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Improving the maximum transmission distance of continuous-variable quantum key distribution
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We show that the maximum transmission distance of continuous-variable quantum key distribution in presence
of a Gaussian noisy lossy channel can be arbitrarily increased using a heralded noiseless linear amplifier. We
explicitly consider a protocol using amplitude- and phase-modulated coherent states with reverse reconciliation.
Assuming that the secret key rate drops to zero for a line transmittance Tlim, we find that a noiseless amplifier
with amplitude gain g can improve this value to Tlim/g2, corresponding to an increase in distance proportional to
log g.
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I. INTRODUCTION

Cryptography is certainly one of the most advanced
applications of quantum technologies. Within this field, the
most studied primitive is quantum key distribution (QKD),
which is the art of distributing a secret key to two distant
parties, Alice and Bob, in an untrusted environment controlled
by an adversary, Eve [1]. The security of QKD rests on the
idea that an adversary trying to acquire some information
about the secret key will necessarily introduce some noise
in the quantum communication between Alice and Bob. A
consequence of this idea is that if the quantum channel is
too lossy or noisy, then it cannot be used to distill a secret
key. This limits the maximum transmission distance between
the legitimate parties. Developing QKD protocols resistant to
losses and noise is therefore of great practical importance.

Among QKD protocols, those encoding information in the
amplitude and phase of coherent states [2,3] have the advantage
of only requiring off-the-shelf telecom components, as well
as being compatible with wavelength-division multiplexing
[4], making an interesting solution for robust implementations
[5,6].

On the theoretical side, these continuous-variable (CV)
protocols have been proven secure against arbitrary attacks
provided that they are secure against collective attacks [7].
This latter condition is in particular met for all CV protocols
without postselection for which Gaussian attacks are known
to be optimal within collective attacks [8–11].

Protocols with postselection on the other hand [12,13],
where Alice and Bob only use part of their data to extract
a secret key, can increase the robustness of QKD to losses
and noise but at the price of more involved security proofs. In
particular, their security is only established against Gaussian
attacks [14,15], or when an active symmetrization of the
classical data is applied [16].
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In this paper, we consider the use of a heralded noiseless
linear amplifier (NLA) [17–23] on the detection stage as a
way to increase the robustness of CV QKD protocols against
losses and noise. First, it should be noted that while amplifiers
can effectively recover classical signals, they only offer limited
advantages when working on quantum signals, as amplification
is bound to preserve the original signal to noise ratio (SNR)
[19,24,25]. This implies that ordinary linear amplifiers, as
those realized by optical parametric processes [26], can only
find limited applications in the context of QKD [27].

On the other hand, a probabilistic NLA can in principle
amplify the amplitude of a coherent state while retaining the
initial level of noise [17]. Thus, when only considering its suc-
cessful runs, the NLA can compensate the effect of losses and
could therefore be useful for quantum communication [28],
and to establish the nonlocal nature of quantum correlations
thanks to a loophole-free Bell test [29]. The availability of such
a device has stimulated intense experimental activity over the
past years, demonstrating the implementation of approximated
versions [18–23], which have provided solid proof of principle.

The question arises if these more sophisticated devices can
deliver a compensation of losses with a success rate such that
it may represent a useful tool for quantum cryptography. Here
we address this problem, by investigating the advantages and
limitations of the most general NLA device, without making
assumptions on the particular realization.

We find a regime in which the NLA leads to an improvement
of the maximum transmission distance attainable on a noisy
and lossy Gaussian channel. Because of the nondeterministic
nature of the NLA, the security proofs considered here are
similar to those concerning protocols with postselection, that
is, they hold against Gaussian attacks, or collective attacks
provided an additional symmetrization of the classical data is
performed.

II. DESCRIPTION OF THE GROSSHANS
AND GRANGIER PROTOCOL

We consider explicitly the case for the most common
protocol for continuous-variable QKD, designed by Grosshans
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and Grangier (GG02) [2], in its version with reverse recon-
ciliation [3]. In a prepare-and-measure (PM) scheme, Alice
encodes information in the quadratures of coherent states,
which are then sent to Bob through the untrusted quantum
channel. Alice chooses her preparation |α = xA+ipA〉 from
a Gaussian distribution for the two quadratures having zero
mean and variance VA. Bob randomly decides whether to
measure the x̂ or the p̂ quadrature, using homodyne detection.
Alice and Bob finally extract a secret key from the correlated
data by performing classical data processing and authenti-
cated classical communication. This protocol offers a simple
experimental implementation [3,30–32] and is secure against
finite-size collective attacks [33] as well as arbitrary attacks in
the asymptotic limit of arbitrary long keys [7].

This protocol can be reformulated in an entanglement-based
(EB) version, in terms of entanglement distribution between
Alice and Bob [34]: the two parties initially share a two-mode
squeezed vacuum state |λ〉 = √

1 − λ2
∑∞

n=0 λn|n〉|n〉, with
λ < 1. Alice performs a heterodyne measurement on her mode,
which projects the other mode on a coherent state. The outcome
of Alice’s measurement is random, but with a probability
distribution depending on λ.

Although the EB version does not correspond to the actual
implementation, it is equivalent to the PM version from a
security point of view, and it provides a more powerful
description for establishing security proofs against collective
attacks through the covariance matrix γAB of the state shared
by Alice and Bob before their respective measurements. In
the case of a Gaussian channel with transmittance T , and
equivalent excess noise at the input ε [6]

γAB =
(

V (λ)I
√

T [V (λ)2 − 1]Z√
T [V (λ)2 − 1]Z T [V (λ) + B + ε]I

)
, (1)

where I = diag(1,1) and Z = diag(1, − 1), V (λ) = 1+λ2

1−λ2 is
the variance of the thermal state TrA |λ〉〈λ| related to the
modulation variance by VA = V − 1, and B = 1−T

T
is the

equivalent input noise due to losses.
This matrix contains all the information needed to establish

the secret key rate for collective attacks [30],

�I (λ,T ,ε,β) = βIAB(λ,T ,ε) − χBE(λ,T ,ε), (2)

where IAB = 1
2 log2(V +B+ε

1+B+ε
) is the mutual information shared

by Alice and Bob given by Shannon’s theory [35], and χBE

is the Holevo bound for the mutual information shared by
Eve and Bob (see Appendix B). The reconciliation efficiency
β<1 accounts for the fact that in practical implementations of
this protocol, Alice and Bob do not have sufficient resources
to reach the Shannon limit. Steady progress has been made
in recent years on the problem of error correction for CV
QKD [36–38] and today’s procedures based on modern error
correcting techniques achieve β ≈ 95% for a large range of
SNR [39].

III. EQUIVALENT CHANNEL AND SQUEEZING

Let us now consider the use of a NLA in the GG02 protocol.
As usual, we will perform the security analysis of the EB
version. Here, we restrict ourselves to the case of a Gaussian
quantum channel, that is Eve is limited to perform Gaussian

|λ gn̂

|ζA B

BA T,

η, g

FIG. 1. (Color online) Equivalent channel and squeezing: a state
|λ〉 sent through a Gaussian channel of transmittance T and excess
noise ε, followed by a successful amplification, has the same
Alice-Bob covariance matrix than a state |ζ 〉 sent through a Gaussian
channel of transmittance η and excess noise εg , without the NLA.

attacks. Since the secure key rate of the protocol depends only
on the covariance matrix of Alice and Bob γAB, it is sufficient
to compute it in presence of the NLA.

In this modified version of the protocol, Alice and Bob
implement GG02 as usual but Bob adds a NLA to his detection
stage, before his homodyne detection, which is here assumed to
be perfect. Then, only the events corresponding to a successful
amplification will be used to extract a secret key. This scheme
is therefore very similar to protocols with postselection.

Since the output of the NLA remains in the Gaussian
regime, we can look for equivalent parameters of an EPR
state sent through a Gaussian noisy channel. Their derivation
is explained in detail in Appendix A, where it is shown that the
covariance matrix γAB(λ,T ,ε,g) of the amplified state is equal
to the covariance matrix γAB(ζ,η,εg,g = 1) of an equivalent
system with an EPR parameter ζ , sent through a channel of
transmittance η and excess noise εg , without using the NLA
(Fig. 1). Those effective parameters are given by

ζ = λ

√
(g2 − 1)(ε − 2)T − 2

(g2 − 1)εT − 2
,

η = g2T

(g2 − 1)T
[

1
4 (g2 − 1)(ε − 2)εT − ε + 1

] + 1
,

εg = ε − 1

2
(g2 − 1)(ε − 2)εT . (3)

This identification easily provides the secret information
�Ig corresponding to the successful amplification, since
Eq. (2) can be used with the effective parameters

�Ig(λ,T ,ε,β) = �I (ζ,η,εg,β). (4)

Those parameters can be interpreted as physical parameters
of an equivalent system if they satisfy the physical meaning
constraints 0 � ζ < 1, 0 � η � 1, and εg � 0. Since λ is a
global factor in the expression of ζ , the first condition is always
satisfied if λ is below a limit value

0� ζ <1 ⇒ 0�λ <

⎛
⎝

√
(g2 − 1)(ε − 2)T − 2

(g2 − 1)εT − 2

⎞
⎠−1

. (5)

As η and εg do not depend on λ, the parameter ζ can be
considered as independent of those two parameters, keeping
in mind that this simply sets the value of λ.
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FIG. 2. (Color online) Maximum value of the gain gmax(T ,ε) as
a function of the losses in dB, for ε = 0.2.

The second and the third conditions are satisfied if the
excess noise is smaller than 2, and if the gain is smaller than a
maximum value given by Eq. (A19), and plotted on Fig. 2.

IV. INCREASE OF THE MAXIMUM
TRANSMISSION DISTANCE

The analysis of the equivalent state allows us to compare the
secret key rate obtained with and without an ideal NLA. The
comparison must be performed for a given channel with fixed
transmittance T and excess noise ε, as those parameters cannot
be controlled by Alice or Bob. However, since the relevant
quantity is the maximum secret key rate achievable over this
channel, Alice is allowed to optimize her modulation variance
VA (or equivalently, the parameter λ) in order to maximize the
secret key rate.

The secret key rate without the NLA is given by
�I (λ,T ,ε,β) [Eq. (2)]. The secret key rate with the NLA
�INLA is obtained by multiplying the secret key rate for
successful amplifications �Ig by the probability of success
Pss. If the NLA has a sufficient dynamics to neglect distortions,
we can assume that Pss is constant. This is a reasonable
assumption if β < 1, since in that case the optimal value of VA

is not infinite. The precise value of Pss will depend on practical
implementations, and is not important in our study, since it only
acts as a scaling factor and does not change the fact that a nega-
tive secret key rate can become positive with a NLA. Therefore,

�INLA = Pss�I (ζ,η,εg). (6)

In Appendix D, we show that the probability of success for
a NLA of gain g is upper bounded by 1/g2. We can therefore
use this bound, keeping in mind that the relevant conclusion
that can be taken is only whether the secret key rate is positive
or not. Both secret key rates with and without the NLA are
computed using the formulas given in Appendix B.

Since the expression of �I is relatively difficult to manipu-
late, we perform a series expansion at the first order in T , which
corresponds to the strong losses regime (Appendix C). The
approximate secret key rate is given by Eq. (C1). Its expression
gives us an intuition about two important behaviors: first, since
T appears inside the expansion and not only as a global factor,
it explains why there can be a maximum transmission distance,
or equivalently a value Tlim for which the secret key rate

becomes null. Second, in this regime, the effect of the NLA
is simply to replace T by g2T , the other physical parameters
being the same. Hence, it is clear that the losses are reduced,
which will increase the maximum distance of transmission.

Let us prove those statements more precisely. From
Eq. (C1), we find an analytical value of Tlim when g = 1 (i.e.,
without the NLA),

Tlim = 2

ε
exp

(
λ2(2β + ε) − ε

ε(λ2 − 1)
− 4λ4

ε(λ2 − 1)2
ln λ

)
. (7)

This expression clearly tends to 0 when ε tends to 0, which
shows that there is no maximum transmission distance without
excess noise. Interestingly, there is a maximum transmission
distance as soon as the excess noise ε is nonzero, even if the
reconciliation efficiency β equals 1. When β decreases or when
ε increases, this maximum transmission distance decreases.
There is no limitation of the distance of transmission only
when ε = 0, and in that case Eq. (C1) takes a simple form,

�INLA � 1

g2
g2T λ2 (1−λ2)(β−2 ln λ)+2 ln λ

(λ2−1)2 ln 2
� �I. (8)

This shows that for strong losses without excess noise, the
secret key rate using the NLA with the most optimistic
probability of success is the same as the secret key rate without
the NLA, and is always positive if λ is optimized. Tlim can also
be optimized (i.e., minimized) by optimizing λ. Interestingly,
the optimal value λopt depends only on β, as shown by Eq. (C2).

The same calculation with a NLA of gain g shows that

T
g

lim = 1

g2
Tlim. (9)

Therefore, the losses for which the secret key rate is zero are
increased by

�L = 20 log10 g dB. (10)

Let us stress that this result does not depend on the
probability of success of the NLA, which simply acts as
a scaling factor for the secret key rate. Hence, even for a
more realistic probability of success, the NLA increases the
maximum transmission distance in the same way.

Those results are compared with numerical results for the
full expressions of �I and �INLA, on Figs. 3 and 4. For both
figures, the secret key rate is computed without the NLA and
with a NLA of gain g = 4 (which is in the allowed region of
Fig. 2).

Those figures clearly show that the secret key rate stays
positive for losses increased by �L = 12 dB. Figure 4 also
shows that for given losses, the secret key rate stays positive
for a higher value of excess noise. However, the increase in
excess noise depends on the losses, and does not have a simple
analytical expression.

Another important remark concerns the optimal gain. If
the transmission can be intuitively improved by increasing the
gain, this is not always the case for the secret key rate, as
shown on Fig. 5. The first reason is the competition between
the decreasing probability of success 1/g2 and the potential
increase of the secret key rate for the successfully amplified
states. The second reason is due to the dependence on the gain
of the effective parameters [Eq. (3)]: the higher the gain, the
higher η, but also the higher εg . If the gain is too high, it is
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FIG. 3. (Color online) Maximized secret key rate as a function of
the losses in dB. The maximization is performed on λ for the series
expansion, and on ζ for the the numerical expression. The numerical
curves are in excellent agreement with the series expansions. As
explained in the main text, the secret key rate with the NLA is very
optimistic due to the probability of success 1/g2, and hence its curve
gives only information on its positivity. The other parameters are
ε = 0.05, β = 0.95 [39].

thus possible that the effective excess noise εg would be too
important, for the transmittance η, to give a positive �INLA.

V. DISCUSSION AND CONCLUSION

In presence of excess noise, the secret key rate of the GG02
protocol against Gaussian collective attacks always becomes
negative for a certain distance of transmission. We have shown
that a heralded noiseless linear amplifier can increase this
distance by the equivalent of 20 log10 g dB of losses. We have
also shown that for given losses, the protocol is more robust
against excess noise.

Our calculation of the secret key rate with the amplifier was
based on an effective system for which the security proofs are
well established. This approach could also find applications
in other quantum communication protocols involving an EPR

FIG. 4. (Color online) Maximal excess noise for which the secret
key rate is positive, as a function of the losses in dB. The curves do
not depend on the probability of success chosen for the NLA. The
maximization is performed on λ for the series expansion, and on ζ for
the numerical expression. For low losses, we see that the first-order
expansion is not enough, whereas it is in excellent agreement with
the numerical curve for strong losses. The reconciliation efficiency is
β = 0.95 [39].

FIG. 5. (Color online) Maximized secret key rate as a function
of the gain of the NLA, with a probability of success 1/g2, and
parameters β = 1, ε = 0.1, 30 dB of losses. With a gain g = 1, the
secret key rate is negative. The NLA can increase the secret key rate
to positive values when the gain is increased, however if the gain is
too large the secret key rate decreases and becomes negative again.
The reason is that the effective excess noise becomes too large to be
acceptable given the effective transmittance.

state sent through a quantum channel, followed by a noiseless
amplifier. In particular, it could be applied to other CV QKD
protocols, for instance protocols using squeezed states, or
protocols using an heterodyne detection [40–43].

Further work would be to consider the experimentally
demonstrated schemes of the NLA, which are only valid
approximations of the ideal NLA up to a certain number
of photons. If the state can be well approximated by this
truncation, so that the Gaussian approximation still holds,
the results presented in this paper are still valid. On the other
hand, if the Gaussian approximation does not hold anymore,
security proofs are more complicated to manipulate. This
problem lies beyond the scope of the present work, and
deserves further investigation.

Finally, two recent preprints [44,45] reach similar conclu-
sions, and also show that it might be possible to operate a
“virtual” noiseless amplifier by performing postprocessing on
the data.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
PARAMETERS

In this Appendix, we detail the method used to obtain the
effective parameters of Sec. III. Let us start by first computing
the output of the NLA when the input state ρ̂ is a thermal
state ρ̂ th(λch) = (1 − λ2

ch)
∑∞

n=0 λ2n
ch |n〉〈n| displaced by β =

βx + iβy

ρ̂ = D̂(β)ρ̂ th(λch) D̂(−β). (A1)

This would be the state received by Bob if he knew the
result of Alice’s heterodyne measurement. The state ρ̂ can
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be decomposed on an ensemble of coherent states using the P

function [46],

ρ̂ =
∫

P (α)|α〉〈α|dα, (A2)

where P (α) = e|α|2

π2

∫
e|u|2〈−u|ρ̂|u〉eu∗α−uα∗

du. Straightfor-
ward calculations show that 〈−u − β|ρ̂ th(λch)|u − β〉 =
(1 − λ2

ch)e−|u|2(1+λ2
ch)−|β|2(1−λ2

ch)+(uβ∗−u∗β)(1−λ2
ch), and therefore

P (αx+iαy) = p(αx)p(αy), with

p(αx) = 1√
π

√
1 − λ2

ch

λ2
ch

e
− 1−λ2

ch
λ2

ch
(αx−βx)2

. (A3)

In the absence of thermal noise (λch = 0), the expression (A3)
becomes proportional to a Dirac distribution δ(αx − βx). The
same statements hold for p(αy).

The successful amplification can ideally be described by
an operator Ĉ = gn̂, where n̂ is the number operator in the
Fock basis. The final state has to be normalized, but one has
to be careful that the norm is not the success probability of
the transformation, since Ĉ is unbounded. The amplification
of a coherent state |α〉 leads to an amplified coherent state
proportional to |gα〉

Ĉ|α〉 = e
|α|2

2 (g2−1)|gα〉. (A4)

Since Ĉ is linear, the amplification of ρ̂ is simple to derive,
using (A3) and (A4) in the decomposition (A2),

ρ̂ ′ = Ĉρ̂Ĉ (A5)

=
∫

P (α)e|α|2(g2−1)|gα〉〈gα|dα. (A6)

By introducing the change of variable u = gα, one gets

ρ̂ ′ ∝
∫

P (u/g)e
g2−1
g2 |u|2 |u〉〈u|du. (A7)

As before, it is easy to see that P (u/g) = p(ux/g)p(uy/g).
Since |u|2 = u2

x+u2
y, we can only consider the term

p(ux/g) exp( g2−1
g2 u2

x), the results being similar for uy

p(ux/g)e
g2−1
g2 u2

x = 1√
π

√
1 − λ2

ch

λ2
ch

e
− 1−λ2

ch
λ2

ch
( ux

g
−βx)2+ g2−1

g2 u2
x
. (A8)

The argument of the exponential can be easily put in the
form

−1 − λ2
ch

λ2
ch

(ux

g
− βx

)2
+g2 − 1

g2
u2

x

= −1 − g2λ2
ch

g2λ2
ch︸ ︷︷ ︸

Thermal state gλch

(
ux − βx g

1 − λ2
ch

1 − g2λ2
ch︸ ︷︷ ︸

Effective gain

)2

−β2
x

(1 − g2)(1 − λ2
ch)

1 − g2λ2
ch︸ ︷︷ ︸

Normalization term

. (A9)

Thus, the expression (A9) clearly corresponds to a ther-

mal state ρ̂ th(gλch) displaced by g
1−λ2

ch

1−g2λ2
ch
β, up to a global

unimportant normalization factor independent of the variable
integrated α or u. We can conclude that

ρ̂ ′ ∝ D̂(g̃β)ρ̂ th(gλch) D̂(−g̃β), (A10)

where g̃ = g
1−λ2

ch

1−g2λ2
ch

. In order to keep a physical interpretation,

we note that g must be such that gλch<1.
Let us now find the values of β and λch corresponding to the

entanglement-based protocol presented in the main text. When
Alice obtains the results αA for her heterodyne measurement on
one mode of the EPR state |λ〉, the second mode is projected
on a coherent state with an amplitude proportional to λαA

[34]. This state is then sent through the quantum channel of
transmittance T , which transforms its amplitude to ∝ √

T λαA.
The displacement β can thus be taken as

β =
√

T λαA. (A11)

The variance 1+λ2
ch

1−λ2
ch

of the thermal state corresponds to Bob’s

variance 1+T ε when VA = 0,

1 + λ2
ch

1 − λ2
ch

= 1 + T ε ⇒ λ2
ch = T ε

2 + T ε
. (A12)

Finally, the action of the NLA [Eq. (A10)] on a displaced
thermal state given by Eqs. (A11) and (A12) induces the
transformations

√
T λαA →

NLA
g

1 − λ2
ch

1 − g2λ2
ch

√
T λαA,

T ε

2 + T ε
→
NLA

g2 T ε

2 + T ε
. (A13)

The next step is to consider the action of the NLA when
Bob does not have any knowledge on Alice’s measurement
outcome. In such a case, his state is a thermal state ρ̂B =
(1 − λ2)

∑∞
n=0(λ)2n|n〉〈n|, whose variance is given by γAB

1 + λ2

1 − λ2
= 1 + T VA + T ε⇒

λ2 = T [λ2(2 − ε) + ε]

2 − λ2[2 + T (ε − 2)] + T ε
. (A14)

Since the NLA always transforms a thermal state of parameter
λ into another thermal state of parameter gλ, Eq. (A14)
shows that the NLA performs the transformation

T [λ2(2 − ε) + ε]

2 − λ2[2 + T (ε − 2)] + T ε

→
NLA

g2 T [λ2(2 − ε) + ε]

2 − λ2[2 + T (ε − 2)] + T ε
. (A15)

We have now all the required equations to find the
expression of the effective parameters ζ , η, and εg . Using
Eqs. (A13) and (A15), those parameters must satisfy

√
ηζ = g

1 − λ2
ch

1 − g2λ2
ch

√
T λ,

ηεg

2 + ηεg
= g2 T ε

2 + T ε
, (A16)

η[ζ 2(2−εg)+εg]

2−ζ 2[2+η(εg−2)]+ηεg
= g2 T [λ2(2−ε)+ε]

2−λ2[2+T (ε−2)]+T ε
.
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FIG. 6. (Color online) Optimized two-mode squeezing parameter
λopt as a function of β. The value β = 0.95 gives λopt � 0.806.

This system can be solved, leading to

ζ = λ

√
(g2 − 1)(ε − 2)T − 2

(g2 − 1)εT − 2
,

η = g2T

(g2 − 1)T
[

1
4 (g2 − 1)(ε − 2)εT − ε + 1

] + 1
,

εg = ε + 1

2
(g2 − 1)(2 − ε)εT . (A17)

Finally, the expression of the maximum gain gmax(T ,ε) for
which those parameters take physical values is given by

gmax(T ,ε) =√√√√ε[T (ε−4)+2]+4
√

T (ε−2)+2
ε

−2
√

ε[T (ε−2)+2]+4T −4

T (ε−2)2
.

(A18)

Let us stress some important comments about those effective
parameters, which confirm the validity of their expression.

First, they naturally reduce to the real physical parameters
without the NLA, for g = 1,

g = 1 ⇒
⎧⎨
⎩

ζ = λ

η = T

εg = ε

. (A19)

Then, when there is no excess noise (ε = 0), they match
previous results [17],

ε = 0 ⇒

⎧⎪⎨
⎪⎩

ζ = λ
√

1 + (g2 − 1)T

η = g2T

1+(g2−1)T
εg = 0

. (A20)

APPENDIX B: EXPRESSIONS USED TO COMPUTE THE
HOLEVO BOUND χB E

The Holevo bound χBE is given by [30]: χBE = G(μ1−1
2 ) +

G(μ2−1
2 ) − G(μ3−1

2 ) − G(μ4−1
2 ) where

G(x) = (x + 1) log2(x + 1) − x log2 x
(B1)

if x = 0, and G(0) = 0

μ2
1,2 = 1

2
(A ±

√
A2 − 4E) μ2

3,4 = 1

2
(C ±

√
C2 − 4D)

(B2)

A = V 2(1 − 2T ) + 2T + T 2(V + χline)2

E = T 2(V χline + 1)2 (B3)

C = V
√

E + T (V + χline)

T (V + χline)
D =

√
EV

T (V + χline)
(B4)

V = VA + 1 is the variance of Alice’s thermal state (see text
for details), and χline = 1−T

T
+ ε is the total equivalent input

noise. Bob’s homodyne detection is assumed to be perfect.

APPENDIX C: FIRST-ORDER EXPANSION IN T

The first order expansion in T of the secret key rate given in Appendix B using the NLA is:

�INLA�Pssg
2T

−2βλ2(−1+λ2) − ε(−1+λ2)2(1+ ln 2)+(−1+λ2)[ε(−1+λ2)(ln ε+ ln g2T )+4λ2 ln λ]+2λ2 ln λ2

2(−1+λ2)2 ln 2
.

(C1)

The equation that must satisfy the optimal value λopt to
maximize the transmission distance (Eq. (7)), and maximize
the secret key rate (Eq. (C1)), is given by:

λ2
opt

(
λ2

opt − 4 ln λopt − 1
)

1 − λ2
opt

= β. (C2)

Figure 6 shows λopt as a function of β.

APPENDIX D: SUCCESS PROBABILITY

The success probability of the NLA can depend on many
experimental factors. Here, we are interested in deriving an
upper bound based on very general principles, when the
success probability can be considered as being a constant
value. In this way, we can obtain an optimistic estimate of
its performance, but certainly we will not overlook interesting
regimes. In both EB and PM versions of the GG02 protocol,
Bob’s state prior to any classical communication with Alice is
the thermal state ρ̂B(λ) = (1 − λ2)

∑∞
n=0(λ)2n|n〉〈n|.
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Consider now that the NLA produces an amplified state
ρ̂B(gλ) with a success probability Pss. When the amplification
fails, the protocol is aborted and the state is simply replaced
by the vacuum |0〉〈0|. Without postselection, the NLA can
therefore be represented as a trace-preserving operation T
described by

T [ρ̂B(λ)] = Pssρ̂B(gλ) + (1 − Pss)|0〉〈0|. (D1)

Naturally, T applied on the vacuum also gives the vacuum,
regardless of the value of Pss. Since any trace-preserving
quantum operation cannot decrease the fidelity F between

two quantum states [47], T must verify

F(ρ̂B(λ),|0〉〈0|) � F(T [ρ̂B(gλ)],|0〉〈0|), (D2)

which gives us an upper bound on Pss. Indeed, inserting
the expression for Bob’s transformed state [Eq. (D1)] in the
constraints on fidelities [Eq. (D2)], we find that Pss must
verify

〈0|ρ̂B(λ)|0〉 � 〈0|(Pssρ̂B(gλ) + (1 − Pss)|0〉〈0|)|0〉, (D3)

which is satisfied if

Pss � 1

g2
. (D4)
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