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Abstract

For most complex traits, results from genome-wide association studies show that the proportion of the phenotypic variance
attributable to the additive effects of individual SNPs, that is, the heritability explained by the SNPs, is substantially less than
the estimate of heritability obtained by standard methods using correlations between relatives. This difference has been
called the ‘‘missing heritability’’. One explanation is that heritability estimates from family (including twin) studies are biased
upwards. Zuk et al. revisited overestimation of narrow sense heritability from twin studies as a result of confounding with
non-additive genetic variance. They propose a limiting pathway (LP) model that generates significant epistatic variation and
its simple parametrization provides a convenient way to explore implications of epistasis. They conclude that over-
estimation of narrow sense heritability from family data (‘phantom heritability’) may explain an important proportion of
missing heritability. We show that for highly heritable quantitative traits large phantom heritability estimates from twin
studies are possible only if a large contribution of common environment is assumed. The LP model is underpinned by
strong assumptions that are unlikely to hold, including that all contributing pathways have the same mean and variance
and are uncorrelated. Here, we relax the assumptions that underlie the LP model to be more biologically plausible. Together
with theoretical, empirical, and pragmatic arguments we conclude that in outbred populations the contribution of additive
genetic variance is likely to be much more important than the contribution of non-additive variance.
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Introduction

A finding from genome-wide association studies for most complex

traits is that the proportion of the phenotypic variance attributable

to the additive effects of individual SNPs, i.e. the heritability

explained by the SNPs, is substantially less than the estimate of

heritability obtained from correlations of relatives using family data.

Many explanations for this so-called ‘missing heritability’ have been

proposed [1,2,3,4,5]. One explanation is that heritabilities from

family (including twin) studies are overestimated. The problem of

bias in heritability estimates has been much discussed in the

quantitative genetic literature (e.g., [6,7,8,9]). For example, in the

classical twin design of monozygotic (MZ) and dizygotic (DZ) twin

pairs, there are only three essential statistics that can be estimated

from their phenotypes, namely the MZ resemblance (such as

covariance or correlation), the DZ resemblance, and the overall

phenotypic variation in the sample. Therefore, only three variance

components can be estimated, although many more genetic and

non-genetic causal components of variance can be postulated to

influence MZ and DZ resemblance. It is well recognized that

estimates of heritability may be biased and that it is difficult to

separate additive genetic from non-additive genetic components

and to separate genetic from common (or shared) family

environment components (e.g., [6,7,8,9]). Estimates of heritability

using phenotypic data from very distantly related individuals may

have trivial bias from epistatic or common environment compo-

nents compared to additive genetic components but are subject to

very large sampling error. Human studies of distantly related

individuals of sufficient size are simply not achievable. For disease

traits, ascertainment bias in sampling of families for estimation of

recurrence risks has long been recognized as a possible cause of

inflated estimates of heritability [10,11]. Lastly, estimates of

heritability for disease traits from twin cohorts (collected in restricted

clinical settings) may be higher than those estimated from national

cohort data, these differences most likely reflecting environmental

factors including clinical practice [12].

Recently, Zuk et al. [13] revisited the overestimation of narrow

sense (additive) heritability from family studies that could result

from confounding with non-additive genetic variance. They

referred to the difference between the expected value of the

heritability estimated from family data and the ‘true’ heritability as

‘phantom heritability’. To illustrate their arguments, they

proposed a limiting pathway (LP) model in which there are k
pathway phenotypes, which are unobserved intermediate pheno-

types. The phenotypically expressed trait value of an individual is

the maximum of the individual pathway values. This model, they

suggest, may be representative of biological processes that depend

on the rate-limiting value among multiple inputs, ‘such as the
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levels of components of a molecular complex required in

stoichiometric ratios, reactants required in a biochemical pathway,

or proteins required for transcription of a gene’. Under their LP

model, each pathway phenotype includes only additive genetic

effects but, for kw1, non-additive genetic variance is generated for

the expressed phenotype, and so the heritability of this phenotype

is less than the expected estimate from a classical twin design

analysis. As the magnitude of epistasis depends on k, the LP model

provides a convenient way to explore the possible contribution of

non-additive variation to missing heritability. They use this model

to illustrate that over-estimation of heritability from pedigree data

may explain an important proportion of missing heritability, but

that quantifying this from available data is difficult. They advocate

the continuation of association studies but argue that results should

be reported acknowledging that heritabilities quoted from family

studies may be overestimated. Nonetheless, their results may

impact on the design of experiments seeking to identify disease or

trait associated variants. It is therefore important to gauge

carefully the likely relevance of their results.

Zuk et al. [13] consider their model to be simple and

biologically natural. Their model is indeed simple and it usefully

explores an epistatic model without needing to define genotypic

effects at individual loci, because an infinitesimal model is assumed

for each pathway. The pathways are assumed to be genetically

independent and to have equal heritability, mean and variance.

These are strong assumptions which may not be biologically

plausible. For example, in human cells protein concentrations can

be correlated and have different variances [14]. As complex traits

are affected by many genes, individual genes will typically affect

many complex traits [15,16]. Similarly, a single gene could affect

multiple pathways, thereby creating a dependency between the

affected pathways.

The purpose of this paper is twofold. First, we show that under

the basic LP model, highly heritable quantitative traits produce

phantom heritability only if the contribution of common variance

is relatively large. Second, we explore the impact of the

assumptions underlying the basic LP model. We extend the basic

LP model to determine if their conclusions also hold after relaxing

some assumptions to obtain a more biologically plausible model.

Finally, we interpret the LP model in the context of other

published studies.

Methods

Notation
Where convention allows, we use Greek symbols for population

parameters and Roman for their estimates. In other cases we use a

hat ( ˆ ) notation to distinguish estimates from population

parameters. Moreover, we use h2 to represent the parameter of

narrow sense heritability and h2
pop to represent the expected value

of the heritability estimated from phenotypic data collected in the

population. Here we consider estimation of h2
pop from twin data

under the ACE (additive genetic, common environment, unique

environment) model, which we denote with h2
pop(ACE). Similarly,

we use c2 and c2
pop(ACE) for the parameter and the expected value

of its estimate of the proportion of variance attributable to the

common environment under the ACE model.

The classical Twin Model
Like Zuk et al., we explore the LP genetic architecture through

the variance components of the classical twin model. Under this

model, only three independent parameters can be estimated from

sets of MZ and DZ twins. One set of parameters is the phenotypic

variance s2
P, the MZ correlation rMZ and DZ correlation rDZ .

For MZ twins rMZ~(s2
Gzs2

C)=s2
P with s2

G representing the total

genetic variance and s2
C the variance attributable to the common

environment. The genetic variance can be broken down into

additive s2
A and non-additive components s2

NA~s2
Dzs2

AA

zs2
ADz:::, the sum of all epistatic genetic variance components,

with dominance represented by the subscript D. For DZ twins the

phenotypic correlation is rDZ~( 1
2

s2
Az 1

4
s2

Dz 1
4

s2
AAz 1

8
s2

ADz:::

zs2
C)=s2

P. As s2
C is assumed to be equal in MZ and DZ t

wins 2(rMZ{rDZ)~(s2
Az 3

2
s2

Dz 3
2

s2
AAz 7

4
s2

ADz::)=s2
P and

2rDZ{rMZ~(s2
C{ 1

2
s2

D{ 1
2

s2
AA{ 3

4
s2

AD{::)=s2
P. Usually heri-

tability under the ACE model is estimated as

ĥh2
pop(ACE)~2(rMZ{rDZ) and the proportion of variance attribut-

able to common environmental effects as ĉc2
ACE~2rDZ{rMZ .

As well recognized [7,8,7,9], h2
pop(ACE) is an upwardly biased

estimate of the narrow sense heritability h2~s2
A=s2

P. Likewise,

when non-additive genetic variance is present c2
pop(ACE) is a

downwardly biased estimate of c2~s2
C=s2

P, but if 2rDZwrMZ we

can conclude that common environment plays a role (ĉc2
w0). Also

recognized in the quantitative genetics literature [7,6,9], and

concluded by Zuk et al. [13], it is impossible to disentangle the

contribution of epistasis and common variance based only on twin

data. However, there are bounds on some parameters (and hence

their estimates). From the equations provided above and by

americanrecognizing that variance components are non-negative,

that variance components sum to s2
P, and that MZ and

DZ correlations are bounded between 0 and 1, some

bounds are s2
NA=2s2

Pƒ(rMZ{2rDZzs2
C=s2

P)ƒs2
NA=s2

P, and

2rDZ{rMZƒs2
C=s2

P. In the absence of dominance and epistasis

the lower bound of rDZ is rDZ~ 1
2

rMZz 1
2

s2
C=s2

P. We use these

bounds to show in circumstances in which a large contribution

from variance from epistasis is possible only if there is a large

contribution to the variance from common environment. Whether

this is plausible is trait dependent.

The basic LP Model
In the basic LP model for continuous traits [13], the final

observed phenotype P is defined as the maximum (or equivalently

the minimum) of k independent intermediate pathway pheno-

types, Pmax~max(P1,:::,Pk). The intermediate phenotypes Pi are

completely additive, but the final phenotype Pmax is not if kw1.

Zuk et al. [13] assumed an infinitesimal model for each pathway,

so the basic LP model has three parameters: the number of

(additive) genetic pathways k, the heritability of each pathway

h2
path assumed to be constant across pathways, and the proportion

of environmental variance s2
[path

which is common among full

siblings (including MZ and DZ twins) cpath~s2
Cpath

.
s2
[path

(csib in

[13]). For computational convenience the parameter cpath in the

LP model is a proportion of the environmental variance to ensure

a range between 0 and 1 independent of the value of h2
path. This

should not be confused with the previously defined common

variance c2 which is proportional to the phenotypic variance.

When kw1, the heritability h2 of the expressed phenotype

differs from the pathway heritability h2
path, likewise the proportion

of environmental variance which is due to common environment

in the pathway (cpath) is not necessarily equivalent to the analogous

quantity at the final phenotype level (c). The basic LP model

generates no dominance variance, but generates additive 6
additive variance between loci from different pathways.

Limiting Pathway Models
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The Extended LP Model
In the basic LP model there are four important assumptions. All

pathway phenotypes (i) have the same mean, (ii) the same variance

(specifically N(0,1)), (iii) the same heritability, and (iv) are

independent at the pathway level. As these assumptions are

unlikely to be upheld in biological systems, we extend the basic LP

model by relaxing some of them. In this extended LP model the

means, variances and heritabilities may differ, and are defined by,

respectively, Dmpath~(m1,:::,mk), s2
path~(s2

P1
,:::,s2

Pk
) and

h2
path~(h2

1,:::,h2
k). A general correlation matrix could be defined

for the genetic relationship between pathways, but for simplicity

we assume a uniform genetic correlation between all pathways,

rpath when pathways are all positively correlated. Strong negative

correlations between all pathways are not possible in general, so

we consider the impact of negative correlations between pathways

by dividing the pathways into two equally divided sets which are

positively correlated by r within a set but negatively correlated by

rpath between the sets.

The phenotype of pathway i (Pi) can be partitioned into additive

genetic (Ai) and environmental (Ei) effects, Pi~AizEi. No

contribution of common environment is assumed between parents

of the same child. The additive genetic variance in pathway i is

s2
Ai

~s2
Pi

h2
i , and s2

i
~s2

Pi
(1{h2

i ). Illustrating for k~2, the additive

effects for both mothers and fathers are distributed as

A1

A2

� �
*N

m1

m2

� �
,

s2
A1

rpathsA1
sA2

rpathsA1
sA2

s2
A2

 ! !

The (unique) environmental (stochastic) effects for parents are

assumed to be independent for each pathway and are distributed as

E1

E2

� �
*N

0

0

� �
,

s2
e1

0

0 s2
e2

 ! !

As random mating is assumed, for offspring within a nuclear

family the phenotype of pathway i for sibling j can be partitioned as

Pi(j)~A
o f f spring
i (j)zCizUi(j)

since the additive genetic pathway values of an offspring are

distributed with bivariate Mendelian sampling variance about the

mean additive genetic values of their parents. Ci is the environ-

mental effect of pathway i common to all siblings in a family,

Ci
~NN (0,s2

Ci
), and Ui(j) is the environmental effect unique to sibling

j, so for k~2,

A
o f f spring
1 (j)

A
o f f spring
2 (j)

0
@

1
A*N

1
2

(Amother
1 zA

father
1 )

1
2

(Amother
2 zA

father
2 )

0
@

1
A

0
@ ,

1
2

s2
A1

1
2

rpathsA1
sA2

1
2

rpathsA1
sA2

1
2

s2
A2

0
@

1
A
1
A

The proportion of environmental variance common for siblings

at the pathway level is cpath (assumed to be the same for each

pathway, and therefore the proportion of variance explained by

common environment is s2
Ai

~s2
Pi

h2
i hence s2

Ui
~ 1{cpath

� �
s2

ei

Therefore, the extended LP model is a six parameter model:

LPext(k,Dmpath,s2
path,h2

path,cpath,rpath). For example, the limiting

pathway model LP(k~2,h2
path~0:8,cpath~0:5) could be modeled

with the extended LP model as LPext(k~2,Dmpath~(0,0),

s2
path~(1,1),h2

path~(0:8,0:8),cpath~0:5,rpath~0). Zuk et al. [13]

showed that the narrow-sense heritability of the observed

phenotype in the population is h2~kr2
P1,Ph2

path, where rP1,P is

the correlation between the first pathway phenotype and the final

phenotype. This definition assumes exchangeability and indepen-

dence of the intermediate pathway phenotypes Pi. Under the

extended LP model, the pathway phenotypes are non-exchange-

able and correlated. As the additive model assumes

P~mz
Pk

i~1 biAize, we can estimate the pathway coefficients

b̂bi by regressing final phenotype P on the pathway genetic values

Ai. The heritability estimate is a function of the regression

coefficients, the additive values and the phenotype variance:

ĥh2
all~Var(

Pk
i~1 b̂biÂAi)=ŝs2

P. Unbiased estimates of h2
all and

h2
pop(ACE) are reported as the mean of ĥh2

all and ĥh2
pop(ACE) across

simulation replicates. As defined in Zuk et al. [13], the phantom

heritability is h2
phantom~1{h2

all=h2
pop(ACE).

Simulation
For all simulations, we generated 50 independent samples of

100,000 families. Each family comprised two parents, an offspring,

its MZ twin and its DZ twin. The phenotype of a parent for pathway

i (Pi) was simulated as Pi~AizEi. With random mating of parents,

the phenotype of an offspring j for pathway i was simulated as

Pi(j)~A
o f f spring
i (j)zCizUi(j)

with Ai, Ei, A
offspring
i (j), Ci, and Ui(j) drawn from their

respective multivariate distributions. For monozygotic twins

A
offspring
i (j) = A

offspring
i (j0). In all simulations, unless stated otherwise,

the following parameters were used: LPext(k~2,Dmpath~(0,0),

s2
path~(1,1),h2

path~(0:8,0:8),cpath~0:5,rpath~0). From the final

phenotypes of the offspring, the twin correlations rMZ and rDZ

were calculated, resulting in a heritability based on the ACE model of

ĥh2
pop(ACE)~2(rMZ{rDZ) and phantom heritability

ĥh2
phantom~1{ĥh2=ĥh2

pop(ACE). The reported h2, c2, rMZ , rDZ , and

h2
phantom are means across 50 simulation replicates and hence

unbiased.

We first performed simulations to study the implications of the

basic LP model with respect to common environmental effects. To

explore bounds on variance components we simulated a range of

basic LP models (h2
i [½0:1,0:9�,cpath~½0:1,0:9�,k[f1,4g), and

calculated h2 and c2 for each model. From each simulation we

estimated rMZ and rDZ and plotted h2 and c2 as a function of rMZ

and rDZ .

Subsequently we performed five simulations to study the effect

of differences in (i) pathway mean, (ii) variance, and (iii) heritability

on phantom heritability, and (iv & v) the effect of correlations

between pathways on phantom heritability in the extended LP

model. Simulations (i) to (iii) comprise a series of two-pathway

models in each of which one parameter was changed: (i) the

difference in pathway mean (m2{m1). These values are in standard

Limiting Pathway Models
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deviation units since s2
Pi

~1. (ii) The pathway variances differed,

s2
P1

~1 and s2
P2

was varied. (iii) The pathway heritabilities differed,

h2
1~0:8 and h2

2 was varied. (iv) In this case a multiple pathway

model was simulated with no common environment effects (i.e.,

cpath~0), in which both the pathway correlations rpath and

number of pathways k were varied. (v) As (iv), but with 10% of the

variance of each pathway attributed to common environment

(i.e.,cpath~0:5 when h2
path~0:8).

Finally, to illustrate the extended LP model, we chose three

continuous traits with different ACE-based heritability estimates

from studies found in a recent twin research review paper [17]: (i)

height in Danish male twins (rMZ~0:89,rDZ~0:47,

ĥh2
pop(ACE)~0:84)[18], (ii) triglyceride levels in blood in Swedish

female twins from 20–29 years old (rMZ~0:89,

rDZ~0:47,h2
ACE~0:84)[19], and (iii) high-fat dairy intake in UK

male and female twins adjusted for age (rMZ~0:23,

rDZ~0:13,ĥh2
pop(ACE)~0:20)[20]. Based on these observed values

and for different combinations of k[f2,4,10g and rpath[f0,0:2g,
we report the estimates ĥh2

phantom, ĥh2
all , and t ĉc2. As rMZ and rDZ are

not model parameters but model outputs, the input parameters

h2
path and cpath were chosen such that estimated rMZ and rDZ , based

on the median of 50 simulations, reflected the observed values.

Results

Exploring Bounds of Variance Components
Although it is impossible to disentangle the contribution of non-

additive genetic variance and common variance from twin data,

there are some bounds on these parameters as illustrated in

Figure 1, generated under the basic LP model, which is shown to

yield more extreme non-additive genetic variance than many

extended LP models. Each point in Figure 1 represents h2
all or c2 as

a function of rMZ , rDZ and k.

In comparisons of the left (k~1) with the right panels (k~4),
each combination of rMZ and rDZ values is consistent with

multiple basic LP models. In other words, the number of pathways

cannot be derived from a pair of rMZ and rDZ values alone. As

expected, for any rMZ and rDZ combination, the non-additive

variance increases with the number of pathways, resulting in a

lower narrow-sense heritability (h2
all ) estimate for an epistatic

model (k~4) compared to the additive model (k~1) (panels A vs

B). However, the contribution of environmental variance which is

common for siblings (c) increases as well (panels C vs D).

Therefore, as 2rDZ{rMZ increases for complex traits, important

contributions from non-additive variance can be achieved only if

accompanied by high c2. For example, if rMZ~0:8 and

rDZ~0:4, an additive model (k~1; h2~0:8) implies no contri-

bution of common variance (c2~0), whereas an highly epistatic

model (e.g., k~4; h2[½0:2{0:4�) is consistent only with c2
w0:2.

More generally, for highly heritable traits (h2
w0:6; k~1) a large

amount of epistasis (h2
v0:4; k~4) is consistent only with c2

w0:2.

However, if
rMZ

2
wrDZ then substantial phantom heritability need

not be accompanied by large c2.

Properties of the Extended LP Model
Simulation results of the extended LP model are reported in

Figure 2 for the effect of different parameters on the phantom

heritability: (i) As the offset in mean between the two pathways

increases, the phantom heritability decreases (panel A). One

standard deviation difference in mean between pathway pheno-

types (if k~2) approximately halves the phantom heritability.

Clearly, as differences in offset become large, some pathways

contribute little to the final phenotype, effectively decreasing the

number of contributing pathways and hence the amount of

epistasis. (ii) Differences in phenotypic variance between two

pathways had no effect on phantom heritability (result not shown),

because large phenotypic variance not only increases the

probability of producing a maximum value, but also increases

the probability of producing a minimum value. Across individuals

both pathways contribute equally to the observed phenotype, but

the mean and variance of the observed phenotype increases.

Although the correlation between the final phenotype and the

pathway phenotypes is higher for the pathway with the higher

variance, the variance of the observed phenotype increases

proportionally with the ratio of the two pathway variances,

resulting in a constant heritability. (iii) As panel B shows,

differences in heritability between pathway phenotypes have only

a marginal effect on phantom heritability. (iv and v) Correlations

between pathways affect the phantom heritability significantly

(panels C and D). Positive correlations between pathways

effectively limit the amount of epistasis, resulting in less phantom

heritability. The larger the number of pathways, the larger the

phantom heritability reduction (for any given pathway correla-

tion). As the correlation between pathways approaches 1, the

model approaches an additive single pathway model. This holds

irrespective of the amount of common variance assumed, although

common variance increases the phantom heritability slightly

(panels D vs C). These results show that relaxing the assumptions

of equal mean and uncorrelated pathways can substantially reduce

the amount of phantom heritability. In contrast, negative

correlations increase the amount of epistasis even if only one out

of the k pathways is negatively correlated to the remaining

positively correlated pathways, although the relative impact

decreases as k increases (panels C and D).

Illustration for Three Traits
Table 1 shows the implications of the (extended) LP model for

three continuous traits with increasing estimated heritability: high-

fat dairy intake (h2
pop(ACE)~0:2), triglyceride levels in blood

(h2
pop(ACE)~0:54), and height (h2

pop(ACE)~0:84). The table illus-

trates two important points. First, assuming a larger amount of

epistasis (i.e., larger k), not only implies increased phantom

heritability and decreased narrow-sense heritability, but also

implies a larger contribution of common variance. Second,

assuming positive dependence between pathways (rpathw0)

reduces the amount of epistasis. In other words, increasing the

number of pathways has less effect on phantom heritability,

narrow-sense heritability, and the contribution of common

variance, compared to a model with rpath~0. Especially for traits

with a large estimated ACE heritability, a high phantom

heritability (ĥh2
phantomw0:61) is only compatible with a scenario in

which the percentage of common variance is high (ĉc2
w0:39).

Nonetheless, in some scenarios important phantom heritability

is expected with negligible ĉc2, for example when k = 2, rpath~0 we

estimate h2
phantom to be 0.25 and ĉc2~0:07. We note that we

selected examples with rMZ{2rDZv0 to illustrate potential

implications of the LP model. Hill et al. [21] reported an empirical

distribution of rMZ{2rDZ distributed around zero, with inter-

pretation that the distribution reflected sampling variance given

the often small sample size. However, direct interpretation of the

point estimates suggests that, since rMZ{2rDZv0 in ,50% of

cases, in these cases substantial phantom heritability could be

Limiting Pathway Models
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present in the context of zero or weak common environmental

variance.

Discussion

Bounds of Variance Components in Twin Studies
Using the basic LP model we explored constraints on

combinations of parameters. For additive models (Figures 1A

and 1C) all combinations of rMZ and rDZ lie in a region bounded

by rDZ~ 1
2

rMZ (if c~0) and rMZ = rDZ (if c~1). For epistatic

models (Figures 1B and 1D) the bounds are evident from the

wedge shape of permissible combinations of rMZ and rDZ in

Figure 1. They show that when rDZ.1
2

rMZ , substantial non-

additive genetic variance can be accompanied only by unreason-

ably high s2
C=s2

E . This implies that, at least when rDZ.1
2

rMZ an

underlying additive model is more plausible than a highly epistatic

architecture. Specifically, as Table 1 illustrates, in highly heritable

traits with a small contribution of common variance, phantom

heritability is likely to be small.

As noted by Zuk et al. [13] in their supplementary information,

the amount of phantom heritability estimated depends on the

method of estimation of h2
pop. The expected heritability estimate

from regression of offspring phenotype on mid-parental phenotype

(h2
pop(PO)) is less than h2

pop(ACE) under the kw1 basic LP model.

Other factors could also contribute to differences between

h2
pop(ACE) and h2

pop(PO) such as dominance and greater common

environment of sibling compared to filial relations. Despite this,

empirical observation ([7] pp. 172–173) does not, in general,

suggest large differences between h2
pop(ACE) and h2

pop(PO), which is

not consistent with an important role for phantom heritability

(although sampling variation about estimates make it difficult to

draw strong conclusions). Deconfounding of genetic and common

environmental variance is possible, for the most part, by use of

adopted away relatives. Very different estimates of correlations

Figure 1. Mean narrow-sense heritability (                                                                                   )   (panels A and B)     and  proportion of    phenotypic variance   which is commo

doi:10.1371/journal.pone.0068913.g001

Limiting Pathway Models

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e68913

h2~s2
A=s2

P
2~s2

C=s2
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n
(c

of pathways (  ) under the basic LP model.k                   Given a combination of MZ/DZ correlations, a decrease in narrow-sense heritability (i.e., as k
grows), implies an increase in contribution of common environment.



between adopted away siblings and those raised together is

expected if phantom heritability is important, but adoption studies

tend to support genetic estimates from twin studies [22].

The Extended LP Model
Zuk et al. proposed a simple and elegant model that allows

exploration of the impact of epistasis on estimates of heritability

without needing to define epistasis between individual loci. In fact,

the basic LP model is a special case of the optimum pathway

model proposed by Sewall Wright in 1935 [23], in which the

expressed phenotype is the pathway value closest to a defined

optimum, which could be, for example, the mean or median,

rather than the maximum. These models include the additive

model as a special case, but produce different amounts of epistasis

as the number of pathways increases. Indeed any non-linear

transformation of an additive genetic model, even the infinitesimal

model, leads to non-additive variation; but Zuk et al. show that the

basic LP model generates a phenotypic distribution close to

normal, particularly when k is small. Under the basic LP model all

pathway phenotypes have the same distribution and pathway

heritabilities and pathways are uncorrelated. Biologically, these are

very strong assumptions, not least since they invoke the

infinitesimal model that implies independent contributions from

many genomic sites in each pathway, and so we extended the basic

LP model to allow correlated pathway phenotypes with different

distributions and pathway heritabilities. Phantom heritability was

little affected by differences in variance and heritability between

pathways. However, differences in mean phenotype and the

presence of positive correlations between pathways can decrease

the phantom heritability considerably, and negative correlations

increase it. Our results show how the predicted importance of

phantom heritability depends on implicit model assumptions, such

thatthe problem of phantom heritability could be overstated.-

Drawing inferences about epistasis from the LP model.

There is much debate about the relative importance of non-

additive versus additive genetic variance [24,25,26,21,27], sum-

marized by Crow [28]. Central to the debate is that mutational

studies demonstrate the ubiquity of epistasis in the classical sense,

because genes interact in hierarchical systems to generate

biological function [26]. However, in quantitative genetics it is

the residual variation segregating in populations that determines

differences amongst individuals not overall biological function

[26]. Fisher suggested that epistasis was not important because

usually there would be some scale transformation of phenotypic

values to generate additive effects [26]. Indeed, this is the basis of

models of complex disease where non-additivity on the observed

scale can be transformed to an underlying additive scale.

Furthermore, under mutation drift (neutral) models a high

proportion of genetic variants are at frequencies near 0 or 1, so

the presence of substantial epistatic interactions at the level of gene

effects does not in itself generate appreciable epistatic variance,

and contributions from epistatic interactions are detected as

Figure 2. Phantom heritability under the extended LP model as a function of (A) differences in mean (sd unit) of two pathway
phenotypes, (                                                              )     (B) changes in                                              while                                                                                                        ,      (C) pathway correlations for different number of pathways, and (D)

~2 ,  contribution of  common family environment is 

doi:10.1371/journal.pone.0068913.g002
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additive variance [28,21]. These arguments are further strength-

ened under models that consider selection against mutations

deleterious for fitness with pleiotropic effects on quantitative traits

[29] as the proportion of variants with frequencies near 0 or 1 is

even higher. Zuk et al. [13] incorrectly state in their Supplemen-

tary Information that the derivation in Hill et al. [21] applies only

to pairs of loci, whereas in fact these wereused for illustration, and

the argument holds for multilocus epistasis. The elegance of the LP

model of Zuk et al. [13] is that it is parametrized in terms of

variances and so does not depend on the allele frequency

distribution. Zuk et al. [13] (supplement page 45) counter Hill et

al’s analysis by arguing that most genetic variants contributing to

complex traits cannot be at extreme frequencies because these

would generate little variance. They illustrate with a two-locus

example (their Supplementary Figure 9), but it shows a steep

increase in total genetic variance from minor allele frequency of 0

to 0.1, nearing its maximum for minor allele frequency 0.1, where

additive 6 additive variance accounts for only 8% of the genetic

variance. Furthermore, because the distribution of heterozygosity

is approximately uniform over 0 to 1 under the neutral mutation

drift model, all frequencies are expected to contribute approxi-

mately equally to the variance under an additive model. Empirical

results also suggest that epistasis can generates little epistatic

variance. For example, although many substantial epistatic effects

have been detected for bristle number in Drosophila [30], bristle

number expresses mostly additive variance in populations [16]. At

face value these results may seem to be contradicted by recent

results of the Drosophila Genetics Research Panel (DGRP) entitled

‘‘Epistasis dominates the genetic architecture of Drosophila

quantitative traits’’ [31]. They reported data are from a GWAS

undertaken on the 168 DGRP lines [32] and on gene frequency

differences between pools of lines scoring high and low for

phenotypes following an advanced intercross (70 generations) from

40 of the DGRP lines [31]. They found no overlap of SNP

associated effects between the two analyses, which they interpreted

as presence of epistasis. However, the limited number of DGRP

lines are underpowered for association analysis and show long

range LD so effects of distantly located QTL are confounded and

are less likely to match those found in the intercross study. Also, as

the authors [31] note: ‘‘In fact, variation induced by all of the

epistatic interactions identified in the present study could be

largely explained by the marginal additive effects at the trait-

associated loci’’.

Limiting Pathways in Context
The LP model was justified (Zuk et al., p1193 [13]) without

reference as: ‘‘Here we show that simple and plausible models can

give rise to substantial phantom heritability. Biological processes

often depend on the rate-limiting value among multiple inputs,

such as the levels of components of a molecular complex required

in stoichiometric ratios, reactants required in a biochemical

pathway, or proteins required for transcription of a gene.’’ For

biochemical pathways, at least, metabolic control theory has

shown that ‘rate limiting steps’ are not a relevant concept, for rate

of flux is a continuous function of activities at multiple stages of the

pathway [33]. In a recent review Suarez and Moyes stated ‘‘The

days have long passed when it was simply assumed that enzymes

possessing allosteric regulatory properties were ‘rate-limiting’ [34].

It is now recognized that control of pathway flux is often

distributed among many enzymes.’’ And Fell’s well-cited review

[35] concludes ‘‘whatever criticisms might be made about any one

of the experimental studies, it is significant that none have

Table 1. Phantom heritability (ĥh2
phantom), narrow-sense heritability (ĥh2) and percentage of common variance (ĉc2) for three traits

assuming varying number of pathways (k) and pathway correlations (rpath).

Trait rMZ rDZ h2
ACE k rpath ĥh2

phantom ĥh2 ĉc2

High-fat dairy intake 0.23 0.13 0.20 2 0 0.15 0.17 0.04

4 0 0.30 0.14 0.06

10 0 0.56 0.09 0.10

2 0.2 0.05 0.19 0.03

4 0.2 0.13 0.17 0.04

10 0.2 0.22 0.16 0.06

Triglyceride levels in
blood

0.55 0.28 0.54 2 0 0.25 0.41 0.07

4 0 0.49 0.28 0.16

10 0 0.74 0.14 0.29

2 0.2 0.16 0.45 0.05

4 0.2 0.28 0.39 0.09

10 0.2 0.38 0.33 0.15

Height 0.89 0.47 0.84 2 0 0.35 0.55 0.20

4 0 0.61 0.33 0.39

10 0 0.82 0.15 0.61

2 0.2 0.26 0.62 0.17

4 0.2 0.43 0.48 0.30

10 0.2 0.56 0.37 0.43

Illustrated for observed values of the estimated heritability h2
ACE and underlying rMZ and rDZ , assuming a larger number of pathways implies higher phantom

heritability, lower narrow-sense heritability, but also a larger contribution of common variance. Higher pathway correlations reduce these effects.
doi:10.1371/journal.pone.0068913.t001
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provided support for the existence of unique ‘rate-limiting’

enzymes in pathways.’’ In quantitative genetic analysis of models

of such pathways, it has been shown that a substantial proportion

of the variance is additive [36].

The LP model was proposed to explain ‘‘missing heritability’’ in

complex traits. Methods are now available to estimate variance

attributable to all common genotyped SNPs rather than those

identified as significant [37,38]. Simulations conducted under the

LP model demonstrate that estimates of additive variance

attributable to SNPs calculated using GCTA [39] are unbiased

and not inflated by epistasis [40]. Applications of these methods to

real data show that at least 40% of heritability estimated from

family studies remains unexplained [41]. The number of

associated common variants detected has increased with sample

size [41] e.g., from 9 to 140 for Crohn’s Disease as case sample size

increased from 2000 [42] to w2000[43]. The implication is that,

to date, studies have been underpowered to detect common

variants of realistic effect sizes, but that many exist, given that rare

variants are much more prevalent, and that a very large number of

rare variants also contribute exist which individually explain little

variance but their cumulative contribution may be important.

Collection of empirical data to test an additive only model is

unlikely to be achievable in humans. In yeast, an elegant study

designed to explore contributions of variance from different

sources found substantial epistatic variance (median of 30%) for

some of the 46 traits studied [44]. However, its relevance to

human populations is limited, since all gene frequencies were one

half (two-way cross design), conditions under which epistasis is

likely to be maximized [21,28]. More relevant insight may be

gained from outbred species. For example, in dairy cattle

heritability and SNP associated effects are estimated from large

numbers of half-sib daughters born, raised and milked at different

farms. Therefore, their estimates are unlikely to be confounded

with non-additive genetic or shared environmental effects [45].

For milk yield 79% (s.e. 5%) of the additive genetic variance is

captured by SNPs [46]. That there is so little missing heritability

can be explained by the smaller effective population size leading to

longer linkage disequilibrium (LD) blocks than in humans and

hence even rare alleles can be predicted by multiple SNPs. Traits

that could reasonably be assumed to be under strong natural

selection (so that very rare variants play an important role), such as

fertility, have lower heritability (40%) and greater missing

heritability (55% explained by common SNPs fitted together)

[46]. The simplest explanation of why not all variance is explained

by the SNPs is that even in livestock some causal variants are rare

and in low LD with the SNPs. These results provide evidence that

(when h2
pop is estimated accurately) additive effects can explain the

majority of observed variance in a complex trait in an outbred

population.

Disease Traits
Zuk et al. [13] expressed phantom heritability as

h2
phantom~1{

h2
all

h2
pop

. For quantitative traits h2
all~h2

Pmax
, where

h2
Pmax

is the proportion of variance in Pmax attributable to additive

genetic factors. For disease traits they considered a liability

threshold model, but did not assume disease to occur when the

liability phenotype Pmax exceeds the threshold truncated by the

proportion 2m, but instead defined disease to occur when a

pathway phenotype exceeds the threshold truncated by the

proportion 2m=k, generating a total proportion, 2m, of affected

individuals when summed over all k pathways. This definition

implies additional non-additive genetic variance, i.e., h2
allvh2

Pmax
.

For example, using the 3-pathway model for Crohn’s Disease [13]

with h2
path~0:476 and cpath~0:16 generates h2

Pmax
~0:283, but

h2
all~0:186 for 2m~0:001. Under the extended LP model we

showed for quantitative traits that results for a multiple pathway

model converged to a single pathway model for positively

correlated pathways; qualitatively this result also holds for disease

traits.

The LP model was justified by Zuk et al as limiting pathways in

a biological and biochemical sense. However, the same method-

ological approach could represent a heterogeneity model, gener-

ating a different interpretation of results. Under the LP model the

final phenotype is considered the ‘‘true’’ phenotype and the non-

additive genetic variance h2
pop{h2

all is real. In contrast, under a

heterogeneity model, the pathways are the true phenotypes but

inadequacies in phenotyping cause an inability to distinguish

between biologically different classes of the observed disease.

Hence, under a heterogeneity model, the measurable additive

genetic variance h2
all may be much less than true additive variance

of each subtype, but mostly h2
pop{h2

all could be viewed as

‘‘phantom non-additive genetic variance’’, since the non-additive

genetic variance results only from incorrectly treating multiple

phenotypes as a single trait. In common complex genetic disease

there have been notable advances in separation of diseases that

originally were considered a single diagnostic class, e.g., diabetes,

rheumatoid arthritis, breast cancer. Dilution of allelic effect size is

a consequence of phenotypic heterogeneity in genetic association

studies. For example, differentiation of breast cancer into ER-

positive and ER-negative cancers has identified associated loci not

possible from combining the case cohorts [47]. In psychiatric

nosology it has long been recognized that diagnostic classes are

likely to overarch heterogeneous etiology, recently explored in

light of results from genomic studies [48]. Indeed, one motivation

of genomic studies is to allow genetically informed nosology.

Conclusion
The results of Zuk et al. [13] provide a timely reminder of the

well-recognized limitations of analyses based on twin and family

data, which are often underpowered to separate additive genetic

from common environmental effects [49] and non-additive effects.

The (extended) LP model provides a useful framework to explore

the possible contribution of non-additive genetic variance to

complex traits. An important role for non-additive genetic action is

attractive because gene interactions are ubiquitous at the

functional level, yet this does not necessarily translate to important

epistatic variance over and above variance detected as additive

effects. For disease traits, empirical data can only be explained by

non-additivity on the disease scale, but such non-additivity can be

explained by scale transformations without needing to invoke

more complex models. Using the framework of the extended LP

model, and together with theoretical, empirical, and pragmatic

arguments we conclude that although contributions from non-

additive variance may be commonplace in complex traits, the

contribution of additive genetic variance is likely to be much more

important than that of non-additive variance. Ultimately, only

empirical results can provide a satisfactory conclusion to the

debate of missing heritability, but these may be elusive. Larger

sample sizes should afford the power to identify common variants

of smaller effect size and two-locus interactions. However, the

heavy penalty of multiple testing will not allow exploration of

higher order epistatic interactions implied by the LP model.

Likewise, large sample sizes are unlikely to identify rare causal

variants of small effect, since rare variants are likely to be

population specific and large sample sizes from homogenous
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ethnic groups simply may not exist. Zuk et al. [13] suggest a

methodology for estimation of h2
all , but the required cohorts (large

and from isolated populations) are also difficult to achieve. For

disease traits the most tractable approach may be collection of

large, informatively phenotyped cohorts to provide the building

blocks that may allow clustering of cases based of combinations of

genetic risk variants to be mapped onto phenotypic heterogeneity.
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