATIONS

to different actions and control activities (e.g. “bpel:sequence”, “bpel:assign”). The

annotations relating the two roles (“personal user” and “personal manager”) shown

in Figure 5.1 are depicted in Figure 5.2. As shown in Figure 5.2, the Name field is

role, and the Value fields are “personal user” for annotation 1 and “personal man-

ager” for annotation 2. For annotation 1, fields startPointTag and nameStartPoint are

“bpel:sequence” and “Sequence0”, respectively; and endPointTag and nameEndPoint

are “bpel:assign” and “Assign24”, respectively. For annotation 2 the startPointTag

and nameStartPoint are “bpel:sequence” and “Sequence9”, respectively, while end-

PointTag and nameEndPoint are “bpel:if” and “Up-to-Date. For simplicity we refer

to the node in the BPEL specification related to the startPointTag and the nameStart-

Point as starting point. Similarly we refer to the node related to the endPointTag and

the nameEndPoint as the ending point.

The Path Identifier (see Section 3.8) relies on the use of the annotations for the

identification of the operations comprised in the part of the SBS specification relevant

to a specific instance of a user context type, i.e. operations comprised within the

starting and the ending points. In the case there is no match between the instance of

a user context type and the context values specified in the annotations, no operations

are identified.

The Path Identifier has been implemented as a variation of the deep-first search

(DFS) algorithm [224]. It starts from the root of the BPEL specification, and traverses

each branch searching for a starting and ending points that match the instantiated user

contexts. The search is optimised; more specifically, in the case a context defined

for a user matches the context type of a starting point but there is a mismatch in

the instance of the user context and the value defined in the annotations, the Path

Identifier quits the search in that branch and traverses the next one.

The separation between the BPEL specification and annotations allows our frame-

195

5. MONITOR RULES ADAPTATION PROCESS

work to deal with modifications related to the system, seamlessly. This is, monitor

rules are able to be identified, modified, created, and removed even when services are

substituted or changes occur in the workflow of the process. The above holds as long

as i) the starting and ending points are not affected by the modifications and ii) the

semantic of the annotated part in the BPEL specification remains related to the same

context and its value after modification.

5.3 Creation of Semi-instantiated Patterns

The patterns used in the framework are generic context patterns and are not con-

cerned with a specific application. However, the monitor rules need to be defined for

specific operations, or sets of operations, in a service-based system application. It is

not possible to know in advance, which are the relevant operations in an application

that need to be used in the monitor rules. Therefore, the framework needs to use in-

formation from the SBS specification to instantiate the relevant context patterns and

obtain the monitor rules for an application.

In the framework, we use the concept of semi-instantiated patterns representing

context patterns in which the events and fluents are instantiated with the respective

information from the SBS specification. As explained in Section 3.8, the instantiation

of the pattern with the respective information is performed by the Rule Adaptor with

the support of the Path Identifier. The approach assumes that the annotations are

correct for a certain context type instance. When no annotation is specified for a

certain context type, the patterns cannot be instantiated.

As an example, consider the extract of the BPEL process depicted in Figure 5.1

and assume a user, Mary, accessing the Wo-SBS in the role of a personal user. In

this case, the context type (role) and its instance “personal user” match the context

196

5.3. CREATION OF SEMI-INSTANTIATED PATTERNS

type and value in annotation1 in Figure 5.2. The associated annotation includes oper-

ations mailReview, mailComposer, and mailManagement corresponding to the path

between startPointTag and endPointTag. Table 5.2 shows an example of a semi-

instantiated pattern for this situation based on the pattern previously described in

Table 4.7.

Rule part
Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + tn1))∧
Happens(ic mailComposer, t3,R(t2, t1 + tn2))∧
Happens(ic mailManagement, t4,R(t3, t1 + tn3))

Assumption part
Happens(ic mailReview, tn,R(tn, tn))⇒
Initiates(ic mailReview,mailReview, tn)

Happens(ic mailComposer, tn,R(tn, tn))⇒
Initiates(ic mailComposer,mailComposer, tn)

Happens(ic mailManagement, tn,R(tn, tn))⇒
Initiates(ic mailManagement,mailManagement, tn)

Table 5.2: Example of Semi-instantiated Pattern for Role Context Type

The proposed context patterns previously described in Chapter 4 are quite gen-

eral. This creates difficulties to identify the corresponding monitor rules in a repos-

itory relying solely on the patterns. The use of the semi-instantiated patterns solves

this problem; they reduce the generalisation by creating patterns concerned with a

certain set of service operations related to a SBS application. For example, consider

an extract of the Wo-SBS with the respective services and operations for roles “per-

sonal user” and “personal manager” shown in Figure 5.1. Suppose a user in the role

of “personal user” accessing the system and the pattern for role context type shown

in Figure 4.7. Assume a rule repository with monitor rules R1, R2, and R3 depicted in

Figure 5.3 (without the assumptions for simplicity). If the approach relies solely on

the role pattern for the identification of the correct monitor rules, all the three rules

197

5. MONITOR RULES ADAPTATION PROCESS

in Figure 5.3 will be identified since they all match the invariant part of the pattern.

However, only monitor rule R3 is concerned with operations related to role “personal

user”. Instead, if the semi-instantiated pattern shown in Figure 5.2 is used,only rule

R3 will be identified since its events match the events in the semi-instantiated pat-

tern. Overall, the semi-instantiated patterns are important to support the activities of

identifying, modifying, and creating monitor rules.

R1 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic initiateCalendar, t2,R(t1, t1 + 17.05)) ∧
Happens(ic initiateS cheduler, t3,R(t2, t1 + 23.06)) ∧

R2 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic dummyOperation, t2,R(t1, t1 + 100))

R3 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 17.05))∧
Happens(ic mailComposer, t3,R(t2, t1 + 29.06))∧
Happens(ic mailManagement, t4,R(t3, t1 + 38.07))

Table 5.3: Monitor Rules Repository Consisting of Rules R1, R2, and R3

An important aspect regarding the creation of semi-instantiated patterns is that

their generation is not restricted to a single pattern for a context type. As mentioned

in Chapter 4, sets of patterns (which are not intended to be complete) have been

created for each one of the user context type. Every time a context is defined for a

user, and the part of the service composition related to that context is identified, all

the patterns defined for the that context are semi-instantiated. The main benefits of

having a set of semi-instantiated pattern instead of a single one include:

• A broad covering. Having different semi-instantiated patters increases the

chances of finding existing rule(s) in the repository, e.g. defined manually

by a designer, matching the semi-instantiated patterns.

• Flexibility when verifying a property. Monitor rules can verify the behaviour

of the system according to different events, states, from a global (i.e. all

198

5.4. RULES IDENTIFICATION, CREATION, MODIFICATION AND REMOVAL

events/states in a single rule), or individual (i.e. events/states in a single rule)

perspective, or even considering different checkpoints (i.e. focusing on dif-

ferent part of the system). Having different ways of specifying monitor rules

(syntaxes and semantics) for a context property, allows for a broad coverage of

the property.

• Expansion. Given the set of patterns is not complete, it is plausible to as-

sume that more context patterns can be defined for the different context types.

Allowing several instantiations of context patterns for a context type leads to

a seamless integration of the potential new patterns in our approach, without

modification of the existing ones.

5.4 Rules Identification, Creation, Modification and Removal

After creating the semi-instantiated patterns, they are compared with existing moni-

tor rules in the repository in order to identify if a relevant rule (a) exists in the reposi-

tory and can be used as it stands, (b) exists in the repository and needs to be modified,

(c) needs to be created and added to the repository, or (d) exists in the repository and

needs to be removed.

Figure 1 presents an algorithm in pseudo-code for the process of selecting and

updating monitor rules in repositories. As shown in Figure 1, the process consists of

searching in the repository for monitor rules that match semi-instantiated patterns.

In the case in which there are monitor rules in the repository that match the semi-

instantiated patterns (i.e. the monitor rules matching predicates, fluents, and events

of the semi-instantiated pattern), the process verifies whether the time values in the

rules are consistent with the times specified in the SLAs or historical data for the

respective operations and services. In positive case, the rules are maintained in the

199

5. MONITOR RULES ADAPTATION PROCESS

repository. Otherwise, the rules are modified with new time values according to the

information in the SLAs (or historical data).

Algorithm 1: Adaptation Process
Data: S IRule semi-instantiated pattern
Data: S BS S pec service-based system specification
Data: S LAs SLAs for the services and operations
Data: RRep rules repository
begin

Search S IRule in RRep;
/* Match invariant, events and fluents */

if RRep has rules that fully match S IRule then
for R ∈ RRep do

if time in S LAs is within time values in R then
do nothing;

else
Adjust time in R based on S LAs;

else
/* Match invariant */

if RRep has Rules that only match invariant parts of S IRule then
for R ∈ RRep do

if There is a path in S BS S pec that uses R then
/* Rule R is not obsolete */

else
Remove R from RRep;

else
/* No match in invariant */

if RRep has no rule matching the invariant parts of S IRule then
Create IRule by instantiating S IRule time with times in S LAs or
historical data;
Add IRule to RRep;

end

In the situation in which there are rules in the repository that match only the

invariant parts of the semi-instantiated patterns (i.e. the monitor rules that match

predicates in the semi-instantiated patterns, but that do not match fluents and events

in the semi-instantiated pattern) the process verifies if they are still valid monitor

200

5.4. RULES IDENTIFICATION, CREATION, MODIFICATION AND REMOVAL

rules for the service-based system. The verification of the validity of the matched

monitor rules is executed by the Rule Verifier. It analyses if operations specified in

the rules correspond to valid operations in the current specification of the service-

based system. This is executed by traversing the service-based system specification

and identifying if the operations are used in the specifications. In positive case, the

monitor rules are kept in the repository. In negative case, the monitor rules are re-

moved from the repository.

In the case in which none of the rules in the repository match the variant or in-

variant parts of the semi-instantiated patterns, new rules are created after instantiating

the semi-instantiated patterns with the time values computed from the times specified

in the SLAs (or historical data). The computation of the times values depend on the

context type of the pattern. For example, in the case of a role context type, the times

are computed considering the necessary times to execute previous operations in the

workflow. In the case of cognition context type, the times are computed consider-

ing the times of the users operations. In the case of skills context type, the times

are computed based on the time to execute the part of the workflow relevant to the

pattern.

In order to illustrate the identification, modification, creation, and removal of

monitor rules consider the extract of Wo-SBS scenario depicted in Figure 5.1. As-

sume a user, Mary, accessing the system. For simplicity, assume that there is no

information about the Mary’s context in the user model. Finally, consider a Rule

Repository containing the monitor rules depicted in Table 5.4. Note that the set of

monitor rules in the repository consists of monitor rules (indexed by a Ri) and as-

sumptions (indexed by an Ai).

Case 1 - Rule Identification: Assume Mary accessing the system in the role

of a “personal user”. Our framework receives the role context from Mary and, since

201

5. MONITOR RULES ADAPTATION PROCESS

R1 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic initiateCalendar, t2,R(t1, t1 + 17.05))

R2 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic initiateS cheduler, t2,R(t1, t1 + 23.06))

R3 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic initiateCrossRe f erencing, t2,R(t1, t1 + 71.12))

R4 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 17.05))∧
Happens(ic mailComposer, t3,R(t2, t1 + 29.06))∧
Happens(ic mailManagement, t4,R(t3, t1 + 38.07))

A1 Happens(ic initiateCalendar, t1,R(t1, t1))⇒
Initiates(ic initiateCalendar, initiateCalendar, t1)

A2 Happens(ic initiateS cheduler, t1,R(t1, t1))⇒
Initiates(ic initiateS cheduler, initiateS cheduler, t1)

A3 Happens(ic initiateCrossRe f erencing, t1,R(t1, t1))⇒
Initiates(ic initiateCrossRe f erencing, initiateCrossRe f erencing, t1)

A4 Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

A5 Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

A6 Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

Table 5.4: Initial set of Monitor Rules Repository in the Repository

there is no information about other context types for Mary in her user model, the

framework identifies the rule pattern for role 1 and semi-instantiates it with the op-

erations in the part of the SBS related to personal user, see Table 5.2. The semi-

instantiated pattern is compared against the rules in the repository and a match with

rule R4, and assumptions A4, A5, and A6 in Table 5.4 is found. The time constraints

for rules and assumptions are checked against computed time constraints. In this

case, it is not necessary to change the times. The rule and assumptions are identified

as a suitable for monitoring Mary in the role of a “personal user”. The monitor rules

R1-R3 and the assumptions A1-A3 in the repository match the invariant parts of the

1Note that for the sake of the example we considered only the role pattern depicted in Table 4.7.
This is valid for all four cases

202

5.4. RULES IDENTIFICATION, CREATION, MODIFICATION AND REMOVAL

role pattern. The process verifies that these rules are still valid rules in Wo-SBS and,

since they belong to valid operations in the system, they are kept in the repository.

The repository remains unmodified.

Case 2 - Rule Modification: Consider again Mary accessing the Wo-SBS in

the context of a “personal user”. Assume that operation mailReview requires nine

seconds to be executed instead of its original 12 seconds (see Figure 5.1). In this case,

the semi-instantiated pattern in Table 5.2 is matched with the rule R4 and assumptions

A4-A6 in the repository. The time constraints for rules and assumptions are checked

against computed time constraints. In this case, it is necessary to change the time

constraints in R4. The process updates rule R4 according to the new time constraints,

as shown in Figure 5.5. As in the previous case, the remaining monitor rules R1-R3

and assumptions A1-A3 are kept in the repository.

Case 3 - Rule Creation: Consider Mary accessing the Wo-SBS in the role of

a “personal user”, with medium level of skills. The framework identifies the rule

patterns for role (Table 4.7) and skills (Table 4.23) and semi-instantiates the patterns

with the corresponding operations, as shown in Table 5.6. In the figure, S IP1 is

the semi-instantiated rule part of the pattern for the role context type. S IP2 is the

semi-instantiated rule part of the pattern for the skills context type. S IP3-S IP6 are

the semi-instantiated assumptions parts of the role and skills patterns. The semi-

instantiated patterns in Table 5.6 are compared against the existing rules in the repos-

itory (Table 5.5).

The semi-instantiated patterns S IP1, S IP3, S IP4, S IP5 match R4, A4, A5, and A6

in the repository. Assume that the time constraints in R4 and A4-A6 are also correct

(rules are identified). For the semi-instantiated parts of the pattern S IP2 and S IP6

however, there is no match in the repository. The time values in S IP2 and S IP6 are

203

5. MONITOR RULES ADAPTATION PROCESS

R1 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic initiateCalendar, t2,R(t1, t1 + 17.05))

R2 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic initiateS cheduler, t2,R(t1, t1 + 23.06))

R3 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic initiateCrossRe f erencing, t2,R(t1, t1 + 71.12))

R4 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 17.05))∧
Happens(ic mailComposer, t3,R(t2, t1 + 26.06))∧
Happens(ic mailManagement, t4,R(t3, t1 + 35.07))

A1 Happens(ic initiateCalendar, t1,R(t1, t1))⇒
Initiates(ic initiateCalendar, initiateCalendar, t1)

A2 Happens(ic initiateS cheduler, t1,R(t1, t1))⇒
Initiates(ic initiateS cheduler, initiateS cheduler, t1)

A3 Happens(ic initiateCrossRe f erencing, t1,R(t1, t1))⇒
Initiates(ic initiateCrossRe f erencing, initiateCrossRe f erencing, t1)

A4 Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

A5 Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

A6 Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

Table 5.5: Monitor Rules after Modification in R4

instantiated (see Table 5.7) and added to the repository as R5 and A7. Note that in the

case of the assumptions, i.e. S IP3-S IP6, the time values appear as defined (t1). This

is due to the fact that in the patterns, the assumptions triggering the initialisation of

a fluent are assumed to occur at a single instant (t1), hence no time computation is

needed when dealing with these kind of assumptions.

Case 4 - Rule Removal: Suppose the situation in which the Wo-SBS has been

modified and it does not longer support the user of type “event coordinator”. Assume

that the activity concerned with cross-referencing (operation initiateCrossReferenc-

ing) is no longer supported by the Wo-SBS. Consider again Mary accessing the Wo-

204

5.4. RULES IDENTIFICATION, CREATION, MODIFICATION AND REMOVAL

S IP1 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + tn1))∧
Happens(ic mailComposer, t3,R(t2, t1 + tn2))∧
Happens(ic mailManagement, t4,R(t3, t1 + tn3))

S IP2 Happens(ic startWoS BS , t1,R(t1, t1))∧
Happens(ir exit, t3,R(t1, t1 + tn))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3))

S IP3 Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

S IP4 Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

S IP5 Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

S IP6 Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 5.6: Semi-instantiated Patterns for role and skills

R5 Happens(ic startWoS BS , t1,R(t1, t1))∧
R5 Happens(ir exit, t3,R(t1, t1 + 61.09))⇒

Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3))
A7 Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒

Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 5.7: Instantiated role and skills rules

SBS in the role of a “personal user” with a medium level of skills. In this case, R4,

R5, A4-A7 are identified in the repository as matching the semi-instantiated patterns.

Rules and assumptions (see Table 5.5) are identified as matching the invariant part of

the role pattern. However, the operation initiateCrossReferencing, appearing in the

rule part R3 and in the assumption part A3, is no longer part of the Wo-SBS, hence,

they are removed from the repository. The resulting repository is shown in Table 5.8.

Overall, the automation of the monitor process improves the specification of mon-

itor rules and avoids, at the same time, faults prone to human participation. For il-

lustration purposes a set monitor rules specified according to the monitor component

205

5. MONITOR RULES ADAPTATION PROCESS

R1 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic initiateCalendar, t2,R(t1, t1 + 17.05))

R2 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic initiateS cheduler, t2,R(t1, t1 + 23.06))

R4 Happens(ic startWoS BS , t1,R(t1, t1))⇒
Happens(ic mailReview, t2,R(t1, t1 + 17.05))∧
Happens(ic mailComposer, t3,R(t2, t1 + 26.06))∧
Happens(ic mailManagement, t4,R(t3, t1 + 35.07))

R5 Happens(ic startWoS BS , t1,R(t1, t1))∧
Happens(ir exit, t3,R(t1, t1 + 61.09))⇒
Happens(ic opstandardUIMailUserOperation, t2,R(t1, t3))∧

A1 Happens(ic initiateCalendar, t1,R(t1, t1))⇒
Initiates(ic initiateCalendar, initiateCalendar, t1)

A2 Happens(ic initiateS cheduler, t1,R(t1, t1))⇒
Initiates(ic initiateS cheduler, initiateS cheduler, t1)

A4 Happens(ic mailReview, t1,R(t1, t1))⇒
Initiates(ic mailReview,mailReview, t1)

A5 Happens(ic mailComposer, t1,R(t1, t1))⇒
Initiates(ic mailComposer,mailComposer, t1)

A6 Happens(ic mailManagement, t1,R(t1, t1))⇒
Initiates(ic mailManagement,mailManagement, t1)

A7 Happens(ic opstandardUIMailUserOperation, t1,R(t1, t1))⇒
Initiates(ic opstandardUIMailUserOperation,
opstandardUIMailUserOperation, t1)

Table 5.8: Monitor Rules after Removal

can be found in [119].

5.5 Remarks

It is important to note that although the previous cases showed the identification, cre-

ation, modification, and removal for particular context type patterns, several monitor-

ing patterns can be instantiated for monitoring the same operation(s). More specif-

ically, for a given workflow, the framework identifies the related context(s), and ap-

plies the set of patterns that are related to the context(s) (as explained in section 5.3).

206

5.6. SUMMARY

As a result, several monitor rules are generated and deployed in the monitor compo-

nent. Having several monitor rules verifying a context property assures the property

is verified from different perspectives. For example, while a single monitor rule ver-

ifying the invocation of a set of two or more operations at once, can be violated;

monitoring the same set of operations separately (i.e. a single monitor rule per opera-

tion), can help identifying whether the violation occurred because of the malfunction

of specific operations. In addition to the latter, monitor rules can be concerned with

the execution of the whole system, or just a part of it; again, it might be possible for

one rule to be violated while the other holds.

5.6 Summary

In this chapter we focus on the adaptation process. The process relies on the use

of a non-intrusive annotation strategy, so relations can be made between specific

context type values and parts of the BPEL process without modifying the original

specification. The framework relies on the use of patterns, previously introduced in

chapter 4, concerned with different user context types. Patterns are instantiated with

relevant information from the associated part of the service composition, in order to

obtain templates of monitor rules, i.e. semi-instantiated patterns, which are used by

the framework for the identification, creation, modification, and removal of monitor

rules from a repository.

In the following chapter we present the results of the experiments conducted in

our framework. More specifically, we show how our framework performs in the

activities regarding the identification, creation, modification, and removal of monitor

rules. We examine several different configurations in order to stress all the possible

cases for each activity.

207

5. MONITOR RULES ADAPTATION PROCESS

208

Chapter 6

Experiments and Evaluation

In this chapter we present the results of the experiments conducted to evaluate

our framework. A prototype tool of the framework, previously described in Chap-

ter 5, has been implemented in Java and was integrated with the monitor compo-

nent described in [220]. More specifically, we have implemented the Rule Adaptor,

Path Identifier, and Rule Verifier components in Java and have deployed the specified

monitor rules in the monitor component. The framework was evaluated in terms of

its performance to execute its various activities and in terms of the correctness of the

identified, modified, created, and removed rules, triggered by different events.

We evaluated the performance of the framework for the identification, creation,

modification, and removal of monitor rules related to the various context types. We

considered different sets of monitor rules in the rules repository. The context anno-

tations, for each context type, were defined so they pointed at different parts in the

service-based system specification. We also analysed the correctness of the monitor

rules generated by the framework. The following section describes the setup of the

experiments.

209

6. EXPERIMENTS AND EVALUATION

6.1 Experiments Setup

The evaluations were conducted on a 1.5GHz Core-2 Duo machine, with 2Gb of

memory, running on a Linux (kernel 3.0.0-16 generic) using an extended version of

the Wo-SBS application previously introduced (see Section 3.5). For comparative

purposes we constructed a second application, an Air-traffic Control Service-based

System (Atc-SBS), which supports different activities in an airport according to the

specified user contexts. More specifically, the Atc-SBS supports the activities related

to general airport operations, emergency, and assignment of resources for different

types of users. Both applications have been specified in BPEL4WS [120] and can be

found in Appendix A.In what follows we present the different services and operations

along with the contexts instantiations used for each scenario.

6.1.1 Scenarios

The Wo-SBS is composed of eight services, with a total of 14 service operations,

and 10 user operations. Table 6.1 summarises the services, services operations, and

user operations in the Wo-SBS. The user operations in Table 6.1 have the prefix “op”

and the suffix “UserOperation”. Table 6.2 summarises the various instances for the

different context types used in the experiments.

The Air-traffic Control Service-based System (Atc-SBS) is composed of five ser-

vices, with a total of 11 service operations, and 12 user operations. Table 6.3 sum-

marises the services, operations, and user operations in the Atc-SBS. Table 6.4 sum-

marises the various instances for the different context types used in the experiments.

The creation of a second scenario allows us to establish whether the performance

of our framework is consistent. More specifically, we are interested in establishing

whether there is a similarity in the performance for different scenarios, considering

210

6.1. EXPERIMENTS SETUP

Service Operations
Agenda initiateCalendar, stopCalendar, getLatestDates, stopScheduler

initiateScheduler, getLatestAnnotations

Basic User opselectMessagingUserOperation, opselectNeedUserOperation
Operations opselectMailExpertiseUserOperation

Check Access accessChecker

Extra initiateCrossReferencing

Mail mailReview, mailComposer, mailManagement

Messaging enableMessagingService, disableMessagingService

GUI opAgendaUserOperation, opselectFeatureUserOperation,
oploginUserOperation, opstandardUIMailUserOperation
opadvancedMailUserOperation, opguiUserOperation
opmailAndAgendaUserOperation

Shut down exit

Table 6.1: Services and operations in the Wo-SBS scenario

Context Type Instances
Role “personal user”, “personal manager”, “event coordinator”

Cognition “low”, “average”, “high”

Skills “beginner”, “average”, “advanced”

Preferences time constraints of “6” and “15” seconds

Need “up-to-date”, “fast”

Table 6.2: Instances for the different context types in the Wo-SBS scenario

the same amount of rules in the rules repository and types of contexts. Furthermore,

considering two different scenarios permits us to establish whether the different con-

text types behave similarly, i.e. their performance. The two scenarios consider similar

processes structures, see [119], and are annotated in different parts of the BPEL4WS

specifications. Also, as it can be observed in Tables 6.1 and 6.3, the two scenarios

differ in the amount of the participating services, as well as in the amount and ratio

of automatic operations and operations involving the user participation.

211

6. EXPERIMENTS AND EVALUATION

Service Operations
Radar opreqTrajectoryUserOperation, opinCoordinatesUserOperation,

opreqCoordinatesUserOperation, getPositioning,
opinDestinyUserOperation, opinDepartureUserOperation

GUI and oprequestSpaceUserOperation, opselectionUserOperation,
Access generalLayout, exit, oploginUserOperation

Status hangarsStat, controlTowersStat, terminalsStat, takeoffsStat,
landingsStat, runwaysStat

Resources oprequestResourcesUserOperation, availableResources,
opdistributionAvailableResourcesUserOperation, updateResources

Scheduler opnormalTaskOrganiserUserOperation,
opemergencyTaskOrganiserUserOperation

Table 6.3: Services and operations in the Atc-SBS scenario

Context Type Instances
Role “pilot”, “regular maintainer”, “emergency operator”

Cognition “low”, “average”, “high”

Skills “average”, “advanced”

Preferences time constraints of “4” and “8” seconds

Need “critical”

Table 6.4: Instances for the different context types in the Atc-SBS scenario

6.1.2 Patterns and Repositories

In the experiments we evaluated the performance of the adaptation activities, i.e.

identification, modification, creation, and removal of monitor rules, for the various

context types under different configurations1. More specifically, for each service-

based system we considered one context pattern, and a variable set of monitor rules

ranging from an empty repository, to repositories with 100, 200, and 300 monitor

rules.

The reason for considering a specific pattern for a context type, is due to the

fact that different patterns for the same context type may imply a different amount of

1Experiments were conducted, separately, for the two scenarios: Atc-SBS and Wo-SBS.

212

6.1. EXPERIMENTS SETUP

operations to be performed by our framework. In addition to the above, the amount

of resulting monitor rules, for the same context annotation, may also change from

one pattern to another. For example, assume an empty repository and an annotation

encompassing ten user operations in the service specification. Using the skills pattern

depicted in Table 4.23 would result in the creation of ten different monitor rules,

one per user operation. Similarly the skills pattern depicted in Table 4.21, is also

concerned with the invocations of user operations, the pattern however, considers all

the invocations of user operations at once. As a result using the pattern depicted in

4.21 generates a single monitor rule instead of ten.

We were also concerned with the effect that existing monitor rules in the repos-

itory may have on the performance of the adaptation process when executing the

various adaptation activities. We considered variable sets of monitor rules (empty,

100, 200, and 300) for each context type. For each non-empty set of monitor rules

we specified 20% of the rules, as monitor rules related to the specific context type

pattern. More specifically, 20% of the monitor rules matched the invariant part of

the context pattern. The remaining 80% of the rules were specified as not relevant to

the context type, i.e. monitor rules concerned with other behavioural aspects of the

application.

Experiments were conducted for a range of one to ten monitor rules for the dif-

ferent context types and activities in the adaptation process. We also considered, for

each service-based system specification, a range of one to ten different annotations

for each context type, i.e. one annotation per monitor rule. Our experience has shown

that for a trigger situation of the monitor adaptation process, the creation, identifica-

tion, modification, and removal of ten monitor rules is a high number and unlikely

to happen in a normal situation. However, we used a maximum of ten monitor rules,

to stress the cases. Each experiment was repeated 40 times. For each experiment we

computed the minimum, maximum, mean, median, and the standard deviation values

213

6. EXPERIMENTS AND EVALUATION

of the times required to identify, modify, create, or remove monitor rules. The tables

with all the results for the two scenarios can be found in Appendix B.

We evaluated the different activities performed by the framework separately. For

each activity - with the exception of rules identification - the rules repository was

affected differently. More specifically, in the case of rules identification the repository

remain the same. In the case of rules modification, the amount of monitor rules in

the repository remained the same and a subset of monitor rules (from one to ten) was

modified. In the case of rules creation the repository was incremented (from one to

ten new monitor rules). Finally in the case of removal the repository was reduced

(from one to ten monitor rules).

6.2 Experiments Results

The aims of the experiments are i) to analyse the performance of the framework

for the different activities and context types for the two scenarios, ii) to analyse the

performance of the framework when varying the amount of rules in the repository

matching a context type pattern, iii) to analyse whether the annotations in the SBS

specifications could affect the performance of the framework, and iv) to analyse the

correctness of the framework.

The following subsections present the results of the different experiments. The

patterns used in our experiments were the ones specified in Table 4.7 (role), Table

4.23 (skills), Table 4.36 (cognition), Table 4.50 (preferences), and Table 4.56 (need).

In section 6.2.1 we present the results of the performance when identifying, creating,

modifying, and removing monitor rules considering the various context types sepa-

rately (i) above). In section 6.2.2 we show the performance of the framework when

varying the ratio of monitor rules in the repository matching a pattern invariant (ii)

above). In section 6.2.3 we explain how the annotations, more specifically, the part

214

6.2. EXPERIMENTS RESULTS

in the BPEL specification at which an annotation is pointing at, may influence the

performance (iii) above). Finally in section 6.2.4 we analyse the correctness of the

framework of the identified, modified, and created monitor rules (iv) above).

6.2.1 Performance of the Different Context Types

We evaluated the time that it takes the monitor adaptation process to execute each

different activity for each direct user context type. The results of the experiment for

context types role, skills, cognition, preferences, and needs are shown in Figures 6.1,

6.2, 6.3, 6.4, and 6.5 respectively. These figures show the performance in seconds in

the ‘Y’ axis (Time), for all the different activities executed against various repositories

sizes in the ‘X’ axis (Activity), considering a range from one to ten monitor rules in

the ‘Z’ axis (No of Rules).

In the graphs the performance for the creation of monitor rules, considering an

empty repository, are represented by a yellow curve. The performance for the re-

moval, modification, identification, and creation of monitor rules, considering 100

rules in the repository, are represented by curves in green. Similarly the performance

considering 200 and 300 rules in the repository are represented by curves in blue and

red respectively. Note that in the case of an empty repository, only the creation of

monitor rules is possible.

From the graphs showing the performance of the framework, we made the fol-

lowing inferences:

Despite the fact that the two scenarios (Atc-SBS and Wo-SBS) differed in size,

services, amount of automated and user operations, and general structure; the perfor-

mance results for the two scenarios were quite similar. In fact when considering the

same context, rule pattern, amount of rules in the repository and activity (e.g. cre-

ation), the increment of the performance remained below the 15% from one scenario

215

6. EXPERIMENTS AND EVALUATION

(a) Atc-SBS scenario (b) Wo-SBS scenario

Figure 6.1: Results of the performance for the role context type

(a) Atc-SBS scenario (b) Wo-SBS scenario

Figure 6.2: Results of the performance for the skills context type

(a) Atc-SBS scenario (b) Wo-SBS scenario

Figure 6.3: Results of the performance for the cognition context type

216

6.2. EXPERIMENTS RESULTS

(a) Atc-SBS scenario (b) Wo-SBS scenario

Figure 6.4: Results of the performance for the preferences context type

(a) Atc-SBS scenario (b) Wo-SBS scenario

Figure 6.5: Results of the performance for the need context type

(Atc-SBS) to the other (Wo-SBS). Furthermore, the difference in the case of the cre-

ation, when considering an empty rules repository, dropped below ten percent. The

fluctuations in the performance can be explained, in part, by i) the size of the repos-

itory and the amount of rules in it matching the invariant of the pattern and ii) the

annotations, i.e. where the operations to be monitored appear in the BPEL specifica-

tion. These aspects are further addressed in sections 6.2.2 and 6.2.3 respectively.

Although the performance for the different context types under the same config-

uration2 remained quite similar, it was still possible to identify certain trends. More-

2This means the activity carried on, repository size and amount of rules considered in the experiment

217

6. EXPERIMENTS AND EVALUATION

over these trends were observed in the two scenarios. First, the performance for the

different context types was quite similar for cognition, role, and skills. This can be

explained by the similarity in the structure of the resulting rules and the required

computations to generate those rules. Second, for the need context type, for all the

different types of activities and different sizes of the repository, the amount of time

required to perform a certain activity, was higher when compared to the amount of

time required for the same activity and repository size for the other context types. In

this case, the rules obtained from the need pattern are more complex - in terms of

amount of predicates and computations - than the rules obtained for the other context

types. Third, in several occasions the experiments related to the preferences context

type required less time than the need context type and more than the cognition, role

and skills context types. In this case the amount of predicates of the resulting rules

was higher compared to rules generated for the cognition, role, and skills context

types.

From the experiments we deduced that, in addition to the size of the repository

and the annotations in the BPEL specification, the performance is also influenced

by the structure of the pattern. The more complex the pattern, the higher amount

of operations performed by the framework in order to establish whether a pattern

is compatible with a monitor rule or not. More specifically, in order to establish

whether a rule matches a pattern, the framework performs a set of comparisons, one

per predicate. The higher the amount of comparisons the higher the time required

by the framework to establish whether a rule matches a pattern. This observation

was corroborated when comparing the performance of the different context types

considering an empty repository.

Also regarding the performance, it is important to note that the arithmetic oper-

ations carried out to compute the time periods, including those operations required

to compute the user interaction time - as in the cognition pattern - did not produce

218

6.2. EXPERIMENTS RESULTS

significant differences. For example, the change in the level of cognition of a user

from “low” to “high”3 did not affect the performance.

As mentioned before, in order to stress the scenarios, we conducted experiments

considering from one to ten monitor rules for each context type, varying the sizes

in the repositories. For the identification, creation, and modification, the increment

in time, when augmenting in one the monitor rules and maintaining the size in the

repository, bordered - in the worst cases - the 75%. The peaks in the performance

were observed in the creation of monitor rules considering an empty repository. In

fact, in those experiments considering non-empty repositories, the increment in the

performance when augmenting in one the monitor rules, bordered - in the worst cases

- the 35%. For the particular case of rules removal, i.e. considering non-empty

repositories, an increment of 100 monitor rules in the repository caused an increment

in the time required to remove a set of monitor rules that bordered 60%. Also in the

case of rules removal, there was no significant difference in the performance when

removing from one to ten monitor rules.

As mentioned before, in order to stress the scenarios, we conducted experiments

considering from one to ten monitor rules for each context type, varying the sizes

in the repositories. We observed that an increment of one monitor rule during the

activities related to the identification, creation, and modification of monitor rules did

not increase the performance of the framework - in terms of average time - over 75%.

In fact in most cases the increment in the performance of the framework - when

increasing by one the monitor rules - was rather low (see Appendix B). The peaks

in the performance were observed in the creation of monitor rules when considering

an empty repository. In those experiments considering non-empty repositories, the

increment in the performance when augmenting in one the monitor rules, did not

3Note that a “low” level of cognition does not require to compute the time for a user operation
(100%), while a “medium” (75%) or “high” (50%) level of cognition, do require a computation.

219

6. EXPERIMENTS AND EVALUATION

increase the performance of the framework over 35%. For the particular case of rules

removal, i.e. considering non-empty repositories, an increment of 100 monitor rules

in the repository caused an increment in the time required to remove a set of monitor

rules that bordered 60%. Also in the case of rules removal, there was no significant

difference in the performance when removing, one, two, or up to ten monitor rules.

6.2.2 Modifying the Ratio of Monitor Rules Matching the Invariant

In our experiments, we wanted to analyse if the amount of rules in the repository

matching a context type pattern would influence the performance of the framework

when identifying, modifying, creating or removing monitor rules. This assumption

was based on the fact that a higher number of monitor rules matching a pattern would

imply on a higher number of comparisons. Note that, as described in Section 5.1,

comparisons are performed at different levels in order to establish whether a monitor

rule a) matches only the invariant part of a pattern, b) matches the invariant parts of a

pattern and the placeholders, or c) matches the invariant of a pattern, the placeholders,

and the time constraints. The framework relies in these comparisons in order to

establish whether a monitor rule has been identified, or should be modified, created

or removed from the rules repository.

We conducted a series of experiments to evaluate the performance when increas-

ing only the amount of monitor rules in the repository matching a pattern. More

specifically, we considered different sets of rules in the repository matching the in-

variant of patterns related to role and need context types. The choice of the context

types was based on the results obtained when evaluating the performance for the five

context types. As explained in section 6.2.1, the role, cognition, and skills patterns

required less time4 per activity, to obtain the needed monitor rules when compared to

the preferences and need patterns.
4This is considering average values

220

6.2. EXPERIMENTS RESULTS

In the experiments we considered cases of repositories composed of 300 monitor

rules. We augmented the percentages of monitor rules in the repository matching the

invariant part of the pattern from the original 20% (60 monitor rules), to 40%, 60%,

80%, and 100% (120, 180, 240, and 300 monitor rules). The results of the experi-

ments conducted for the role context type are shown in Figures 6.6 and 6.7. Similarly

the results of the experiments conducted for the need context type are shown in Fig-

ures 6.8 and 6.9. Each graph represents the results for a particular scenario (Atc-SBS

and Wo-SBS).

The performance of the activities concerned with the identification, creation, and

modification of monitor rules remained quite similar for both context types when

considering the same percentages of monitor rules. In the particular case of removal

of monitor rules, the time required for it, was considerably lower. More specifically,

the removal of monitor rules required close to one fifth of the time (19%) compared

to the other activities5. This proportion was increased as the percentage of rules

matching a pattern increased. The performance, when removing a monitor rule, is

explained by the fact that unlike in the other activities, when eliminating rules from

the repository, the framework does not perform comparisons of the pattern structure

as in the other cases.

The performance increased linearly every time the amount of rules in the reposi-

tory matching the invariant of a pattern increased in 20%. This was observed for each

context type.

In average, an increment of 20% in the rules matching the invariant part of the

pattern for the activities of identification, modification, and creation, incremented the

performance in 39% for the role context type and 36% for the need context type. The

lowest increment was observed in the creation for the role context type (13%) in the

Wo-SBS scenario when increasing the matching monitor rules from 80% to 100%.
5This was observed when considering a 20% matching in the repository

221

6. EXPERIMENTS AND EVALUATION

Figure 6.6: Performance for the role context type for the Atc-SBS scenario

Figure 6.7: Performance for the role context type for the Wo-SBS scenario

The highest increment (84%) was also observed in the creation, for the same context

type and scenario when increasing the matching monitor rules from 20% to 40%.

6.2.3 Modifying Annotations Locations

In our evaluation, we were also interested to analyse if the annotations in the SBS

specifications could affect the performance of the monitoring activities. More specif-

ically, we analysed the performance for the various activities in the process, for each

222

6.2. EXPERIMENTS RESULTS

Figure 6.8: Performance for the need context type for the Atc-SBS scenario

Figure 6.9: Performance for the need context type for the Wo-SBS scenario

context type, considering different annotations for these various context types in dif-

ferent parts of the service-based specification.

For each context type, we considered the original annotations in the service-based

specification for that context type. We evaluated the performance for the set of ten

original monitor rules increasing the number of operations in the specification be-

fore the annotation. More specifically, we considered situations with four, 12, and

36 operations before a specific annotation, as shown in Figure 6.10. In the figure,

nodes 2 to 36 represent the additional operations occurring before an annotation. The

223

6. EXPERIMENTS AND EVALUATION

annotation in the figure is represented by operations A, B, and C.

Annotation

Annotation

Annotation

Annotation

B

B

B

B C

C

C

CA

A

A

A

12

4

1

2

2

21

1

1

36

Figure 6.10: Example of the increment of operations occurring before an annotation

Table 6.5 presents the results of the experiments for the identification, modifica-

tion, and creation of ten monitor rules, for the original ten annotations6. More specif-

ically, there is an annotation for each monitor rule. The results shown in Table 6.5

are the mean values for the Atc-SBS and Wo-SBS scenarios. The results correspond to

the performance times, in seconds, for a repository consisting of 300 monitor rules.

In the experiment we considered 60 monitor rules (i.e. 20% of the 300 monitor rules

in the repository) as rules matching the invariant of the pattern of the context type.

For each context type, we considered the same patterns specified in Section 6.2.

The results in the table are the mean values for the performance times for each

one of the two scenarios used in our evaluation. Throughout the cases, as shown in

the table, the increment in the number of operations in the specification before the re-

spective annotation caused an increment in the performance times. This was expected

given that, for all the various activities, it is necessary to traverse the specification to

identify the part concerned with the context type.

The results show that in this case an increase in the number of the rules did not

affect the performance.

6Note that for the case of monitor rules removal, the framework does not depend on the annotations.

224

6.2. EXPERIMENTS RESULTS

R
ol

e
C

og
ni

tio
n

N
ee

d
Sk

ill
s

P
re

fe
re

nc
es

A
tc

-S
B

S
W

o-
SB

S
A

tc
-S

B
S

W
o-

SB
S

A
tc

-S
B

S
W

o-
SB

S
A

tc
-S

B
S

W
o-

SB
S

A
tc

-S
B

S
W

o-
SB

S
C

re
at

e
or

ig
in

al
3.

17
51

7
3.

56
11

0
2.

97
18

5
3.

61
44

2
3.

70
79

2
4.

10
16

6
3.

41
17

5
4.

10
31

8
3.

19
15

8
3.

54
56

2
4

op
er

.
3.

32
80

4
3.

95
88

0
3.

16
63

7
3.

72
81

9
4.

03
25

0
4.

47
69

4
3.

71
97

3
4.

40
45

4
3.

31
87

3
3.

59
56

3
12

op
er

.
3.

55
68

2
4.

19
00

9
3.

25
92

6
3.

92
77

8
4.

38
27

2
4.

77
59

6
3.

96
88

4
4.

78
88

6
3.

42
80

1
3.

66
71

9
36

op
er

.
4.

02
12

8
4.

61
22

8
3.

43
31

4
4.

11
09

5
5.

28
76

7
5.

61
01

6
4.

41
22

6
5.

21
78

7
3.

57
11

0
3.

84
04

1
Id

en
tif

y
or

ig
in

al
2.

94
71

4
3.

53
82

4
2.

87
14

0
3.

53
91

0
3.

65
39

9
4.

05
02

5
3.

35
45

3
4.

09
58

4
3.

17
65

7
3.

55
50

9
4

op
er

.
3.

26
05

5
3.

82
39

6
3.

20
59

2
3.

72
31

0
4.

03
57

3
4.

45
90

0
3.

66
90

3
4.

40
32

8
3.

33
12

2
3.

67
11

7
12

op
er

.
3.

42
96

0
4.

31
38

9
3.

33
26

4
3.

88
98

8
4.

35
64

2
4.

64
48

0
3.

85
16

4
4.

70
32

0
3.

42
84

5
3.

70
76

4
36

op
er

.
3.

95
15

0
4.

68
08

7
3.

43
32

6
4.

14
64

1
5.

21
00

5
5.

59
40

5
4.

26
34

3
5.

45
73

2
3.

68
39

1
3.

93
06

1
M

od
if

y
or

ig
in

al
3.

06
77

9
3.

54
53

0
3.

11
50

6
3.

52
47

2
3.

81
21

0
3.

99
03

2
3.

33
36

7
4.

08
81

8
3.

17
65

7
3.

21
50

9
4

op
er

.
3.

23
11

7
3.

96
70

9
3.

17
16

6
3.

68
47

6
4.

03
26

0
4.

49
19

4
3.

57
75

5
4.

40
88

6
3.

31
76

9
3.

27
03

4
12

op
er

.
3.

44
18

7
4.

21
28

0
3.

37
04

0
3.

83
86

2
4.

32
07

4
4.

76
69

2
3.

82
66

9
4.

81
01

6
3.

42
19

7
3.

35
36

3
36

op
er

.
3.

85
15

7
4.

68
42

9
3.

47
78

4
3.

95
83

1
5.

09
91

5
5.

59
84

3
4.

32
81

5
5.

29
45

9
3.

49
50

4
3.

42
44

1
R

em
ov

e
al

l
N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

Ta
bl

e
6.

5:
V

ar
ia

tio
ns

225

6. EXPERIMENTS AND EVALUATION

For example, in the case of rules creation for the skills context type, the increment

in the time performance, when augmenting the amount of operations to four, 12, and

36 was 9.0%, 6.6%, and 11.1% for the Atc-SBS scenario, and 7.3%, 8.7%, and 8.9%

for the Wo-SBS scenario. For the case of need and the activity of identifying monitor

rules, the increment of operations to four, 12, and 36, resulted in an increment of the

time performance of 10.4%, 7.9%, and 19.5% in the Atc-SBS scenario and 10.0%,

4.1%, and 20.4% in the Wo-SBS scenario. Note that the need context type required

more time for the different activities compared to the other contexts.

We also analysed the results and we found out that the size of the system spec-

ification also affects the performance. This claim is based on the fact that when

considering, for two different scenarios, i) the same amount of operations preceding

the annotations , ii) the same size of the repository, and iii) the same pattern for a

context type and amount of rules matching the invariant of the pattern in the reposi-

tory; there are still differences in the time performances. For example, the results in

Table 6.5 show that for the two similar scenarios (i.e. amount of services, operations

and structure of the service specification) the performance for the Wo-SBS scenario

required more time than the Atc-SBS scenario in all cases. When comparing the struc-

tures of both service compositions we found that the Wo-SBS specification included

a higher amount of partner links, variables, and WSDLs than the Atc-SBS scenario.

We deduced such a difference, which is also reflected in the final size of both speci-

fications (refer to [119] for the BPEL specifications), affected the performance of the

framework when carrying out the same activity - under the same configuration - for

each scenario. More specifically, the time required to identify the part of the service

composition (path identifier component) related to a particular context type value, is

influenced by the location of the annotation and the size of the BPEL specification,

defined partner links, variables, and WSDLs.

226

6.2. EXPERIMENTS RESULTS

6.2.4 Correctness

In order to analyse the correctness of the identified, modified, and created monitor

rules, we have used the monitor component implemented in [220]. The evaluation

was executed for each different context type. More specifically, we considered pat-

terns created for the various context types (as described in section 6.2); executed

the identification, creation, and modification of monitor rules with respect to these

patterns; and run those rules in the monitor component. The patterns used for these

experiments were chosen based on the types of monitor rules that the monitor compo-

nent can accept (see Chapter 7). The rules were executed in the monitor component

for different sets of events for the various context types.

We used four different events for almost all context types and five different events

for context type need. The larger number of events used for context type need was

due to the characteristics of the pattern and the associated part in the specification

that involved the invocation of five operations. Examples of these events are the

occurrence of a certain service operation when evaluating monitor rules for context

type role, or the occurrence of a user operation when evaluating monitor rules for

context type skills. In all the cases, the monitor rules were successfully used and the

behaviour of the service-based system was verified.

Tables 6.6, 6.7, 6.8, 6.9, and 6.10 shows the results of these experiments. Each

table shows for a context type i) the associated monitor rules, ii) the events and their

time constraints; iii) the time stamps for the events. We specify whether the time

stamp of the occurrence of an event cause a rule violation, by adding a violation or

correct label next to the time stamp of the event. All the events and time constraints

correspond to rules associated to the Wo-SBS scenario [119].

For the role rules in Table 6.6 there was a violation of rule R3. More specifi-

cally, the event related to the invocation of the operation mailComposer (note the ‘ic’

227

6. EXPERIMENTS AND EVALUATION

R1 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ic mailReviewer, t2,R(t1, t1 + 17.05))
R2 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ic mailComposer, t2,R(t1, t1 + 29.06))
R3 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ic accountManager, t2,R(t1, t1 + 38.07))
R4 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ic enableMessagingS ervice, t2,R(t1, t1 + 9.03))
R5 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ic opGUIuserOperation, t2,R(t1, t1 + 56.09))

event Time Time
constraint stamp

ic WebOrganizerv01Request no constraint 0
ic mailReviewer 0 − 17.05 9.1 (correct)
ic mailComposer 0 − 29.06 42.5 (violation R3)
ic accountManager 0 − 53.08 51.9 (correct)
ic enableMessagingS ervice 0 − 9.03 8.9 (correct)
ic opGUIuserOperatione6 0 − 56.09 22.6 (correct)

Table 6.6: Role Rules for the Wo-SBS scenario

prefix) occurs after the specified time limit. Similarly, for the skills context type in

Table 6.7, rules R1 and R4 were violated; more specifically invocations of operations

opSelectFeatureuserOperation and opGUIuserOperation. For the cognition moni-

tor rules in Table 6.8 operations opSelectMailExpertiseLeveluserOperation (rule R2),

opStandardMailuserOperation (rule R3) and opGUIuserOperation (rule R5) the re-

sponses of operations (note the ‘ir’ prefix) occurs after the specified time limit. Sim-

ilarly, for the preferences monitor rules in Table 6.9 the reply of operations opSelect-

FeatureuserOperation, disableMessagingService, and WebOrganizerv01 (depicted in

monitor rules R3, R4, and R5 respectively) violate the time constraints. Finally, for the

need monitor rules depicted in Table 6.10 the invocation of operations mailReviewer

and initiateCrossReferencing occur at times that violate the constraints specified in

the corresponding rules (monitor rules R1 and R4 respectively).

228

6.2. EXPERIMENTS RESULTS

R1 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1))∧
Happens(ir WebOrganizerv01, t3,R(t1, t1 + 67.120)) =>
Happens(ic opS electFeatureuserOperation, t2,R(t1, t3))
R2 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1))∧
Happens(ir WebOrganizerv01, t3,R(t1, t1 + 67.120)) =>
Happens(ic opS tandardMailuserOperation, t2,R(t1, t3))
R3 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1))∧
Happens(ir WebOrganizerv01, t3,R(t1, t1 + 67.120)) =>
Happens(ic opAdvancedMailuserOperation, t2,R(t1, t3))
R4 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1))∧
Happens(ir WebOrganizerv01, t3,R(t1, t1 + 67.120)) =>
Happens(ic opGUIuserOperation, t2,R(t1, t3))
R5 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1))∧
Happens(ir WebOrganizerv01, t3,R(t1, t1 + 67.120)) =>
Happens(ic opAgendauserOperation, t2,R(t1, t3))

event Time Time
constraint stamp

ic WebOrganizerv01Request no constraint 0
ir WebOrganizerv01 0 − 67.12 56.61 (correct)
ic opS electFeatureuserOperation 0 − 56.61 69.33 (violation R1)
ic opS tandardMailuserOperation 0 − 56.61 55.86 (correct)
ic opAdvancedMailuserOperation 0 − 56.61 35.08 (correct)
ic opGUIuserOperation 0 − 56.61 73.75 (violation R4)
ic opAgendauserOperation 0 − 56.61 49.20 (correct)

Table 6.7: Skills Rules for the Wo-SBS scenario

R1 : Happens(ic opS electFeatureuserOperation, t1,R(t1, t1)) =>
Happens(Happens(ir opS electFeatureuserOperation, t2,R(t1, t1 + 2.5))
R2 : Happens(ic opS electMailExpertiseLeveluserOperation, t1,R(t1, t1)) =>
Happens(ir opS electMailExpertiseLeveluserOperation, t2,R(t1, t1 + 1.5))
R3 : Happens(ic opS tandardMailuserOperation, t1,R(t1, t1)) =>
Happens(ir opS tandardMailuserOperation, t2,R(t1, t1 + 2.0))
R4 : Happens(ic opAdvancedMailuserOperation, t1,R(t1, t1)) =>
Happens(ir opAdvancedMailuserOperation, t2,R(t1, t1 + 3.0))
R5 : Happens(ic opGUIuserOperation, t1,R(t1, t1)) =>
Happens(ir opGUIuserOperation, t2,R(t1, t1 + 1.25))

event Time Time
constraint stamp

All ‘ic′ events no constraint 0
ir opS electFeatureuserOperation 0 − 2.5 2.35 (correct)
ir opS electMailExpertiseLeveluserOperation 0 − 1.5 2.14 (violation R2)
ir opS tandardMailuserOperation 0 − 2.0 2.79 (violation R3)
ir opAdvancedMailuserOperation 0 − 3.0 2.58 (correct)
ir opGUIuserOperation 0 − 1.25 1.68 (violation R5)

Table 6.8: Cognition Rules for the Wo-SBS scenario

229

6. EXPERIMENTS AND EVALUATION

R1 : Happens(ic opS electFeatureuserOperation, t1,R(t1, t1)) =>
Happens(ir accessChecker, t2,R(t1, t1 + 60))
R2 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ir enableMessagingS ervice, t2,R(t1, t1 + 50))
R3 : Happens(ic enableMessagingS ervice, t1,R(t1, t1)) =>
Happens(ir opS electFeatureuserOperation, t2,R(t1, t1 + 30))
R4 : Happens(ic accessChecker, t1,R(t1, t1)) =>
Happens(ir disableMessagingS ervice, t2,R(t1, t1 + 40))
R5 : Happens(ic opS tandardMailuserOperation, t1,R(t1, t1)) =>
Happens(ir WebOrganizerv01, t2,R(t1, t1 + 50))

event Time Time
constraint stamp

ic opS electFeatureuserOperation no constraint 0
ir accessChecker 0 − 60 55.80 (correct)
ic WebOrganizerv01Request no constraint 0
ir enableMessagingS ervice 0 − 50 48.13 (correct)
ic enableMessagingS ervice no constraint 0
ir opS electFeatureuserOperation 0 − 30 44.41 (violation R3)
ic accessChecker no constraint 0
ir disableMessagingS ervice 0 − 40 80.25 (violation R4)
ic opS tandardMailuserOperation no constraint 0
ir WebOrganizerv01 0 − 50 76.73 (violation R5)

Table 6.9: Preferences Rules for the Wo-SBS scenario

230

6.2. EXPERIMENTS RESULTS

R1 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ic mailReviewer, t2,R(t1, t1 + 17.05))∧
Happens(ir mailReviewer, t3,R(t2, t2 + 12))∧
Happens(ic mailComposer, t4,R(t3, t3 + 0.01))∧
Happens(ir mailComposer, t5,R(t4, t4 + 9))
R2 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ic initiateS cheduler, t2,R(t1, t1 + 83.66))∧
Happens(ir initiateS cheduler, t3,R(t2, t2 + 6))∧
Happens(ic getLatestDates, t4,R(t3, t3 + 0.01))∧
Happens(ir getLatestDates, t5,R(t4, t4 + 3))
R3 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ic accountManager, t2,R(t1, t1 + 38.07))∧
Happens(ir accountManager, t3,R(t2, t2 + 15))∧
Happens(ic initiateCalendar, t4,R(t3, t3 + 0.01))∧
Happens(ir initiateCalendar, t5,R(t4, t4 + 6))
R4 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ic getLatestAnnotations, t2,R(t1, t1 + 95.69))∧
Happens(ir getLatestAnnotations, t3,R(t2, t2 + 3))∧
Happens(ic initiateCrossRe f erencing, t4,R(t3, t3 + 0.01))∧
Happens(ir initiateCrossRe f erencing, t5,R(t4, t4 + 6))
R5 : Happens(ic WebOrganizerv01Request, t1,R(t1, t1)) =>
Happens(ic opMailandAgendauserOperation, t2,R(t1, t1 + 71.12))∧
Happens(ir opMailandAgendauserOperation, t3,R(t2, t2 + 3))∧
Happens(ic closeEverything, t4,R(t3, t3 + 0.01))∧
Happens(ir closeEverything, t5,R(t4, t4 + 4))

event Time constraint Time stamp
ic WebOrganizerv01Request no constraint 0
ic mailReviewer 0 − 17.05 17.53 (violation R1)
ir mailReviewer 17.53 − 29.53 23.93 (correct)
ic mailComposer 23.93 − 23.94 23.93 (correct)
ir mailComposer 23.93 − 32.93 30.14 (correct)
ic initiateS cheduler 0 − 83.66 31.42 (correct)
ir initiateS cheduler 31.42 − 37.42 36.45 (correct)
ic getLatestDates 36.45 − 36.46 36.45 (correct)
ir getLatestDates 36.45 − 39.45 39.18 (correct)
ic accountManager 0 − 38.07 23.45 (correct)
ir accountManager 23.45 − 38.45 37.18 (correct)
ic initiateCalendar 37.18 − 37.19 37.18 (correct)
ir initiateCalendar 37.18 − 43.18 39.13 (correct)
ic getLatestAnnotations 0 − 95.69 59.14 (correct)
ir getLatestAnnotations 59.14 − 62.14 60.41 (correct)
ic initiateCrossRe f erencing 60.41 − 60.42 63.49 (violation R4)
ir initiateCrossRe f erencing 63.49 − 69.49 66.26 (correct)
ic opMailandAgendauserOperation 0 − 71.12 56.95 (correct)
ir opMailandAgendauserOperation 56.95 − 59.95 57.56 (correct)
ic closeEverything 57.56 − 57.57 57.56 (correct)
ir closeEverything 57.56 − 61.56 60.63 (correct)

Table 6.10: Need Rules for the Wo-SBS scenario

231

6. EXPERIMENTS AND EVALUATION

6.3 Summary

In this chapter we described the setup for the experiments and the scenarios used for

the analysis and evaluation of our framework.

Regarding the results, we conducted different experiments to evaluate the perfor-

mance and correctness of our framework. We analysed the results and realised that

the performance of the framework was quite similar when comparing one context to

another. More specifically, when considering the same amount of monitor rules in

a repository, the same amount of monitor rules matching the invariant of a context

pattern, and the same amount of identified, modified, created or removed monitor

rules, the performance did not change significantly for the different context types.

This tendency in the performance was observed even when increasing the amount of

monitor rules from one to ten. Also regarding the results, we analysed the annota-

tions and study how their positioning in the service composition can can influence

the performance of our framework.

Finally, in order to show the correctness of our framework, we deployed a set of

monitor rules in the monitor component [220]. We verified - for each context type

- whether monitor rules were followed when the events reflecting the behaviour of

the system occurred at the expected times, and whether a subset of monitor rules was

violated, when the events reflecting the behaviour of the system occurred at wrong

times.

In the following chapter we tackle the limits of our work and how it can be further

extended. We analyse the validity of our study and end with the conclusions.

232

Chapter 7

Conclusions and Future Work

We have described a framework able to deal with the adaptation of the monitor rules

specified in Event Calculus. The framework can identify, modify, create, and remove

monitor rules concerned with different context types. Furthermore, the framework

can deal with the modification and evolution of the system as long as the changes

are reflected in the BPEL specification. As described in the introduction, our work

has brought contributions to the field of Software Engineering, in particular in the

area of web service monitoring adaptation. Under the perspective of service-oriented

computing, we have contributed to fill the existing gap among user context, user

interaction, and service-based system monitoring (see Chapter 1).

In what follows we list the hypotheses and objectives, previously introduced in

Section 1.5, and explain how we they were addressed in the thesis.

General hypothesis

1. It is possible to adapt monitor rules for Service-based Systems due to users

interaction with the system, the different types of user context, and changes in

the system itself in order to verify its behaviour.

233

7. CONCLUSIONS AND FUTURE WORK

Sub-hypotheses

a) It is possible to automatically identify monitor rules that should be used to monitor

SBSs due to changes in different user context types and user interaction with the

system.

b) It is possible to create and modify monitor rules that should be used to moni-

tor SBSs due to changes in different user context types, user interaction with the

system, and service composition specification.

c) It is possible to remove monitor rules that are not relevant to the SBS due to

changes in different user context types, user interaction with the system, and in

the service composition specification.

d) It is possible to use the automatically identified, created, or modified monitor rule

in a monitor component to verify the correct execution of the system and notify

that there has been violation in the behaviour of a system that requires changes in

the system.

Objectives

i) To provide a literature review and state of the art of the work performed in the

area. More specifically, we will focus on user context, human computer interac-

tion, SBS monitoring, monitoring adaptation, and their relations.

ii) To identify the distinctive user context types likely to affect the execution of a

SBS and to require adaptation of monitor rules.

iii) To develop a model for the representation of the distinctive user context types.

iv) To provide a classification for the various monitor rules with respect to the dif-

ferent user context types.

234

v) To provide a formalism to represent the various monitor rules for the different

context types.

vi) To develop techniques to support the identification, creation, modification and

removal of monitor rules.

vii) To implement a prototype tool to support objectives 5 and 6 above.

viii) To evaluate the results of the work in case studies and in a suitable monitor

component.

Hypothesis a). As described in Sections 4.2 and 5.3 our approach includes a

pattern-based strategy, which allows to uniquely identify rule patterns and those mon-

itor rules matching the patterns. Our user model (see Section 3.3) allows to represent

the different characteristics of the user. Furthermore, along with our user model we

proposed a strategy to identify user interactions in a BPEL specification (see Section

3.7). This allows our framework to automatically identify monitor rules, proving that

hypothesis a) was correct.

Hypotheses b) and c). A set of cases and experiments were performed (see

Sections 5.4 and 6.2) to prove the hypothesis b) was correct. More specifically, we

changed the user context types, the user interactions with the system, and service

composition specifications. Furthermore, we changed the annotations used in the

composition and removed operations from the service specifications to prove that

hypothesis c) was also correct.

Hypothesis d). The experiments conducted in Section 6.2 also showed that it

was possible to use our generated rules in a monitor component, to verify the correct

execution of the system. This proved that hypothesis d) was correct.

The hypotheses a), b), c), and d) prove the general hypothesis 1) was correct.

235

7. CONCLUSIONS AND FUTURE WORK

Regarding the objectives. In Chapter 2 we provided a review and state of the

art of the work performed in the area (objective i)). In Sections 3.1, 3.2, 3.3, and

3.4 we identified the distinctive user context types likely to affect the execution of

a SBS, proposed a model to represent distinctive user context types, and described

the benefits of the model (objectives ii) and iii)). In Section 4.1 we presented and

explained the formalism used to represent monitor rules (objective iv)). Based on

the formalism, in Section 4.2, we proposed a classification for the various monitor

rules with respect to the different user context types (objective v)). Also in Section

4.2, we introduced our strategy - based on the use of patterns - for the identification,

creation, modification, and removal of monitor rules (objective vi)). In Section 3.8 we

introduced the framework of the prototype tool used to evaluate our work (objective

vii)). Finally the evaluation of our work was shown in Chapter 6 (objective viii)).

Decisions and Assumptions

The applicability of the framework presented in this thesis relies on a series of deci-

sions and assumptions that we recapitulate below.

• Context types. The framework covers the user context types defined in the

ontology. In addition, it is assumed that the contextual information from the

user if given.

• Annotations. For the identification of the part(s) of the composition related to

the context type value(s) of a user, the framework relies on the use of annota-

tions. These annotations are to be performed by a designer, familiar with the

service composition and operation.

• Service specification and services. The framework obtains the information -

for the semi-instantiation of the monitor rules - from the service specification,

236

which is assumed to be specified in BPEL (de facto standard). In addition the

framework relies on information obtained from the SLAs - from the different

services - for the computation of the time constraints for the monitor rules.

• Operations names. The approach assumes a special syntax in the names of

the operations (a prefix and a suffix), to differentiate between those operations

involving user interaction, and those operations not involving user interaction.

• For some patterns we rely on the use of states, e.g. security, which are assumed

to be given/known.

Regarding the adoption of the approach in a real setting, we believe it is plausible

for our framework to be used, under real conditions, seamlessly. More specifically,

the above assumptions do not require major modifications of existing services com-

position. In fact, most of the approach relies on the use of external information and

non-intrusive service specification. Even more, we have already carried out some

work (see section Future Work below) that integrates our work with runtime service

adaptation [70]. The research and the results obtained from this integration, in a

realistic scenario, demonstrates that our work can be used to complement existing

approaches without huge amounts of work. Furthermore, although in our work we

considered a set of assumptions, we also believe these assumptions can be relaxed,

or even removed, as part of the future work (section Future Work).

An important aspect that contributes to consider our proposal - for its adoption

under real settings - is the performance of the framework. As showed in Chapter 6,

even when increasing the amount of participating services, the number of operations

involved, the annotations; and when modifying the service specification the frame-

work handles the retrieval of monitoring rules in an efficient1 way. Considering that

1In most cases, monitor rules require manual intervention, which is a slow and error-prone process

237

7. CONCLUSIONS AND FUTURE WORK

the user context and the monitoring automation has been - as far as we are aware - ne-

glected from the service adaptation process, and also that in most cases the adaptation

relies on manual intervention (specially after service composition modifications), the

proposed framework offers a viable solution for the dynamic monitoring process.

Regarding the efficiency; as shown in Chapter 6, our framework is capable of

dealing with the retrieval several monitor rules in just a few seconds. This time is

considerably shorter than the time required for a system2 to execute. Furthermore,

even in those cases in which the monitor rules have been specified, it is still im-

portant to verify whether they are still suitable for a specific user and/or the system

being monitored. This verification, usually a manual process, also increases the time

required for the deployment of the monitor rules.

Discussion

We have described a series of patterns for the specification of monitor rules. Although

each one of these patterns focuses on a specific context type property, it can be argued

that the monitor rules based on these patterns may also be suitable to monitor the

system according to behavioural aspects not necessarily related to the contexts. This

is, in fact, a possibility.

We realised throughout our research that the more specialised the constraints used

to check the correct behaviour of a system, the less likely these constraints would be,

to be used in a different system. In our framework the trade off generality/specificity

of the patterns, and hence of the monitor rules based on these patterns, allows the

framework to be applicable to almost any service-based system. Furthermore, a de-

tailed pattern - i.e. a pattern that goes beyond the logic (structure) of the process and

its syntax, and involves the semantic of the process being monitored - implies the
2As observed from the existing services compositions

238

designer possesses additional information concerned with the behavioural aspects of

the system being monitored. We also believe the specification of detailed patterns,

in constantly changing systems, requires the constant involvement of the designer to

guarantee the applicability of the pattern in a given scenario. Moreover, we believe

detailed patterns are likely to be suitable for a restricted set of service-based systems,

under a known set of assumptions.

The time required for the specification of a set of monitor rules, for a given set of

contexts and a given service-based system, is considerably low. Even in those cases in

which we stressed the framework with several monitor rules, the performance never

exceeded five seconds. The benefits of an automatic specification and deployment

of a set of monitor rules3 include not only an optimisation in terms of time, but also

avoids human participation (e.g. from the designer) which is prone to errors.

Limits

There are some limits regarding the applicability our framework, including:

• Limits in the specification of patterns. Although in our framework it is possible

to specify any pattern in terms of Event Calculus (EC) [210], we are limited by

the capabilities of the monitor component. More specifically, we cannot make

use of all predicates defined in EC. Furthermore the structure of the predicates

and the order in the occurrence of the events for the rules specified in the mon-

itor component, is more restricted than the structure and order defined in the

original formalism. Note that in those cases in which a pattern is not supported

by the monitor component, it is still possible (in some cases) to reformulate it

so it can be deployed.

3Examples of monitor rules following the specification given in [220], can be found in [119].

239

7. CONCLUSIONS AND FUTURE WORK

• Deployment and modification of monitor rules. Monitor rules must be de-

ployed in the monitor component before the process is executed and it is not

possible to modified them while performing the monitoring activity.

• Representation of general states. The fluents representing the states of the ser-

vice compositions are defined in general terms (e.g. an operation has been

triggered). A more precise specification of a fluent is not practical (although

possible) since it requires observation of the system, over an extended period

of time. Observation over a period of time is a problem in constant and rapidly

adaptive systems such as SBSs.

• Annotations. Although the process is automatised, it still relies on the annota-

tions of the process, which are manually created by the designer. Furthermore

in our work we assume annotations are still valid after modifications in the

SBS, such as the replacement of an operation.

• Synchronous process. Our framework assumes the business process is syn-

chronous, i.e. it expects a response for each operation invocation; however it

could also be modified to use asynchronous processes (i.e. there is no response

for an invocation) by removing patterns involving operations responses.

Validity

There are a number of threats to validity, which may have impacted our work. One

threat to internal validity is concerned with the fact that the monitor rules that are

identified, modified, created, or removed in our experiments depend on the existence

of annotations specified in service-based systems. However, the use of annotations is

not unusual and has been advocated by other approaches to support different tasks in

service-based systems.

240

The issue of correctness and consistency of the annotations can be mitigated if

their creation is delegated to people with long-standing experience in service-based

computing and BPEL specifications. In practice, we foresee that our framework

should be used by applications that are created and annotated by developers with

experience in service-based computing and the respective domain of the application.

Moreover, the requirements of the applications should also be used to support the

definition of annotations.

In the case of evaluating the correctness of the monitor rules, for each context

type pattern, we deployed a set of five monitor rules in the monitor component. In the

experiments we could only use patterns related to monitor rules that are accepted by

the monitor component, given that there are limitations in the monitor component as

pointed out in the previous section. Although the experiment considered a restricted

number of patterns, this was sufficient since differences between the rules associated

with a certain pattern are concerned with the instances of the relevant operations for

that pattern (i.e. operation names) and not the semantic described by the patterns.

A threat to external validity is concerned with the data sets used in the experi-

ments. We used two service-based systems and assumed two initial sets of monitor

rules in the various repositories to be relevant to the experiments. The validity issues

were mitigated in two ways. First the service-based systems used in the experiments

were sufficiently complex and with several variations in terms of context types, num-

ber and type of operations and services4, and size of the parts of the systems to be

considered, providing a solid variation and context for the conducted experiments.

Second the repositories used in the experiments contained a plurality of different

monitor rules including rules related to the various context types and rules concerned

with other behavioural aspects of the system. One other threat is related to the fact

4Note that the composition, in terms of user operations and services, varied from one scenario to the
other

241

7. CONCLUSIONS AND FUTURE WORK

that in the experiments we used fixed percentages for the number of monitor rules

that match the invariant part for a certain context type pattern (from 20% to a 100%)

and for the monitor rules that are not related to the pattern (from 80% to a 0%) in the

repositories. This was done to allow for a better comparison of the performance of the

framework for different configurations of context types, repository sizes, and number

of rules. Although a more random sample of pattern-related and pattern-unrelated

monitor rules in the repositories could be considered a more realistic scenario, the

use of a random sample for the numbers of monitor rules in the repositories will not

provide a coherent way for comparison.

Future Work

Throughout this work we have described, analysed, and proposed a solution for the

adaptation of monitor activity centered on the context of the user. Our solution con-

siders a framework which allows to identify, modify, create, and remove user context

monitor rules based on a pattern strategy. We evaluated the framework, analysed the

results, and covered different topics dealing with the limits and validity of our work.

However, there are still issues that can be further addressed.

Expansion of patterns and context types. Our work can be extended by the cre-

ation of new patterns for the existing context types (see Chapter 3). Another way of

extending our work involves the identification of new context types complementing

the old ones. In the case of identifying new context types, it would be also neces-

sary to create the associated patterns, used as templates, for the obtention/removal of

monitor rules.

The adaptation of the monitor process at runtime. As it was previously men-

tioned, the current monitor component is not able to deal with the runtime deploy-

ment of monitor rules. In order to deal with this limitation we have conducted some

242

preliminary work consisting of strategies where monitor rules are able to cope with

runtime modifications (see [70]), however the deployment, at runtime, of monitor

rules remains a strong limitation. In a similar sense we believe another way in which

our research can be further extended is by the development of techniques capable of

supporting the adaptation of patterns themselves.

Annotations specifications. Our process is not fully-automated, it relies on a

designer for the specification of the annotations of the different parts of the service-

based system related to the context types. A strategy supporting the automated or

semi-automated specification of annotations would reduce the manual intervention

(prone to errors) and ensure annotations are valid after modifications in the system.

A way of doing this could be by information collection. For example, by observing

the behaviour of the user with respect to the system. Also, it is important to note -

related to the annotations - that the association of a set of operations to a particular

user is quite a complex task. Furthermore, the retrieval of user information - needed

for the association with service specification - is a challenging topic and ongoing

research in different areas of computer science.

Time constraints. Currently we based the computation of the time constraints

from the information provided by the SLAs. We believe that this can be improved by

monitoring the actual services and operations over a given period of time. The bene-

fits of such strategy would include up-to-date performance information considering,

for example, work loads or amount. The main drawback with this strategy is the need

of time to compute/infer the time constraint per participating service.

Final Remarks

Our work supports the verification of the behaviour of web service compositions.

We showed that our work is particularly suitable to deal with dynamic scenarios

243

7. CONCLUSIONS AND FUTURE WORK

where the specification of the system or the user configuration change constantly. Our

work addresses problems in the area that have been somehow neglected by existing

approaches such as user context and user interactions. We propose an integrated

solution for the monitoring process of web service compositions.

As it was mentioned before, our ontology can be expanded to include other types

of context and, therefore, to support other types of monitoring rules that are not only

concerned with user context types.

For the patterns, we have chosen Event Calculus to represent them. However,

given the generalisation of the patterns we have proposed, we believe that they can

be specified in other formalisms that support the representation of states and events

We believe that our pattern-based approach can be adapted to be be used in other

types of software systems that involve interaction with users. Furthermore, we be-

lieve that our work can be extended to support additional features, such as the ranking

of web services - or service providers - based on the runtime behaviour, or the auto-

matic service composition based on the context.

Finally, our work addresses the problems related to the behaviour of a system and

the user context in a general manner, contributing - but not limited - to the fields of

SOA and HCI, and providing a valid approach to deal with the user context and the

user interaction.

244

Bibliography

[1] IEEE International Conference on Web Services, ICWS 2011, Washington,

DC, USA, July 4-9, 2011. IEEE Computer Society, 2011.

[2] R. Agostini, C. Bettini, N. Cesa-bianchi, D. Riboni, M. Ruberl, and C. Sala.

Towards Highly Adaptive Services for Mobile Computing. In In Proceedings

of IFIP TC8 Working Conference on Mobile Information Systems (MOBIS,

pages 121–134. Springer, 2004.

[3] M. Agranov, E. Potamites, A. Schotter, and C. Tergiman. Beliefs and endoge-

nous cognitive levels: An experimental study. Games and Economic Behavior,

75(2):449–463, 2012.

[4] Eshaa M. Alkhalifa. Effects of the cognitive level of thought on learning com-

plex material. Educational Technology & Society, 8(2):40–53, 2005.

[5] N. Amálio and G. Spanoudakis. From Monitoring Templates to Security Mon-

itoring and Threat Detection. In Proceedings of the 2008 Second International

Conference on Emerging Security Information, Systems and Technologies, SE-

CURWARE ’08, pages 185–192, Washington, DC, USA, 2008. IEEE Com-

puter Society.

[6] D. Ameller and X. Franch. Service level agreement monitor (salmon). In

Proceedings of the Seventh International Conference on Composition-Based

245

7. CONCLUSIONS AND FUTURE WORK

Software Systems (ICCBSS 2008), ICCBSS ’08, pages 224–227, Washington,

DC, USA, 2008. IEEE Computer Society.

[7] M.G. Ames and A.K. Dey. Description of Design Dimensions and Evaluation

for Ambient Displays. Technical Report UCB/CSD-02-1211, EECS Depart-

ment, University of California, Berkeley, 2002.

[8] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,

J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web services agreement specifi-

cation (ws-agreement), 2007.

[9] V. Andrikopulus, P. Bertoli, S. Bindelli, E. Di Nitto, A. Gehlert, L. Ger-

manovich, R. Kazhamiakin, B. Pernici, P. Pelbani, and T. Weyer. State of

the Art Report on Software Engineering Design Knowledge and Survey of

HCI and Contextual Knowledge. Technical Report PO-JRA-1.1.1, S-Cube

Network of Excellence, 2008.

[10] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Plebani. Paws: A frame-

work for executing adaptive web-service processes. IEEE Softw., 24(6):39–46,

2007.

[11] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan. Fault Tolerant

Web Service Orchestration by Means of Diagnosis. In Proceedings of the

Third European conference on Software Architecture, EWSA’06, pages 2–16,

Berlin, Heidelberg, 2006. Springer-Verlag.

[12] A. Arkin, A. Boisvert, A. Midon, T. van Lessen, G. Nodet, M. Riou, Rusin

R., M. Szefler, L. Waterman, and J. Yu. Apache ODE. http://ode.apache.org/,

2011. (last visited May 2012).

[13] R. Aschoff and A. Zisman. QoS-Driven Proactive Adaptation of Service Com-

position. In G. Kappel, Z. Maamar, and H.R. Motahari Nezhad, editors, IC-

246

BIBLIOGRAPHY

SOC, volume 7084 of Lecture Notes in Computer Science, pages 421–435.

Springer, 2011.

[14] R. Aschoff and A. Zisman. Proactive Adaptation of Service Composition. In

SEAMS, June 2012.

[15] M. Autili, P. Benedetto, and P. Inverardi. Context-aware adaptive services:

The plastic approach. In Proceedings of the 12th International Conference

on Fundamental Approaches to Software Engineering: Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2009,

FASE ’09, pages 124–139, Berlin, Heidelberg, 2009. Springer-Verlag.

[16] E. Badidi and L. Esmahi. A Cloud-based Approach for Context Information

Provisioning. CoRR, abs/1105.2213, 2011.

[17] B. P. Bailey, P. D. Adamczyk, T. Y. Chang, and N. A. Chilson. A framework

for specifying and monitoring user tasks. Computers in Human Behaviour,

22:709–732, 2006.

[18] K. Bandara, M. Wang, and C. Pahl. Context Modeling and Constraints Binding

in Web Service Business Processes. In Proceedings of the first international

workshop on Context-aware software technology and applications, CASTA

’09, pages 29–32, New York, NY, USA, 2009. ACM.

[19] K. Bandara, M. Wang, and C. Pahl. Dynamic Integration of Context Model

Constraints in Web Service Processes. In International Software Engineering

Conference, February 2009.

[20] F. Barbon, P Traverso, M. Pistore, and M. Trainotti. Run-time monitoring of

instances and classes of web service compositions. In Proceedings of the IEEE

International Conference on Web Services, ICWS ’06, pages 63–71, Washing-

ton, DC, USA, 2006. IEEE Computer Society.

247

7. CONCLUSIONS AND FUTURE WORK

[21] L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for Composed Services.

In Proceedings of the 2nd international conference on Service oriented com-

puting, ICSOC ’04, pages 193–202, New York, NY, USA, 2004. ACM.

[22] L. Baresi, C. Ghezzi, and S. Guinea. Towards self-healing service composi-

tions. In PriSE04, First Conference on the Principles of Software Engineering,

2004.

[23] L. Baresi and S. Guinea. Towards Dynamic Monitoring of WS-BPEL Pro-

cesses. In ICSOC 2005, Third International Conference of Service-Oriented

Computing, volume 3826 of Lecture Notes in Computer Science, pages 269–

282. Springer, 2005.

[24] L. Baresi, S. Guinea, O. Nano, and G. Spanoudakis. Comprehensive Monitor-

ing of BPEL Processes. IEEE Internet Computing, 14(3):50–57, May 2010.

[25] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti. Dynamo + Astro: An Inte-

grated Approach for BPEL Monitoring. 2009 IEEE International Conference

on Web Services, pages 230–237, 2009.

[26] L. Baresi, S. Guinea, and P. Plebani. WS-Policy for Service Monitoring. In

6th VLDB Intl. Workshop on Technologies for E-Services, volume 3811 of Lect.

Notes in Computer Science, pages 72–83. Springer, 2006.

[27] M. Baudet. Random polynomial-time attacks and dolev-yao models. Journal

of Automata, Languages and Combinatorics, 11(1):7–21, 2006.

[28] J. Beaton, B. Myers, J. Stylos, S. Jeong, and Y. Xie. Usability Evaluation for

Enterprise SOA APIs. In Proceedings of the 2nd international workshop on

Systems development in SOA environments, SDSOA ’08, pages 29–34, New

York, NY, USA, 2008. ACM.

248

BIBLIOGRAPHY

[29] C. Beeri, A. Eyal, T. Milo, and A. Pilberg. Monitoring Business Processes with

Queries. In Proceedings of the 33rd Int’l Conference on Very large data bases

(VLDB ’07), pages 603–614, Wien, Austria, sep 2007. VLDB Endowment.

[30] Simone Beets and Janet Wesson. Using information visualisation to support

visual web service discovery. In Proceedings of the 26th Annual BCS Inter-

action Specialist Group Conference on People and Computers, BCS-HCI ’12,

pages 11–20, Swinton, UK, UK, 2012. British Computer Society.

[31] Thoms Bell. The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes,

24:216–234, October 1999.

[32] G. Belzquez, A. Berlanga, and JM. Molina. In Contexto: Multisensor Archi-

tecture to Obtain People Context from Smartphones. International Journal of

Distributed Sensor Networks, 15, 2012.

[33] S. Benbernou et al. State of the Art Report, Gap Analysis of Knowledge on

Principles, Techniques and Methodologies and Adaptation of SBAs. Technical

Report PO-JRA-1.2.1, S-Cube Network of Excellence, 2008.

[34] P. Berry, M. Gervasio, B. Peintner, and N. Yorke-Smith. PTIME: Personal-

ized Assistance for Calendaring. ACM Trans. Intell. Syst. Technol., 2(4):40:1–

40:22, July 2011.

[35] C. Bettini, D. Maggiorini, and D. Riboni. Distributed Context Monitoring

for the Adaptation of Continuous Services. World Wide Web, 10(4):503–528,

December 2007.

[36] M. Bhatti, F. Hussain, and V. KalianiSundram. An SOA Based Real Time

Information Exchange Between Military And Government Owned Rescue

Services. Far East Journal of Psychology and Business, 7 No 1 Paper 3

April(3):29–55, 2012.

249

7. CONCLUSIONS AND FUTURE WORK

[37] D. Bianculli and C. Ghezzi. Monitoring Conversational Web Services. In 2nd

international workshop on Service oriented software engineering: in conjunc-

tion with the 6th ESEC/FSE joint meeting, IW-SOSWE ’07, pages 15–21, New

York, NY, USA, 2007. ACM.

[38] D. Bianculli, C. Ghezzi, C. Pautasso, and P. Senti. Specification Patterns from

Research to Industry: a Case Study in Service-based Applications. In Pro-

ceedings of the 34th International Conference on Software Engineering (ICSE

2012), Zürich, Switzerland, pages 968–976. IEEE Computer Society Press,

June 2012. SEiP track acceptance rate: 18.5% (20/108).

[39] W. Binder, D. Bonetta, C. Pautasso, A. Peternier, D. Milano, H. Schuldt,

N. Stojnic, B. Faltings, and I. Trummer. Towards Self-Organizing Service-

Oriented Architectures. In SERVICES, pages 115–121. IEEE Computer Soci-

ety, 2011.

[40] M. Blake, D. Kahan, and M. Nowlan. Context-aware Agents for User-

oriented Web Services Discovery and Execution. Distrib. Parallel Databases,

21(1):39–58, February 2007.

[41] E. Blanco, H. C Cankaya, and D. Moldovan. Composition of Semantic Rela-

tions : Model and Applications. Proceedings of the 23rd International Con-

ference on Computational Linguistics Posters, (August):72–80, 2010.

[42] C. Bolchini, C. Curino, E. Quintarelli, F. Schreiber, and L. Tanca. A Data-

oriented Survey of Context Models. SIGMOD Rec., 36:19–26, December

2007.

[43] C. Bolchini, G. Orsi, E. Quintarelli, F.A. Schreiber, and L. Tanca. Context

Modeling and Context Awareness: steps forward in the Context-ADDICT

project. IEEE Data Eng. Bull., 34(2):47–54, 2011.

250

BIBLIOGRAPHY

[44] M. Boukhebouze, W. Ferreira, and E. Lim. Yet Another BPEL Extension for

User Interactions. In O. De Troyer, C. Bauzer, R. Billen, P. Hallot, A. Simitsis,

and H. Van Mingroot, editors, ER Workshops, volume 6999 of Lecture Notes

in Computer Science, pages 24–33. Springer, 2011.

[45] P. Branco and M.L. Encarnação. Affective Computing for Behavior-Based UI

Adaptation.

[46] K. Bratanis, D. Dranidis, and A. Simons. An Extensible Architecture for Run-

time Monitoring of Conversational Web Services. In Proceedings of the 3rd

International Workshop on Monitoring, Adaptation and Beyond, MONA ’10,

pages 9–16, New York, NY, USA, 2010. ACM.

[47] A. Brown and M. Ryan. Context-Aware Monitoring of Untrusted Mobile Ap-

plications. In MobiSec, pages 83–96, 2009.

[48] A. Bucchiarone, C. Cappiello, E. Di Nitto, R. Kazhamiakin, V. Mazza, and

M. Pistore. Design for Adaptation of Service-Based Applications: Main Issues

and Requirements. In Asit Dan, Frdric Gittler, and Farouk Toumani, editors,

Service-Oriented Computing. ICSOC/ServiceWave 2009 Workshops, volume

6275 of Lecture Notes in Computer Science, pages 467–476. Springer Berlin /

Heidelberg, 2010.

[49] A. Bucchiarone, R. Kazhamiakin, C. Cappiello, E. di Nitto, and V. Mazza. A

Context-driven Adaptation Process for Service-based Applications. In Pro-

ceedings of the 2nd International Workshop on Principles of Engineering

Service-Oriented Systems, PESOS ’10, pages 50–56, New York, NY, USA,

2010. ACM.

[50] A. Bucchiarone, A. Lafuente, A. Marconi, and M. Pistore. A Formalisation

of Adaptable Pervasive Flows. In Proceedings of the 6th international confer-

251

7. CONCLUSIONS AND FUTURE WORK

ence on Web services and formal methods, WS-FM’09, pages 61–75, Berlin,

Heidelberg, 2010. Springer-Verlag.

[51] A. Bucchiarone, M. Pistore, H. Raik, and R. Kazhamiakin. Adaptation of

Service-based Business Processes by Context-aware Replanning. In K-J Lin,

C. Huemer, M.B. Blake, and B. Benatallah, editors, SOCA, pages 1–8. IEEE,

2011.

[52] J. Budzik, S. Bradshaw, X. Fu, and K. Hammond. Supporting On-line Re-

source Discovery in the Context of Ongoing Tasks with Proactive Software

Assistants. Int. J. Hum.-Comput. Stud., 56(1):47–74, January 2002.

[53] O. Cabrera, M. Oriol, X. Franch, L. López, J. Marco, O. Fragoso, and R. San-

taolaya. WeSSQoS: A Configurable SOA System for Quality-aware Web Ser-

vice Selection. ArXiv e-prints, October 2011.

[54] G. Calvary, J. Coutaz, and D. Thevenin. Embedding Plasticity in the De-

velopment Process of Interactive Systems. In In 6th ERCIM Workshop User

Interfaces for All. Also in HUC (Handheld and Ubiquitous Computing) First

workshop on Resource Sensitive Mobile HCI, Conference on Handheld and

Ubiquitous Computing, 2000.

[55] L.P. Carvalho and P.C. da Silva. CCMF, Computational Context Modeling

Framework - An Ontological Approach to Develop Context-Aware Web Ap-

plications. In M. Tanvir Afzal, editor, Semantics in Action - Applications and

Scenarios, chapter 3, pages 63–84. INTECH, 2012.

[56] R. Casado, J. Tuya, and M. Younas. Testing the reliability of web services

transactions in cooperative applications. In Proceedings of the 27th Annual

ACM Symposium on Applied Computing, SAC ’12, pages 743–748, New York,

NY, USA, 2012. ACM.

252

BIBLIOGRAPHY

[57] J. Cassady and R. Johnson. Cognitive test anxiety and academic performance.

Contemporary Educational Psychology, 27(2):270 – 295, 2002.

[58] A.T.S. Chan and S.N. Chuang. MobiPADS: A Reflective Middleware for

Context-Aware Mobile Computing. IEEE Transactions on Software Engineer-

ing, 29(12):1072–1085, 2003.

[59] A. Charfi, T. Dinkelaker, and M. Mezini. A Plug-in Architecture for Self-

Adaptive Web Service Compositions. In Proceedings of the 2009 IEEE Inter-

national Conference on Web Services, ICWS ’09, pages 35–42, Washington,

DC, USA, 2009. IEEE Computer Society.

[60] G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Re-

search. Technical report, Hanover, NH, USA, 2000.

[61] H. Chen, T. Finin, and A. Joshi. An Ontology for Context-aware Pervasive

Computing Environments. Knowl. Eng. Rev., 18(3):197–207, September 2003.

[62] I. Chen, S. Yang, and J. Zhang. Ubiquitous provision of context aware web

services. In IEEE SCC, pages 60–68. IEEE Computer Society, 2006.

[63] Z. Chen and T. Li. Addressing diverse user preferences: A framework for

query results navigation. IEEE Data Eng. Bull., 32(4):41–48, 2009.

[64] K. Cheverst, K. Mitchell, and N. Davies. Investigating Context-aware Infor-

mation Push vs. Information Pull to Tourists. In In Proceedings of Mobile HCI

01, page 2001, 2001.

[65] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Service

Definition Language (WSDL). Technical report, March 2001.

[66] K. Christos, C. Vassilakis, E. Rouvas, and P. Georgiadis. QoS-Driven Adapta-

tion of BPEL Scenario Execution. In Proceedings of the 2009 IEEE Interna-

253

7. CONCLUSIONS AND FUTURE WORK

tional Conference on Web Services, ICWS ’09, pages 271–278, Washington,

DC, USA, 2009. IEEE Computer Society.

[67] J. Clark and S. DeRose. XML Path Language (XPath) version 1.0.

Recommendation, World Wide Web Consortium, November 1999. See

http://www.w3.org/TR/xpath.html.

[68] M. Cole, J. Gwizdka, and N. Belkin. Physiological Data as Metadata. In SIGIR

2011 Workshop on Enriching Information Retrieval (ENIR2011), 2011.

[69] M. Comuzzi and G. Spanoudakis. Describing and Verifying Monitoring Capa-

bilities for SLA-driven Service-based Systems. In CaiSE Forum, Amsterdam,

2009.

[70] R. Contreras, A. Marconi, M. Pistore, and A. Zisman. A Framework for Dy-

namic Monitoring of Adaptable Service-based Systems. In Proceedings of

the 4rd International Workshop on Principles of Engineering Service-Oriented

Systems, PESOS ’12, New York, NY, USA, 2012. ACM.

[71] R. Contreras and A. Zisman. A Pattern-based Approach for Monitor Adapta-

tion. In Software Science, Technology and Engineering (SWSTE), 2010 IEEE

International Conference on, pages 30 –37, june 2010.

[72] R. Contreras and A. Zisman. Identifying, Modifying, Creating, and Removing

Monitor Rules for Service-oriented Computing. In Proceedings of the 3rd In-

ternational Workshop on Principles of Engineering Service-Oriented Systems,

PESOS ’11, pages 43–49, New York, NY, USA, 2011. ACM.

[73] D. Cooray, S. Malek, and R. Roshandel. Context-driven optimization of mo-

bile service-oriented systems for improving their resilience. In Proceedings

of the 2010 6th World Congress on Services, SERVICES ’10, pages 677–682,

Washington, DC, USA, 2010. IEEE Computer Society.

254

BIBLIOGRAPHY

[74] E. Crawford and M. Veloso. Mechanism design for multi-agent meeting

scheduling including time preferences, availability, and value of presence. In

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent

Agent Technology, IAT ’04, pages 253–259, Washington, DC, USA, 2004.

IEEE Computer Society.

[75] J. Crowley, J. Coutaz, G. Rey, and P. Reignier. Perceptual Components for

Context Aware Computing. In Proceedings of the 4th international conference

on Ubiquitous Computing, UbiComp ’02, pages 117–134, London, UK, UK,

2002. Springer-Verlag.

[76] M. Cruz-Torres, V. Noël, T. Holvoet, and J. Arcangeli. MAS Organisations

to Adapt your Composite Service. In Proceedings of the 3rd International

Workshop on Monitoring, Adaptation and Beyond, MONA ’10, pages 33–39,

New York, NY, USA, 2010. ACM.

[77] M de Leoni. Adaptive Process Management in Highly Dynamic and Pervasive

Scenarios. In M. H. ter Beek, editor, YR-SOC, volume 2 of EPTCS, pages

83–97, 2009.

[78] A-M Dery-Pinna, J. Fierstone, and E. Picard. Component Model and Program-

ming: A First Step to Manage Human Computer Interaction Adaptation. In

Luca Chittaro, editor, Human-Computer Interaction with Mobile Devices and

Services, volume 2795 of Lecture Notes in Computer Science, pages 456–460.

Springer Berlin / Heidelberg, 2003.

[79] A. Dey. Providing Architectural Support for Building Context-aware Applica-

tions. PhD thesis, Atlanta, GA, USA, 2000. AAI9994400.

[80] A. Dey. Understanding and Using Context. Personal Ubiquitous Comput.,

5(1):4–7, January 2001.

255

7. CONCLUSIONS AND FUTURE WORK

[81] A.K. Dey and G.D. Abowd. The Context Toolkit: Aiding the Development of

Context-Aware Applications. pages 434–441. ACM Press, 1999.

[82] I. Di Pietro, F. Pagliarecci, L. Spalazzi, A. Marconi, and M. Pistore. Semantic

Web Service Selection at the Process-Level: The eBay/Amazon/PayPal Case

Study. In Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT

’08. IEEE/WIC/ACM International Conference on, volume 1, pages 605 –611,

dec. 2008.

[83] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Property Specification Patterns

for Finite-state Verification. In Proceedings of the second workshop on Formal

methods in software practice, FMSP ’98, pages 7–15, New York, NY, USA,

1998. ACM.

[84] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in Property Specifica-

tions for Finite-State Verification. In B.W. Boehm, D. Garlan, and J. Kramer,

editors, ICSE, pages 411–420. ACM, 1999.

[85] H. Eberle, S. Föll, K. Herrmann, F. Leymann, A. Marconi, T. Unger, and

H. Wolf. Enforcement from the Inside: Improving Quality of Business in

Process Management. In ICWS, pages 405–412. IEEE, 2009.

[86] R. J. Ellison. Trustworthy Integration: Challenges for the Practitioner. Techni-

cal report, Software Engineering Institute, Cernegie Mellon University, 2005.

[87] L. Encarnação. Multi-Level User Support through Adaptive Hypermedia: A

Highly Application-Independent Help Component. In Proceedings of the 2nd

international conference on Intelligent user interfaces, IUI ’97, pages 187–

194, New York, NY, USA, 1997. ACM.

[88] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution

by run-time parameter adaptation. In Proceedings of the 31st International

256

BIBLIOGRAPHY

Conference on Software Engineering, ICSE ’09, pages 111–121, Washington,

DC, USA, 2009. IEEE Computer Society.

[89] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and De-

sign. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[90] M.D. Ernst. Static and Dynamic Analysis: Synergy and Duality. In WODA

2003: Workshop on Dynamic Analysis, pages 24–27, Portland, Oregon, May 9,

2003.

[91] A. Erradi, P. Maheshwari, and V. Tosic. Ws-policy based monitoring of com-

posite web services. In Proceedings of the Fifth European Conference on Web

Services, ECOWS ’07, pages 99–108, Washington, DC, USA, 2007. IEEE

Computer Society.

[92] D. Evans, D. Eyers, and J. Bacon. Linking policies to the spatial environment.

Policies for Distributed Systems and Networks, IEEE International Workshop

on, 0:73–76, 2010.

[93] A. Farrell, M. Sergot, M. Salle, and C. Bartolini. Using the Event Calculus for

the Performance Monitoring of Service-Level Agreements for Utility Com-

puting. In In Proceedings of First IEEE International Workshop on Electronic

Contracting (WEC 2004, 2004.

[94] F. Felhi and J. Akaichi. Adaptation of web services to the context based on

workflow: Approach for self-adaptation of service-oriented architectures to

the context. CoRR, abs/1211.4867, 2012.

[95] E. Fernández, O. Ajaj, I. Buckley, N. Delessy-Gassant, K. Hashizume, and

M. Larrondo-Petrie. A survey of patterns for web services security and relia-

bility standards. Future Internet, 4(2):430–450, 2012.

257

7. CONCLUSIONS AND FUTURE WORK

[96] G. Fischer. User Modeling in Human-Computer Interaction. User Modeling

and User-Adapted Interaction, 11(1-2):65–86, March 2001.

[97] M.E. Foster. Generating Embodied Descriptions Tailored to User Prefer-

ences. In Proceedings of the 7th international conference on Intelligent Virtual

Agents, IVA ’07, pages 264–271, Berlin, Heidelberg, 2007. Springer-Verlag.

[98] D. Francois, D. Polani, and K. Dautenhahn. Towards Socially Adaptive

Robots: A Novel Method for Real-time Recognition of Human-robot Inter-

action Styles. Humanoid Robots 2008 Humanoids 2008 8th IEEERAS Inter-

national Conference on, pages 353–359, 2009.

[99] D. Franklin, J. Budzik, and K. Hammond. Plan-based Interfaces: Keeping

Track of User Tasks and Acting to Cooperate. In Proceedings of the 7th inter-

national conference on Intelligent user interfaces, IUI ’02, pages 79–86, New

York, NY, USA, 2002. ACM.

[100] E. Freeman, E. Freeman, B. Bates, and K. Sierra. Head First Design Patterns.

O’ Reilly & Associates, Inc., 2004.

[101] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-oriented Software. Addison-Wesley Professional, 1995.

[102] J.H. Gennari, M.A. Musen, R.W. Fergerson, W.E. Grosso, M. Crubezy,

H. Eriksson, N.F. Noy, and S.W. Tu. The evolution of Protégé;: an Envi-

ronment for Knowledge-based Systems Development. Int. J. Hum.-Comput.

Stud., 58(1):89–123, January 2003.

[103] G. Giacomo, Y. Lespérance, H.J. Levesque, and S. Sardina. IndiGolog: A

High-Level Programming Language for Embedded Reasoning Agents. pages

31–72. 2009.

258

BIBLIOGRAPHY

[104] C. Glahn, M. Specht, and R. Koper. Towards a Service Oriented Architecture

for Giving Feedback in Informal Learning Environments. 2007.

[105] M. Golemati, A. Katifori, C. Vassilakis, G. Lepouras, and C. Halatsis. Creating

an Ontology for the User Profile: Method and Applications. In C. Rolland,

O. Pastor, and J-L. Cavarero, editors, RCIS, pages 407–412, 2007.

[106] A. Goodloe and L. Pike. Monitoring distributed real-time systems: A sur-

vey and future directions. Technical Report NASA/CR-2010-216724, NASA

Langley Research Center, July 2010.

[107] Denis Gopan and Thomas W. Reps. Guided static analysis. In Hanne Riis Niel-

son and Gilberto Filé, editors, SAS, volume 4634 of Lecture Notes in Computer

Science, pages 349–365. Springer, 2007.

[108] A. Gotsman, F. Massacci, and M. Pistore. Towards an Independent Semantics

and Verification Technology for the HLPSL Specification Language. Electron.

Notes Theor. Comput. Sci., 135(1):59–77, July 2005.

[109] T.R. Gruber. A Translation Approach to Portable Ontology Specifications.

Knowl. Acquis., 5(2):199–220, June 1993.

[110] T. Gu, X. Wang, H. Pung, and D. Zhang. An ontology-based context model

in intelligent environments. In IN PROCEEDINGS OF COMMUNICATION

NETWORKS AND DISTRIBUTED SYSTEMS MODELING AND SIMULA-

TION CONFERENCE, pages 270–275, 2004.

[111] G. Hackmann, C. Julien, J. Payton, and G. Roman. Supporting Generalized

Context Interactions. In In: Proceedings of the 4 th International Workshop

on Software Engineering for Middleware, pages 91–106, 2004.

[112] S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection.

Artificial Intelligence, 33(3):379 – 412, 1987.

259

7. CONCLUSIONS AND FUTURE WORK

[113] J. Heflin and Z. Pan. A Model Theoretic Semantics for Ontology Versioning.

In S.A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, International

Semantic Web Conference, volume 3298 of Lecture Notes in Computer Sci-

ence, pages 62–76. Springer, 2004.

[114] T. Hewett, R. Baecker, S. Card, et al. ACM SIGCHI Curricula for Human-

computer Interaction. Technical report, New York, NY, USA, 1992.

[115] J. Hielscher, A. Metzger, and R. Kazhamiakin. Taxonomy of Adaptation Prin-

ciples and Mechanisms. S-Cube project deliverable. Technical Report CD-

JRA-1.2.2, S-Cube Network of Excellence, 2009.

[116] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented Programming.

Journal of Object Technology, 7(3):125–151, 2008.

[117] P. Holleis, F. Otto, H. Hussmann, and A. Schmidt. Keystroke-level Model

for Advanced Mobile Phone Interaction. In Proceedings of the SIGCHI con-

ference on Human factors in computing systems, CHI ’07, pages 1505–1514,

New York, NY, USA, 2007. ACM.

[118] P. Holleis and A. Schmidt. Makeit: Integrate user interaction times in the de-

sign process of mobile applications. In Proceedings of the 6th International

Conference on Pervasive Computing, Pervasive ’08, pages 56–74, Berlin, Hei-

delberg, 2008. Springer-Verlag.

[119] http://vega.soi.city.ac.uk/∼abdw747/MADap. Monitor Adaptation Frame-

work.

[120] http://www.ibm.com/developerworks/library/specification/ws bpel/. Business

Process Execution Language for Web Services version 1.1, February 2007.

[121] IBM. WebSphere Process Server. http://www-

01.ibm.com/software/integration/wps/, 2011. (last visited May 2012).

260

BIBLIOGRAPHY

[122] N. Ibrahim, V.S. Alagar, and M. Mohammad. Specification and Verification of

Context-dependent Services. In L. Kovács, R. Pugliese, and F. Tiezzi, editors,

WWV, volume 61 of EPTCS, pages 17–33, 2011.

[123] Y.E. Ioannidis, M. Vayanou, T. Georgiou, K. Iatropoulou, M. Karvounis,

V. Katifori, M. Kyriakidi, N. Manola, A. Mouzakidis, L. Stamatogiannakis,

and M. Triantafyllidi. Profiling attitudes for personalized information provi-

sion. IEEE Data Eng. Bull., 34(2):35–40, 2011.

[124] F. Ishikawa, B. Suleiman, K. Yamamoto, and S. Honiden. Physical interac-

tion in pervasive computing: formal modeling, analysis and verification. In

Proceedings of the 2009 international conference on Pervasive services, ICPS

’09, pages 133–140, New York, NY, USA, 2009. ACM.

[125] Jacko J. and C. Stephanidis. Human-Computer Interaction: Theory and Prac-

tice (Part 1). Human Factors and Ergonomics Series. Taylor & Francis Group,

2003.

[126] M. Jackson. Problem Frames: Analyzing and Structuring Software Develop-

ment Problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2001.

[127] L. Jiang, S. Parekh, and J. Walrand. Time-Dependent Network Pricing and

Bandwidth Trading. In In Proceedings IEEE BoD, 2008.

[128] B. John and D. Kieras. Using GOMS for User Interface Design and Evalua-

tion: Which Technique? ACM Transactions on Computer-Human Interaction,

3:287–319, 1996.

[129] R.W. Jones. Security, Strategy, and Critical Theory. Critical Security Studies.

Lynne Rienner Publishers, 1999.

261

7. CONCLUSIONS AND FUTURE WORK

[130] M.B. Juric and M. Krizevnik. Ws-bpel 2.0 for Soa Composite Applications

With Oracle Soa Suite 11g. Packt Publishing, 2010.

[131] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song. SeeMon:

Scalable and Energy-efficient Context Monitoring Framework for Sensor-rich

Mobile Environments. In MobiSys ’08: Proceeding of the 6th international

conference on Mobile systems, applications, and services, pages 267–280,

New York, NY, USA, June 2008. ACM Press.

[132] G.M. Kapitsaki and A. Achilleas. Applying Model-driven Engineering for

Linking Web Service and Context Models. In Proceedings of the 13th Inter-

national Conference on Information Integration and Web-based Applications

and Services, iiWAS ’11, pages 511–514, New York, NY, USA, 2011. ACM.

[133] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Bar-

reto. Web Services Choreography Description Language Version 1.0.

World Wide Web Consortium, Candidate Recommendation CR-ws-cdl-10-

20051109, November 2005.

[134] R. Kazhamiakin. Formal Analysis of Web Service Compositions. PhD thesis,

Trento, Italy, March 2007. AAI9994400.

[135] R. Kazhamiakin et al. Baseline of Adaptation and Monitoring Principles,

Techniques, and Methodologies across Functional SBA Layers. S-Cube

project deliverable, 2009.

[136] R. Kazhamiakin, G. Kecskemeti, Jl. Poizat, F. Silvestri, M. Uhlig, B. Wet-

zstein, S. Benbernou, and L. Cavallaro. State of the Art Report, Gap Analysis

of Knowledge on Principles, Techniques and Methodologies for Monitoring

and Adaptation of SBAs. Portal, 215483:3101–3119, 2008.

262

BIBLIOGRAPHY

[137] E. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services. Journal of Network and Systems

Management, 11:2003, 2003.

[138] A. Khan, Sharma N.K., and Dixit S. Effect of Cognitive Load and Paradigm

on Time Perception. Journal of the Indian Academy of Applied Psychology,

32:37–42, 2006.

[139] K. Kirschoff, D. Capurro, and A. Turner. Evaluating User Preferences in Ma-

chine Translation Using Conjoint Analysis. In Proceedings of the 16th EAMT

Conference, 28-30 May 2012, 2012.

[140] M. Kloppmann, D. Koenig, F. Leymann, A. Rickayzen, C. von Riegen,

P. Schmidt, and I. Trickovic. WS-BPEL Extension for People - BPEL4People.

White paper, IBM / SAP, July 2007.

[141] J. Knottenbelt. Contract Related Agents. PhD thesis, Department of Comput-

ing, Imperial College London, December 2006.

[142] W. Kongdenfha, H.R. Motahari-Nezhad, B. Benatallah, F. Casati, and R. Saint-

Paul. Mismatch Patterns and Adaptation Aspects: A Foundation for Rapid

Development of Web Service Adapters. IEEE Trans. Serv. Comput., 2(2):94–

107, April 2009.

[143] R Kowalski and M Sergot. A Logic-based Calculus of Events. New Gen.

Comput., 4(1):67–95, January 1986.

[144] R. Krummenacher and T. Strang. Ontology-Based Context Modeling. In In

Workshop on Context-Aware Proactive Systems, 2007.

[145] S. Kujala. User Studies: A Practical Approach to User Involvement for Gath-

ering User Needs and Requirements. Acta polytechnica Scandinavica: Math-

ematics and computing series. Finnish Academies of Technology, 2002.

263

7. CONCLUSIONS AND FUTURE WORK

[146] G. Lakshmanan, P. Keyser, A. Slominski, F. Curbera, and R. Khalaf. A Busi-

ness Centric End-to-End Monitoring Approach for Service Composites. In

IEEE SCC, pages 409–416. IEEE Computer Society, 2010.

[147] D. Lamanna, J. Skene, and W. Emmerich. Slang: A language for defining

service level agreements. In Proceedings of the The Ninth IEEE Workshop

on Future Trends of Distributed Computing Systems, FTDCS ’03, pages 100–,

Washington, DC, USA, 2003. IEEE Computer Society.

[148] D.N. Le, N.S. Nguyen, K. Mous, R.K.L. Ko, and A.E.S. Goh. Generating

Request Web Services from Annotated BPEL. In RIVF, pages 1–8. IEEE,

2009.

[149] Y. Lee and S-B. Cho. Human Activity Inference Using Hierarchical Bayesian

Network in Mobile Contexts. In B-L. Lu, L. Zhang, and J.T. Kwok, editors,

ICONIP (1), volume 7062 of Lecture Notes in Computer Science, pages 38–

45. Springer, 2011.

[150] C. Li. User Preferences, Information Transactions and Location-based Ser-

vices: A Study of Urban Pedestrian Wayfinding. Computers Environment and

Urban Systems, 30(6):726–740, 2006.

[151] H. Lieberman. Letizia: An Agent that Assists Web Browsing. In Proceedings

of the 14th international joint conference on Artificial intelligence - Volume 1,

IJCAI’95, pages 924–929, San Francisco, CA, USA, 1995. Morgan Kaufmann

Publishers Inc.

[152] M. Loskyll, Ines Heck, Jochen Schlick, and Michael Schwarz. Context-based

orchestration for control of resource-efficient manufacturing processes. Future

Internet, 4(3):737–761, 2012.

264

BIBLIOGRAPHY

[153] H. Ludwig, A. Dan, and R. Kearney. Cremona: an Architecture and Library

for Creation and Monitoring of WS-agreents. In Proceedings of the 2nd inter-

national conference on Service oriented computing, ICSOC ’04, pages 65–74,

New York, NY, USA, 2004. ACM.

[154] L. Luo and D. Siewiorek. Klem: A method for predicting user interaction time

and system energy consumption during application design. In Proceedings of

the 2007 11th IEEE International Symposium on Wearable Computers, ISWC

’07, pages 1–8, Washington, DC, USA, 2007. IEEE Computer Society.

[155] A. Maedche and S. Staab. Ontology Learning for the Semantic Web. IEEE

Intelligent Systems, 16(2):72–79, March 2001.

[156] B. Magableh and S. Barrett. Context-oriented Software Development. Journal

of Emerging Technologies in Web Intelligence, 4(2), 2012.

[157] P. Maglio, R. Barrett, C. Campbell, and T. Selker. SUITOR: An Attentive

Information System. In Proceedings of the 5th international conference on In-

telligent user interfaces, IUI ’00, pages 169–176, New York, NY, USA, 2000.

ACM.

[158] K. Mahbub. Runtime Monitoring of Service-based Systems. PhD thesis, City

University London, November 2007.

[159] K. Mahbub and G. Spanoudakis. Run-time Monitoring of Requirements for

Systems Composed of Web-Services: Initial Implementation and Evaluation

Experience. In In ICWS 05, pages 257–265. IEEE Computer Society, 2005.

[160] K. Mahbub and G. Spanoudakis. Monitoring WS-Agreements: An Event Cal-

culus Based Approach. In In Test and Analysis of Web Services, (eds) Baresi

L., di Nitto E, pages 265–306. Springer Verlang, 2007.

265

7. CONCLUSIONS AND FUTURE WORK

[161] M.F. Mahfouf, M.and Abbod and D.A. Linkens. A Survey of Fuzzy Logic

Monitoring and Control Utilisation in Medicine. Artificial Intelligence in

Medicine, 21(13):27 – 42, 2001. Fuzzy Theory in Medicine.

[162] N. Maiden. Codified Human-Computer Interaction (HCI) Knowledge and

Context Factors. Technical Report PO-JRA-1.1.3, S-Cube Network of Ex-

cellence, 2009.

[163] M. Mancioppi, B. Pernici, M. Carro, and D. Ivanovic. Consolidated and Up-

dated State of the Art Report on Service-based Applications. Technical Report

CD-IA-1.1.7, S-Cube Network of Excellence, 2011.

[164] M. Marzolla and R. Mirandola. Qos analysis for web service applications: a

survey of performance-oriented approaches from an architectural viewpoint.

Technical Report UBLCS-2010-05, Department of Computer Science, Uni-

versity of Bologna, February 2010.

[165] R. Mayer and R. Moreno. Nine Ways to Reduce Cognitive Load in Multimedia

Learning. Educational Psychologist, 38(1):43–52, March 2003.

[166] R. Mayrhofer, H. Radi, and A. Ferscha. Recognizing and Predicting Context

by Learning from User Behavior. pages 25–35, 2003.

[167] K. Mccarthy, L. Mcginty, and B. Smyth. Dynamic Critiquing: An Analysis of

Cognitive Load, 2005.

[168] J. Mendling and M. Hafner. From WS-CDL Choreography to BPEL Process

Orchestration. J. Enterprise Inf. Management, 21(5):525–542, 2008.

[169] A. Metzger, O. Sammodi, K. Pohl, and M. Rzepka. Towards pro-active adap-

tation with confidence: augmenting service monitoring with online testing. In

266

BIBLIOGRAPHY

Proceedings of the 2010 ICSE Workshop on Software Engineering for Adap-

tive and Self-Managing Systems, SEAMS ’10, pages 20–28, New York, NY,

USA, 2010. ACM.

[170] D. Metzler and W. B. Croft. Beyond Bags of Words: Modeling Implicit User

Preferences in Information Retrieval. In Association for the Advancement of

Artificial Intelligence (AAAI), 2006.

[171] K. Mitchell. Supporting the Development of Mobile Context-Aware Comput-

ing. PhD thesis, Lancaster University, 2002.

[172] K. Mohan and B. Ramesh. Ontology-Based Support for Variability Manage-

ment in Product and Service Familie. In HICSS, page 75, 2003.

[173] C. Momm, R. Malec, and S. Abeck. Towards a Model-driven Development

of Monitored Processes. In Andreas Oberweis, Christof Weinhardt, Hen-

ner Gimpel, Agnes Koschmider, Victor Pankratius, and Bjrn Schnizler, edi-

tors, Wirtschaftsinformatik (2), pages 319–336. Universitaetsverlag Karlsruhe,

2007.

[174] O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive Monitoring and Service

Adaptation for WS-BPEL. In Proceedings of the 17th international conference

on World Wide Web, WWW ’08, pages 815–824, New York, NY, USA, 2008.

ACM.

[175] O. Moser, F. Rosenberg, and S. Dustdar. VieDAME - Flexible and Robust

BPEL Processes Through Monitoring and Adaptation. In W. Schäfer, M.B.

Dwyer, and V. Gruhn, editors, ICSE Companion, pages 917–918. ACM, 2008.

[176] I. Nébel, B. Smith, and R. Paschke. A User Profiling Component with the

Aid of User Ontologies. In In: Workshop Learning - Teaching - Knowledge -

Adaptivity (LLWA 03), 2003.

267

7. CONCLUSIONS AND FUTURE WORK

[177] C. Niederée, A. Stewart, B. Mehta, and M. Hemmje. A Multi-Dimensional,

Unified User Model for Cross-System Personalization. In E4PIA Workshop

2004, 2004.

[178] N.F. Noy, R.W. Fergerson, and M.A. Musen. The Knowledge Model of Protg-

2000: Combining Interoperability and Flexibility. Lecture Notes in Computer

Science, 1937:69–82, 2000.

[179] R. Ocampo, L. Cheng, K. Jean, A. Galis, and A. G. Prieto. Towards a Context

Monitoring System for Ambient Networks. In Communications and Network-

ing in China, 2006. ChinaCom ’06. First International Conference on, pages

1–3, 2006.

[180] Oracle. Fusion middleware developer’s guide for oracle soa suite 11g.

http://docs.oracle.com/cd/E15523 01/index.htm, 2010. (last visited October

2012).

[181] Oracle. Oracle BPEL Process Manager. http://www.oracle.com/bpel, 2011.

(last visited May 2012).

[182] M. Oriol, X. Franch, and J. Marco. SALMon: A SOA System for Monitor-

ing Service Level Agreements. Technical Report LSI-10-18-R, Universitat

Politècnica de Cataluny, 2010.

[183] M. Oriol, J. Marco, X. Franch, and D. Ameller. Monitoring adaptable soa-

systems using salmon. In Workshop on Service Monitoring, Adaptation and

Beyond (Mona+), pages 19–28, June 2008.

[184] A. Ouda, H. Lutfiyya, and M. Bauer. Automatic Policy Mapping to Manage-

ment System Configurations. In Policies for Distributed Systems and Networks

(POLICY), 2010 IEEE International Symposium on, pages 87 –94, july 2010.

268

BIBLIOGRAPHY

[185] K. Pant. Business Process Driven SOA using BPMN and BPEL: From Business

Process Modeling to Orchestration and Service Oriented Architecture. Packt

Publishing, August 2008.

[186] M. Papazoglou. Web Services: Principles and Technology. Pearson, Prentice

Hall, 2008.

[187] S. Parry and G. Fischer. Design, adoption, and assessment of a socio-technical

environment supporting independence for persons with cognitive disabilities.

In ACM Conference on Human Factors in Computing Systems, page 606, 2008.

[188] L. Pasquale. From Goals to Reliable Service Compositions. In 17th Interna-

tional Conference on Requirements Engineering, 2009.

[189] K.T. Pathan, S. Reiff-Marganiec, A. Shaikh, and N. Channa. Reaching Activ-

ities by Places in the Context-Aware Environments Using Software Sensors.

Journal of Emerging Trends in Computing and Information Sciences, 2:665–

673, 2011.

[190] C. Peltz. Web Services Orchestration and Choreography. Computer,

36(10):46–52, October 2003.

[191] P. Pirolli, W. Fu, R. Reeder, and S. Card. A User-tracing Architecture for

Modeling Interaction with the World Wide Web. In Proceedings of the Work-

ing Conference on Advanced Visual Interfaces, AVI ’02, pages 75–83, New

York, NY, USA, 2002. ACM.

[192] M. Pistore and P. Traverso. Assumption-based Composition and Monitoring

of Web Services, pages 307–335. Springer, 2007.

[193] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen. ContextPhone: A Pro-

totyping Platform for Context-Aware Mobile Applications. IEEE Pervasive

Computing, 4:51–59, 2005.

269

7. CONCLUSIONS AND FUTURE WORK

[194] R. Reichle, M. Wagner, M. Khan, K. Geihs, J. Lorenzo, M. Valla, C. Fra,

N. Paspallis, and G. Papadopoulos. A Comprehensive Context Modeling

Framework for Pervasive Computing Systems. In Proceedings of the 8th IFIP

WG 6.1 international conference on Distributed applications and interoper-

able systems, DAIS’08, pages 281–295, Berlin, Heidelberg, 2008. Springer-

Verlag.

[195] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Im-

plementing Dynamical Systems. The MIT Press, Massachusetts, MA, illus-

trated edition edition, 2001.

[196] E.M. Roth, E.S. Patterson, and R.J. Mumaw. Cognitive Engineering: Issues in

User-Centered System Design. In J.J. Marciniak, editor, Encyclopedia of Soft-

ware Engineering. Wiley-Interscience, John Wiley & Sons, New York, second

edition, 2001.

[197] N. Ruiz, R. Taib, Y. Shi, E. Choi, and F. Chen. Using pen input features as

indices of cognitive load. In Proceedings of the 9th international conference

on Multimodal interfaces, ICMI ’07, pages 315–318, New York, NY, USA,

2007. ACM.

[198] C. Ruz, F. Baude, and B. Sauvan. Component-based Generic Approach for

Reconfigurable Management of Component-based SOA Applications. In Pro-

ceedings of the 3rd International Workshop on Monitoring, Adaptation and

Beyond, MONA ’10, pages 25–32, New York, NY, USA, 2010. ACM.

[199] A. Sahai, V. Machiraju, M. Sayal, L. Jin, and F. Casati. Automated SLA

Monitoring for Web Services. In IEEE/IFIP DSOM, pages 28–41. Springer-

Verlag, 2002.

270

BIBLIOGRAPHY

[200] M. Salehie and L. Tahvildari. Self-adaptive Software: Landscape and Re-

search Challenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42, May

2009.

[201] M. Salifu, B. Nuseibeh, L. Rapanotti, and T. Tun. Using Problem Descriptions

to Represent Variabilities for Context-aware Applications. In Proceedings

of 1st International workshop on Variability Modeling of Software-intensive

Systems (VaMoS 2007), pages 149–156, Limerick, Ireland, January 2007.

LERO (The Irish Software Engineering Research Centre),Lero Technical Re-

port 2007-01; Klaus Pohl, Patrick Heymans, Kyo-Chul Kang, Andreas Met-

zger (eds.).

[202] M. Salifu, Y. Yu, and B. Nuseibeh. Specifying Monitoring and Switching

Problems in Context. In In: Proc. 15th Intl. Conference on Requirements

Engineering, pages 211–220, 2007.

[203] D. Schall, C. Dorn, H-L. Truong, and S. Dustdar. Service-Oriented Computing

- ICSOC 2008 Workshops. chapter On Supporting the Design of Human-

Provided Services in SOA, pages 91–102. Springer-Verlag, Berlin, Heidelberg,

2009.

[204] B. Schilit, N. Adams, and R. Want. Context-Aware Computing Applications.

In Proceedings of the 1994 First Workshop on Mobile Computing Systems and

Applications, WMCSA ’94, pages 85–90, Washington, DC, USA, 1994. IEEE

Computer Society.

[205] A. Schmidt. Implicit Human Computer Interaction Through Context. Personal

and Ubiquitous Computing, 4(2):191–199, June 2000.

[206] A. Schmidt. Ubiquitous Computing - Computing in Context. PhD thesis,

Lancaster University, November 2002.

271

7. CONCLUSIONS AND FUTURE WORK

[207] A. Schmidt, M. Beigl, and H. Gellersen. There is More to Context than Loca-

tion. Computers and Graphics, 23:893–901, 1998.

[208] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Soft-

ware Architecture, Volume 2: Patterns for Concurrent and Networked Objects.

Wiley, 2000.

[209] B. Selic. UML for Real. chapter Architectural Patterns for Real-time Systems,

pages 171–188. Kluwer Academic Publishers, Norwell, MA, USA, 2003.

[210] M. Shanahan. The Event Calculus Explained. In Artificial Intelligence Today:

Recent Trends and Developments, pages 409–430. 1999.

[211] M. Shaw. The coming-of-age of software architecture research. In Proceed-

ings of the 23rd International Conference on Software Engineering, ICSE ’01,

pages 656–, Washington, DC, USA, 2001. IEEE Computer Society.

[212] M. Shehab, A. Ghafoor, and E. Bertino. Secure Collaboration in a

Mediator-Free Distributed Environment. IEEE Trans. Parallel Distrib. Syst.,

19(10):1338–1351, 2008.

[213] H. Shen and Y. Cheng. A Semantic Context-Based Model for Mobile Web

Services Access Control. volume 3, pages 18–25. 2011.

[214] Y. W. Sim, C. Wang, L. Gilbert, and G. B. Wills. An overview of service-

oriented architecture. Technical report, University of Southampton, July 2005.

[215] J. Simmonds, M. Chechik, S. Nejati, E. Litani, and B. O’Farrell. Runtime

Verification. chapter Property Patterns for Runtime Monitoring of Web Service

Conversations, pages 137–157. Springer-Verlag, Berlin, Heidelberg, 2008.

272

BIBLIOGRAPHY

[216] A. Sirbu, A. Marconi, M. Pistore, H. Eberle, F. Leymann, and T. Unger. Dy-

namic Composition of Pervasive Process Fragments. In ICWS [1], pages 73–

80.

[217] I. Sommerville. Software Engineering. Addison-Wesley, Harlow, England, 9.

edition, 2010.

[218] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos. Towards Security

Monitoring Patterns. In Proceedings of the 2007 ACM symposium on Applied

computing, SAC ’07, pages 1518–1525, New York, NY, USA, 2007. ACM.

[219] G. Spanoudakis and K. Mahbub. Requirements Monitoring for Service-Based

Systems: Towards a framework based on Event Calculus. Automated Software

Engineering, International Conference on, 0:379–384, 2004.

[220] G. Spanoudakis and K. Mahbub. Non Intrusive Monitoring of Service-based

Systems. International Journal of Cooperative Information Systems, 15:325–

358, 2006.

[221] J. Sun, X. Wu, S. Yan, L-F. Cheong, T-S. Chua, and J. Li. Hierarchical Spatio-

temporal Context Modeling for Action Recognition. Computer Vision and

Pattern Recognition, IEEE Computer Society Conference on, 0:2004–2011,

2009.

[222] V. Talwar, C. S. Shankar, R. Rafaeli, D. Milojicic, S. Iyer, K. Farkas, and

Y. Chen. Adaptive monitoring automated change management for monitoring

systems. In Proceedings of the 13th Workshop of the HP OpenView University

Association (HP-OVUA 2006), pages 21–24, 2006.

[223] V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, S. Tsasakou, and L. Moreau.

Security issues in a soa-based provenance system. In Third International

273

7. CONCLUSIONS AND FUTURE WORK

Provenance and Annotation Workshop. Springer, 2006. Event Dates: May

2006.

[224] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,

1(2):146–160, 1972.

[225] T. Than-Tun, Y. Yu, C.B. Haley, and B. Nuseibeh. Model-Based Argument

Analysis for Evolving Security Requirements. In SSIRI, pages 88–97. IEEE

Computer Society, 2010.

[226] D. Thevenin and J. Coutaz. Adaptation and Plasticity of User Interfaces. 1999.

[227] T. Thiel. Design and Implementation of a Service-oriented Information Sys-

tem Architecture Based on a Case Study(Konzeption und Realisierung einer

service-orientierten IS-Architektur anhand eines Fallbeispiels). GRIN Verlag

GmbH, 2007.

[228] D. Thvenin. ARTStudio; Tool for Multi-target UI Design.

[229] F. Tip. A Survey of Program Slicing Techniques. Journal of Programming

Languagues, 3:121–189, 1995.

[230] M.H. Tran, A. Colman, and J. Han. Service-Based Development of Context-

Aware Automotive Telematics Systems. In Proceedings of the 2010 15th

IEEE International Conference on Engineering of Complex Computer Sys-

tems, ICECCS ’10, pages 53–62, Washington, DC, USA, 2010. IEEE Com-

puter Society.

[231] G. Tretola and E. Zimeo. Autonomic Internet-scale Workflows. In Proceedings

of the 3rd International Workshop on Monitoring, Adaptation and Beyond,

MONA ’10, pages 48–56, New York, NY, USA, 2010. ACM.

274

BIBLIOGRAPHY

[232] A.K. Tripathy and M.R. Patra. An Event-based, Non-intrusive Monitoring

Framework for Web Service-based Systems. In Proceedings of 6th Interna-

tional Conference on Next Generation Web Service Practices: NWeSP 2010,

pages 201–206, Gwalior, India, 2010.

[233] W-T Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul, and N. Liao. A software

reliability model for web services. In M. H. Hamza, editor, IASTED Conf.

on Software Engineering and Applications, pages 144–149. IASTED/ACTA

Press, 2004.

[234] A. Tversky and D. Kahneman. Judgment under uncertainty: Heuristics and

biases. Science, 185(4157):11241131, September 1974.

[235] K. Tyagi and A. Sharma. Reliability of component based systems: a critical

survey. SIGSOFT Softw. Eng. Notes, 36(6):1–6, November 2011.

[236] N. Ubayashi and S. Nakajima. Separation of Context Concerns – Applying

Aspect Orientation to VDM. In Talk at the 2nd Overture Workshop, FM’06,

2006.

[237] K. Vallerio, L. Zhong, and N. Jha. Energy-efficient graphical user interface

design. IEEE Trans. Mob. Comput., pages 846–859, 2006.

[238] F. van Harmelen, , V. Lifschitz, and B. Porter. Handbook of Knowledge Rep-

resentation. Elsevier Science, San Diego, USA, 2007.

[239] M. Vuković. Context aware service composition. Technical Report UCAM-

CL-TR-700, University of Cambridge, Computer Laboratory, October 2007.

[240] M. Waite and P. Logan. Model based user needs analysis. In Systems Engi-

neering and Test and Evaluation Conference (SETE2011), Canberra, 2011.

275

7. CONCLUSIONS AND FUTURE WORK

[241] X. Wang, D. Zhang, T. Gu, and H. Pung. Ontology based context modeling

and reasoning using owl. In PerCom Workshops, pages 18–22. IEEE Computer

Society, 2004.

[242] D. Wieland, M.and Nicklas and F. Leymann. Context Model for Representa-

tion of Business Process Management Artifacts. In Chun Hua Lin and Ming

Zhang, editors, International Proceedings of Economics Development and Re-

search: IPEDR, volume 9 of Economics and Business Information, pages 46–

51. IACSIT PRESS, Mai 2011.

[243] H. Yahyaoui, L. Wang, A. Mourad, M. Almulla, and Q. Sheng. Towards

Context-adaptable Web Service Policies. Procedia CS, 5:610–617, 2011.

[244] E. Zahoor, O. Perrin, and C. Godart. An Event-Based Reasoning Approach to

Web Services Monitoring. In ICWS [1], pages 628–635.

[245] A. Zengin, R. Kazhamiakin, and M. Pistore. CLAM: Cross-Layer Manage-

ment of Adaptation Decisions for Service-Based Applications. In ICWS [1],

pages 698–699.

[246] Y. Zhai, J. Zhang, and K. Lin. SOA Middleware Support for Service Process

Reconfiguration with End-to-End QoS Constraints. In Proceedings of the 2009

IEEE International Conference on Web Services, ICWS ’09, pages 815–822,

Washington, DC, USA, 2009. IEEE Computer Society.

[247] K. Zhang. A theory for system security. In Proceedings of the 10th IEEE work-

shop on Computer Security Foundations, CSFW ’97, pages 148–, Washington,

DC, USA, 1997. IEEE Computer Society.

276

Appendix A

277

Wo-SBS Scenario Specification

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

Atc-SBS Scenario Specification

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

Appendix B

327

Atc-SBS Results

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

Wo-SBS Results

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

