
Tool Construction for

Process-Centred Software Development

Environments

based on Object Databases

Schriftliche Arbeit
zur

Erlangung des Grades
,,Doktor der Naturwissenschaften"

im Fachbereich Mathematik/Informatik
der

Universit�at-Gesamthochschule Paderborn

vorgelegt von

Wolfgang Emmerich
aus

S�udlohn/Westfalen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The aim of this thesis is to discuss the construction of tools for process-centred soft-
ware development environments (PSDEs). Our main contribution is the proof that
object database systems are a very suitable basis for improving the functionality
of software development tools and for integrating them in PSDEs. We set out to
prove this hypothesis following engineering principles rather than in an analytic or
empiric way. We, therefore, �rst discuss the functionality that software developers
require from tools contained in a PSDE. Starting from these requirements, we take
the position of a tool builder and delineate requirements for a database system
for document management purposes. We then review how well existing database
systems satisfy these requirements. This results in the selection of object database
systems as the most promising systems to take. We then propose a tool architecture
that is based on object databases. We classify the components of this architecture
into components that are common to any tool and thus can be reused and compo-
nents that vary from tool to tool. We shall see that the most important varying
component is the schema of the database. We propose tool speci�cation languages
that are capable of describing the tools' schemas as well as the other varying tool
components at di�erent levels of abstraction. These di�erent levels of abstraction
will provide the tool builder with the exibility to de�ne arbitrary syntax-directed
tools. Then we discuss the construction of tools for the various languages identi-
�ed above and their integration in GENESIS, an integrated environment for tool
speci�cation. After that, we outline the design and the implementation of com-
pilers for our languages that generate executable tools. Finally, we evaluate the
approach suggested in this thesis on the basis of two scenarios. These are tools
for the GENESIS environment and tools for C++ class library development and
maintenance, which we developed for the reuse departement of British Airways.

Acknowledgements

First of all I would like to thank my advisor Prof. Wilhelm Sch�afer. He has guided my research, taught
me to teach and improved my presentation and writing skills. Thanks a lot Wilhelm! Moreover, I
would like to thank my co-supervisors Prof. Carlo Ghezzi and Prof. Uwe Kastens for their valuable
feedback on earlier drafts of this thesis.

The research that made its way into this thesis was inspired by fruitful discussions with the members
of the Merlin project. I would, therefore, like to thank the former and current knights of the round
table J�org Brunsmann, Jens Janke, Gerald Junkermann, Prof. Petr Kroha, Christian Luecking, Olaf
Neumann, Burkhard Peuschel, Sabine Sachweh, Dr. Stefan Wolf and Dr. A. Z�undorf as well as our
guests, namely David Jacobs, Kelvin Ross and Prof. Jim Welsh.

I was particularly stimulated by supervising a number of master students. In his thesis Frank Buddrus
showed the major drawbacks of current tool generators and suggested using an object database system
as a basis for improving tool construction. Martin Kampmann implemented the initial prototype
of the Groupie system and demonstrated that cooperative software development can be improved
signi�cantly by exploiting conventional database transactions. Dirk Schnorpfeil explored the limitations
of relational database systems. He suggested denormalisation techniques that can be used for the
e�cient management of documents in terms of abstract syntax graphs in a relational database. He
also demonstrated the very high costs that environment builders have to pay in terms of database
schemas which are no longer comprehensible. J�org Brunsmann showed that version and con�guration
management of documents can be built on top of the version manager of an object database system,
thus proving that our requirements on databases are necessary in that respect and that they are
su�ciently met by the database that we used in our implementation. Wiebke Reimer implemented
e�cient algorithms to version indexes on collections of objects and to index versioned objects within
the kernel of the O2 object database system. By supervising her work, I obtained valuable insights
into the kernel of the database system that afterwards helped me to exploit it better. Jens Jahnke
suggested semantic rules as they are presented in this thesis and implemented the incremental evaluation
algorithm. Werner Beckmann demonstrated how import/export relationships between object database
systems as well as object-oriented views, can be used for tool integration purposes. In particular
he proved our requirements regarding views are necessary and that they are su�ciently addressed.
Boris Gesell explored the fact that the tool speci�cation languages we have suggested in this thesis
for textual languages can, in a straight forward manner, be extended to graphical languages and that
the tool architecture only has to be changed in a very limited way. Finally, Mike Wagener is currently
extending the tool speci�cation languages to support the de�nition of tool speci�c services that will
then be used by the process engine for tool integration at a �ne granularity. I thank you all for your
contribution. I have enjoyed working with you!

The �rst prototypes for the compilers for our languages were built within a student's project by a
group of graduate students. I, therefore, thank Werner Beckmann, Christian Bittner, J�org Brunsmann,
Heiko K�oster, Cordula K�oster, Wiebke Reimer, Hans-Dieter Schneider, Rolf Schneider, Thorsten Wys-
trychowski and Mike Wagener for their support.

The proof-reading done by Heather Hambloc, Wiebke Reimer and Andreas Baumk�otter signi�cantly
contributed to getting the presentation into shape. Through Heather's work on this thesis I learned
how bad my English still is. Without her help I could not have submitted my thesis in English!

Last, but not least, I would like to thank my parents Helmuth and Sigrid Emmerich and my girl friend

Birgit Osterholt, whose encouragement and love helped me to overcome tiredness, lack of power and

loss of self-con�dence that are inherent in any PhD project.

Contents

1 Introduction 1

2 Tool Requirements 3

2.1 An Illustrating Scenario : 4
2.2 Multi-User Support : 6
2.3 Document Production Support : 13
2.4 Tool Generation Required : 16
2.5 Related Work : 17

3 Requirements on Databases for PSDEs 19

3.1 Persistent Document Representation : 19
3.2 Data De�nition and Data Manipulation Language : : : : : : : : : : : : : : : : 22
3.3 Views : 24
3.4 Schema Updates : 26
3.5 Version Management : 26
3.6 Transactions : 28
3.7 Performance : 30
3.8 Distribution : 31
3.9 Administration : 35
3.10 Interfaces : 35
3.11 Summary : 36

4 Selecting a Database System 37

4.1 Performance Evaluation of Database Systems : : : : : : : : : : : : : : : : : : : 37
4.2 Relational Database Systems : 52
4.3 Structurally Object-Oriented Database Systems : : : : : : : : : : : : : : : : : : 64
4.4 Object Database Systems : 77
4.5 Summary : 85

i

5 A Tool Architecture Based on Object Databases 87

5.1 Control : 89
5.2 Tool Kernel : 90
5.3 Layout Computation : 93
5.4 Command Execution : 95
5.5 User Interface : 97
5.6 Tool Speci�c Services : 98
5.7 Software Process Communication Protocol : 99
5.8 Tools Application Programming Interface : 102
5.9 Tool Schema : 104
5.10 Related Work : 117
5.11 Summary : 118

6 The GOODSTEP Tool Speci�cation Languages 119

6.1 Requirements of Tool Speci�cation Languages : : : : : : : : : : : : : : : : : : : 120
6.2 Extended, normalised Backus-Naur Forms : 122
6.3 OMT Entity-Relationship Diagrams : 124
6.4 Class Interfaces : 133
6.5 Class Speci�cations : 147
6.6 Related Work : 158
6.7 Summary : 175

7 The GENESIS Environment 177

7.1 Inheritance Diagrams : 178
7.2 Tools of the Environment : 179
7.3 Summary : 187

8 The GTSL Compiler 189

8.1 Front End : 191
8.2 Back End : 195
8.3 Summary : 206

9 Evaluation 207

9.1 Evaluation Scenarios : 208
9.2 Satisfaction of Functional Requirements : 210
9.3 Tool Speci�cation : 213
9.4 Performance of Tool Execution : 232
9.5 Summary : 236

10 Summary and Open Problems 237

Index 241

Bibliography 253

ii

A Language De�nition of GTSL 259

A.1 Con�gurations : 261
A.2 Class Interfaces : 266
A.3 Class Speci�cations : 278

B The Library of Pre-de�ned Classes 297

B.1 Increment : 297
B.2 Document : 298
B.3 DocumentVersion : 299
B.4 OptionalIncrement : 301
B.5 NonterminalIncrement : 301
B.6 TerminalIncrement : 302
B.7 IncrementList : 302
B.8 TerminalIncrementList : 303
B.9 NonterminalIncrementList : 304
B.10 UsingIncrement and UsableIncrement : 305
B.11 DocumentPool : 306
B.12 Attribute : 307
B.13 Error : 307
B.14 SyntaxError : 308
B.15 SymbolTable : 308
B.16 DocumentTable : 309
B.17 DocumentVersionTable : 309
B.18 VersionVector and VersionVectorTable : 310
B.19 Summary : 311

C GTSL Speci�cation of GENESIS Tools 313

C.1 ENBNF Tool : 313
C.2 Class Interface Tool : 333

iii

iv

Chapter 1

Introduction

A software development environment (SDE) includes tools that support most of the software
life-cycle phases, that is the construction and analysis of the corresponding documents and
document interdependencies [SW89]. A sophisticated integrated environment should allow
the incremental, intertwined and syntax-directed development and maintenance of these doc-
uments (c.f., for example, [HN86, Lew88, ELN+92]). The tools check for consistency between
documents of the same and di�erent types, visualise inconsistencies or even automatically
preserve consistency during changes. To reect the history of a software system, sophisti-
cated environments also manage di�erent revisions and variants of documents and support
construction of di�erent con�gurations (c.f., for example, [Fei91, Wes91, Dar92]).

A process-centred software development environment (PSDE) is an SDE that also has a tool
called a process engine. The process engine maintains knowledge about the software pro-
cess, the particular state a development project currently has and sometimes even the evo-
lution of development states over time. In doing so, it can guide developers through tasks
they are obliged to perform, automate particular tasks and most importantly control the way
multiple users cooperate. Examples for PSDEs are Merlin [PS92, PSW92], Melmac [DG90],
SPADE [BFG93a] and Marvel [BK90].

Current PSDEs do not support users as much as they could. This is mostly due to tools
that have not been built for use within a process-centred environment. Firstly, tools do
not allow multiple users to work concurrently on the same set of documents. Hence PSDEs
have to work around this either by applying strict exclusive locking policies to documents to
disable concurrent access completely or by enabling concurrent access to di�erent versions of
a document. This defers the problem to merging di�erent document versions, which takes
signi�cant human e�ort. Secondly, PSDEs seldom include those tools that are tailored and
integrated towards a particular process' or even project's needs, but only those tools that
happen to be available. Finally, hardly any tool provides well-de�ned services the process
engine could use for process automation.

In this thesis, we develop solutions to the above problems. To do so, we follow an engineering
rather than an analytical or empirical approach. In an engineering tradition, we reuse already
existing solutions. We exploit object database systems for document management purposes
and message-based inter-process communication for integrating tools and process engines. We
then develop in a requirements-driven manner architectures and languages for the speci�c
problem of tool construction. As we shall see, this speci�cness will allow us to make particular

1

2 CHAPTER 1. INTRODUCTION

assumptions under that problems become solvable that can hardly be solved in general. We
follow a further engineering principle, namely to evaluate the quality of the suggested solutions
with case studies. We, therefore, specify a number of software development tools and generate
executable tools from the speci�cations. Among the most complex of these are tools for editing
and maintaining libraries of reusable C++ classes. These tools are contained in a PSDE that
has been developed for British Airways within the GOODSTEP research project [GOO94].

The particular research contributions of this thesis are the following:

� We delineate the relevant requirements on software development tools.

� We elaborate on design rationales for these tools and in particular discuss their impact
on a database system for tool construction.

� We show that object database systems are reasonably well-suited to tool construction
and indicate why other database management systems such as relational or structurally
object-oriented systems are inappropriate.

� We develop a tool architecture based on object database systems and identify reusable
and tool-speci�c architecture components. Tools constructed with this architecture will
be improved with respect to
{ maintenance of inter-document consistency constraints,

{ concurrent and distributed execution,

{ version management of documents,

{ robustness against software and hardware failures,

{ openness, and

{ e�ciency.

� We de�ne speci�cation languages to develop the tool-speci�c components, such as the
database schema, at appropriate levels of abstraction.

This thesis will further be structured as follows: In the next chapter, we discuss software
development tools from a software developer's and environment builder's point of view. Their
requirements determine a tool builder's requirements on a database system as the main build-
ing block of software development tools. These requirements are discussed in Chapter 3. In
Chapter 4, we review di�erent classes of available database systems. While doing so, we partic-
ularly focus on database performance since it dominates the tool's performance and, therefore,
is a critical factor for tool acceptance. This review will result in the selection of object database
systems as the most promising systems to take. We then present a tool architecture that is
based on using object database systems in Chapter 5. We use this architecture to distinguish
tool components into reusable and tool-speci�c components. Chapter 6 presents various tool
speci�cation languages for de�ning the varying components of a tool. The languages will sup-
port the de�nition of di�erent concerns at the appropriate levels of abstraction and allow reuse
of speci�cation components based on the object-oriented paradigm. Chapter 7 is devoted to
discussing requirements for an environment for tool speci�cation based on these languages.
In particular we de�ne consistency constraints between the languages in order to de�ne re-
quirements for tool integration. In Chapter 8, we outline the design and implementation of
compilers for the languages, which will generate the tool-speci�c architecture components.
The approach taken in this thesis has been evaluated on the basis of two scenarios. The eval-
uation results are presented in Chapter 9. Finally, Chapter 10 summarises the main results
and indicates open problems and further work that remains to be done.

Chapter 2

Tool Requirements

A process that develops and maintains a software system, which we hereafter refer to as a
software process, consists of a number of di�erent tasks. It usually includes a requirements
analysis task where requirements of future customers of a software system are elicited. These
requirements are transformed into an architectural design where the di�erent components of
a software system and relationships among them are identi�ed. The export and import in-
terfaces of these components are designed in more detail in a component design task. The
components are implemented according to the design decisions in a component implementation
task, and they are tested in a component test task. The di�erent component implementations
are integrated and an integration test task is performed. Di�erent kinds of documentation
are produced including a technical documentation and a user manual. The suggestion of the
Waterfall model [Roy70] that these tasks be performed in a strictly sequential order has been
proved infeasible [Boe88]. Instead the tasks are often carried out in an intertwined manner.

The purpose of each task is to produce a set of documents. Each document is written in
a formal graphical or textual language that determines the document type. The document
types that are typically used during requirements analysis include data ow diagrams [dM78],
entity relationship diagrams [Che76] and Petri Nets [GL81]. Architectural design might be
performed in an object-oriented manner using the Booch design language [Boo91] or the object
modelling technique (OMT) [RBP+91]. More conventional languages for architectural design
are the INSCAPE notation [Per89] or the �-Language [CFGGR91]. Module interfaces may
be de�ned in languages like the ones suggested by [Lew88] or in the Groupie module interface
language [ES94]. Implementations are then carried out using programming languages like
C [KR78], C++ [Str86] or Ei�el [Mey92]. Informal documents, such as user manuals or
technical documentation, are often written in mark-up languages, like SGML [ISO86].

A particular mix of document types that is appropriate in one process need not be appropriate
for another. A process developing a real-time application, for instance, should use a require-
ments' de�nition language that can express response time constraints, but such a language
might be unnecessarily complicated for customers of a banking application where response
time constraints need not be expressed. This means that it is impossible to �nd the mix of
document types that could be used in arbitrary software processes. One of the main goals
during software process modelling is, therefore, to identify those document types that are most
appropriate for the di�erent tasks that have to be carried out during a particular kind of
software process (For the tasks that have to be performed during process modelling, c.f for
instance [JPSW94]).

3

4 CHAPTER 2. TOOL REQUIREMENTS

There are a number of di�erent consistency constraints that documents must obey. Apart
from static semantic constraints of the formal languages, there are also consistency constraints
between di�erent documents. These inter-document consistency constraints are not con�ned
to documents of the same type but frequently exist between documents of di�erent types. An
important factor for the quality of a software system is then whether these constraints have
been de�ned properly and are respected by the documents produced during the process.

This chapter is further structured as follows. In the �rst section we introduce a scenario that
provides a number of examples for inter-document consistency constraints. We will use the
scenario for illustration purposes throughout this thesis. In the second section we delineate re-
quirements that arise due to the fact that tools are used in a multi-user environment, namely a
process-centred software development environment (PSDE). We consider inter-document con-
sistency constraints in more detail. Then we discuss requirements that are concerned with the
integration of tools with a process engine. After that we outline a number of requirements that
trace back to the fact that multiple users use tools concurrently to develop related documents.
The consequences of these requirements are that users must modify the syntactic structures
of documents incrementally. In the second section we then delineate requirements that follow
on from this consequence. We delineate requirements for document editing, analysing and
browsing and consider persistence of documents and integrity preservation. Then we discuss
the response time requirements that tools should meet. In the third section we identify the
need for supporting the e�cient construction of tools that meet our requirements and �nally,
in the last section, we discuss related work.

2.1 An Illustrating Scenario

Figure 2.1 displays four di�erent documents of four di�erent types. Starting from the bottom
left, there are in clock-wise order an entity relationship diagram, an architectural de�nition that
identi�es di�erent kinds of modules as components of a software system1, a module interface
speci�cation that identi�es exported types and operations as well as an import interface, and
a module implementation that implements the exported types and operations of a module in
the C programming language. There are a number of inter-document consistency constraints
between these document types. Entities of the entity relationship diagram, for instance, must
be re�ned in terms of abstract data type modules in the architecture diagram. Modules in
these diagrams, in turn, must be re�ned by a module interface de�nition, that de�nes the
export and import interface in detail and independent of a particular programming language.
Each arrow of the architecture diagram should appear as entry in the import interface of the
module interface de�nition. Module interfaces must then be implemented, in this example in
the C programming language. Operations and types that have been identi�ed in the export
interface must be properly implemented in the C document. Therefore, parameter lists and
result types should match each other. Moreover, import interfaces are re�ned by pre-processor
#include statements. Vice versa, there should be no such statements when the design does not
include the respective entry in the import interface, otherwise there would be dependencies
among source code components that are not properly reected in the design.

The need arises to assist software developers in the production of documents that meet inter-
document consistency constraints like the ones outlined above. Developers, therefore, require a
tool for each document type. Such a tool should then support the editing of multiple documents

1The detailed notion is of no concern here and we refer to [ES94].

2.1. AN ILLUSTRATING SCENARIO 5

Figure 2.1: Inter-Document Consistency Constraints

of that type, it should be supportive in analysing static properties of documents, browsing
to semantically related documents and most important, it must check for inter-document
consistency. In fact, the example of Figure 2.1 displays the user interfaces tools contained in
the Groupie environment [ES94]. The tool in the lower-left corner can be used to edit, analyse
and check entity relationship diagrams. Then there is a tool for architecture de�nitions, a
module interface de�nition tool and a programming tool for the C programming language. To
be able to check inter-document consistency constraints the tools must be integrated. We refer
to a set of integrated tools that support all document types of a software process as a software
development environment (SDE).

Most software processes are conducted by multiple rather than single software developers. That
means that di�erent developers use tools to produce di�erent documents. Di�erent versions of
documents must be managed to facilitate independent document development. However, due
to inter-document consistency constraints, the development cannot be performed in complete
isolation. At some point in time, the documents produced by one developer must become
consistent with documents produced by other developers. Consider in the above example,
that a requirements engineer uses the entity relationship tool to de�ne the information model
of a software system, while a system architect is in charge of the architectural design of the
system. Their documents should be consistent with each other before implementation begins,
otherwise signi�cant e�ort might be wasted during implementation if, for instance, wrong
names are used or it turns out that an implemented module is obsolete.

6 CHAPTER 2. TOOL REQUIREMENTS

2.2 Multi-User Support

A great number of documents have to be produced during a software process. We, therefore,
require a central instance that keeps track of the states of these documents and of the respon-
sibilities of di�erent developers for the documents. We refer to this instance as process engine.
It advises multiple developers as to which activities they should perform in order to proceed
with the overall software process. A software development environment whose tools are used
under control of a process engine is referred to as a process-centred software development envi-
ronment (PSDE) hereafter. The software developers that use a PSDE are referred to as users
in the following. We now discuss requirements that stem from the fact that multiple users
participate in a software process.

2.2.1 Inter-document Consistency Constraints

Di�erent levels of granularity have to be considered for the speci�cation of inter-document
consistency constraints and their validation. From a process point of view, on a coarse-grained
level, we are concerned with which set of documents a particular document is consistent with
or not. A document that is not consistent with related documents requires further attention.
Hence the process engine must be aware of consistency constraint violations when it schedules
user activities (c.f. Section 2.2.2 below). Tools must consider inter-document consistency
constraints on the level of syntactical units of documents that we refer to as increments.
This �ne-grained level is required to be able to detect or preserve inter-document consistency
constraints and display appropriate error messages to users.

The fact that multiple users might be involved in achieving inter-document consistency has
an impact on how tools have to handle constraint violations. Di�erent strategies can be con-
sidered for that. A tool might handle a constraint violation in a lazy way and only visualise
an inconsistency to the user as soon as it has been introduced. This visualisation might be
achieved by the use of colours or by underlining. Users might want to have a more detailed
error message, but this should be provided on demand in order not to overload the document
representation. A tool might also follow an eager approach and reject user interactions that
would violate an inter-document consistency constraint. A tool might even automatically cor-
rect erroneous increments. Upon a change of one increment, it can, for instance, automatically
modify related increments in other documents in such a way that consistency is retained. We
refer to these automatic modi�cations of related increments as change propagations.

In order to discuss examples of these di�erent strategies let us revisit Figure 2.1. The lazy
approach of only visualising inconsistency is, for instance, applied to the consistency checks be-
tween parameter lists in operations of the module interface and the respective implementation.
As the parameter lists of operation CreateWindow in the interface and the implementation do
not match, the list in the implementation is underlined. A constraint whose violation should
not be tolerated is the consistency between module names in the architecture, the interface
design and the implementation. The module interface tool and the implementation tool, there-
fore, might prevent interface designers or programmers from changing the name. The chief
architect, however, might want to be able to make such a change. In that case all appear-
ances of the module name should be changed consistently in all documents that refer to the
name. The change may become e�ective immediately or be deferred until a time when the
user responsible for an a�ected document decides to incorporate the change.

2.2. MULTI-USER SUPPORT 7

During maintenance, a software system might have to be extended to meet additional cus-
tomer requirements. Then not only the source code, but also the requirements de�nition, the
architectural and component design, the user manuals and the technical documentation have
to be updated in such a way that all inter-document consistency constraints are preserved.
Even during the initial development it happens that a design decision turns out as unfortu-
nate only when the respective component is implemented or tested. Then the design has to
be improved and the consistency of depending documents like implementation, source code
and test plans either has to be preserved in terms of change propagations or the resulting
inconsistency has to be visualised. Users might want to see the a�ected documents at the
same time. Tools must, therefore, facilitate the intertwined development of documents and
display the e�ect of a change immediately. In order not to destroy una�ected parts of other
documents, tools should support the incremental development of documents. In particular, a
propagation should change only those increments of other documents that have to be changed.

In order to be able to check inter-document consistency constraint checks and even preserve
them in the way outlined above, tools have to be integrated. We distinguish a-priori and
a-posteriori tool integration. A-priori tool integration implies that tools are newly constructed
in such a way that they can inter-operate with companion tools to provide the required func-
tionality for inter-document consistency. This might not always be feasible, for instance if
existing tools have to be reused. Then tool integration must be achieved a-posteriori and be
controlled externally. The tools must, therefore, be open and provide an interface that o�ers a
subset of the incremental editing functionality as services to the external instance that controls
a-posteriori tool integration.

We note that the most appropriate strategy for handling violations of a constraint depends on
the process model and even on the process state. If a change propagation does not a�ect other
users' documents it can be performed without any problem. If other users are a�ected, there
may have to be negotiations about the change among the di�erent users involved. Whether
or not to perform propagation, therefore, depends on the allocation of tasks to PSDE users.
Likewise, a constraint violation that is tolerable in an early stage of a software process might
become intolerable when the process reaches a certain deadline where documents must become
consistent. As an example, consider again the above scenario. An import from a non-existent
module in a module interface de�nition is quite tolerable during the design. If the tool did
not tolerate such errors bottom-up design would be enforced, which is not always appropriate.
The constraint may, therefore, be violated temporarily. If implementation of the module has
started, however, the constraint should not be violated because the implementation of the
module might depend on a type that might never be implemented and if that is detected too
late a signi�cant amount of e�ort is wasted. Therefore, the need arises to integrate tools with
the process engine that drives the software process.

2.2.2 Integration of Tools and Process Engine

A large number of documents are produced during a software process. An architectural spec-
i�cation of a complex software system will identify from several hundred to several thousand
di�erent components. For each component other documents like an interface de�nition, an
implementation and a test plan have to be developed. The process engine will have to main-
tain document states because they change concurrently due to the work of multiple users, and
users will not be able to keep track of that. Therefore, the process engine should guide users
to those documents that require further attention based on document states.

8 CHAPTER 2. TOOL REQUIREMENTS

The user interface that the process engine uses for this guidance is some sort of personal agenda.
It visualises the user's current duties [PSW92, DG90, BFG93a]. The agenda is computed based
on the responsibilities users have for documents and on document states. If a document is
not yet complete, has been rejected during a review or contains inter-document consistency
constraint violations it should be included in the agenda of the user who is responsible for the
document. As an example, consider Figure 2.2, which depicts the agenda of the Merlin PSDE
called working context. It contains icons for each document that a user needs to complete his
or her duties. The user can select one of these icons and push a mouse button to obtain a
menu that o�ers a list of activities. In the example, the working context o�ers an editing,
viewing or printing activity for document module impl to user Miller.

Figure 2.2: Working Context of the Merlin PSDE

The process engine must then react to the selection of one of the o�ered activities. In the
above example, it must use the C programming tool to display the document implementation
of module impl in an edit window or to compute a textual representation that the process
engine can pipe into a paging or printing command. The need for a communication link
between process engine and tools arises. The communication link will be used by the process
engine to invoke services from tools and the tools, in turn, will communicate the result of a
service execution back to the process engine. Services can be classi�ed into two categories:
Generic vs. tool-speci�c services and synchronous vs. asynchronous services. As we shall see
in Chapter 5, we can use this classi�cation to identify the di�erent service providers in the
tool's architecture.

Generic services are those any tool should o�er. Examples of these are creation of a new
document, opening a document, computation of a printable representation of a document and
so on. Beyond those services, any tool may o�er the process engine tool-speci�c services that
implement speci�c tasks for the tool. As an example, imagine a module interface editor that
o�ers a service for a-posteriori integration to add or delete import relationships.

2.2. MULTI-USER SUPPORT 9

When requesting a synchronous service, the process engine awaits service execution and then
continues. Computation of a printable document representation is an example of this. Unlike
synchronous services, the process engine cannot wait for the tool to handle an asynchronous
service. An edit service is an example. If the process engine waits for its completion, all other
concurrent tasks will be blocked. After having handled an asynchronous service, the tool has
to communicate termination of the service execution to the process engine.

Tools in PSDEs perform di�erent kinds of accesses to documents which must be in-line with
the access rights de�ned in the process model. In [PSW92], tool accesses are classi�ed as
read, write and execute accesses. Read accesses are performed, for instance, with browsers,
static analysers or printing tools, whereas write accesses can only be performed with editors.
Execute accesses are performed with tools that can run programs such as a debugger, which
we do not consider any further. Thus, we regard an execute access as a kind of read access.

In order to enable the process engine to communicate the kind of document accesses granted
to a user, we introduce the notion of open modes. The service used to open a document then
gets the open mode as an additional parameter. The parameter can take the values update
and view. A document opened in view mode cannot be changed. When opening a document
in this mode, modi�cations of the document must be inhibited. Documents opened in update
mode can be changed.

Some actions that users perform with tools not only modify a document, but also the document
state on which the agenda computation is based. We refer to these situations as process events.
As an example, consider the deletion of an exported operation in the scenario of Figure 2.1.
There the states of those modules that import the operation and now have become inconsistent
have to be reverted so that the modules are included in the agendas of the users responsible
for these modules. Therefore, tools must inform the process engine of process events in order
to enable the agenda to be recomputed and to reect the new document states.

The question arises whether all process de�nitions should still be implemented solely by the
process engine or partly by the tools. In the above example, determining access rights could
also be achieved by tools. The process engine would then have to inform tools whenever owners
of documents were changed. Tools could then store ownership information of documents
persistently. To determine the access rights of a particular user to a document the tool could
then check whether he or she was the owner and only then provide the full tool functionality,
otherwise it might restrict the applicable functionality to read-only operations. Whether the
process engine or tools are more appropriate to implement a particular process de�nition
depends on the probability that the de�nition changes. Process programming languages that
are executed by process engines are de�ned in such a way that process programs can easily
be changed, even without terminating their execution [PS92, BFG93a]. Tools, however, are
much more di�cult to change. Hence, any process de�nition that is likely to change should
be implemented by the process engine rather than a tool. On the other hand, tools might
be able to execute particular de�nitions more e�ciently and the process model will become
simpler if it can focus on the relevant concerns. If a particular de�nition is unlikely to change,
for instance because it has been successfully used in a number of other processes, the process
programs will get simpler and the PSDE might perform more e�ciently when the de�nition is
implemented in the tool. Thus we refer to these tools as process-sensitive tools.

10 CHAPTER 2. TOOL REQUIREMENTS

2.2.3 Versions

The multiple users that perform a software process edit, analyse, browse and check documents
concurrently. Documents are the unit of granularity for assigning responsibilities to users.
Usually only one user is responsible for a document at the same time. Then this user is
the only one allowed to edit the document in update mode and other users do not edit the
document in this mode concurrently. Due to inter-document consistency constraints, however,
the activities of one user might interfere with concurrent activities of other users. Versions are
used to allow users to edit documents in isolation for a certain period of time. At some point,
however, all the document versions that belong to a con�guration must become consistent
with each other. This is, for instance, the case when a con�guration of a software system has
to be delivered. Then users have to share their versions and edit them cooperatively in order
to obtain a state of inter-document consistency. To facilitate this cooperation the e�ect of an
update of one user must become visible as soon as possible. It must even become visible when
other users concurrently edit a�ected document versions. We now discuss in more detail the
functionalities that are required from tools to achieve isolation and cooperation.

We distinguish two notions of document versions, revisions and variants. Revisions are linearly
ordered in the development history of a document. A later revision improves a predecessor
revision and will, therefore, replace it at some point in time. Revisions are not only needed to
facilitate the above required isolated development, but also to establish checkpoints. A user
might then \undo" a set of modi�cations by reverting to a previous revision if they turn out
to be inappropriate. Variants emphasize di�erent aspects of the development [Tic85, SS95].
A user may, for example, have to develop a document in di�erent ways in order to meet the
requirements of di�erent customers. Unlike revisions, whose development history is linearly
ordered in time, variants are two or more parallel branches that coexist for a certain period of
time. If it is not important to distinguish between revisions and variants, they are subsumed
under the term version.

Upon creation of a document an initial or root version is created and selected. Tools should
then o�er facilities for deriving new versions from a selected version. This derivation de�nes a
predecessor/successor relationship between versions. The version from which another version
is derived becomes the predecessor. The derived version is the successor. Before a version
can be derived from a predecessor version, the predecessor must be frozen so that its contents
cannot be changed any further, otherwise the predecessor/successor relationship would not
reect the development history of the document.

The tool must o�er facilities for browsing through the development history. It should, therefore,
provide ways of displaying a document's version with its predecessor/successor relationships.
The user may then want to select one of these versions as the current version. The tool should
then apply all changes to that version only. The tool must respect the status of that version.
If it is frozen, it must prevent the user from modifying it.

Users may want to establish a default version of a document, which is the version that is seen
as long as no current version has been designated. The tool must store, for each document,
the default version information persistently.

Sometimes di�erent variants must be merged. If we reconsider the example given above, the
variants would have to be merged if an implementation were found that would meet several
customer requirements. Merging cannot be achieved fully automatically. If an increment is
changed in two di�erent variants, only the user can decide which variant of the increment

2.2. MULTI-USER SUPPORT 11

should be taken in the common successor version. Therefore, tools have to support the inter-
active process of merging variants.

Finally, users may want to reduce the number of revisions stored in the development history.
The tool must, therefore, o�er ways of deleting any version except the root version. During
such a deletion, the predecessor/successor relationships must be redirected accordingly.

Figure 2.3: User Interface for Version Management in Groupie

Figure 2.3 continues our example and displays how version management functionality can be
o�ered at the user interface. We assume a style of interaction where users select an increment
of the document. Then the tool deduces a set of possible tool commands that are applicable to
this increment and presents them in a context-sensitive menu to the user. If the user selects a
complete document and the document is under version control, the computed menu contains
all the commands for version management.

Di�erent users will have to cooperate, for instance, to achieve inter-document consistency of
the document versions they are responsible for. This implies that they share their document
versions. To achieve tight cooperation, users then want to see the impact of each other's up-
dates as soon as possible. Note that an update might not necessarily involve changes to the
contents of a document. We will also have to consider the correction or introduction of an
inter-document consistency as an update, since this changes the internal state of increments.
Tight cooperation then requires an update to a document version to be done in such a way that
all tools concurrently displaying the document version are informed of the update as soon as
possible. They should then reect the update as well. In the above example of inconsistent pa-
rameter lists, a designer might remove the inconsistency by deleting the additional parameter.
If a programmer is accessing the implementation document that corresponds to the imple-
mentation, he or she should see, as soon as possible, that the inconsistency has been resolved
and requires no further attention. The shared and cooperative updates of document versions
must, therefore, not be disabled by exclusive locking of document versions as suggested in the
check-in/check-out model [Tic85].

12 CHAPTER 2. TOOL REQUIREMENTS

Concurrent changes of multiple users, however, cannot be performed in a totally unrestricted
way. This is due to the lost update and inconsistent analysis problems, known from concurrency
control in database systems [Dat86]. Assume that two programmers concurrently create two
new module implementation documents. Assume further that both documents have to be
inserted into a shared table of available module implementations in order to be able to check for
existence and uniqueness of module implementation names. The tool of the �rst programmer,
therefore, reads the table from some shared memory, inserts the document into the table
and writes the updated table back to shared memory. If concurrency is not restricted the
table update might now be lost due to the fact that the second programmer's tool read the
table before the other update was written, inserted the other new document and wrote its
copy of the table back after the other tool. For the inconsistent analysis problem, consider
the following scenario. A programmer changes the name of an implementation document. A
concurrently working programmer creates a new #include statement referring to the old module
implementation name. During that time, the included document name is searched in the table
of available modules. An inconsistent analysis problem occurs if this search is performed after
the other tool has checked for #include statements to be marked as erroneous and before the
table has been updated with the new document name. Then the #include statement will not
be displayed as inconsistent although the referenced module no longer exists.

Now we have encountered the dilemma that we cannot lock document versions exclusively while
they are being edited without hampering cooperation. On the other hand, we must perform
locking to avoid the lost update and inconsistent analysis problems. The dilemma is solved by
requiring tools to decrease granularity with respect to both the subject that performs locking
and the objects that are being locked. This means that tool sessions must be considered as
sequences of shorter execution units, each of which is executed in isolation from concurrent
execution units. The units achieve isolation by locking objects in a traditional way [Gra78].
An object is locked in shared mode when the object is read and in exclusive mode when it is
updated. While shared locks are compatible to each other, any other combination reveals a
concurrency control conict that must be resolved by the tools. To decrease the probability of
concurrency control conicts, execution units should not lock the complete representation of
a document version, but only the representation of those increments that are being accessed
or updated during the execution of a unit. In the examples that encounter lost updates or
inconsistent analysis problems, we would then obtain a concurrency control conict. Tools
should react to these conicts by delaying the execution of one unit to await completion of the
conicting unit, that is until conicting locks have been released.

Summary

In short, we require from tools to handle isolated and cooperative updates of documents
in di�erent ways. In early stages of document development editing should be supported in
such a way that other users do not interfere with an update. Versioning is required for that
purpose. When inter-document consistency among di�erent users has to be achieved, the same
document version must be concurrently updatable by multiple users to facilitate the required
cooperation. Locking must be performed to avoid lost updates and inconsistent analysis. The
granularity of the subject that performs locking should be decreased from sessions to shorter
execution units and the granularity of objects that are being locked should be decreased from
documents to increments.

2.3. DOCUMENT PRODUCTION SUPPORT 13

2.3 Document Production Support

Checking and preserving inter-document consistency constraints requires the access and mod-
i�cation of documents based on their syntactic structure. Moreover, concurrent accesses and
updates of the same document version require the access and update of the �ne-grained syn-
tactic structure of the document in order to avoid unnecessary concurrency control conicts.
Tools should, therefore, provide users with the means to access and update the syntactic struc-
ture of documents incrementally [ELN+92] in order to facilitate the required incremental and
intertwined document production.

2.3.1 Editing, Analysing and Browsing

We refer to such tools as syntax-directed tools [RT81, DGKLM84, Rei84, Nag85, HN86]. Doc-
ument accesses and updates are issued in terms of commands. Commands in syntax-directed
tools are directed towards the syntax of the underlying language. This is done by relating
each command to an increment. A user can use a pointing device such as the mouse of a
graphical workstation to select a particular increment as the current increment. The tool
can then use this selection to deduce possible commands and present them to the user in a
menu. This structure-oriented mode of editing particularly supports the incremental and inter-
twined development of documents. The e�ect of consistency-preserving change propagations,
for instance, are displayed immediately in all opened documents. Also constraint violations,
if tolerated, are immediately visualised in all documents that are displayed.

As an example, Figure 2.4 displays the user interface of the Groupie module interface editor,
which is part of the environment depicted in Figure 2.1. By means of a click into the win-
dow with a mouse button, the tool selects the current increment and highlights its textual
representation. A push with another mouse button causes the tool to deduce a set of possible
commands applicable to the selection and o�ers them in a pop-up menu. The user may then
select a command, for instance, in the above situation Add Function. The tool will then insert
a new function template after the current increment. A change propagation might then also
insert a template for a C function into the implementation document.

We note that the editing commands, as introduced above are an appropriate choice for the
execution units that are to be performed in isolation from each other. They are considerably
short and most often only access a small fragment of a document. When commands are
performed in isolation from each other, only small portions of documents are locked and this
only for a very short period of time. Concurrent users then see the e�ect of a change as soon
as the command that changed a document version has been completed.

14 CHAPTER 2. TOOL REQUIREMENTS

Figure 2.4: Structure-oriented Syntax-directed Editing

The structure-oriented mode of editing a document is not always appropriate. In some cases,
it has drawbacks compared with conventional text editing. It is inferior if

� many template insertions, compared with the number of keystrokes in conventional text
editors, are required in order to fully expand an increment. This is, for instance, the
case with identi�ers or expressions.

� complex increments must be changed in a way that cannot be anticipated. Suppose, for
instance, that a large while statement is to be transformed into an if statement without
a�ecting the body.

� documents only available in a textual representation must be reused. This is always
the case if development started with conventional text editors that are later replaced by
more sophisticated tools, like the ones discussed here.

� experienced users who master the language are capable of typing very fast. Such users
may be faster typing an increment than repeatedly moving their hands from the keyboard
to the mouse, selecting an increment, popping up a menu and choosing a command.

To address these problems, users expect from syntax-directed tools not only support for
structure-oriented editing, but also facilities for free textual input of increments with con-
ventional text editors. To ensure syntactic correctness, tools must parse new texts as soon as
the user has �nished editing. If a text contains syntax errors, they must be brought to the
user's attention.

2.3. DOCUMENT PRODUCTION SUPPORT 15

Besides inter-document consistency constraints, documents also have to obey the static se-
mantics of the respective languages. In principle the same approach as with inter-document
consistency constraints can be applied to check, visualise and handle static semantic errors.
Unlike inter-document consistency constraint violations, static semantic errors only a�ect a
single document. Since normally, only a single user is responsible for the document, it is
appropriate to preserve static semantic correctness by means of change propagations.

To improve the quality of documents further, users may require static analysis capabilities
that go beyond analysis of static semantics. Users of a programming language editor, for
instance, may wish to �nd obsolete variable declarations, unreachable statements or use of
uninitialised variables [ES89]. During the maintenance of a system, users bene�t signi�cantly
when requirements analysis or design tools o�er cross-reference analysis facilities that can be
used for change impact analysis. Therefore, for those increments that are related to other
increments, tools should o�er commands that display the other increments.

Particularly during maintenance, there is a need to support users that are not familiar with a
document in understanding the document and its relationships to other documents. Beyond
merely displaying related increments, this requires browsing along relationships in order to
read the context of the related increment. A set of documents can be considered as a hypertext
where the relationships between increments de�ne hypertext links. As a hypertext viewer can
follow hypertext links, tools should o�er browsing facilities that open documents containing
related increments.

2.3.2 Persistence and Integrity

Editing sessions are interrupted for three di�erent reasons. Usually the interrupt is due to
an explicit decision taken by the user, for instance to perform some other task or to leave o�
work. Secondly, there are situations where the process engine has to interrupt a user's editing
session, for example if a designer deletes a module in an architecture while a programmer
is concurrently implementing that module. According to [Wol94], a consistency preserving
transaction must then stop the editor used by the programmer. Thirdly, editing sessions may
be interrupted accidentally. Consider as examples a loss in the power supply or a failure in
the operating system that causes a reboot.

In order to anticipate these situations, documents must be stored persistently so that the
editing session can be resumed without any signi�cant loss of e�ort. In the �rst two cases, the
user or the process engine could take explicit measures to save a document. While we could
expect the user to save every document before quitting a tool, the process program enacted by
the process engine would be unnecessarily overloaded if it had to de�ne these saving procedures.
Dealing with accidental interrupts is even more complicated. Such an interrupt could occur
during execution of a tool command that changes a set of documents. Then the integrity of
these documents, that is their immediate usability by the same or other tools, will be violated
if some parts are changed while changes to other parts are omitted due to the failure.

To preserve e�ort from accidental interrupts and to relieve the process programmer of having
to de�ne document saving procedures, we require persistence of documents to be transparent
to both user and process model. Persistence and integrity should be achieved as follows.
We require of tools that the e�ect of a command execution is persistent if and only if it
is completed. Moreover, tool commands must be designed in such a way that the integrity
of documents is guaranteed whenever a command execution is completed. In the case of a

16 CHAPTER 2. TOOL REQUIREMENTS

hardware or software failure, we require tools to automatically recover to the state after the
last completed command execution. This reduces any potential loss of e�ort to the amount
spent during the last command whose execution was not completed and ensures integrity of
documents against any failures.

2.3.3 E�ciency

Among the chief-factors for user acceptance of a tool is the tool's performance during command
execution. If the user has to wait for tool commands to be executed, the tool will hardly ever
support the user in e�cient document production. We, therefore, discuss the performance
required from tools.

Very fast typists can type about 300 characters per minute. In this case, the time between
successive keystrokes is about 200 milliseconds. Thus any response time of a tool that is below
200 milliseconds is non-critical, since users will not recognise it as a delay [ESW93].

Unlike secretaries, users do not type continuously. They frequently pause between two com-
mand executions, for instance to use a pointing device to select the next current increment or
to choose an interaction from a menu. If the non-trivial processing that a tool carries out is
aligned with these natural breaks between the execution of two commands, response times up
to a second are acceptable.

In other rare circumstances, users may accept higher response times if they can be justi�ed
by the complexity of the task concerned [WBK91]. No user, for instance, would refuse to use
a compiler just because it needs more than a second to compile a source.

2.4 Tool Generation Required

Depending on a particular process and even a particular project, a large variety of di�erent
languages and corresponding documents may exist. As the design and implementation of
syntax-directed tools is mainly driven by the syntax of the language, they have to be built
anew for each language. Designing and implementing a tool is a signi�cant task.

Moreover, often companies do not use a language as de�ned, but have their own guidelines
that extend a language or only use a subset. Unless there is an instance that enforces usage of
these guidelines, users will hardly ever obey them. These guidelines can easily be enforced, if
syntax-directed tools used for document production are con�ned to these guidelines and only
enable the de�ned language subset to be edited. As a consequence, however, tools have to be
built anew for each company that has di�erent guidelines.

The handling of inter-document consistency as required in Section 2.2.1 depends on the process
speci�c mix of languages. If tools have to enforce inter-document consistency constraints,
they must be customised whenever di�erent languages are used in di�erent software processes.
Moreover, the construction of process-sensitive tools might require customisations whenever
the tool is used in a di�erent process. In the example given above, the process-sensitive tool
checking access rights might have to be customised if it is to be used in a process with a
di�erent notion of access rights.

2.5. RELATED WORK 17

As a consequence, there is a need for tool construction or at least tool customisation for each
company, for each di�erent process model and since process models change [MS91], even for
di�erent process states. Our concern is to ease this tool construction and successive tool
customisations as much as possible. We, therefore, focus on generating integrated syntax-
directed tools from appropriate high-level speci�cations. Customisation of tools can then be
done by changing the speci�cations and generating the tools anew.

2.5 Related Work

One could use compilers [ASU86, WG84] for each textual language that is used in a software
process. The compiler would then check syntax, static semantics and inter-document consis-
tency constraints between textual documents of the same type. For programming languages,
we can assume that compilers are available. For languages where compilers are not available
they could be generated with compiler generators like Eli [GHL+92] or Cocktail [GE90]. Dur-
ing code generation, a compiler might translate a document of one type into a document of
another type in order to start o� the development of documents of the other type. This ap-
proach is followed in the early versions of the ProMod SDE [Hru87] or in the Software through
Pictures environment [WP87]. In the example of Figure 2.1, a compiler for the module inter-
face de�nition language could, for instance, generate an initial C code frame that then had to
be re�ned further by programmers.

A number of our requirements, however, will remain open. A compiler can detect static
semantic errors, but it will not be possible to prevent a user from introducing such errors
into documents. The cases outlined above, where errors must not be tolerated, cannot be
dealt with. Moreover, compilers only consider a single input language and cannot check for
consistency constraints between documents that are written in di�erent languages. Also the
translation of documents into other types cannot be applied in general in order to facilitate
incremental propagation of changes. In the example above, where a name has to be consistently
changed throughout all documents, the transformational approach will fail. If we compiled
changed module interface documents anew in order to generate consistent C code frames that
incorporate the new module name, all the re�nements that programmers had already made
to the implementations of these modules would be lost. This problem could be solved, to a
limited extent, with incremental compilers. They also fail if a change propagation violates
static semantic constraints in the target language. Then a further change propagation would
be required in the target language, which an incremental compiler of the source language is
not capable of. In addition, compilers cannot provide the services that the process engine
could use to implement user activities or a-posteriori tool integration, and compilers cannot
notify the process engine of the occurrence of process events. Finally, a signi�cant number of
languages used in software processes are graphical. For these languages it is not possible to
construct a compiler with current state-of-the-art in compiler construction.

A PSDE will, nevertheless, have to include compilers and debuggers for the programming
languages used. In particular, we will require compilers for the generation of executable code,
because we have not required this from tools. Instead we require tools that are used for
editing, analysing and browsing programming language documents to be able to interface with
compilers. They will, therefore, have to dump programming language documents into �les of
the operating system's �le-system in such a way that they are accessible for a compiler of the
respective programming language.

18 CHAPTER 2. TOOL REQUIREMENTS

Chapter 3

Requirements on Databases for

PSDEs

It is commonly accepted that documents in software development environments must be stored
in a database of some sort [GL85, LS88, Ber87, PPT88, KFP88, BOSV89, HW91]. Databases
are created, accessed, updated and administered using the functionality provided by a database
system. In this thesis we consider database systems for software engineering (DBSEs) as a basis
for tool construction. The tool requirements delineated in the last chapter now determine a
tool builder's requirements on a DBSE. We, therefore, consider the impact of tool requirements
on the DBSE that is used for tool construction. While doing so, we re�ne and complete earlier
published requirement sets such as [Ber87, DEH+91, ESW92, ESW93].

3.1 Persistent Document Representation

3.1.1 Document Representation

The common internal representation for documents manipulated by syntax-directed tools is
an abstract syntax tree of some form [RT81, DGKLM84, HN86]. Nodes in the abstract syntax
tree often have additional attributes whose values represent semantic information such as
references to a string table, symbol tables or type information. Operations that tools perform
in the structure-oriented mode of editing can easily be implemented as operations on this
abstract syntax tree. Template insertion, for instance, is implemented as subtree replacement.
After free textual input, the abstract syntax tree can be established with techniques well-known
from compiler construction [ASU86].

Static semantic checking of a document that is represented as an abstract syntax tree can be
done by attribute evaluations along parent/child paths in the document's attributed abstract
syntax tree [Knu68]. The evaluation paths are computed at tool construction time based
on attribute dependencies. If inter-document consistency checks between di�erent documents
are implemented by attribute evaluations, all inter-document consistency constraints must be
checked at an arti�cial root node which has sub-trees for each document. With respect to
concurrent tool execution many concurrency control conicts arise at these root nodes and de-
crease e�ciency. Therefore, techniques based on the introduction of additional, non-syntactic

19

20 CHAPTER 3. REQUIREMENTS ON DATABASES FOR PSDES

paths for more direct attribute propagation have been developed [JF82, Nag85, Hoo87]. They
generalise the concept of abstract syntax trees to abstract syntax graphs. Such non-syntactic
paths implement semantic relationships which connect syntactically disjoint parts of possi-
bly di�erent documents even of di�erent types. They can be used for consistency checking,
change-propagation when the document is changed and even for implementing static semantic
analysis and browsing facilities. To handle these semantic relationships in a consistent way, the
obvious strategy is to view the set of documents making up a project as a single project-wide
abstract syntax graph.

We note that this generalisation to a single project-wide graph does not necessarily undermine
the concept of a document as a distinguishable representation component. If we distinguish
between aggregation edges in the graph, which implement syntactic relationships, and reference
edges, which arise from semantic relationships, then a document of the project is a subgraph
whose node-set is the closure of nodes reachable by aggregation edges from a document node
(i.e., a node not itself reachable in this way), together with all edges internal to the set1.
The edges not included in this subgraph are then necessarily the inter-document relationships
inherent in the project. When we use the term abstract syntax tree of a document in the fol-
lowing, it shall denote all nodes reachable from a document node together with all aggregation
edges internal to the set. Nodes that cannot have outgoing aggregation edges are called ter-
minal nodes, for their origin lies in terminal symbols of the underlying grammar. Those nodes
that may have outgoing aggregation edges shall be called non-terminal nodes accordingly.

As an example, consider Figure 3.1. It outlines how the di�erent abstract syntax trees repre-
senting documents of Figure 2.1 on Page 5 are integrated to a project-wide abstract syntax
graph. Nodes of the abstract syntax graph are drawn as rectangles. The annotation given in
a rectangle identi�es the type of respective node. Edges are depicted as arrows. Aggregation
edges are drawn as solid arrows. Intra-document reference edges are depicted with dashed
arrows and dotted arrows denote inter-document reference edges. Inter-document reference
edges implement semantic relationships between increments of possibly di�erent document
types. Attributes of terminal nodes are depicted as quoted annotations close to the rectangles
that represent the node. They represent lexical values identi�ed with the respective terminal
symbols. Additional attributes are required for the graphical documents in order to store
coordinates or even lists of coordinates for the graphical layout of increments. These are for
reasons of brevity omitted.

The re�nement of entities de�ned in the entity relationship diagram in terms of modules of
the architecture is reected by inter-document reference edges labelled ToArch. Likewise, the
re�nement of modules of the architecture de�nition in terms of module interface documents is
stored by means of reference edges labelled with ToDesign. Intra-type reference edges labelled
ToDecl represent the use/declare relationship between type increments of a module interface
document. The parameter type of function CreateWindow with the attribute STRING, for in-
stance, has an outgoing reference edge to the node where it is declared, that is to the TypeImport
node with attribute STRING. This node represents an import that is itself connected via an
inter-document reference edge labelled ToExport to another node contained in the subgraph of
module BasicTypes where the type is exported.

1What we call a subgraph here, is comparable to the notion of a composite entity in PACT VMCS
(c.f. [Tho89]).

3.1. PERSISTENT DOCUMENT REPRESENTATION 21

Entity

pl Attribute
 List

1
Attribute

Entity

pl Attribute
 List

1
Attribute

pl Attribute
 List

Relation
 ship

’Window’

’WindowStack’
1

Entities

2

1

’size’

’pos’

entsE/R
Diagram

rels

source

target

E/R−Diagram
WindowSystem 1

’WindowStack’

2

target

modsArchi
tecture Modules ADT

Module

ADT
Module

ADT
Module

TC
Module

3

4

1

2

3

4

imps
Import

Import

’Window’

’Position’

’BasicTypes’

target

source

source

...

...

Architecture
WindowSystem

Imports

2

Import
Interface

ADT
Module

Param
List

Import
List

Mod
Name

Comment

Type
Name

Operation
List

Procedure

Function OpName

Using
Type

Comment

ParName

Using
Type

ParName

Using
Type

ParName

Using
Type

Param
List

OpName

ParName

Using
Type

INOut
Parameter

In
Parameter

In
Parameter

In
Parameter

Comment

Imported
Module

Type
Import

Operation
Import

Import
List

Imported
Module

Type
Import

Type
Import

Type
Import

’TWindow’

’CreateWindow’

’TPosition’

’TPosition’

’STRING’

’upper_left’

’lower_right’

’name’

’TWindow’

’/* creates a new window */’

’DeleteWindow’

’w’

’TWindow’’/*
 * Deletes...’

’/*
 * defines a type...’

’Position’

’TPosition’

’CreatePosition’

’BasicTypes’

’INTEGER’

’STRING’

’BOOLEAN’

TC
Module

Mod
Name

Comment

’BasicTypes’

’/*
 * defines a set of...’

Type
Name

TypeName
List

Type
Name

Type
Name

Type
Name

Type
Name

Type
Name

’BOOLEAN’

’CHAR’

’INTEGER’

’STRING’

’CARDINAL’

’FLOAT’

...

...

...

name

com

type

opl 1

2

name

pl

type

com

name

pl

com

1

2

3

name

type

name

type

name

type

name

type

fm

1

2

fm

1

2

3

1

2

3

4

5

6

1imp

name

com

tnl

1

’Window’

ToArch

ToDesign

ToDesign

ToArch

Interface
Window

Interface
BasicTypes

ToDecl

ToDecl

ToDecl

ToDecl

ToExportToExport

ToExport

ToExport

Relation
 ships

Figure 3.1: A Project-wide Abstract Syntax Graph

22 CHAPTER 3. REQUIREMENTS ON DATABASES FOR PSDES

3.1.2 Persistent Representation

Due to the requirements of persistence and integrity, a persistent representation of each docu-
ment under manipulation must be updated while user-commands are executed. Typically such
an execution a�ects only a very small portion of the document concerned, if any. Given that
the representation under manipulation is the project-wide abstract syntax graph, however, the
update can easily become ine�cient if, �rstly, a complex-transformation between the graph
and its persistent representation is required and, secondly, the persistent representation is such
that large parts of it have to be rewritten each time, although it is not modi�ed. This would
for instance be the case, if we had chosen to store the whole graph or subgraphs in sequential
operating system �les that are updated at the end of each command execution.

Such ine�ciency can be avoided if the persistent representation takes the form of an abstract
syntax graph itself, with components and update operations that are one-to-one with those
required by the tools concerned. The DBSE must, therefore, support de�nition, access and
incremental update of a graph structure of nodes, attributes and edges with associated labelling
information. The DBSE must avoid imposing limits on the overall size of the graphs it can
handle. To preserve the integrity of the abstract syntax graph, the DBSE must support atomic
transactions that enable a sequence of update operations to be grouped together so that they
are either performed completely or not at all. To facilitate failure recovery to the state of the
last completed command execution, completed DBSE transactions must be durable.

3.2 Data De�nition and Data Manipulation Language

The kinds of nodes and edges required to represent a project, and the attribute information
associated with each, cannot be determined by the DBSE itself. They should be de�ned by
tool builders and then be controlled by the DBSE in order to have di�erent tools sharing a well-
de�ned project-graph. The overall structure of the project's syntax graph should, therefore,
be de�ned in terms of the data de�nition language of the DBSE and established and controlled
by the DBSE's conceptual schema.

As a minimum, we require that the data de�nition language (DDL) can express the di�erent
node types that occur within the graph, that it can express which edge types may start from
node types and to which node types they may lead, and that it can express which attributes
are attached to node types. Such basic requirements are common to any graph storage. To
allow for concise schema de�nitions, the DDL should allow properties common to more than
one node type to be speci�ed only once in, for instance, an abstract node type declaration.
All node types sharing this property should then be declared in such a way that they inherit
the property from the abstract type. As an example, consider nodes of types Function and
Procedure as used in Figure 3.1. They have common properties such as outgoing aggregation
edges to nodes of types OpName, ParamList and Comment. It would be appropriate to de�ne these
properties only once in some abstract node type Operation. Then Function and Procedure node
types should inherit the common properties from Operation.

In practice, the data de�nition language should be tailored towards syntax graphs that the
DBSE is used to store. Common structures in syntax graphs are multi-valued aggregations or
references such as lists, sets and dictionaries of nodes. The data de�nition language should,
therefore, o�er the means to express these multi-valued edges as conveniently as possible.

3.2. DATA DEFINITION AND DATA MANIPULATION LANGUAGE 23

They often not only contain nodes of one type, but of a number of di�erent types. As exam-
ples, consider data ow diagrams that consist of a set of processes, terminators, stores and
ows [dM78]. The DDL should, therefore, facilitate the de�nition of this kind of heterogeneous
structures. Finally, structures in abstract syntax graphs may be nested. As examples consider
data ow diagrams where a process can be re�ned by another data ow diagram or procedure
declarations in Modula-2 that can contain nested procedure declarations. To anticipate these
structures, the DDL of the DBSE must be able to express recursive structures.

As argued previously, changes to the internal syntax graph should become incrementally per-
sistent. Therefore, edit operations performed by tools on documents have to be implemented
in terms of operations modifying the internal syntax graph. These operations should be es-
tablished as part of the DBSE schema mainly for two reasons:

Encapsulation: The structure de�nition of the project-graph should be encapsulated with
operations which preserve the graph's integrity. They then provide a well-de�ned inter-
face for accessing and modifying the graph. In order to enforce usage of this interface,
the operations must become part of the DBSE schema.

Performance: Executing graph accessing and modifying operations within the DBSE is more
e�cient than executing similar operations within tools. In the latter case a signi�cant
number of nodes and edges need to be transferred from the DBSE to tools via some
network communication facility, which is rather expensive in time.

To establish graph-modifying operations as part of the DBSE schema, the data manipulation
language DML must be powerful enough to express them. This means in particular, that the
DBSE's DML must be capable of expressing the creation and deletion of nodes and edges
as well as the assignment of attribute values. Moreover, the DML must be computationally
complete, as alternatives and iterations are needed in graph-modifying operations for graph
traversal purposes.

The DBSE should provide prede�ned operators to access and modify multi-valued aggregations
or references such as lists, sets and dictionaries. These operators should facilitate enumeration
of all nodes of these structures. Given the identity, a property or a position, there should be
operators to search for nodes contained in such structures. Finally, there should be operators
to update these structures through the insertion or deletion of a node.

Abstract syntax graph de�nitions for single document types have already become rather com-
plex. If we consider C++ class de�nitions, for instance, about 80 node types have to be
de�ned with their aggregation and reference edges because the subset of the C++ grammar
for class de�nitions has as many non-terminal and terminal symbols. In order to cope with the
complexity of the schema de�nition for the whole PSDE, which may contain several document
types, the DBSE's DDL must o�er structuring mechanisms for schemas. Then the overall
conceptual schema of a PSDE can be de�ned in fairly independent component schemas { one
for each tool. As these schema components must rely on de�nitions of other schema compo-
nents in order to implement inter-document consistency constraints, importing and exporting
schema de�nitions between components must be supported by the DDL.

24 CHAPTER 3. REQUIREMENTS ON DATABASES FOR PSDES

3.3 Views

In PSDEs, there are often instances of di�erent document types that provide di�erent views
of the same aspect of a software system. Most information contained in documents of early
phases (such as architectural or module interface design) is included in documents produced
in later phases (such as the module implementation). Hence, documents of di�erent types
often contain redundant information. The module interface design in Figure 2.1 on Page 5,
for instance, de�nes signatures of operations. The C implementation contains each of these
operations with the same names, and parameter lists matching the signature of the design.
If design and implementation of the module are considered as distinct documents, this leads
to a high number of inter-document consistency constraints. In the document representation,
this leads to redundant nodes in many abstract syntax graphs that must be related by inter-
document reference edges.

Eliminating this duplication by sharing the aggregation subtrees concerned has the following
advantages:

� storage of the schema and corresponding data requires less space,

� inter-document consistency preservation especially across document boundaries, is auto-
matically achieved, and

� the conceptual schema is simpli�ed.

Such sharing cannot be contemplated, of course, if automatic inter-document consistency
preservation between documents is inappropriate.

If subtree sharing is to be used, tools must use the same conceptual schema. In order to
maintain appropriate separation of tool concerns and so allow separate tool development and
maintenance, the DBSE must provide a view mechanism like that o�ered in many relational
database systems.

The view mechanism must allow for view de�nitions consisting of virtual node and edge types.
A virtual node or edge type declaration is based on a (real) node or edge type declaration
given in a conceptual schema. The set of all virtual node and edge type declarations of a view
de�ne structure and behaviour of a class of virtual abstract syntax graphs.

Instances of these virtual node and edge types are virtual as well. They are called virtual
nodes and virtual edges, respectively. They do not persist in the database, but are derived by
the view mechanism according to the virtual node and edge type type de�nitions from nodes
and edges stored in the database. These stored nodes and edges have been instantiated from
real node and edge types de�ned in the conceptual schema. Therefore, we call them real nodes
and real edges respectively. Accordingly, the abstract syntax graph they form is called real
abstract syntax graph.

As an example consider Figure 3.2. It depicts an excerpt of the abstract syntax graph from
Figure 3.1 with two virtual abstract syntax graphs de�ned on top of it. The two virtual syntax
graphs represent excerpts of a module implementation graph and a module interface graph.
Dashed lines indicate the relationship between virtual nodes and the real nodes they were
derived from.

The particular functionality required from a view mechanism for a DBSE is concerned with
how virtual node and edge types are de�ned based on real node and edge types. Not all node

3.3. VIEWS 25

Function

Comment

 Using
Type

OpName

 Param
List

...

Virtual Module Design Graph

Function

Comment

 Using
Type

OpName

 Param
List

Body Statement
List

 VarDecl
List

...

...

...
Virtual Module Implementation Graph

Function

Comment

 Using
Type

OpName

 Param
List

Body Statement
List

 VarDecl
List

...

...

...
Real Abstract Syntax Graph

Figure 3.2: Two Views of an Abstract Syntax Graph

and edge types de�ned in a conceptual schema need to be accessed in a view de�ned on top
of the schema. In the above example, it is not necessary for a view de�ning a virtual module
interface graph to include variable declaration lists and statement lists. Therefore, the view
mechanism must support the hiding of node and edge types de�ned in the conceptual schema
from one or the other view.

Even if a node type must be visible in a view, it may be appropriate to hide parts of its
declaration. Attributes, operations or edges starting from a node may only need to be visible
in some views while they are hidden in others. In the example above, function nodes have to
be visible in both views. As the body of a function need not be seen in the interface view, the
edge leading from a function node to a body should be hidden from the module interface view.
Moreover, it may be reasonable to build the interface and implementation tool in a such way
that changes to the interface are made in the module interface document only and inhibited
in the implementation. Therefore, operations for changing the signature of a function may be
hidden in the implementation view while they are available in the design view.

Some operations may be speci�c to only one view. Then it would be inappropriate to de�ne
them in the conceptual schema, for they would not be shared by di�erent views and have to be
hidden in all views but one. We, therefore, require that operations for accessing or modifying
virtual nodes or edges can be added to a view. Operations de�ned in a conceptual schema can
then also be rede�ned in a view. Then the operation from the conceptual schema would be
hidden �rst. After that its rede�nition would be added to the view.

Views are used by tools like editors that have to modify virtual abstract syntax graphs. There-
fore, views must be updatable, i.e. updates that tools perform on virtual nodes and edges must
transparently migrate into the database the view is built on. To make this updatability possible
we cannot have virtual node or edge types added to a view, but not de�ned in the conceptual
schema. If the node or edge type were de�ned on the relevant view only, which would be
attractive for the same reason as adding operations to a view would be, the view could not
be updated because the DBSE does not know of any real node or edge types upon which to
store, for example, new virtual nodes or edges.

26 CHAPTER 3. REQUIREMENTS ON DATABASES FOR PSDES

3.4 Schema Updates

In Subsection 2.2.1, we noted that existence and handling of inter-document consistency
constraints depends on the kind of software process used. It has been widely recognised,
that software processes cannot be fully anticipated, but may have to be changed \on the
y" [MS91, BFG93a].

If such a change results in the introduction of a new document type, the schema of the PSDE
needs to be updated with subgraph de�nitions for this new document type. The DBSE must,
therefore, enable new types of nodes and edges that are to be included in the project-wide
ASG to be de�ned. Existing nodes and edges must not be a�ected by this kind of schema
update. Consider as an example the introduction of a new document type ReviewReport. This
new type may be introduced due to a process change requiring that each module interface
de�nition be reviewed before implementation can start. If this report consists of sections for
each reviewed module and subsections for each operation de�ned in a module, new node types
for the review report, its sections and subsections will have to be de�ned together with the
aggregation edges connecting them.

The introduction of a new document type may also require changes to existing document
types. If a new document type is introduced, inter-document consistency constraints of existing
document types may also have to be changed. Thus, in the structure de�nition of existing
subgraphs, additional reference edge types to the subgraph of the newly introduced document
type have to be added. In the above example, for instance, new inter-document reference edges
between nodes in a module interface graph and sections or subsections in a review report have
to be de�ned.

If document types are changed in this way, there is a need to update already existing documents
of these types in such a way that they conform to the new de�nition. This database update
cannot be done automatically by the DBSE, but needs to be speci�ed by the PSDE builder.
For newly introduced node and edge types, nodes and edges have to be created according
to the current state of the database. Then new inter-document reference edges may have to
be created between existing nodes and new nodes. In the above example, a review section
or subsection node must be created for each module and each operation. Then these new
nodes must be related by inter-document reference edges to module and operation nodes in
the module interface subgraphs.

Once speci�ed, the DBSE must execute these kinds of database updates. This could be done
at one point in time with an eager strategy that updates all existing documents of the changed
type according to the update speci�cation. This, however, requires a PSDE shutdown which is
not possible generally. Therefore, the DBSE should also o�er a lazy update strategy in which
the DBSE executes the document update whenever a document with an out-dated structure
is accessed. As a matter of fact, the DBSE then has to maintain a history of schema updates
which will slow down the overall PSDE performance.

3.5 Version Management

Given the overall representation of a project as de�ned in Section 3.1, the DBSE must sup-
port management of versions of those subgraphs that represent versionable documents. This

3.5. VERSION MANAGEMENT 27

requires that the DBSE o�ers a concept for de�ning subgraphs. Subgraphs may be de�ned
statically in the schema or dynamically at run-time. For a static de�nition, the DBSE's DDL
must provide language primitives for distinguishing aggregation edges from reference edges. A
dynamic de�nition requires a prede�ned type that can be used for implementing subgraphs.
This type must o�er operations for including and removing nodes and edges to or from the
subgraph. Static de�nition is more e�cient in terms of space and time since for any existing
project-wide graph no further actions are required to identify the subgraphs that implement
documents. Dynamic de�nition of subgraphs is more exible, since arbitrary components of
the project-wide abstract syntax graph can be identi�ed as a subgraph.

The particular functionality required for version management of subgraphs is that, during
creation of a root node of a subgraph, an initial version or root version must be created as
well. Versions must have a name called version label for accessing them. Therefore, the DBSE
must o�er facilities for de�ning version labels. The DBSE must then support derivation of a
new version of a subgraph from a particular version of the subgraph. It must maintain the
version history between di�erent versions of a subgraph, i.e. the DBSE must keep track of
the predecessor/successor relationship between di�erent subgraph versions. It must facilitate
navigation along predecessor/successor relationships. Moreover, the DBSE must support a
tool session in selecting a current version of a subgraph so that all its nodes and edges are
seen in the state of that version. In addition, the system must support the de�nition of default
versions of subgraphs which are persistently stored and used to determine accesses to nodes
and edges when no current version has been explicitly selected.

Function

Comment

 Using
Type

OpName

 Param
List

 ADT
Module

Comment

 Type
Name

 Operation
 List

 Imp
Module

 Import
List

 Import
Interface

Window Version 0.0

’TWindow’

’Window’

’CreateWindow’

’/* defines a type...’

’BasicTypes’

ModName

Function

Comment

 Using
Type

OpName

 Param
List

 ADT
Module ModName

Comment

 Type
Name

 Operation
 List

 Imp
Module

 Import
List

 Import
Interface

 In
Param ParName

 Type
Import

version duplicated edge
version specific edge

successor edge

UsingType

’Window’

’TWindow’

’CreateWindow’ ’name’

’STRING’’TWindow’

’BasicTypes’

’STRING’

ModName

Comment

 TC
Module

 Type
NameList

 Type
Name

 Type
Name

 Type
Name

 Type
Name

 Type
NameBasicTypes Version 0.0

’BasicTypes’

’STRING’

’BOOLEAN’

’CHAR’

’INTEGER’

’CARDINAL’

’/* defines a type...’

’/* creates a new window */’

Window Version 0.1

Figure 3.3: Versions of Subgraphs of the Project-Wide Abstract Syntax Graph

Figure 3.3 depicts earlier subgraph versions of the module interface graphs displayed in Fig-
ure 3.1. The two subgraphs that represent module Window and module BasicTypes are under
version control. Currently two versions of Window exist. They are labelled Version 0.0 and
Version 0.1. There is a successor edge between these two subgraph versions indicating that
Version 0.1 is a successor of Version 0.0.

28 CHAPTER 3. REQUIREMENTS ON DATABASES FOR PSDES

After two subgraph versions have been derived from the same predecessor, they may have to
be merged. We note that this merging cannot be done completely by the DBSE, but requires
additional actions by a tool. In case of conicting changes in the two subgraph versions where
the same nodes have been modi�ed, the DBSE cannot decide which version of the node to
take. Instead, this has to be determined by the tool user. The basic mechanism a tool builder
requires from a DBSE is that it can merge two subgraph versions in the version derivation
graph and provides a primitive to �nd the di�erence in terms of nodes and edges between
di�erent versions of the same subgraph.

We also note that the DBSE need not o�er the means for freezing versions. During con�gura-
tion management, changes will be required to subgraph versions, although the corresponding
document is considered frozen. These changes might have to create or delete reference edges
that keep track of a new semantic relationship between document versions. Changes of at-
tribute values might be required during inter-version consistency checks. These changes are
impossible if the subgraph is frozen. As a consequence, the DBSE must not impose the same
behaviour on subgraph versions that we had required for document versions, but it must enable
changes to be made to subgraphs that have successor versions. In fact, the mechanism that
freezes documents cannot be implemented in the database, but must be implemented within
tools.

Within versioned subgraphs the DBSE must resolve between fully lazy and fully eager du-
plication strategies for nodes and aggregation edges of the subgraph concerned. Fully lazy
duplication gives maximum sharing of components, and hence minimum storage usage, but
complicates the update process during user edits. Fully eager duplication avoids all such
complications, but implies maximum storage usage.

The DBSE must also decide between alternative strategies for handling both intra- and inter-
document relationships (or reference edges). Intra-document reference edges will normally be
treated (like aggregation edges) as version-duplicated (i.e., a new edge is automatically created
for each version created). Inter-document reference edges may be seen as version-speci�c (and
hence not duplicated when new versions are created). Version-speci�c edges then represent
relations between document versions within a con�guration.

In the example given in Figure 3.3, aggregation and intra-document reference edges are con-
sidered as version-duplicated. Therefore, the edges that connect using types with the nodes
where the types are declared are drawn as a solid shape. Inter-document reference edges are
considered as version-speci�c, since they form particular con�gurations of subgraph versions.

3.6 Transactions

In Subsection 2.3.2 we required integrity preservation and immediate persistence for command
execution in tools. To implement this, we require the means from the DBSE to group a set of
operations that access or modify the abstract syntax graph to one unit. We call these units
transactions in the following. A transaction is started by a tool before it begins to execute a
command. It, therefore, issues a start transaction request to the DBSE. Then the tool performs
the operations necessary to execute the command. When �nished it completes the transaction
by issuing a commit request to the DBSE. If it detects an intolerable error, the tool may also
explicitly request a transaction abort. This undoes the e�ect of the current transaction and
recovers each modi�ed node and edge to the state it had when the transaction was started.

3.6. TRANSACTIONS 29

In general, we require transactions to have ACID properties as suggested in [Gra78]. Due to
the atomicity property, transactions are either performed completely or not at all. Due to the
durability property, the e�ect of a completed transaction in every case persists in the database.
The consistency2 preservation property ensures that after completion of a transaction, the
abstract syntax graph is in an integer state and tools can continue using it. Finally, the
isolation property ensures that the e�ect of a transaction is independent of other concurrent
transactions. Hence the isolation property of transactions contributes to the multi-user support
required in Subsection 2.2.3. To achieve isolation of transactions, the DBSE has to apply a
concurrency control protocol. The most common protocol is two-phase locking [BHG87].
During this protocol nodes and edges are locked by the DBSE as soon as they are accessed
by tools, i.e. locking should be transparent to tools. During commit or abort all locks of the
transaction are released at once.

If a node or edge is accessed without being modi�ed, the DBSE only has to lock it in read
mode. If it is modi�ed, the DBSE has to lock it in write mode. Read locks are compatible
with each other, i.e. the DBSE can grant arbitrarily many read locks for a node or edge.
Unlike read-locks, write locks are neither compatible with read locks nor with write locks.
This implies that if a transaction obtains any lock on a node or edge, another concurrent
transaction cannot acquire a write lock on the same node or edge.

This strict concurrency control protocol is appropriate in syntax-directed tools for the following
reasons. Command execution in tools only lasts for a very short period of time, say less than
some hundred milliseconds. During this time, only a few nodes are modi�ed. In addition,
it is unusual for two or more users to edit the same document concurrently. Therefore, the
only node accesses that could possibly result in concurrency control conicts are node accesses
along inter-document reference edges. They e�ectively cause a concurrency control conict
only if another tool concurrently accesses the remote node in an incompatible mode. In these
rare cases the tool can await completion of the concurrent transaction before it gets the lock
granted. Users will hardly ever notice these short delays.

In even rarer cases, it can happen that concurrent command execution results in a deadlock,
because two-phase locking ensures serialisability, but is not deadlock-free. Consider that a
transaction executing one command has locked a set of nodes and edges while another trans-
action has locked another set of nodes and edges. If both transactions now try to lock a node
or edge the other transaction has already locked in an incompatible mode, a deadlock will
occur. We require the DBSE to detect these deadlocks and inform the tools about them. The
tools can then ask their users to abort the command execution and retry it later. If one user
aborts, the deadlock will be resolved without losing signi�cant e�ort. The tool will recover to
the state it was in before the aborted transaction started.

In many cases a PSDE builder knows that concurrency control conicts cannot occur. If
we consider an editor for a programming language like Modula-2, for instance, and assume
that only one user is responsible for one module, then concurrency control conicts cannot
occur during edit operations on statements, comments, parameter names and local variable
declarations. If two-phase locking is used for these operations, the DBSE will use unnecessary
e�ort checking for concurrency control conicts. If the DBSE o�ers a weaker transaction
concept which we call activity in the following, the transaction throughput can be increased
signi�cantly. These activities need not guarantee isolation of the group of operations they

2This notion of consistency is at a lower level and must not be confused with static semantics or inter-
document consistency. For the DBSE any syntax graph is consistent, even though it might represent a completely
inconsistent document, as long as the graph conforms to the schema de�nition.

30 CHAPTER 3. REQUIREMENTS ON DATABASES FOR PSDES

execute, but only ensure atomicity and durability. These two properties are needed to preserve
the integrity of the project-wide abstract syntax graph against any kind of hardware or software
failures. During a tool session, both transactions and activities may have to be used in an
arbitrary sequence. As an example, consider that the user of the Modula-2 editor wants to
change a procedure name after he or she has changed a comment. Changing the procedure
name must be performed as a transaction, since other concurrent users may, at the same time,
create an import relationship in one of their modules importing the changed operation.

We note that we do not require any advanced transactions such as nested transactions [Mos85],
design transactions [KSUW85, Kat84], group transactions [Kel89], CAD transactions [BKK85]
or split/join transactions [KHPW90] from the DBSE. All these advanced transactions assume
patterns of cooperation between users of a PSDE, which do not apply in general. Therefore,
these advanced transactions cannot be built into the DBSE, but should rather be de�ned
explicitly by the process model and be implemented by the process engine. The DBSE and
the tools only have to o�er the basic mechanisms to enable the process engine to do so. As
argued in [Wol94], ACID transactions, together with the means for versioning documents, are
su�cient for this purpose.

Note also that version management with lazy node duplication interferes with concurrency
control. Assume that a node is shared by two versions V1 and V2. If one transaction modi�es the
node in version V1, while some other transaction accesses the node in version V2, a concurrency
control conict arises. This conict is not serious and should not cause one of the transactions
to be blocked or even aborted. Instead, the shared object is split into two versions and the two
concurrent transactions continue to be executed. This, of course, requires concurrency control
management to be aware of the versioning strategy. Thus, the lazy duplication strategy for
version control must be implemented inside the DBSE together with the basic concurrency
control. It is impossible to implement it on top of a DBSE that does not support versions of
subgraphs.

3.7 Performance

The performance that a tool builder requires from a DBSE is determined by the performance
a user requires from a tool. To discuss this thoroughly, we have to consider the command
execution cycle of tools. It is depicted as a state transition diagram in Figure 3.4.

The diagram displays states of a tool as circles, and transitions between them as arrows.
Transitions in this diagram reect the operations the tool executes. After start-up, the tool is
in the state where no increment is selected. When the user moves his or her pointing device
to an increment and pushes a button in order to select the increment, the tool has to respond
by high-lighting the respective part of the document at the user interface. A response time
acceptable for this would be less than half a second. This, however, is non-critical from the
DBSE performance point of view, since the abstract syntax graph stored in the DBSE need
not be accessed at all in order to perform this operation.

To perform command selection from a pop-up menu, the database is needed only to validate
the preconditions of menu entries during menu computation. Therefore, only some navigation
along edges and accesses to nodes are needed that again should be performed in less than half
a second.

3.8. DISTRIBUTION 31

In
cr

em
en

t

Sele
cti

on

Transaction

Start

Unparsing

Increment
Selection No

Increment
 Selected

Increment
 Selected

Display
Updated

Trans−
action
Started

Command
Selection

Command
 Selected

 Command
 Failed

Command

Execution

Com
m

an
d

Exe
cu

tio
n

Transaction/

Action AbortTransaction/

A
ction C

om
m

it

Command
 Succeeded

Figure 3.4: Command Execution Cycle of Syntax-Directed Tools

After a user has selected a particular command, a DBSE action or transaction respectively
must be started depending on whether the successive operations could cause a concurrency
conict or not. After that, operations de�ned in the schema for accessing and modifying
the abstract syntax graph are executed. The number of edges that need to be traversed
or created and the number of nodes that must be accessed or created range from a few,
when inserting a template, to some thousand, when parsing a large text after free textual
input. A command execution may fail or succeed. If it fails, the transaction/action must be
aborted. If it succeeds, all nodes of the abstract syntax graph, which were changed during
the transaction/action execution must be unparsed, i.e. redisplayed at the user interface, and
their presentations must be associated with the node identi�ers. Again these may be a few,
up to some thousand. Then the database must perform a transaction/action commit. When
operating tools in the structure-oriented mode, users are hardly willing to accept a gap of
more than one second between transaction/action start and commit or abort. The acceptable
response time for parsing an increment after free textual input may increase with the size of
the input text.

3.8 Distribution

Most PSDEs run on workstations connected via a local area network in which each user works
at one workstation. In order to bene�t from the computational power of modern workstations
and not to produce a bottleneck of the PSDE on a centralised host, tools of a PSDE should
be executed on the user's workstation. Then, however, a need for distribution of documents
or at least distributed access to documents and distributed tool communication arises.

When a DBSE is used to store the project-wide abstract syntax graph in a database, a database
monitor has to implement the concurrency control protocol. Therefore, tools cannot directly
access nodes and edges, but have to communicate their access requests to the database monitor
and await the monitor handling their requests. Both tools and monitor require a signi�cant
number of computations to ful�l their duties. To achieve a PSDE performance acceptable for

32 CHAPTER 3. REQUIREMENTS ON DATABASES FOR PSDES

a number of concurrent users, execution of database monitors and tool processes should be
distributed in order to balance the load over several machines.

Tool1 Tool2 Tool3

Display1 Display2

OS Interprocess Communication

OS Communication to external device

Process

MachineDatabase Monitor

DB DBDB1 2 3

Figure 3.5: Centralised Architecture

Figure 3.5 depicts a model where this is not the case. Database monitor and tool processes
are executed on the same host. The monitor and tools use facilities provided by the operating
system, such as shared memory, message queues or semaphore sets for their inter-process
communication. The advantage of this model is that inter-process communication facilities
provided by the operating system perform fast. The severe disadvantage is that all tools
must be executed on the same host. In fact, they have to share the host's resources such as
virtual memory or CPU-time. The performance of each tool will decrease as the number of
concurrent tools increases. Hence the host will become a performance bottleneck as soon as a
certain number of concurrent tools is reached.

DB

Tool1 Tool2 Tool3

Display1 Display2

OS Communication to external device

Process

MachineDatabase Monitor

Network Interprocess Communication
DBDB

1 2 3

Figure 3.6: Client/Server Architecture

To avoid this situation, the obvious strategy is to use a client/server architecture and have
tools running on possibly di�erent client hosts and the database monitor on a server host. This
model is depicted in Figure 3.6. As a consequence, communication between database monitor
and tools can no longer be implemented by operating system primitives, but network commu-
nication protocols such as sockets or remote procedure calls must be used. The advantage of
this is that the load directly caused by tool execution is removed from the server host.

In Section 3.2 we required the DBSE's schema to de�ne all syntax graph accesses and mod-
i�cations. There are two options on where to execute these operations. The �rst option is a

3.8. DISTRIBUTION 33

DB

Tool1 Tool2 Tool3

Display1 Display2

OS Communication to external device

Process

Machine

Database Monitor

Network Interprocess Communication

Database
Engine

Database
Engine

Database
Engine

DBDB1 2 3

Figure 3.7: Client-based Client/Server Architecture

server-based client/server architecture, where the database monitor would execute access and
modi�cation operations, receive operation parameters from tools and communicate operation
results back to tools. This could still result in a performance bottleneck on the server host,
for a great deal of the functionality of tools is implemented by graph access and modi�cation
operations. The other option which remedies this problem is sketched in Figure 3.7. In this
client-based client/server architecture the part of the database system (called database engine
in the following) that executes operations de�ned in the schema is linked with the tool. The
engine is, therefore, executed in the same operating system process as the tool. Thus commu-
nication of the tool with the database engine is achieved by procedure calls that perform fairly
e�ciently. The duties that remain with the database monitor are concurrency control and
elementary operations on raw data called pages that it has to communicate via some network
communication protocol to processes running the database engine. Hence the server hosting
the database monitor is further relieved from load compared with server-based client/server
architectures.

Database monitors access pages either directly on raw disk devices or indirectly via the op-
erating system's �le-system. If the latter is the case, the host running the database monitor
may be further relieved from load by storing raw data on disks that are connected to other
hosts. This is sketched in Figure 3.8. Then the database monitor must use network �le-system
facilities. The server running the database monitor becomes a client of some other �le servers.
We, therefore, call this architecture multi-level client/server architecture.

In the previous model, any access a tool performs to a node or edge of the project-wide
abstract syntax graph must be processed by the database monitor. Therefore, even multi-level
client/server architectures cannot be used in arbitrary large projects. The distributed database
architecture sketched in Figure 3.9 no longer assumes only one monitor process and allows for
multiple database monitors. Each of these monitors controls a set of local databases. Tools
are still served by one monitor. Accesses of a tool to a remote database must be transferred
from the local monitor to the respective remote monitor and be handled there.

In practice, hybrid architectures that combine di�erent distribution paradigms may be used.
Database monitors of distributed database systems, for instance, can store their raw data on

34 CHAPTER 3. REQUIREMENTS ON DATABASES FOR PSDES

Tool1 Tool2 Tool3

Display1 Display2

Database Monitor

OS Communication to external device

Process

Machine

Network Interprocess Communication

Database
Engine

Database
Engine

Database
Engine

DB DBDB1 2 3

NFS Server NFS Server

Figure 3.8: Multi-level Client/Server Architecture

Tool1 Tool2 Tool3

Display1 Display2

Database Monitor

OS Communication to external device

Process

Machine

Network Interprocess Communication

Database
Engine

Database
Engine

Database
Engine

DB1 DB
2

DB
3

Database Monitor

Figure 3.9: Distributed Database Architecture

other �le servers. Similarly, the database engine in distributed database systems may reside
with the database monitor or be linked with tools.

In short, we require from the DBSE at least distribution support based on a client-based
client/server architecture or a multi-level client/server architecture. For large projects, ac-
ceptable performance will not be achieved without a distributed database architecture. The
disadvantage of using a distributed database architecture is that it will incur additional ad-
ministration overheads as several database monitors must be controlled and data distribution
be administered. Moreover, the two-phase locking protocol will no longer be su�cient for
concurrency control. Instead a two-phase commit protocol will be required.

3.9. ADMINISTRATION 35

3.9 Administration

Data stored in the DBSE is probably the most important resource of a software house and
must, therefore, be securely protected against hardware failures such as disk crashes. There are
several options to achieve data security. The obvious solution is to dump project-wide ASGs
on backup media, like tapes or optical disks. Therefore, the DBSE must o�er backup facilities.
As the size of a project database may be too large to be completely backed-up daily, the DBSE
must allow for incremental backups. For daily incremental backups, the PSDE administrator
should not have to shut down the database since software production must not be disturbed
by these administration procedures. In the event of a disk crash, the PSDE administrator
then needs a facility for restoring the contents of a database from the backup-media. The
second option to achieve security against hardware failures is replicated storage. Therefore,
the DBSE must o�er facilities to the PSDE administrator for de�ning one or more replicas of
a master database. It must then transparently perform any operation the PSDE executes on
the master database on all replicas as well. In the event of a disk crash a replica may be taken
as the new master database and a new replica can be created. Replication may additionally
slow down DBSE performance, but has the advantage that in the event of a crash no data
is lost at all and PSDE operation can continue without too long an interruption. In the �rst
approach, DBSE performance would be decreased only slightly during backup. It is not as
safe as replication, as all changes made after the last backup will be lost. Moreover, it could
result in a signi�cant PSDE stoppage: To restore a database from one full backup and a set of
incremental backups the full backup must be restored �rst and then each incremental backup
must be added successively.

Additional administration e�ort is required for a DBSE with a distributed database architec-
ture. The administrator has to decide which machine should host tool processes for which
users. The administrator must then designate machines that host database monitors. Next it
must be determined which monitors shall serve which tool processes, after which the databases
must be set up in a way that communication between database monitors is minimised. During
PSDE operation, network tra�c between database monitors must be monitored in order to
�nd out if there are any subgraphs located in the wrong database. If these are found, the
PSDE administrator must transfer subgraphs to di�erent databases.

3.10 Interfaces

The DBSE is used by di�erent kinds of users, namely tool builders, the PSDE administrator
and tool users, in di�erent ways. The PSDE administrator needs a user interface which allows
him or her to browse through an abstract syntax graph from an administrative point of view.
A backup tool is required to perform incremental or full backups.

In order to enable a tool builder to install, view and test a schema, the DBSE must o�er a set
of tools. To install the schema, the DBSE must provide a compiler for the DDL and DML. As
the schema of a PSDE will become rather complex the compiler should work incrementally.
To review the current state of the schema, a tool builder needs a schema browser. We require
operations that access and modify the project-wide abstract syntax graph to be part of the
schema. After these operations have been established, the tool builder will have to test and
debug the operations. Therefore, the DBSE must provide some schema debugger that enables
execution of operations, inspection of the state of the abstract syntax graph with a graphical

36 CHAPTER 3. REQUIREMENTS ON DATABASES FOR PSDES

object browser, computation of execution traces, inspection of the call stack and handling of
breakpoints.

We cannot assume that tools can be completely implemented within the database schema. The
user interface required from tools, for instance, requires the use of powerful user interface man-
agement systems. Although most database systems provide some UIMS support, for instance
to de�ne forms, the functionality o�ered must be considered as too weak for the construction
of syntax-directed tools. For this reason, a tool architecture must have a subsystem which
arranges for the presentation of documents and menus. This subsystem must be built on top
of some UIMS and be written in a standard programming language.

Then, however, the need arises to access the schema's data structures and operations from
a programming language. This is needed �rstly to present documents, which are stored as
subgraphs of the project-wide abstract syntax graph within the DBSE, at the user interface.
To compute the document representation, the presentation subsystem must be able to nav-
igate through the abstract syntax graph. Secondly operations de�ned in the schema need
to be executed as soon as the user has chosen to execute a command. To actually execute
a command, operations de�ned in the DBSE schema must be performed. The DBSE must,
therefore, provide a programming interface to achieve this binding with one or more program-
ming languages.

Moreover, the presentation subsystem must arrange for an association of increments at the
user interface with nodes in the abstract syntax graph. Only then can it manage to invoke
the operations de�ned in the schema for the currently selected increment. This association
can best be achieved if the DBSE o�ers unique node identi�ers in the programming language,
representing nodes of the project-wide abstract syntax graph. They can then be used to
associate nodes with increment presentations.

3.11 Summary

We require the following functionality from a database system in order to use it as a DBSE.
The system should support the de�nition of structure and operations for project-wide abstract
syntax graphs in a set of schemas. It should o�er a view mechanism to allow di�erent kinds
of tools to share subgraphs without losing the ability to develop tools separately. As software
processes evolve over time, DBSE schemas must be changed, even though project-wide ab-
stract syntax graphs may already have been instantiated. Therefore, the DBSE should update
existing abstract syntax graphs according to the schema change as well. To keep track of the
development history of documents the DBSE should be able to maintain di�erent versions of
subgraphs of the project-wide abstract syntax graph. To preserve the integrity of project-wide
abstract syntax graphs and allow for concurrent access of multiple users, the DBSE must o�er
ACID transactions. The performance of the DBSE should be so fast that tool commands can
be executed in less than 1000 milliseconds. The DBSE should o�er the means for distribution
with a client/server architecture in order to allow for a number of concurrent users without
giving up the above performance requirements. Beyond a client/server architecture, databases
may have to be distributed in order to support even larger numbers of concurrent users. For
purposes of data security and performance tuning, the DBSE should o�er functionality to sup-
port a PSDE administrator. Finally, the DBSE should o�er a set of di�erent user interfaces
to a PSDE builder and a PSDE administrator as well as a programming interface.

Chapter 4

Selecting a Database System

In this chapter, we shall review a number of classes of database systems, namely relational
DBSs (RDBS), structurally object-oriented DBSs (SODBS) and object DBSs (ODBS), with
reference to the requirements delineated in the previous chapter. The aim of this chapter is
thus to select the most appropriate class and then the most appropriate system of this class
as the further basis for tool construction.

Assessment with respect to functional requirements on database systems can be done analyt-
ically using the requirements presented in the previous chapter. Therefore, we shall present
the distinguishing features of database systems of the above classes and discuss how well they
meet the functional requirements. Evaluation of database system performance is more di�cult,
for it requires systematic, practical experimentation [DEL92]. This is why we start with an
excursion to the problem of database performance evaluation in Section 4.1. We present our
methodology for developing application-speci�c benchmarks for performance evaluation pur-
poses and then develop the Merlin Benchmark using this methodology. The following sections
assess the di�erent classes of database systems. To assess their performances we implement
the Merlin Benchmark with archetypical representatives of the di�erent classes and discuss the
impact of the benchmark results on the performance of tools. In Section 4.2, we assess rela-
tional database systems. In Section 4.3, the suitability of structurally object-oriented database
systems is discussed and in Section 4.4 we explore object database systems.

4.1 Performance Evaluation of Database Systems

The general strategy to evaluate the performance of a system a-posteriori, i.e. after the
system has been constructed, is to de�ne and execute benchmarks1. A benchmark de�nes a
synthetic load that approximates the load of a set of real applications. Benchmarks can be
classi�ed into atomic benchmarks, which perform a single operation, or complex benchmarks,
which include a set of distinguishable operations. Atomic benchmarks are, for instance, the
Whetstone Benchmark [CW76] or the Dhrystone Benchmark [Wei84] for measuring operating
system performance. Their result is given either by the execution time for their operation or
the reciprocal value, i.e. how often the operation can be executed within a given amount of
time. Examples of complex benchmarks are the Wisconsin [DeW91] Benchmark for relational

1Performance modelling and simulation, i.e. a-priori performance evaluation of a system that is under
construction is outside the scope of this thesis since we do not want to build a database system.

37

38 CHAPTER 4. SELECTING A DATABASE SYSTEM

databases or the Sun Database Benchmark [CS92]. Their result is a vector of execution times
rather than a single value. Comparison of their results is not as simple as it is for atomic
benchmarks since they do not necessarily reveal an order between the systems. On the other
hand, complex benchmarks allow performance comparison of systems with respect to di�erent
criteria. As we want to compare database systems with respect to several concerns, we only
consider complex benchmarks for our evaluation problem.

Measuring execution times is based on operating system primitives and can be given in di�erent
terms. For the area of database system performance evaluation, the most important execution
time is the elapsed real-time of an operation. Only this time will indicate how long a user of a
tool will have to wait for a database system to complete an operation. We are not interested
in the CPU time, which is the time the CPU spent on the execution of an operation, or in the
system time, which is the time the system spent waiting on external devices. Execution times
in this thesis, therefore, indicate the real-time that elapses during an operation execution.

Database systems of the di�erent classes di�er signi�cantly with respect to the provided func-
tionality, the data model and the programming interface. Due to the lack of established
standards in structurally object-oriented and object database systems, even systems of the
same class di�er signi�cantly. This heterogeneity prevents the de�nition of a benchmark as a
uniform piece of source code like the Whetstone, Dhrystone, Sun or Wisconsin Benchmarks.
The benchmark de�nition, therefore, has to be de�ned on a more abstract level than source
code. We, therefore, call these benchmarks abstract benchmarks. It will basically be a concep-
tual schema plus a number of operations based on the entities de�ned in the schema. Finally,
one or more initial database states must be determined. The benchmark then has to be
implemented for each di�erent database system whose performance is to be evaluated.

4.1.1 Existing Abstract Database Benchmarks

Three abstract database benchmarks have been de�ned. The �rst one is the so called Sim-
ple Benchmark [DHS+91, DEL92]. The second one is the Hypermodel Benchmark de�ned
in [ABM+90]. The recently suggested OO7 Benchmark [CDN93] has gained substantial ac-
ceptance for comparison of object database systems. We outline the de�nitions of each of
these benchmarks in the next subsection to be able to explain why they cannot be used for
evaluating database performance of software engineering applications.

To simplify the comparison, we use a common notation for describing the conceptual schemas
of the three di�erent benchmarks. We select the entity relationship notation suggested
by [BPR88] since it can express inheritance and ordered relationships which are used in the
benchmark. In this notation, a rectangle represents an entity2. A solid arrow between entities
represents an aggregation relationship. Its semantics are that no object can exist without
being related in an aggregation to an existing object, i.e. the aggregation relationship models
the part-of/belongs-to relationship. Dotted lines model reference relationships. At the end of
arrows or lines, black circles represent a many-end of a relationship, and white circles repre-
sent a one-end. A circle placed on a line declares the relationship to be ordered. Attributes
of entities are described within the rectangle, whereas attributes of relationships are shown
in a circle connected to the resp. arrow. A triangle on a line between entities indicates an
inheritance relationship meaning that a sub-entity inherits all attributes from its super-entity
and can participate in the same relationships as the super-entity.

2In the following, entity and type are used synonymously, whereas object denotes an instance of an entity.

4.1. PERFORMANCE EVALUATION OF DATABASE SYSTEMS 39

4.1.1.1 The Simple Benchmark

The Simple Benchmark was de�ned in order to measure the performance of elementary OMS
operations. The conceptual schema for this benchmark (as well as for the others in this thesis)
is shown as an extended Entity-Relationship Model (EER-model) in Figure 4.1.

longfield

BIG

SMALL

str10
str80
str160

DIR

DIRREL

MNREL

str10

str80

str160

Figure 4.1: EER-Diagram for the Simple Benchmark

Objects of type DIR model a composite object, which is composed of a number of other ob-
jects. DIRRELmodels the composition relationship. Component objects can have di�erent sizes.
Small objects represent, for instance, syntax graph nodes that have three small attributes. Big
objects have an additional long-�eld attribute that can be used to store long comments, for in-
stance, or source code or even compiled object code. Apart from the composition relationship,
the benchmark considers reference relationships and de�nes a relationship MNREL that models
references between small and big objects. MNREL, in addition de�nes three small attributes.

The operations of the Simple Benchmark include creation and deletion of small and big objects,
as well as creation and deletion of relationships between them. Furthermore operations on
attributes of entities and relationships such as storing and retrieving strings of lengths 10, 80,
and 160 bytes or long-�elds of the lengths 10 and 128 KBytes are de�ned.

The benchmark requires that the operations access and modify a non-empty database. This
avoids the possibility that objects accessed by the operations will reside only in database caches
(i.e. in main memory). A realistic size of an initial database, created before performance
measurements start, guarantees that operations have to access secondary storage (as usually
happens in real applications). The Simple Benchmark requires the initial database to contain
3,000 objects of type SMALL and 400 objects of type BIG.

4.1.1.2 The Hypermodel Benchmark

The Hypermodel Benchmark di�ers from the Simple Benchmark in using more complex data
structures and operations. The benchmark is a development for comparing databases with
respect to hypertext applications.

The conceptual schema of the Hypermodel Benchmark is shown in Figure 4.2. It includes
three di�erent entities, namely Node, TextNode, and FormNode. TextNode and FormNode are
subtypes of Node. Nodes represent sections of a hypertext, which are further structured.

40 CHAPTER 4. SELECTING A DATABASE SYSTEM

uniqueId
ten
hundred
thousand
million

text
TextNode

bitmap
width
height

FormNode

parent/children

refTo/refFrom partOf/parts

Node

offsetFrom

offsetTo

Figure 4.2: Conceptual Schema of the Hypermodel Benchmark

TextNodes represent an unstructured text and FormNodes represent a bitmap. Three rela-
tionships are de�ned, namely the parent/children relationship, the partOf/parts relation-
ship and the refTo/refFrom relationship. The parent/children relationship is of cardinality
1:n, ordered and de�nes the aggregation structure between nodes. The m:n partOf/parts

relationship models the section/subsection structure of a hypertext and the m:n relationship
refTo/refFrom models arbitrary hypertext links. Each Node has a unique identi�er and four
attributes (ten, hundred, thousand, and million) for storing randomly selected numbers of
a particular range. A TextNode contains an additional text attribute and a FormNode has three
attributes. Width and height store the dimensions of a picture and a long-�eld attribute bitmap
stores the picture itself. The refTo/refFrom relationship contains two attributes, offsetFrom
and offsetTo, that store relative coordinates of hypertext links within text attributes.

The operations of the Hypermodel Benchmark include mainly retrieval operations such as
queries for attributes with particular names or attribute values in particular ranges, lookups
for node sets connected by the above mentioned relationship in normal or reverse order, and
�nally, operations performing a sequential scan and a transitive closure traversal following
di�erent relationships. The only update operations substitute words in the text attribute of
a text-node and inverts a sub-rectangle within the bitmap attribute of a randomly selected
FormNode. A detailed description of these operations is of no concern for this thesis.

The initial database contains a balanced tree of nodes and father/children relationships. The
size of the initial database depends of the height of this tree. Each inner node is of type
Node and has exactly �ve children. Each leaf node is either of type FormNode or TextNode.
The partOf/parts relationship is created for each node by selecting one inner node of level k
and relating it to �ve random nodes at level k+1. The refTo/refFrom relationship is created
for each node to another random node. Nodes are numbered and the numbers are stored
in the uniqueId attribute. Ten, hundred, thousand, and million are initialised by random
numbers selected from the corresponding interval. Each attribute of objects of type TextNode

is initialised with a text containing up to 100 words, each word having up to ten characters.
A formnode consists of a random square bitmap with an edge length of up to 400 pixels.

4.1. PERFORMANCE EVALUATION OF DATABASE SYSTEMS 41

4.1.1.3 The OO7 Benchmark

The OO7 Benchmark is intended as a yardstick for comparing the performances of ODBSs
when they are used in complex engineering applications such as CAD, CAM or CASE. There-
fore, the benchmark is more complex than the Simple or the Hypermodel Benchmark.

ComplAssembl

id
buildDate
type

Assembly

BaseAssembly

Document

id
title
text

id
buildDate
type

CompositePart

AtomicPart

id
buildDate
x
y
docId
type

ToDocToAtomicParts

length

ToCompositePart

type

relatedParts

parent/
children

ToManual

Figure 4.3: Conceptual Schema of the OO7 Benchmark

The conceptual schema of the OO7 Benchmark, displayed in Figure 4.3, includes six entities.
All the entities have an attribute idmodelling a unique object identi�er. Entity CompositeParts

models design primitives of the application area such as a register cell in chip design or a
procedure in a programming language. A composite part has a buildDate attribute storing
information about object creation time and a string attribute for storing type information
of composite parts. Each composite part has a reference relationship to one documentation
object, i.e. an instance of entity Document. Documents have a string attribute for storing a
title and a long �eld attribute for storing text. A composite part is composed of a set of
atomic parts. These parts model statements in procedures or gates in register cells. They
have a number of small attributes that store graphical coordinates, type information, creation
time and the like. In addition to the aggregation relationship, atomic parts can have reference
relationships with each other. The set of all composite parts model a library of which complex
designs or programs can be composed. The entity Assembly with its sub-entities ComplAssembl
and BaseAssembly, as well as the aggregation relationships between them, determine this com-
position. Complex assemblies are composed by the parent/children relationship from a set of
other assemblies, i.e. either complex or base assemblies. A base assembly, in turn, is composed
of a set of composite parts.

The benchmark de�nes traversal and query operations. The traversal operations navigate
through the composition hierarchy. Some of them update attributes during traversal. Updates
that modify the composition hierarchy are not included in any of the operations. The query
operations retrieve the set of all atomic parts or subsets of those that ful�l particular conditions
on the buildDate attribute.

42 CHAPTER 4. SELECTING A DATABASE SYSTEM

The OO7 Benchmark de�nes three initial database states: small, medium and large. All of
them contain balanced ternary trees of assembly parts of height seven, i.e. 1093 assembly
parts. The databases di�er in that a small database contains 10,000 atomic parts, whereas
medium and large databases contain 100,000 atomic parts. For a large database, ten assembly
trees are established, whereas small and medium databases only contain one tree.

4.1.2 Application Speci�c Benchmarks

The suitability of a benchmark for a particular performance evaluation task depends on the
degree to which the load characteristics of the benchmark match the characteristics of a future
application. In the context of this thesis the benchmark's load on a database has to simulate the
load characteristics imposed by syntax-directed tools in order to �nd those database systems
that execute tool commands within the time frames required in Section 3.7. The load of a
database application is heavily dependent on the data structures used in that application.
From the discussion in the last chapter, we know how data manipulated by syntax-directed
tools is structured. The benchmark must, therefore, address the following issues:

Entities and attributes: The number of di�erent entities and their attributes in the bench-
mark schema must simulate the number and structure of node types that occur in project-
wide abstract syntax graphs. Consider, for example, syntax-directed tools for structured
analysis, modular design and implementation in any programming language. The graph
schema will de�ne a large variety of node types. Node types are rather heterogeneous
with respect to number, type and size of their attributes. Some node types will have no
attributes at all. Others will have small attributes for graphical coordinates (like nodes
for processes in data-ow diagrams) or lexical values of identi�ers. Others again will
have rather large attributes (like mini speci�cations in data-ow diagrams or comments
in programming language syntax graphs). Arbitrary combinations will exist. Unfortu-
nately, the overall number of types, as well as the number, size and type of attributes
de�ned for node types inuence the time required for retrieving and creating objects.
Hence the heterogeneity of types outlined will have to be reected in a benchmark to
address the performance requirements of syntax-directed PSDE tools.

Relationship types: Di�erent relationships representing di�erent kinds of edges have to be
reected in the benchmark schema. Relationships with aggregation semantics should be
included to represent syntactic edges. The depth of nesting in these aggregations should
meet the average height of syntax trees. Reference relationships must be included to
represent non-syntactic edges. There should be single and multi-valued relationships to
measure the di�erent performance of operations on single and multi-valued edges. Or-
dered multi-valued relationships should be included to measure the database performance
with list structures that often occur in syntax-directed tool schemas. Unlike unordered
relationships, the database system will in addition have to retain an order, which will
obviously require time.

Complex update operations: The operations of the benchmark should reect the load on
the database caused by tool commands. Only then can we draw conclusions from bench-
mark results on the performance of future tool commands. In particular, operations
should not only include traversals and attribute updates, but also creation and deletion
of objects of various types in order to reect editing commands that e�ectively change
the structure of syntax graphs. The commands o�ered by a tool are usually implemented
by a number of elementary database operations. Unfortunately, simply summing up the

4.1. PERFORMANCE EVALUATION OF DATABASE SYSTEMS 43

execution time of these elementary operations gives wrong results. In fact, complex tool
commands can sometimes be implemented much more e�ciently by exploiting a partic-
ular feature of the database system under investigation than by just taking a particular
order of prede�ned simple benchmark operations. Some database systems, for example,
provide a special type called dictionary and a corresponding e�cient member function.
If this type and especially the member function had been implemented by a number of
simple benchmark operations, this would result in a much higher execution time than if
using the prede�ned member function.

Initial database states: The initial database states de�ned for a benchmark should reect
realistic situations of the application. This includes the number of objects in the database
as well as the number and cardinality of di�erent relationships between objects. If the
number of objects chosen is too small, the database system might keep all objects in a
system cache and perform far faster than with a realistic scenario. If the cardinality of
relationships is chosen wrongly, searching in lists or sets might be more e�cient than
later in the real application.

In assessing the existing benchmarks against these requirements their inappropriateness be-
comes evident.

Entities and attributes: The main problem of the Simple and Hypermodel Benchmarks is
that their conceptual schemas are too simple to meet schemas of PSDE tools. Both the
Simple Benchmark and the Hypermodel Benchmark include just three di�erent entities
and, therefore, do not reect the heterogeneity in number of entities nor in number, size
and types of entity attributes that occur in project-wide syntax graphs of a PSDE.

Relationship types: The requirements for relationships are not reected by any of the ex-
isting benchmarks. Neither the Simple, nor the OO7 Benchmark includes any ordered
relationships. Therefore, these benchmarks cannot detect de�ciencies of, for example, re-
lational database systems that do not support ordered relationships. The Simple Bench-
mark schemes does not reect the depth of nested aggregations that occur in syntax
graphs. Neither Simple nor Hypermodel Benchmark adequately address reference re-
lationships. In the case of the Simple Benchmark, the reference relationship MNREL is
instantiated by the initial database and by benchmark operations as if it were a 1:1
relationship, i.e. the benchmark connects one object of type BIG with one of type SMALL.
In the case of the Hypermodel Benchmark, the partOf/parts relationship links a node
with �ve other nodes and the refTo/refFrom relationship relates a node with exactly one
other node. In a PSDE, however, a reference relationship is usually of cardinality 1:n
where n tends to become rather large, namely up to a few hundred. As an example,
consider a basic type identi�er in a large software system. It will be used in a large
number of modules by a large number of operations as parameter or result type. All
objects representing the use of this identi�er must be linked by a 1:n relationship to the
object representing the declaration.

Complex update operations: Simple Benchmark operations create, change and delete ob-
jects, but just like the conceptual schema itself, they su�er from oversimpli�cation. They
in no way reect complex commands that occur in syntax-directed tools. As argued
above, the performance results of these simple operations cannot be used for analyti-
cally deriving execution times of more complex operations. The Hypermodel and OO7
Benchmark do not create any new objects or relationships. Since almost any editing
command will create new nodes and edges the performance �gures obtained with these
benchmarks will be more or less useless for our purposes.

44 CHAPTER 4. SELECTING A DATABASE SYSTEM

Initial database states: The static and simple de�nition of the initial database for the Sim-
ple Benchmark does not at all reect situations that appear in PSDEs. The same is true
for the Hypermodel and the OO7 Benchmark. Even though they de�ne more than one
initial state, all states in both benchmarks de�ne a completely balanced tree, which is a
very unusual situation in PSDEs.

Besides clarifying the de�ciencies of existing benchmarks, the above examples are supposed
to indicate that even di�erent PSDEs could have very di�erent performance requirements, i.e.
it is impossible to de�ne a general benchmark for evaluating database systems for PSDEs let
alone for arbitrary database applications. In more detail, the tools and types of documents in a
PSDE determine the entities and their relationships, which vary signi�cantly depending on the
particular tools included in the environment. As mentioned, storage requirements for a struc-
tured analysis diagram are very di�erent from the requirements for the storage of source code.
In addition, inter-document consistency constraints are very important for the de�nition of a
benchmark. In a PSDE following a transformational approach a much less �ne-grained data
model is needed than in a PSDE which facilitates intertwined document development. This,
in turn, results in a much lower number of relationships for the transformational case. Fur-
thermore, the initial database state depends on a particular application, i.e. tools, document
types, and even the scale of projects being performed with the PSDE.

Our approach, therefore, is not to extend the benchmarks mentioned to meet (some) additional
requirements from PSDEs, nor to develop another general benchmark for the area of PSDEs,
but we suggest developing application speci�c benchmarks. In our case, we have to develop a
benchmark that measures the database performance of syntax-directed tools which meet the
requirements discussed in Chapter 2. We, therefore, propose an organised, carefully designed
process to de�ne an appropriate benchmark. This process includes the steps

1. de�nition of the benchmark based on the requirements of a particular application and

2. benchmark implementation on top of the database systems under investigation.

The methodology for developing application speci�c benchmarks is described in the next sec-
tion. While we describe the methodology, we illustrate its use for developing the Merlin
Benchmark. The Merlin Benchmark will allow performance measurement of database systems
for syntax-directed tools.

4.1.3 Developing Application-speci�c Benchmarks

Our approach towards benchmark de�nition is to start from an existing application whose load
characteristics cover those of future applications. For the scope of this thesis, this means that
we have to look for an environment that includes graphical as well as textual syntax-directed
tools. The complexity of the languages of the environment must be representative of that of
a large number of languages. Complexity of a language here is measured in terms of number
of di�erent increments, which determines the number of syntax graph node types. Moreover,
the environment should check and preserve static semantics and inter-document consistency
in the same way as we expect this from tools.

4.1. PERFORMANCE EVALUATION OF DATABASE SYSTEMS 45

The Groupie [ES94] environment seems to meet these requirements for the Merlin Benchmark
reasonably well because

1. it supports the editing of graphical architecture documents that are, from a structural
point of view, very similar to other graphical documents, such as data-ow diagrams,
entity relationship diagrams or Petri-Nets,

2. it supports the de�nition of textual module interface de�nitions that are very similar
to Modula-2 module de�nitions, Ada package de�nitions, C header �les or C++ class
de�nitions, and

3. the two tools are highly integrated in order to check and even automatically preserve
static semantics and inter-document consistency, as far as possible.

If the benchmark properly simulates the database load of Groupie tool commands, we will be
able to forecast database performance for a large number of graphical and textual tools. In
addition, we will be able to forecast the impact of inter-document consistency preservation on
database performance. Nevertheless, there are tools, such as editors for implementing modules,
packages or classes, which have more demanding load characteristics. This is because their
syntax-graphs are even deeper and it will take longer to traverse them, for instance during
unparsing. The structures that occur inside these graphs, however, are covered by the Groupie
tools as well. We can, therefore, be sure that the benchmark implementation will reveal the
fastest database system. It remains to be seen whether the fastest system still performs
fast enough when building tools for programming languages on top of it. Using our process
suggested for benchmark de�nition one could de�ne a benchmark for these implementation
tools. This, however, is beyond the scope of this thesis.

The overall objective of the de�nition process for an abstract database benchmark now is to
derive a conceptual database schema, the corresponding update and retrieval operations and
a set of initial database states.

4.1.3.1 The Conceptual Schema

The derivation of the conceptual database schema starts from taking the syntax de�nition of
each document whose development is supported by a particular PSDE. The syntax de�nitions
are usually given as, or at least can be transformed into, a tree grammar representation de�ning
the abstract syntax of each document. This is what we need as the basis for our benchmark
de�nition.

Taking our Groupie example, the abstract syntax of two document types is de�ned as shown in
Figure 4.4. The �rst document type allows modules and their import-relationship to be de�ned.
The second type is dedicated to the detailed de�nition of export- and import-interfaces of
modules. In particular, it allows the declaration of types, procedure heads, and function heads
exported by a module and re�nes the import-relationships from other modules by allowing the
de�nition of imported objects for each relationship.

Based on the transformation rules given in Table 4.1, it is a straight-forward exercise to
derive a conceptual schema in terms of an EER model, from a tree grammar. Applying the
transformation rules of Table 4.1 to the tree grammar excerpt in Figure 4.4 results in the EER
model in Figure 4.5.

46 CHAPTER 4. SELECTING A DATABASE SYSTEM

Fixed arity operators:

arch −> ARCH_ID MOD_LIST
module −> MOD_ID COMMENT IMP_LIST

Atomic operators:

arch_id −> IDENT
mod_id −> IDENT
comment −> STRING

List operators:

module_list −> MODULE ...
import_list −> IMPORT ...

Phyla:

ARCH_ID :: arch_id
MOD_LIST :: module_list
MODULE :: module
MOD_ID :: mod_id
IMP_LIST :: import_list
IMPORT :: mod_id
COMMENT :: comment

Fixed arity operators:

module −> MOD_ID COMMENT EXPORT_PART IMPORT_PART
export −> TYP_ID OP_LIST
func −> OP_ID PAR_LIST TYP_ID COMMENT
proc −> OP_ID PAR_LIST COMMENT
cbv_par −> PAR_ID TYP_ID
cbr_par −> PAR_ID TYP_ID
import_part −> IMP_LIST
import −> MOD_ID IMP_OBJ_LIST

Atomic operators:

mod_id −> IDENT
typ_id −> IDENT
op_id −> IDENT
par_id −> IDENT
comment −> STRING

List operators:

op_list −> OP ...
import_list −> IMPORT ...
par_list −> PAR ...
imp_obj_list−> IMP_ID ...

Phyla:

MOD_ID :: mod_id
COMMENT :: comment
EXPORT_PART :: export
IMPORT_PART :: import_part
OP_ID :: op_id
TYP_ID :: typ_id
PAR_ID :: par_id
OP :: func proc
PAR :: cbv_par cbr_par
IMP_LIST :: import_list
IMPORT :: import
IMP_OBJ_LIST:: imp_obj_list
IMP_ID :: typ_id op_id

Figure 4.4: Abstract Syntax for Merlin Benchmark

For tree grammar compo-
nent of type

Substitute a with

Fixed arity operator
a -> B C .. D

...

b

c

d

a

List operator
a -> B ...

a b

Atomic operator
a::=B

a b

Phyla
a::B C ... D

...

b

c

d

a

Table 4.1: Transformation of Tree Grammar into EER Models

The next step is to extend the schema with reference relationships, which model reference
edges. Not including such relationships in a schema would result in signi�cant performance
increase of all update operations based on the schema de�nition. The additional relationships
to be introduced are all of cardinality one-to-many.

As an example, the constraints de�ned for the Groupie documents that must be materialised
in additional relationships are that

1. the interfaces of modules that occur in an architecture diagram are speci�ed in the
speci�cation document and vice versa,

2. each import interface relationship in the architecture is speci�ed in detail in the speci�-
cation language and vice versa,

3. names of modules, types, functions and procedures are unique within an architecture

4.1. PERFORMANCE EVALUATION OF DATABASE SYSTEMS 47

module_
 list

par_
id

ident

arch

module

op_id

typ_
id

mod_
id

export_
 part

op_
list

op

func

proc

par_
list

par

cbv_
par

cbr_
par

imp_
obj

import_
 list

import_
 part

comment

import

arch_
id

value

value

x_pos
y_pos

Figure 4.5: EER Model Deduced from Grammar

diagram and all related speci�cation documents,

4. modules that participate in an import-relationships have to exist,

5. objects that are imported by an import-relationship are exported elsewhere,

6. cyclic import relationships are forbidden,

7. types used in parameters of operations and result types of functions are declared, i.e. they
are either exported by the module in which they are used, or imported from elsewhere.

The result of adding relationships, according to those constraints, to the EER model of Fig-
ure 4.5 is given in Figure 4.6. The �rst additional relationship type, which we call dictionary,
is drawn using dashed lines. A dictionary is a 1:n relationship that provides for e�cient as-
sociative access to the multiple relationship elements. It will be used to implement scoping
rules e�ciently. One dictionary relationship de�nes all identi�ers which are declared in an
architecture. Another dictionary relationship de�nes all the identi�ers which are exported by
a module, i.e. that may be used as imported objects. The last dictionary relationship de�nes
all type identi�ers that may be used in a module. To avoid change propagations, reference
relationships, which substitute aggregation relationships, allow for object sharing. In partic-
ular, the types used in parameters of operations, or result types of functions, are no longer
viewed as copies of types de�ned in export interfaces, but as references to them. Furthermore,
the copies of identi�ers of imported modules and objects in import lists are transformed into
references to the respective identi�ers. This not only enables the omission of time consuming
change propagations, but also enables quick checks to be made as to whether an exported type
or operation is actually used.

Implementing this schema would require as much e�ort as building a schema for the two
Groupie tools, which is far too much. Benchmarks should be simple to implement. The next
and major step is, therefore, a simpli�cation of the schema de�ned so far. This simpli�cation
results in a benchmark schema which will be simpler to implement while still addressing
application speci�c load requirements.

The simpli�cation is de�ned by a number of rules. The application of these rules removes all
entities and relationships which do not inuence the performance of benchmark operations.
The entities remaining in the schema then represent the worst case situation. The rules for
schema simpli�cation are that

48 CHAPTER 4. SELECTING A DATABASE SYSTEM

import_
 list

import_
 part

x_pos
y_pos

arch

module_
 list module

ident

op_id

typ_
id

mod_
id

export_
 part

op_
list op

func

proc

par_
list

par

cbv_
par

cbr_
par

imp_
obj

par_
id

comment

import

arch_
id

value

value

Figure 4.6: EER Model Enhanced with Context Sensitive Relationships

1. relationships, which start from or end in all sub-entities of an inheritance relationship,
are replaced by one relationship which starts from or ends in the super-entity,

2. entities, which do not participate in any relationship except as a target of an aggrega-
tion relationship, are transformed into attributes of the entities, where the aggregation
relationship starts,

3. sub-entities of an inheritance relation, which participate in the same relationships and
carry the same attributes as another entity of that inheritance relation, are removed. The
remaining entity is then considered to be a representative of the removed entities. As a
consequence, execution times of benchmark operations that access this entity should be
interpreted as upper bounds rather than as exact values of operations that would have
accessed objects of the removed entity,

4. an inheritance relationship with only one sub-entity is removed with its sub-entity. The
super-entity subsumes all relationships the sub-entity participated in, as well as all the
subentity's attributes,

5. an entity that neither participates in a context-sensitive or inheritance relationship nor
carries attributes and which is the source of only one aggregation relationship, is removed.
The aggregation relationship that started from the entity now starts from each entity
that had an aggregation relationship with the removed entity.

The order for the application of these simpli�cation rules to the EER model is as follows.
Rules 1-4 may be applied repeatedly in any order. The application of Rules 1-4 stops when
none of the rules can be applied any longer. As a result these rules might produce obsolete
entities. These obsolete entities are then removed by Rule 5. After that Rules 1-4 could again
be applied. They must, however, not be applied again in order to avoid oversimpli�cation of
the EER model.

Using these simpli�cations we are able to simplify the EER model shown in Figure 4.6. The
result of this process is depicted in Figure 4.7. We applied Rule 1, 3, and 4 to cbv par and
cbr par with the e�ect of removing these entities and transferring their objective to par. Entity
par is now considered as a representative of cbv par and cbr par. Then we were able to apply
Rule 2 to par id transforming it into an attribute of entity par. After that, we applied Rule
3 to func and proc with the e�ect of removing the entity proc. That enabled us to apply

4.1. PERFORMANCE EVALUATION OF DATABASE SYSTEMS 49

arch

module

ident

op_id

typ_
id

mod_
id

export_
 part

imp_
obj

import

par

par_
id

op

comment

arch_
id

value

comment
x_pos
y_pos

Figure 4.7: EER Diagram of Simpli�ed Database Base Schema

Rule 4 to func, with the e�ect of replacing entity func by its super-entity op. As comment is
merely the target of aggregation relationships, we could apply Rule 2 to it, thus transforming
comment into attributes of module and op. The same rule was applied to entity value connected
to ident, transforming this entity into an attribute of ident. Finally, the entities module list,
import part, import list, op list, par list were removed according to Rule 5.

4.1.3.2 The Initial Database States

The next step in de�ning a benchmark is the de�nition of an initial database. In order to
determine a realistic structure and a realistic number of objects, we perform an analysis of
existing documents. We assume that these documents exist. Tool builders have usually gained
preliminary experience with the document types while they were producing documents during
case studies. We use these documents to analyse the number of objects that participate in
1:n relationships of the benchmark schema. Moreover, we have to obtain average sizes for the
attributes de�ned in the schema. The required analysis of existing documents can be performed
by a parser generated by lex and yacc for instance. In contrast to the Simple, Hypermodel
and OO7 Benchmarks, this approach leads to initial databases that have a structure similar
to that of real documents.

Metric component Value
Number of exported types 1
Number of exported operations 17
Number of imported modules 4
Number of identi�ers 132
Number of comments 18
Number of imported objects/import relationship 6
Number of parameters per operation 3
Length of identi�ers [bytes] 12
Length of comments [bytes] 256

Table 4.2: Metric for a Module in the Initial Database

The structure of the initial database for the Merlin Benchmark is based on the analysis results
of approximately 5,000 lines of speci�cation produced when specifying Groupie itself. Table 4.2
de�nes the number of components of a module contained in the initial database according to

50 CHAPTER 4. SELECTING A DATABASE SYSTEM

the schema de�ned in Figure 4.7. To vary the size of the initial database we increase the
number of modules by increasing the number of levels in the architecture as follows. The
import-relation between modules leads to a directed acyclic graph of modules. We divide the
modules into n levels (n � 3). Each level Li contains 2

i modules (i 2 f0; : : : ; n� 1g). Except
for the top-most level where a module imports from both modules at level 1, a module in level
Lj imports from four random modules of level Lj+1 (j 2 f1; : : : ; n� 2g).

4.1.3.3 The Benchmark Operations

The �nal step in de�ning a benchmark is the de�nition of the operations. It follows the
guidelines discussed for operation de�nition introduced on Page 42. We, therefore, include op-
erations for creation of all entities that are de�ned in the benchmark schema, various traversals
through the syntax graph in order to measure performance of unparsing operations, changes
to attribute values and operations that delete objects. The main point in the detailed oper-
ation de�nition is to de�ne parameter values for the operations in a way that they respect
the structure of the initial database. Thus, the de�nition of those values is also based on the
above mentioned analysis results.

A problem that we have to address is the variance in execution times of complex benchmark
operations. The execution times vary because they depend on the states of external devices,
such as the position of disk heads, the hardware bus, caches of disk controllers, of the operat-
ing system and of the database system itself. As these states are beyond our control we must
execute benchmark operations repeatedly and compute mean values of the operation execu-
tion times to obtain reliable results. Repeated operation executions, of course, must be done
from exactly the same logical database state3. For two reasons it is not appropriate to create
the database anew before measuring each operation. First, creating a database of a consider-
able size is rather time-consuming (in the order of magnitude of hours) whereas benchmark
operations will execute within a few hundred milliseconds. Secondly, the physical database
organisation will vary and this might even increase the variance of operation execution times.
Instead, we suggest to organise time measurement of benchmark operations within benchmark
runs. A benchmark run is a sequence of benchmark operations that leaves the database in
exactly the same logical state that it had before the run began. This means that we �rst have
to perform create operations, then perform traversals and attribute changes (or vice versa) and
then have to delete all created objects again. We can then repeat the execution of benchmark
runs and have achieved that a benchmark operation is in each run performed in the same
logical database state.

According to the above considerations, the operations of the Merlin Benchmark are clustered
into four groups. Operations of the �rst group create increments of the two document types
like modules, types, operations, parameters and comments. The second group is dedicated to
measuring the impact of changing attribute values. The third group simulates tool operations
that perform traversals through the database. The last group deletes all previously created
objects. A Merlin Benchmark run, therefore, consists of the following operation sequence.

OpenOMS: Open the access to the OMS, i.e. perform all necessary operations such as
authorisation or reservation of bu�ers to access data in the OMS.

3We will not be able to inuence the physical database state, i.e. the way how objects are stored on disk
pages, since it is controlled by the database system and this is in fact one of the reasons why multiple operation
executions are required.

4.1. PERFORMANCE EVALUATION OF DATABASE SYSTEMS 51

CreModul: Create n new modules in the architecture. Set their names to Module No j+2i,
(j 2 f0; : : : ; n� 1g; i = levels in the initial database). Set the graphical coordinates to
(50 � j; 100).

CrModTyp: For each created module set the export type identi�er to Type No j+2i, (j 2
f0; : : : ; n� 1g; i = levels in the initial database).

CrModCom: For each module created by CreModul expand the module comment incre-
ment to an arbitrary string which is 256 bytes long.

CrModImp: For each created module create four import relationships to arbitrarily given
modules of the bottom-most level of the initial database.

CrImpObj: For each created import relationship of each created module increment expand
the list of imported objects to the exported type and the 1st; 3rd; 7th; 11th; and 14th

operation of the respective module.

CrExpOpe: Create a list of 17 operation increments in each created module, update their
name to Modj Func k with j being the number of the module as determined by the
CreModul operation and k 2 f1; : : : ; 17g and expand their type to the type which is
exported by the module.

CrOpePar: Expand each operation parameter increment in each created module to a pa-
rameter list with three call by reference parameters. Expand the parameter names to
arbitrary unique identi�ers (12 bytes) and the parameter types to the types which are
imported by the �rst three import lists of the module.

CrOpeCom: For each operation expand the operation comment increment to an arbitrary
string of length 256 bytes.

UnparMod: Create textual representations of the created modules in a string of the host
programming language.

UnparArc: Create a textual representation of the architecture in a string of the host pro-
gramming language.

AnaUsage: For each module of the bottom most level of the initial database, return the
names of modules to which it exports objects. Return the names as a list of the host
programming language.

ClosTrav: Return the names of those modules that are reachable from the module at level 1.
Return the names as a list of the host programming language.

ChModNam: Change the module name of each module to another unique name of the same
length and update the name in the import parts of those modules which use the module.

ChModTyp: Change the exported type of each module to another name of the same length
and update the name in the import parts and parameter lists of those modules which
use the module.

ChModCom: Change the contents of the module comment of each created module to another
arbitrary string of the same (256 bytes) length.

ChOpeNam: Change the names of the exported operations of each module to another name
of the same length and update the name in each import list which imports the operation.

ChParNam: Change the names of each operation parameter to a new value of the same
length.

52 CHAPTER 4. SELECTING A DATABASE SYSTEM

DlOpeCom: Delete every operation comment in all modules that has been created during
the benchmark.

DlOpePar: Delete each operation parameter in each module that has been created during
the benchmark.

DlOperat: Delete all exported operations in all modules that have been created during the
benchmark.

DlImpObj: Delete all imported objects in all modules that have been created during the
benchmark.

DlImpRel: Delete all import relations in all modules that have been created during the
benchmark.

DlModule: Delete all modules that have been created during the benchmark.

CloseOMS: Perform all operations that are necessary to start the benchmark again.

4.1.4 Summary

In this section we have discussed database performance evaluation using abstract database
benchmarks. We have argued, why the three general purpose benchmarks Simple, Hypermodel
and OO7 Benchmark are inappropriate for our as well as many other database performance
evaluation tasks. We, therefore, consider database performance evaluation as a problem that
cannot be solved in general. To solve it, it is required to exploit knowledge of a particu-
lar application domain. We have suggested a method to acquire this knowledge in terms
of application-speci�c load characteristics and use it for the de�nition of application-speci�c
benchmarks. The load characteristics are elicited based on existing schemas and data. A
conceptual benchmark schema is de�ned based on a representative schema of the application
domain. Then existing data is analysed in order to determine realistic cardinalities for rela-
tionships in an initial database. In a third step, benchmark operations are de�ned that create
objects of the entities contained in the benchmark schema, change attributes, traverse along
relationships and �nally delete the objects again. Following the suggested method, the Merlin
Benchmark has been de�ned in order to measure database performance for syntax-directed
tools. We have implemented the benchmark for representative database systems of di�erent
classes. In the next sections, we discuss the Merlin Benchmark implementations and the re-
sults of its execution along with the assessment of the respective classes using the functional
requirements presented in the previous chapter.

4.2 Relational Database Systems

The relational data model was introduced by Codd [Cod70] and has gained substantial recog-
nition especially in business applications. Meanwhile a number of database systems imple-
menting the relational data model have evolved as highly reliable products. These systems are
called relational database systems (RDBSs). RDBSs are available for almost any hardware
and operating system platform. The most important RDBSs are Ingres [SWKH76], Sybase,
Oracle, Informix and DB2. A PSDE built on top of one of these systems would, therefore, be
built on a �rm base and would (at least from the DBSE point of view) be highly portable.

4.2. RELATIONAL DATABASE SYSTEMS 53

It has often been claimed that RDBSs are inappropriate for storing complex structures, such as
abstract syntax graphs (c.f. [Mai89] for instance). The major concern of these claims is RDBS
performance. They refer to the work of Linton, who has implemented storage of abstract syntax
trees for a programming environment in Ingres [Lin84] 15 years ago. Meanwhile, a number
of advances have been made in the implementation of RDBSs as well as the performance
of underlying operating system and hardware platforms. Moreover, an algorithm has been
proposed that facilitates an e�cient materialisation of the transitive closure of graphs [ABJ89].
A major result of this section is the observation that current RDBS implementations perform
e�cient enough for storage of abstract syntax graphs if these advances are exploited. As
main disadvantages of RDBSs we rather identify the lack of appropriate version management
primitives, non-updatable views and a schema de�nition language that does not support the
encapsulation of graph structure de�nitions.

De�nition and Manipulation of Syntax Graphs in RDBSs

The relational data model is based on sets of tuples of attributes. In the �rst normal form4,
attributes are of atomic types only. These sets are called relations. RDBSs represent relations
as tables in which each column represents an attribute type, each row represents a tuple and
each column of a row represents an attribute. A relational database consists of a set of named
tables. Usually, a table has a column where unique key attributes are stored. These keys
are then used to identify tuples. In order to implement one-to-many relationships between
tuples, a column for secondary key attributes is de�ned where unique keys of related tuples
are stored. Many-to-many relationships are implemented in separate tables that have columns
for the unique keys of the related tuples.

The data de�nition language (DDL) is standardised for all RDBSs. It is used for de�ning the
structure of tables. The CREATE TABLE directive of the relational DDL has the following form:

CREATE TABLE <name> (<att name> <att type> [<att options>],...)

It creates a new table with the given name and as many columns as attributes are declared in
the create directive. An attribute declaration includes a name and an atomic type. The name
can be considered as the column title and the type de�nes the kind of data that can be stored
in the column.

If abstract syntax graphs have to be stored in an RDBS (c.f. [Lin84]), a table has to be created
for each node type. Tuples in such tables implement nodes of the respective type. Each table
has a column with unique key attributes that are used as node identi�ers. Node attributes
are implemented by additional columns in the respective table. This is only possible for node
attributes that are not structured any further. For structured attributes, such as error lists
or dictionaries, additional tables and references between them are required. Edges are also
implemented by additional columns of tables. If an edge exists between two nodes, the node
identi�er of the source or target node is stored in a column of the tuple implementing the target
or source node respectively. Note that it is not necessary to store node identi�ers in both tables
to implement an edge. Navigation in both directions will be made possible by the associative
nature of relational query languages. To implement multi-valued edges that lead from nodes
of type T1 to an arbitrary number of nodes of type T2, the edge should be implemented by
an additional column in the table implementing T2. Then this table may contain multiple
tuples with the same value v in this column, meaning that these tuples implement nodes that

4Non First Normal Form (NF 2) databases [SP82] where attributes may be tuples or even sets are not
supported by any of the above mentioned systems.

54 CHAPTER 4. SELECTING A DATABASE SYSTEM

are all connected to the node identi�ed as v. Implementing it in the table representing T1
would violate the unique key constraint. This constraint requires that tuples di�er in the
unique keys. It would be violated because the table would contain tuples that only di�er in
the column representing the multi-valued edge. If a multi-valued edge between T1 and T2 is
ordered, an additional column is required in the table for T2 in order to store node positions.
Heterogeneous edges, i.e. edges that lead to di�erent types of node cannot be implemented in
a straight-forwardmanner because one column cannot reference node identi�ers from arbitrary
tables. To implement heterogeneous edges, we have to store di�erent types of nodes in one
table and store type information in an additional column.

Module

ID TYPE name com type opl imp

100 ADT 1 1 2 10 55
101 TC 6 4 ... NULL NULL

ModName

ID value

1 Window

6 BasicTypes

ImportInterface

ID

55

OperationList

ID

10

Operation

ID TYPE name pl type com OPL POS

1 FUNC 3 70 4 2 10 1
2 PROC 5 71 NULL 3 10 2

OpName

ID value

3 CreateWindow

5 DeleteWindow

ParameterList

ID

70
71

Parameter

ID TYPE name type PL POS

11 IN 70 1
12 IN 70 2
13 IN 70 3

Comment

ID value

1 /* defines a type ...

2 /* creates a new window */

3 /* Deletes ...

4 /* defines a set of ...

UsingType

ID value DefinedIn

2 TWindow ...
4 TWindow ...

ImportList

ID fm imp IMPINT POS

1 7 ... 55 1
2 9 ... 55 2

ImpModule

ID value ImpFrom

7 Position ...
9 BasicTypes 6

Figure 4.8: Tables Implementing an Abstract Syntax Graph

As an example, consider how the abstract syntax graph displayed in Figure 3.1 on Page 21 is
implemented in a set of tables. Figure 4.8 depicts twelve tables that only partly implement
the graph. In that �gure, the headline of a table is the table name. The next line shows the
attribute names, i.e. the column headlines. In order to save space the attribute types are not
given explicitly. The reader can easily deduce them from the values stored in the respective
column. Unique key attributes are underlined. If an attribute value represents an edge to a
node not included in the �gure, \: : :" are inserted instead.

The table Module implements node types ADTModule and TCModule since these two are used in
a heterogeneous aggregation. The attribute TYPE is used to distinguish them. Attribute name

refers to the node identi�ers of Table ModName which implements the edge name between the
respective nodes. Attribute com refers to node identi�ers of Table Comment which implements
edges labelled com between the respective nodes. Table ModName provides an attribute value

for storing lexical values of identi�ers that are module names. Table Operation implements
heterogeneous operation lists so that they can consist of procedures and functions. There-
fore, column TYPE stores the information as to whether a tuple in this table implements a
procedure or a function node. The association between tuples of this table and tuples in Ta-
ble OperationList is achieved using the attribute OPL. It implements that these two tuples
implement nodes that are reachable, via a multi-valued edge, from the operation list node,

4.2. RELATIONAL DATABASE SYSTEMS 55

implemented by the tuple in Table OperationList. To implement the order between these
operations, the column POS is used. When traversing through the multi-valued edge, one node
must be visited before another node, if the POS attribute of the �rst node is smaller than the
POS attribute of the other node. Multi-valued reference edges are implemented similarly. As
an example consider the edges that connect use and declaration of types, or import and export
of names. To implement the latter edge, Table ImpModule has a column ImpFrom that contains
references to identi�ers of Table ModName.

We note that schemas for syntax graphs that are constructed in this way are in third normal
form [Dat86], because node attributes are the only non-key attributes in these tables and they
are non-transitively dependent on the node identi�er.

If a schema of a PSDE is de�ned in this way, we will be faced with the problem of not being able
to restrict edges to lead only to nodes of particular types. This is because the only attribute
types that can be used for a column are the prede�ned types. Hence, integrity between tables
must be controlled by the tool builder without any further support from the RDBS. Another
drawback of the relational DDL is that the schema will be poorly structured. Considering
PSDEs that support a number of di�erent languages, the underlying abstract syntax graph
could easily contain some hundred di�erent node types. Hence, the schema de�ned in this way
would contain as many di�erent tables that are not structured any further. Moreover, the DDL
does not provide any dedicated concepts for implementing heterogeneous and ordered multi-
valued edges. They must be hand-coded on top of the relational data model. Implementing
heterogeneous multi-valued edges in the way we suggested, will lead to meaningless columns of
tuples (such as the opl attribute for the second tuple in Table Module). Furthermore, we have
to hand-code ordered multi-valued edges with additional position attributes. If a new node is
inserted into a list, the position attributes of all the tuples that occur after the tuple which
implements the new node, must be adjusted. This requires e�ort during tool construction and
decreases performance.

Data access and manipulation in the relational data model are based on the relational alge-
bra [Dat86]. The relational algebra operators are implemented in data manipulation languages
such as the Standardised Query Language (SQL) which evolved from System/R's query lan-
guage SEQUEL [ABC+76]. As SQL is supported by any of the above systems and its expressive
power is similar to other languages, we only consider SQL in this thesis and ignore other rela-
tional query languages. SQL consists of four commands: SELECT, INSERT, UPDATE and DELETE.
The most general form of a SELECT statement is:

SELECT att1, att2, ..., attn FROM table1, ..., tablem WHERE <condition>

This statement �rst joins the given tables, then selects all those tuples that ful�l the given con-
dition and �nally projects the table along the given columns named by the given attributes5.
It thus provides a DML language construct for the relational algebra operators selection, pro-
jection and join. In more specialised forms, the SELECT statements only execute one or two
operators. If only one table name is de�ned, the statement will not cause a join of tables. If no
condition is given, the selection will be omitted. If a *" is de�ned instead of explicit attribute
names, no projection will be executed. The INSERT command implements the union operator
and the DELETE command implements the di�erence operator of the relational algebra. The
UPDATE command provides a means to assign new attribute values to attributes in tuples or
even to attributes in sets of tuples. It is thus a short-cut for deleting and inserting these tuples.

5In practice, the query optimiser of RDBSs often chooses a di�erent ordering, but this is transparent to the
tool builder.

56 CHAPTER 4. SELECTING A DATABASE SYSTEM

In order to implement abstract syntax graph operations in SQL, a tool builder can only
use these primitives for table accesses and manipulation. To replace a subgraph g1 with g2
(which is a very common pattern for operations on abstract syntax graphs), a sequence of
SQL DELETE statements has to be used to, �rstly, delete all tuples that implement nodes of
g1 from a set of tables, which implement node types occurring in g1. Then a sequence of
SQL INSERT statements is needed, which inserts tuples for each node of g2 into the respective
tables. Finally, the attributes of all tuples that referred to node identi�ers of deleted nodes
must be adjusted with an SQL UPDATE statement in order to preserve referential integrity. To
implement an unparsing operation of a subgraph, a sequence of SQL SELECT statements is
needed: one for each table implementing a node type contained in the subgraph.

Operations that access and modify the abstract syntax graph cannot be de�ned within the
schema as required, but must be implemented on top of it, since SQL is not computationally
complete. The results of queries must be evaluated in a programming language. Therefore,
RDBSs o�er pre-compilers that allow for SQL statements embedded in a host programming
language. In fact, the abstract syntax graph structures de�ned in the schema are not encap-
sulated, but may be queried and updated in an arbitrary way. In addition, implementation
of inter-document consistency checks require that tools access tables de�ned for other tools.
Therefore, a table de�ned in the schema cannot be associated with a particular tool but may
be used within multiple tools. To make things even worse, it cannot be decided which tools
use a schema component in case the component is changed.

Views

RDBSs o�er a view mechanism in order to de�ne virtual tables based on tables already de�ned.
These virtual tables are not physically stored in the database, but computed, based on existing
tables. The view mechanism is based on the SQL SELECT statement. Its general form is:

CREATE VIEW name AS (SELECT ... FROM ... WHERE ...);

It creates a virtual table and �lls it with the result of the query de�ned by the SELECT
statement. As soon as any of the tables accessed by the query are updated, the view is
transparently and incrementally re-evaluated as well.

To a certain extent this view mechanism can be exploited in order to have di�erent views on a
conceptual abstract syntax graph as required in Section 3.3. A tool builder can de�ne a view
as a query that projects particular attributes in order to hide edges starting from a node or
attributes de�ned for a node. To hide operation lists and type names from the table Module,
for instance, for using the table within the Groupie architecture tool, the following view could
be used:

CREATE VIEW Arch_Module AS

(SELECT ID, TYPE, name, imp FROM Module);

This statement projects table Module along ID, TYPE, name and imp and thus hides columns opl
and type. The virtual table Arch Module is then visible in the schema as if it were a real table.

The use of an RDBS view facility is severely limited due to the view-update problem [BS82,
GPZ88]. View updates can only be performed if they do not modify that part of a database
that is complementary to the view. For software development tools, this problem is worse than
for commercial applications since updates in tools occur much more frequently. As an example
of the view-update problem in the domain of PSDE tools consider the following scenario for
the above view. An integrity constraint for a conceptual schema may require that whenever a

4.2. RELATIONAL DATABASE SYSTEMS 57

node of type Module is created, the edges to the type name and operation list must be created
as well. Creation of such a module cannot be initiated through view Arch Module, because
it would also require an update in the complement of the view. As updates a�ect other
tables, except in very rare cases, views of tables implementing syntax graphs are in general
not updatable. This con�nes the use of views to tools such as browsers or static analysers that
do not change the underlying tables.

Schema Updates

RDBS schemas can be updated by inserting new columns into table de�nitions using the
ALTER TABLE statement or by deleting tables with the DROP TABLE statement. The contents of
tables whose structure has been updated are preserved as far as possible. In the case of a newly
created column, the rest of the table is una�ected and the new attributes in that column are
initialised.

These schema updates are su�cient to implement the changes required in Subsection 3.4.
Adding an edge or attribute to a node type can be implemented by creating a new column in
the table implementing the node type. Deleting a node type can be implemented by deleting
the respective table. Deleting an edge or attribute from a node type can be implemented by
creating a new table without the column implementing the edge or attribute and �lling it with
a projection that drops the respective column.

The integrity of existing tables, however, can neither be automatically guaranteed by the
RDBS, nor can a tool builder de�ne a strategy, which the RDBS can use to re-establish in-
tegrity. Instead, the tool builder has to reestablish integrity after the schema update manually.
Therefore, newly created columns have to be �lled with reasonable values. A further problem
in RDBSs, which is due to the separation of data structure de�nition in the schema and op-
eration de�nition in a programming language with embedded query facility, is the consistency
between these two subsystems. It has to be checked and reestablished manually whenever a
schema is changed. For instance the case could arise where a deleted table or column is still
used in an embedded query and the RDBS cannot draw a tool builder's attention to that.
Therefore, all tools using the schema have to be recompiled after a schema change.

Versions

In Section 3.5 we required support from the DBSE to version subgraphs of the project-wide
abstract syntax graph. The relational data model only de�nes the concepts set, tuple and
attribute. A concept that could be used to de�ne subgraphs is not supported by relational
DDLs. Therefore, subgraphs cannot be de�ned statically in the schema, but have to be de�ned
operationally. This operational de�nition cannot be achieved by using only a relational query
language because computation of a subgraph requires the closure of those nodes reachable
via particular edges from the root node of the subgraph to be computed. Computation of
this closure requires iterations or recursions as nesting may occur. In fact, these iterations
or recursions cannot be expressed in a relational DML since only tables, views or results
of other queries can be queried, but a query cannot use its own result. Identi�cation of
subgraphs, therefore, can only be achieved in a host-programming language using embedded
DML statements.

58 CHAPTER 4. SELECTING A DATABASE SYSTEM

As a consequence, RDBSs do not o�er any of the basic versioning operations required for
subgraphs in Section 3.5 either. These would also have to be implemented within a host-
programming language. A lazy duplication strategy for nodes cannot be implemented at all
since it has to be integrated with the RDBS concurrency control manager as it was discussed
in Section 3.6.

Transactions

RDBSs support ACID transactions in the way we required in Subsection 3.6. In particular,
an RDBS transaction can group a set of SQL statements that implement an abstract syntax
graph operation. The e�ect of these statements on a database will persist if and only if the
transaction is completed with a commit. In the case of an explicitly issued abort command or
in the case of an implicit abort due to a hardware or software failure, the database is restored
to its state before the transaction started. RDBSs ensure isolation of transactions. Therefore,
the integrity of an abstract graph cannot be violated by concurrent updates. This allows the
implementation of tools that work in parallel on the same abstract syntax graph.

The commercially available RDBSs only support these conventional transactions. To our
knowledge there are no RDBSs that support a concept that could be used to implement
activities.

Performance

Unlike the assessment of functional requirements that relies on properties common to all
RDBSs, the execution of benchmarks requires the use of a particular RDBS implementation.
We have taken Oracle because it is one of the most popular and well-tuned systems. The
benchmark results, however, will be inuenced by particular design and implementation de-
cisions taken for the development of Oracle and have to be interpreted carefully. We shall
therefore, pay attention to those results that derive from de�ciencies of the relational data
model and query language, and take the benchmark results to draw a general picture on
RDBS performance with syntax graphs. The implementation of the Merlin Benchmark for
Oracle is described in detail in [Sch94]. We only outline the main results here.

All performance �gures for the Merlin Benchmark implementations on top of the various
database systems have been obtained on the same hardware and software con�guration (c.f.
Table 4.3) so that the results can be compared. For the RDBS benchmark we used the Oracle
Version 6.0.36.5.1.

Machine Sun SPARCstation IPX
Operating System SunOS 4.2 Release 4.1.3
Main Memory 40 MB
Disk WRENV IV 94181-385h with 320 MB
Disk controller Emulex MD 21

Table 4.3: Description of the Hard- and Software Con�guration

Figure 4.9 depicts the execution times for update operations of the Merlin Benchmark. In this
implementation, the conceptual benchmark schema was implemented in the way suggested by

4
.2
.
R
E
L
A
T
IO
N
A
L
D
A
T
A
B
A
S
E
S
Y
S
T
E
M
S

59

CreModul
CrModTyp

CrModCom
CrModImp
CrImpObj
CrExpOpe
CrOpePar

CrOpeCom
ChModNam
ChModTyp

ChModCom
ChOpeNam
ChParNam
DlOpeCom

DlOpePar
DlOperat

DlImpObj
DlImpRel
DlModule

0 50

100

150

200

250

300

350

Elapsed Real Time [ms]

C
om

m
it

O
peration

F
ig
u
re

4.9:
O
racle

U
p
d
ate

O
p
eration

s
in

a
S
m
all

D
atab

ase

F
igu

re
4.8

on
P
a
ge

54
.
T
h
e
b
en
ch
m
ark

w
as

ex
ecu

ted
�
v
e
tim

es
on

an
in
itial

d
atab

ase
w
ith

th
ree

lev
els,

i.e.
a
sm

a
ll
d
a
tab

a
se

con
tain

in
g
on
ly P

2i=
0
2
i
=

2
3
�
1
=

7
m
o
d
u
les.

D
u
rin

g
a
b
en
ch
m
ark

ex
ecu

tio
n
,
a
m
o
d
u
le
w
a
s
ad
d
ed
,
fu
lly

ex
p
an
d
ed
,
ch
an
ged

,
traversed

an
d
�
n
ally

d
eleted

as
d
e�
n
ed

b
y
th
e
M
erlin

B
en
ch
m
ark

ru
n
(c.f.

P
ages

50{52).

T
h
e
ch
arts

are
d
iv
id
ed

in
to

tw
o
p
arts.

T
h
e
w
h
ite

p
art

rep
resen

ts
th
e
average

tim
e
for

ex
ecu

tin
g

a
b
en
ch
m
ark

op
era

tion
d
iv
id
ed

b
y
th
e
n
u
m
b
er

of
in
crem

en
ts

th
e
op
eration

is
ap
p
lied

to.
F
or

C
r
E
x
p
O
p
e,

for
in
sta

n
ce,

th
e
op
era

tion
tim

e
w
as

d
iv
id
ed

b
y
17

sin
ce

C
r
E
x
p
O
p
e
creates

17
n
ew

o
p
era

tion
tem

p
la
tes.

T
h
e
g
rey

p
a
rt

d
ep
icts

th
e
am

ou
n
t
of

tim
e
u
sed

for
th
e
su
ccessiv

e
tran

sa
ction

co
m
m
it.

A
s
F
ig
u
re

4.9
su
g
gests,

th
ose

p
arts

of
th
e
stru

ctu
re-orien

ted
com

m
an
d
ex
ecu

tion
in

a
sy
n
tax

-
d
irected

to
ol
th
a
t
u
p
d
ates

a
sy
n
ta
x
gra

p
h
,
can

b
e
ex
ecu

ted
in
O
racle

in
less

th
an

200
m
illisec-

o
n
d
s.

C
om

m
ittin

g
th
e
e�
ect

o
f
su
ch

a
com

m
an
d
can

b
e
d
on
e
in

less
th
an

300
m
illisecon

d
s.

T
h
e
tw
o
tran

sition
s
C
o
m
m
a
n
d
E
x
e
c
u
t
i
o
n
an
d
T
r
a
n
s
a
c
t
i
o
n
C
o
m
m
i
t
of
F
igu

re
3.4

on
P
age

31
can

b
e

p
erfo

rm
ed

to
g
eth

er
in

less
th
an

350
m
illisecon

d
s.

F
ig
u
re

4.10
d
ep
icts

th
e
im
p
act

o
f
d
a
tab

ase
size

on
u
p
d
ate

op
eration

s.
T
h
e
�
gu
res

d
isp

layed
th
ere

h
ave

b
een

o
b
tain

ed
from

b
en
ch
m
ark

ex
ecu

tion
s
on

a
large

in
itial

d
atab

ase
con

tain
in
g

8
levels,

i.e
2
5
5
m
o
d
u
les.

A
s
F
ig
u
re

4
.10

su
ggests,

th
e
ex
ecu

tion
tim

es
for

p
erform

in
g
th
e

tw
o
tran

sition
s
C
o
m
m
a
n
d
E
x
e
c
u
t
i
o
n
an
d
T
r
a
n
s
a
c
t
i
o
n
C
o
m
m
i
t
d
o
n
ot

in
crease

sign
i�
can

tly,
i.e

th
ey

rem
ain

b
elow

450
m
illiseco

n
d
s.

N
ow

con
sid

er
th
e
p
erform

an
ce

of
th
e
�
rst

op
eration

,
i.e.

C
r
e
M
o
d
u
l.

It
req

u
ires

ab
ou
t
2
00

m
illisecon

d
s
an
d
is
b
y
far

th
e
slow

est.
T
h
is
is
b
ecau

se
th
e

60
C
H
A
P
T
E
R
4.

S
E
L
E
C
T
IN
G

A
D
A
T
A
B
A
S
E
S
Y
S
T
E
M

CreModul
CrModTyp

CrModCom
CrModImp
CrImpObj
CrExpOpe
CrOpePar

CrOpeCom
ChModNam
ChModTyp

ChModCom
ChOpeNam
ChParNam
DlOpeCom

DlOpePar
DlOperat

DlImpObj
DlImpRel
DlModule

0 50

100

150

200

250

300

350

400

450

Elapsed Real Time [ms]

C
om

m
it

O
peration

F
igu

re
4
.1
0:

O
ra
cle

U
p
d
ate

O
p
eration

s
in

a
L
arge

D
atab

ase

op
eration

w
a
s
ex
ecu

ted
im
m
ed
iately

after
d
atab

ase
login

w
h
ere

all
sy
stem

cach
es

w
ere

em
p
ty.

H
en
ce,

th
e
d
a
ta
b
ase

m
on
itor

h
ad

to
tran

sfer
a
n
u
m
b
er
of
p
ages

in
to

th
e
cach

es.
L
ater

on
,
th
eir

ava
ilab

ility
in

th
e
ca
ch
e
im
p
roved

th
e
p
erform

an
ce

of
su
ccessiv

e
op
eration

s
sign

i�
can

tly.
T
h
e

p
erform

an
ce

�
g
u
res

of
o
p
era

tion
s
D
l
O
p
e
r
a
t,

D
l
O
p
e
P
a
r,

an
d

D
l
I
m
p
R
e
l,

w
h
ich

d
elete

elem
en
ts

from
th
e
b
eg
in
n
in
g
of

lists
are

a
lso

in
terestin

g.
T
h
ese

op
eration

s
req

u
ire

sign
i�
can

tly
m
ore

tim
e
th
an

oth
er

u
p
d
ate

op
eratio

n
s.

T
h
is
is
b
ecau

se
d
eletin

g
an

elem
en
t
from

a
list

req
u
ires

all
o
th
er

elem
en
ts

in
th
e
list

to
b
e
u
p
d
ated

in
ord

er
to

ad
ju
st
th
e
p
osition

attrib
u
te.

W
e
th
u
s

fo
u
n
d
su
p
p
ort

for
o
u
r
co
n
cern

reg
a
rd
in
g
ord

ered
m
u
lti-valu

ed
ed
ges

in
th
e
relation

al
m
o
d
el.

L
evels in Initial D

atabase

Elapsed Real Time [ms]

0

1000

2000

3000

4000

5000

6000

3
4

5
6

7
8

0 1000

2000

3000

4000

5000

6000

U
nparM

od

U
nparA

rc

A
naU

sage

C
losT

rav

F
igu

re
4
.1
1:

D
ep
en
d
en
cy

of
T
raversal

O
p
eration

s
on

D
atab

ase
S
ize

T
o
see

w
h
eth

er
O
ra
cle

m
eets

th
e
p
erform

an
ce

req
u
irem

en
t
of
less

th
an

a
secon

d
for

a
com

p
lete

co
m
m
a
n
d
ex
ecu

tio
n
,
th
e
tra

n
sition

U
n
p
a
r
s
i
n
g
of

F
igu

re
3.4

also
h
as

to
b
e
con

sid
ered

.
T
h
is

tra
n
sitio

n
is
sim

u
la
ted

b
y
th
e
tw
o
traversal

op
eration

s
U
n
p
a
r
A
r
c
an
d
U
n
p
a
r
M
o
d
w
h
ose

ex
ecu

tion
tim

es
are

d
ep
icted

in
F
ig
u
re

4
.1
1.

4.2. RELATIONAL DATABASE SYSTEMS 61

As suggested by this �gure, the performance of these two traversal operations is signi�cantly
slower than the performance of update operations. The performance of UnparMod varies be-
tween 2,600 milliseconds and 1,300 milliseconds. It is not completely clear to us why the
performance improves for larger databases. It may be due to a change in the query opti-
misation strategy when large databases are queried. The performance of UnparArc, however,
increases linearly with the number of modules contained in the initial database. This is what
we had expected because the operation has to traverse through all the modules stored in the
database. The performance of this operation for a large database is almost 6,000 milliseconds.
The performance of Oracle with these traversal operations is intolerably slow. If unparsing
alone takes such a long time, execution of structure-oriented editing commands will hardly
ever be completed within a second. The reason for this weak performance is not speci�c to
Oracle, but will also be found in all other relational databases. It is because traversing the
syntax graph requires a number of select and join operations, and a join, in particular, is rather
time consuming.

Levels in Initial Database

E
la

ps
ed

 R
ea

l T
im

e
[m

s]

0

500

1000

1500

2000

2500

3000

3 4 5 6 7 8

UnparMod

UnparArc

AnaUsage

ClosTrav

Figure 4.12: Traversal Operations on a Denormalised Schema

[Sch94], therefore, implements the Merlin Benchmark schema using a second strategy. It is
based on materialising the transitive closure of syntactic father/child relation. The schema is
de�ned as suggested in [ABJ89]. Therefore, all entities that implement non-terminal nodes are
stored within a single table. Post-order and index number attributes are used to represent the
father/child relationship. All navigations to non-terminal nodes can then be implemented by a
single select operation. A single join operator is required for traversing to terminal nodes. The
schema, however, is denormalised to �rst normal form because post-order and index numbers
are non-key attributes that do not depend on the primary key, but on other post-order and
index numbers. Using this strategy, [Sch94] was able to reduce the time required for unparsing
by a factor of two as displayed in Figure 4.12. For an interface de�nition, the sum of the times
required for operation execution, unparsing and transaction commit is then below a second.
For architecture documents it remains below a second as long as fewer than 64 modules with
fewer than 255 import relations have to be accessed at a time.

This approach, however, has a number of serious implications. The �rst is that schema de-
normalisation causes update anomalies (c.f. [Dat86], Pages 386{388) and update operations
perform about 50 % slower. The reason is that post-order and index numbers of other tuples
might have to be recomputed when a new node is inserted. Secondly, the schema is com-
pletely unstructured and very hard to understand and maintain. Finally, the table for tuples

62 CHAPTER 4. SELECTING A DATABASE SYSTEM

representing non-terminal nodes contains a lot of attributes that are meaningless. These at-
tributes waste a signi�cant amount of disk space. Figure 4.13 displays a comparison of the two
approaches with respect to disk usage. Storing the initial databases in a denormalised form
requires more than four times the space needed to store them in third normal form.

3 4 5 6 7 8

Levels in Initial Database

0

5000

10000

15000

20000

25000

Si
ze

 o
f

In
it

ia
l D

at
ab

as
e

[K
B

yt
es

]

3NF

1NF

Figure 4.13: Disk Space Used by Oracle

Distributed Databases

All commercially available RDBS products support a client/server architecture. In these archi-
tectures, queries are executed on the server. The architectures are thus server-oriented. The
servers use operating system �les for storing their pages. These �les could be stored on remote
�le servers. The architecture would then be a multi-level server-oriented client/server archi-
tecture. Syntax graphs managed by an RDBS could be accessed and modi�ed from di�erent
workstations.

During the last 15 years a lot of research has gone into the management of distributed
databases. The main issues that have been addressed are distributed database design [CPW87],
distributed query processing [SY82], distributed concurrency control [BG81] and deadlock
management [Obe82].

Few of these theoretical results, however, have emerged as commercially available RDBS prod-
ucts. One reason for this is that many of the suggested algorithms are NP-complete and the
heuristics suggested to cope with this complexity make particular assumptions about the char-
acteristics of data that do not hold in general. Only recently, did Oracle Inc., for instance,
release version 7.0 of its RDBS product that is, in a limited way, capable of managing dis-
tributed databases. This product release can transparently access and update tables managed
by remote monitors.

We, however, required distribution of subgraphs. To have distributed subgraphs managed by
di�erent monitors, partitions of tables must be distributed. This is because nodes of the same
type may occur within distributed subgraphs. Then di�erent partitions of the same table have
to be managed by di�erent monitors. This cannot be achieved by storing these partitions in
separate tables since then distribution would not be transparent to tools. Tools would have
to have knowledge about the actual subgraph distribution over di�erent tables because any
embedded SQL statement must declare the name of the table it should apply to. Moving a

4.2. RELATIONAL DATABASE SYSTEMS 63

subgraph from one monitor to another would then require changing the corresponding tool,
for tuples would now be stored in logically di�erent tables.

Administration

All above mentioned RDBS products support a PSDE administrator in maintaining databases.
They provide facilities for dumping databases to backup media and recovering a database from
a backup. Some of them even maintain a redo-log which they use for bringing the database
back to the state of the last completed transaction. This, of course, only works if the log was
not damaged during the disk crash. It is not clear to us whether there are RDBSs that support
replicated databases. Oracle, however, does not.

Interfaces to RDBSs

RDBSs o�er ad-hoc query facilities which can be used by a tool builder in order to browse
through the schema, as well as through the tables that implement abstract syntax graphs.
Despite the conceptual gap between graphs and tables, the facilities provided can be considered
as su�cient for tool construction.

The programming interface to RDBSs is implemented by pre-compilers that translate em-
bedded SQL statements into a host programming language which invokes procedures from a
library provided with the RDBS. Embedded SQL is an ANSI standard [Dat89]. Moreover,
RDBSs provide a low programming interface (e.g. the Oracle call interface). This interface
can be used to directly access the contents of tables.

Data transfer between an RDBS and programming languages is based on host variables. A
host variable is a variable of the host programming language. Its type is either atomic and,
therefore, compatible with an atomic type of the RDBS or a complex type declared within
the RDBS library. Then it implements tuples or tables. Host variables may then be used
within embedded SQL statements. Oracle's pre-compiler, however, does not check for type
compatibility between host variables and their use within embedded SQL statements. This is
inherently unsafe and may easily lead to run-time type errors.

The result of a relational query is, in general, a set of tuples. RDBSs provide the concept of
cursors to iterate through a set of tuples. A cursor is opened while declaring the query in
embedded SQL. After query execution, the cursor can be used to fetch one result tuple after
another into host variables which may then be examined further. Unfortunately, RDBSs do
not support the declaration of nested cursors. Nested cursors are required to traverse through
nested graph structures. To implement this kind of traversal, the cursor iteration must be
completed while intermediate results are stored elsewhere. Then the cursor must be declared
again using the stored information.

Summary

RDBSs only partly meet the requirements imposed by PSDE tools on a DBSE. The schema
de�nition language can only express the structure of syntax graphs, but not the way they are
accessed and modi�ed. In addition, tables are not an appropriate formalism for declaring the

64 CHAPTER 4. SELECTING A DATABASE SYSTEM

structure of attributed graphs, since edge types cannot be de�ned and ordered, multi-valued
edges cannot be expressed. Relational views cannot be used in syntax-directed editors due
to the view update problem. Schema updates are possible, but the tool builder performing
such an update is in charge of re-establishing integrity of data in changed tables manually,
i.e. without any help from the RDBS. Version management is not supported at all by RDBS.
All RDBSs meet our requirement to support ACID transactions. Activities, however, are not
supported. The performance required by PSDE tools can be achieved by RDBSs only if the
schema is denormalised. As an immediate consequence the schema is completely unstructured
and disk space is wasted. RDBSs support distribution using a server-based client/server ar-
chitecture. The distributed database facilities cannot be exploited due to the fact that tables
have to be partitioned. Database administration is well supported. Finally, RDBSs provide
programming interfaces to various programming languages. Their implementation, however,
must be questioned from a software engineering point of view, for they do not ensure type
safety during query execution.

4.3 Structurally Object-Oriented Database Systems

To overcome the de�ciencies of RDBSs, a high number of non-standard database systems have
been developed. The distinguishing feature of this class of systems is that they enable types
of objects and di�erent kinds of relationships among them to be de�ned. We, therefore, call
them, in accordance with [Dit86], structurally object-oriented database systems (SODBS).

Unlike RDBSs, SODBSs are rather heterogeneous. They have no common data model, do
not have a common query language and also their programming language bindings di�er
signi�cantly. We, therefore, cannot review this class of systems as a whole, but have to
consider archetypical representatives instead.

Among SODBSs there are systems that focus on e�cient management of graphs consisting
of attributed nodes and edges. GRAS [BL85], PGraphite [WWFT88], Cactis [HK88] and
Adage [GRDM90] are representatives of this subclass. All these systems are more or less
stable results of research projects. We have chosen the GRAS system since it is available
in the public domain (ftp.informatik.rwth-aachen.de:/pub/packages/GRAS) and is still being
improved and maintained. This review will be presented in Subsection 4.3.1.

A second class supports data models based on extended entity relationship approaches. Repre-
sentatives of this class include Damokles [DGL86], DASDBS [SW87], PCTE/OMS [GMT87],
PCTE+ [ECM89], ECMA-PCTE, CAIS [AJPO88] and PCIS [Spe92]. From this class of sys-
tems, there is currently only a PCTE/OMS implementation available as a commercial product,
which we can use for practical experimentation. We have, therefore, selected this one as a rep-
resentative of this class of systems. PCTE/OMS will be reviewed in Subsection 4.3.2.

4.3.1 GRAS

GRAS was developed during the last decade [BL85, LS88, KSW92] as a database system
dedicated to the development of SDEs with syntax-directed tools. In particular, it served as
a basis for constructing the IPSEN environment [Nag85].

4.3. STRUCTURALLY OBJECT-ORIENTED DATABASE SYSTEMS 65

Data De�nition and Manipulation Language

The GRAS data model is based on graphs. A GRAS database is called a graph pool. It consists
of multiple named graphs. Each graph, in turn, consists of a number of attributed nodes and
edges. This data model has been explicitly de�ned for storing abstract syntax graphs. The
nodes have three prede�ned attributes. The �rst one is used for storing unique node identi�ers
determined by GRAS upon node creation. The second attribute is used as a node label which
can be used during queries (for a discussion of queries in GRAS, we refer to the discussion of
the programming interface on Page 70). A tool builder may freely decide on the use of the
third attribute. GRAS considers it is as an arbitrary long sequence of bytes. Edges may lead
from a source node to a target node and have an attribute that stores an edge label. Multi-
valued edges of any kind, i.e. edges with multiple source or target nodes, are not supported
by GRAS. Neither are edges that have source and target nodes in di�erent graphs supported.
When we discuss the multi-user capabilities of GRAS, it will become clear that this is a serious
drawback.

GRAS does not have a DDL or a DML. Consequently GRAS databases do not have any schema
to store type information. Graph access and manipulation operations can only be de�ned in
a host programming language to which GRAS provides an interface (c.f. Page 70). Due to
the lack of a schema, however, GRAS cannot check for type compatibility of those operations
with graph structures that are actually stored in a graph pool. As an example, GRAS has no
means to prevent a tool from creating an edge between two nodes which does not conform to
the structure of an abstract syntax graph. If the same or another tool then traverses this edge
and expects a target node of a di�erent type, a run-time error cannot be averted. Another
example is that attribute information is stored without any type information. If for instance a
tuple is to be stored in a node attribute, it must be converted into a sequence of bytes. If it is
read, the inverse conversion must be applied to reconstruct the tuple. If, for whatever reason,
this is done in the wrong way, subtle errors will occur.

Views

GRAS does not encompass view de�nition capabilities.

Schema Updates

As there is no schema in GRAS, there is also no need for schema updates. Accommodating
a change in the structure of a graph, however, is much more complicated than in RDBSs. To
implement a change in a graph's structure, all tools accessing and modifying the graph must
be changed. Unlike RDBSs, where a pre-compiler checks to some extent for conformity of the
changed tools to the changed schema, changes of tools that use GRAS must be done without
any support from GRAS. To convert existing graphs to a new structure that is de�ned by the
changed tools, a separate program must be written.

Versions

The approach to version management taken in GRAS is based on the notion of deltas [Wes89a].
A delta is a sequence of graph storage operations that, if applied to one version Vi of a graph,

66 CHAPTER 4. SELECTING A DATABASE SYSTEM

yields another version Vj of the same graph. GRAS maintains forward and backward deltas in
forward and backward logs in order to support arbitrary navigations within a graph's version
history.

There are two drawbacks to this approach. Firstly, it is bound to the notion of a graph. The
GRAS database system determines the granularity for versioning to be a complete graph, i.e.
a \typical engineering document" [KSW92]. If smaller granules, such as procedure de�nitions
or sections of a technical documentation, must be versioned, they have to be stored within
single graphs. Then, however, our concern regarding missing support for inter-graph edges is
immediately reinforced. Secondly, two versions of a graph cannot coexist, because to obtain
another version a backward or forward delta must be applied to a version. This, in turn,
destroys the former version. Therefore, GRAS cannot support di�erent developers working
concurrently on di�erent versions of a graph, which was one of our main rationales for requiring
versions.

Transactions

Graphs can only be accessed if they have been opened before. A parameter of the operation
to open a graph is an access mode, which can be read or write. The open operation then
locks the graph in the given mode. Read locks are compatible with each other, but write
locks are neither compatible to read nor to write locks. If a graph to be opened has been
locked in an incompatible mode already, execution of the open operation is delayed or even
rejected. In order to achieve reasonable concurrent development, those subgraphs of a project-
wide abstract syntax graph whose nodes represent documents and, therefore, are accessed
together should be stored within separate GRAS graphs. Again, this reinforces our concern
about missing support for inter-graph edges, since then inter-document reference edges cannot
be implemented using GRAS edges. In addition, the concurrency control mechanism is too
restrictive, since the locking of graphs, rather than the locking of nodes unnecessarily, rejects
a considerably high number of possible access schedules. While one tool modi�es a particular
part of a subgraph, another tool may well access a di�erent part of the same subgraph. These
schedules are inhibited by the locking protocol of GRAS.

GRAS supports the notion of graph transactions. A set of operations accessing or modifying
one graph can be clustered to a transaction. These transactions may even be nested. The
e�ect of a transaction becomes persistent as soon as the outermost transaction has been
successfully completed with a commit operation. These transactions ensure atomicity and
durability of operations on one graph. However, GRAS does not support the grouping of a
set of operations that access and modify nodes and edges in di�erent graphs, for example to
perform an inter-document consistency check.

Performance

For the implementation of the Merlin Benchmark with GRAS, we decided to store those
subgraphs that implement architecture, or module interface documents respectively, within
separate GRAS graphs in order to allow the concurrent development of documents. Due to
the absence of inter-graph edges, we implemented reference edges between nodes of two graphs
with attributes. The node identi�er of the target node of an outgoing inter-graph edge is stored
with the graph name in an attribute of the source node. Vice versa, the graph name and node

4
.3
.
S
T
R
U
C
T
U
R
A
L
L
Y
O
B
JE

C
T
-O
R
IE
N
T
E
D

D
A
T
A
B
A
S
E
S
Y
S
T
E
M
S

67

id
en
ti�

ers
of

in
com

in
g
ed
g
es

are
stored

as
attrib

u
tes

of
th
e
target

n
o
d
e.

T
o
create

or
d
elete

th
ese

ed
ges,

h
ow

ev
er,

th
e
targ

et
g
rap

h
m
u
st
b
e
op
en
ed
,
th
e
resp

ectiv
e
attrib

u
te

m
o
d
i�
ed

an
d

th
e
gra

p
h
clo

sed
afterw

ard
s.

CreModul
CrModTyp

CrModCom
CrModImp
CrImpObj

CrExpOpe
CrOpePar

CrOpeCom
ChModNam
ChModTyp

ChModCom
ChOpeNam
ChParNam

DlOpeCom
DlOpePar
DlOperat

DlImpObj
DlImpRel

DlModule
O

perations

3

5
7L

evels in Initial
D

atabase

0 1000 2000 3000 4000 5000

Elapsed Real Time [ms]

F
igu

re
4.14

:
U
p
d
ate

O
p
eration

s
in

G
R
A
S

F
igu

re
4.1

4
d
ep
icts

th
e
d
ep
en
d
en
cy

of
ex
ecu

tion
tim

es
of

u
p
d
ate

op
eration

s
on

th
e
d
atab

ase
size.

It
is
w
o
rth

w
h
ile

n
otin

g
,
th
a
t
th
e
p
erform

an
ce

of
th
ese

op
eration

s
on
ly

sligh
tly

d
ecreases

w
h
en

th
e
d
atab

a
se

g
row

s.
A
s
th
ese

o
p
eration

s
h
ave

to
access

an
d
m
o
d
ify

m
u
ltip

le
grap

h
s,

w
e
co
u
ld

n
ot

u
se

th
e
tra

n
saction

m
ech

an
ism

p
rov

id
ed
.
T
h
u
s
a
b
ar

on
ly

rep
resen

ts
th
e
tim

es
G
R
A
S
req

u
ired

for
ex
ecu

tin
g
th
e
b
en
ch
m
ark

op
eration

s.
A
n
u
m
b
er
of
op
eration

s
p
erform

v
ery

fast,
i.e.

in
less

th
a
n
5
0
m
illiseco

n
d
s.

T
h
ese

are
th
e
v
ery

op
eration

s
th
at

on
ly

m
o
d
ify

n
o
d
es

an
d
ed
ges

in
g
rap

h
s
th
a
t
h
ave

b
een

o
p
en
ed

alread
y.

T
h
e
oth

er
op
eration

s
eith

er
create,

op
en
,

d
elete

or
close

a
gra

p
h
a
n
d
p
erfo

rm
sign

i�
can

tly
slow

er.
C
r
e
M
o
d
u
l
e
creates

a
n
ew

grap
h
for

a
m
o
d
u
le
in
terface

d
o
cu
m
en
t.
It
estab

lish
es

th
e
grap

h
n
am

e
as

th
e
n
am

e
of
th
e
m
o
d
u
le
in
ord

er
to

a
llow

for
a
n
asso

cia
tio

n
w
ith

th
e
m
o
d
u
le
n
o
d
e
in
th
e
arch

itectu
re
grap

h
.
C
r
I
m
p
O
b
j
creates

an
im
p
o
rt
an
d
,
th
erefo

re,
m
u
st
crea

te
an

in
ter-grap

h
ed
ge

to
th
e
grap

h
w
h
ere

th
e
resp

ectiv
e
ty
p
e

o
r
o
p
eratio

n
is
ex
p
orted

.
C
h
M
o
d
N
a
m
h
as

to
p
erform

a
n
u
m
b
er

of
tim

e-con
su
m
in
g
op
eration

s.
N
o
t
on
ly

m
u
st
it
ren

a
m
e
th
e
g
ra
p
h
,
b
u
t
also

p
erform

a
ch
an
ge

p
rop

agation
to

th
ose

n
o
d
es

in
im
p
ort

lists
o
f
oth

er
g
rap

h
s
th
at

rep
resen

t
an

im
p
ort

relation
sh
ip
to

th
e
n
o
d
e.

It
h
as,

th
erefore,

to
op
en

an
d
clo

se
a
set

of
o
th
er

grap
h
s.

F
or

th
e
sam

e
reason

,
C
h
M
o
d
T
y
p,

D
l
I
m
p
O
b
j,

D
l
I
m
p
R
e
l

a
n
d

D
l
M
o
d
u
l
e
h
av
e
to

op
en

a
n
d
clo

se
oth

er
grap

h
s.

In
ad
d
ition

D
l
M
o
d
u
l
e
h
as

to
d
elete

th
e

g
rap

h
from

th
e
gra

p
h
p
o
ol.

T
h
e
ov
era

ll
p
erform

an
ce

of
th
ese

op
eration

s,
m
u
st
b
e
con

sid
ered

fa
r
to
o
slow

.

68 CHAPTER 4. SELECTING A DATABASE SYSTEM

Levels in Initial Database

E
la

ps
ed

 R
ea

l T
im

e
[m

s]

0

5000

10000

15000

20000

25000

30000

35000

3 4 5 6 7 8

OpenOMS

CloseOMS

Figure 4.15: Performance of Open and Close Operations of Graphs

It has become clear that the performance of operations modifying several graphs is determined
by the performance of opening and closing graphs. Figure 4.15 investigates these operations
in more detail. During the benchmark operation OpenOMS, the only GRAS operation is to open
the architecture graph. In CloseOMS nothing else is done but closing this graph. As shown in
Figure 4.15, the performance of opening and closing a graph depends on the database size,
i.e. the number of nodes and edges in the architecture graph. For a three-level database there
are 162 nodes and 315 edges in this graph. For an eight-level database about 5,200 nodes and
12,500 edges have to be maintained in the graph. Although the performance when opening
the graph increases while the database grows it remains below three seconds. Closing a large
graph, however, takes longer than half a minute. The concurrency control protocol imposes
the need to open and close graphs frequently. As they may well be as large as this architecture
graph, the performance of closing a large graph is unacceptably slow.

Levels in Initial Database

E
la

ps
ed

 R
ea

l T
im

e
[m

s]

0

1000

2000

3000

4000

5000

6000

7000

3 4 5 6 7 8

UnparMod

UnparArc

AnaUsage

ClosTrav

Figure 4.16: Traversal Operations in GRAS

Figure 4.16 displays our performance measurements for traversal operations. The operation
that unparses a module interface is independent of the database size and performs in about
350 milliseconds. This is very fast. The execution time for unparsing an architecture docu-
ment, however, increases polynomially with the number of modules in the architecture. If the
architecture contains less than 90 modules, the elapsed real-time remains below a second. For

4.3. STRUCTURALLY OBJECT-ORIENTED DATABASE SYSTEMS 69

an architecture containing 256 modules, unparsing is as slow as in Oracle with a schema in
third normal form.

3 4 5 6 7 8

Levels in Initial Database

0

5000

10000

15000

20000

Si
ze

 o
f

In
it

ia
l

D
at

ab
as

e
[K

B
yt

es
]

Figure 4.17: Disk Space Used by GRAS

Figure 4.17 elaborates on the disk space utilisation of GRAS. The disk space increases linearly
with the number of modules in the architecture. The ratio is about 63 KBytes per module.
This is about three times as much as the space required when using Oracle with a schema in
third normal form and about 50 % less than Oracle with a denormalised schema.

In short, the performance requirement of less than a second for command execution in the
structure-oriented mode of editing is only partially met by GRAS. If the tools did not have
to open and close graphs, the command as well as the successive unparsing of a medium-sized
document could be done in less than 400 milliseconds. If only one other graph was to be
opened, the tool command would not be executed within a second. Together with the lock
protocol, this restricts the use of GRAS to single user environments.

Distribution

GRAS supports distribution of graphs with a client/server architecture. Multiple clients may
use multiple servers for any access or modi�cation of a graph. A dedicated control server keeps
track of the association between opened graphs and graph server processes in such a way that
any request of a client is routed to the server in charge of accessing the respective graph. The
client/server architecture implementation is implemented by remote procedure calls (RPCs):
each creation, deletion of a node or edge, each read/write operation of an attribute and each
edge traversal is sent by a client side communication interface via RPC to the server side
communication interface and is then handled on the server. Thus the architecture can be
considered as a server-based client/server architecture.

We doubt that this architecture is e�cient enough to be used for the implementation of
distributed tools in a PSDE. Unfortunately, we cannot prove our doubts using the Merlin
Benchmark since the implementation of the client/server GRAS version has not yet been
completed. Our main concern is that the execution of a single RPC on currently available
workstations and network facilities takes about 4 milliseconds. Considering that unparsing a
document (about 500 nodes) takes at least 500 graph operations this causes an RPC overhead
of 2 seconds.

70 CHAPTER 4. SELECTING A DATABASE SYSTEM

Administration

GRAS does not provide any explicit support for administration, but relies on services provided
by the host operating system. This is unfortunate, since a PSDE administrator must, there-
fore, know how GRAS maps graph pools to operating system �les. To a certain extent this
knowledge must be rather detailed, as wrongly made modi�cations to some of these �les can
easily corrupt the whole database. Moving these �les to another directory of the �le-system,
for instance, corrupts the database.

Interfaces

A graphical graph browsing facility, which allows a tool developer to investigate an existing
graph, is available. As GRAS does not have a query language, it does not o�er a user interface
for ad-hoc queries.

GRAS o�ers programming interfaces for Modula-2 and C. They contain operations for the
following purposes:

� graph pool operations,

� graph operations,

� partial match query operations (PMQs).

The programming interfaces o�er operations to create or delete graph pools and to create or
delete graphs within a graph pool. Moreover, they provide operations to open and close a
graph identi�ed by a unique user-de�ned graph name. To access and manipulate these graphs,
the programming interfaces provide a number of further operations:

� Creation and deletion of labelled nodes,

� Creation and deletion of labelled edges,

� Assignment and retrieval of attributes to/from nodes.

During creation of a node, GRAS assigns a unique object identi�er to a node, which may,
in turn, be used for e�ciently accessing the node. In addition to unique object identi�ers,
applications can associate unique external names to nodes. These names enable an associative
search to be made for nodes in a graph. GRAS provides the means to perform partial match
queries in order to implement graph traversals. A partial match query is speci�ed by two
components: a node identi�er and an edge label. Using partial match queries, a tool can
retrieve a single node or a set of nodes that are connected to or from the node by an edge with
the given label.

Summary

GRAS does not support the de�nition of structures of syntax graphs in a schema. In fact,
tools can access and modify graphs stored in GRAS however they like. To overcome this, a
dedicated graph speci�cation language called PROGRESS [Sch91a] has been de�ned that is
capable of expressing structure and operations on syntax graphs. A generation facility has been
constructed that maps PROGRESS speci�cations to procedures for accessing and modifying
GRAS graphs. The use of GRAS is then partly transparent to a tool builder. PROGRESS will

4.3. STRUCTURALLY OBJECT-ORIENTED DATABASE SYSTEMS 71

be discussed with other tool speci�cation languages in Section 6.6. Di�erent views or updates
of a schema are not supported. Versioning of graphs is supported based on delta storage
techniques. Concurrency control is based on locking graphs, which we consider as the wrong
granularity. GRAS performs very fast on medium-sized graphs that need not be opened or
closed, i.e. when GRAS is used in a single-environment. A client/server architecture for GRAS
has been proposed, but not yet been implemented. We doubt that the proposed architecture
can achieve the performance required due to the way RPCs are used. GRAS does not support
a PSDE administrator with dedicated administration tools. Programming language bindings
are provided for Modula-2 and C. In short, GRAS seems to be suited to tools in a single-
user environment, but not for construction of tools for process-centred software development
environments.

4.3.2 PCTE/OMS

The portable common tool environment (PCTE) was developed within an ESPRIT-I6 project as
a framework to support SEE construction. The framework has been enriched with PCTE added
common tools (PACT) [Tho89] in a further ESPRIT-I project. PCTE consists of components
for process execution, input/output, inter-process communication, emulation of UNIX system
calls, user interface management and an object management system (OMS) [GMT87]. All
components have standardised interfaces so that SEEs that solely rely on PCTE services are
easily portable between di�erent hardware and operating system platforms. While most of
the provided services (e.g. the user interface or inter-process communication) have not been
accepted since more powerful standards have become available (e.g. X11 with OSF/Motif or
OSF/DCE), PCTE's OMS has gained substantial recognition.

Data De�nition and Manipulation Language

Schema de�nition in PCTE/OMS is based on an extended binary entity relationship model.
The model is reasonably well suited for de�ning the structure of abstract syntax graphs. Node
types can be de�ned as entities and attributes can be attached to them. Edge types can be
de�ned as links. Links can have composition, reference or stability semantics. Inheritance is
used to de�ne common properties of node types. All entities have to inherit from a prede�ned
entity Object.

A drawback of PCTE's data model is that only a restricted number of prede�ned types can
be used for declaring attributes. It is, therefore, not possible to de�ne types for complex
attributes such as error sets or symbol tables. These types have to be implemented using
entities and relationships.

In order to implement ordered multi-valued edges, key attributes can be assigned to links of
cardinality many. Unfortunately these key attributes cannot be updated. They can only be
determined upon link creation. In order to insert an element into a list at a position p, all links
leading to elements after p have to be deleted and created with a new (higher) key attribute.

The operations available for abstract syntax graphs cannot be de�ned within the schema,
but must be implemented in a host programming language using one of the standardised
programming language bindings. This has a number of serious drawbacks. The programming

6ESPRIT is the European Strategic Programme for Research in Information Technology

72 CHAPTER 4. SELECTING A DATABASE SYSTEM

interfaces o�er only a �xed number of operations for an in�nite set of schemas. Hence the
operations provided by the interface must be generic. This genericity is achieved by passing
strings that denote schema de�nitions as arguments. These strings must then be interpreted at
run-time with the consequences that, �rstly, no consistency checks against the schema can be
made at compile-time and, secondly, performance is decreased due to the required argument
interpretation. This is only bearable if the time required for interpretation is small compared
to the time spent handling fetched data. This is only the case if coarse-grained objects are
managed and again this is an indication that PCTE/OMS has not been built for management
of �ne-grained objects. A further drawback of these programming interfaces is that information
about the schema is widely spread into tools without using a well-de�ned interface. Hence the
data abstraction principle is broken7.

The overall schema de�nition can be structured into schema de�nition sets (SDSs). Import
clauses make the relationships between di�erent SDSs explicit and contribute to the compre-
hensibility of schema de�nitions.

Views

Di�erent SDSs can be used to establish the working schema of a tool. The working schema
is computed by the superposition of all entity and link de�nitions provided by the di�erent
SDSs. As only those objects, attributes and links whose de�nitions have been included in the
tool's working schema are accessible by a tool, the working schema can be used as a view
mechanism for tools.

Schema Updates

A PSDE builder may at any time change de�nitions in the SDS. Existing objects, attributes
and links are then changed accordingly.

Versions

The version and con�guration management common service (VMCS) developed in the PACT
project is capable of managing versions of composite entities. A composite entity has a root
object, which determines the composite entity as follows. The root object and the set of all
objects reachable via composition links belong to the composite entity. All reference links be-
tween objects belonging to the composite entity also belong to the composite entity. Therefore,
composite entities could be used to implement subgraphs of a project-wide syntax graph and,
using VMCS, these subgraphs could be versioned. The operations provided in order to version
composite entities are the creation of a revision (the predecessor version is frozen), creation of
a snapshot (the successor version is frozen), deletion of a version and traversals through the
version history graph starting from an arbitrary object in the composite entity. Freezing a
version is implemented by giving the predecessor/successor links the stability property, which
means that the object they lead to cannot be updated. As we have argued in Section 3.5, this
assumption is undesirable. It will lead to the problem of attributes of increments in a frozen

7[Tho93] admits this. He argues that in PCTE "Tool Dependency on Schema Properties is Undesirable".

4.3. STRUCTURALLY OBJECT-ORIENTED DATABASE SYSTEMS 73

version being unable to be changed during con�guration management, for instance to mark
an increment as erroneous.

A disadvantage from the performance point of view is that VMCS maintains predecessor and
successor links between all objects that belong to a composite entity. This is unnecessary
for versions in abstract syntax graphs as predecessor/successor relationships are only required
between subgraphs, but not between abstract syntax graph nodes. This is again an indication
that PCTE/OMS is intended to be used with coarse-grained objects. Moreover, in the im-
plementations available, utilisation of physical disk space is ine�cient, since an eager object
duplication strategy is used: All entities of the composite entity are physically duplicated
as soon as a new revision or snapshot is derived, regardless of whether they really di�er. To
change this, the version mechanism has to be integrated with PCTE's transaction management
in the underlying OMS. It can no longer be added as a service on top of the OMS.

Transactions

PCTE/OMS supports a concurrency control mechanism with three kinds of activities: un-
protected activities, protected activities and nested transactions. Unprotected activities are
neither atomic nor do they operate in isolation from other concurrent activities. Protected
activities are not atomic, but the concurrency control mechanism guarantees isolation from
other concurrent activities. Transactions are both atomic and isolated. For protected activ-
ities and transactions, locking is done implicitly. Nevertheless, an application may explicitly
lock resources. Therefore, even activities, which have been started as unprotected may lock
particular objects and then the concurrency control mechanism ensures that no concurrent
activities access these objects in an incompatible mode.

This mechanism does not meet our requirement of atomic, but non-isolated activities. Atom-
icity may not be an important requirement in activities that access a small number of coarse-
grained objects. In the case of a failure, the user knows which objects he or she was currently
working on and he or she can reestablish integrity manually. When a high number of �ne-
grained objects, such as a project-wide abstract syntax graph, are accessed during an activity,
however, the user is no longer aware of which objects have been a�ected by a failure and
he or she cannot re-establish integrity manually. Therefore, we consider atomicity to be too
important to be given up and consequently the unprotected and protected activities o�ered
by PCTE/OMS cannot be used.

Performance

The Merlin Benchmark has been implemented using version 12.4.1 of the Emeraude imple-
mentation of PCTE/OMS 1.5 [NW94]. The data model of PCTE leaves di�erent alternatives
for implementing the benchmark schema. It has been de�ned within one SDS. Entities of the
benchmark schema de�ned on Page 49 have been declared as types in that SDS, aggregation
relationships have been de�ned using composition links and reference relationships have been
implemented using PCTE reference links. Reference relationships were also used for imple-
menting the dictionary relationships, since the PCTE data model does not include dictionaries.
Benchmark operations were implemented using the C programming language binding. They
were executed as PCTE transactions in order to ensure their atomicity.

74
C
H
A
P
T
E
R
4.

S
E
L
E
C
T
IN
G

A
D
A
T
A
B
A
S
E
S
Y
S
T
E
M

CreModul
CrModTyp

CrModCom
CrModImp
CrImpObj

CrExpOpe
CrOpePar

CrOpeCom
ChModNam
ChModTyp

ChModCom
ChOpeNam
ChParNam

DlOpeCom

DlOpePar

DlOperat

DlImpObj

DlImpRel

DlModule

O
perations

3

5

7L
evels in Initial

D
atabase

0 1000 2000 3000 4000 5000

Elapsed Real Time [ms]

F
ig
u
re

4
.1
8:

U
p
d
ate

O
p
eration

s
in

P
C
T
E
/O

M
S

F
ig
u
re
4.18

d
ep
icts

th
e
d
ep
en
d
en
cy

o
f
ex
ecu

tion
tim

es
of
u
p
d
ate

op
eration

s
(in

clu
d
in
g
th
e
tim

e
sp
en
t
d
u
rin

g
th
e
su
ccessive

com
m
it)

on
th
e
d
atab

ase
size.

F
or
som

e
op
eration

s
th
e
p
erform

a
n
ce

sig
n
i�
can

tly
d
eteriora

tes
w
h
en

th
e
d
atab

ase
grow

s.
It

d
eteriorates

for
th
ose

op
eration

s
th
at

create,
u
p
d
a
te

or
d
elete

id
en
ti�

ers
w
h
ose

scop
e
is
th
e
overall

arch
itectu

re.
D
u
e
to

th
e
lack

of
th
e
d
iction

a
ry

relation
sh
ip
,
th
ese

o
p
eration

s
h
ad

to
p
erform

a
lin
ear

search
ov
er

all
id
en
ti�

ers
in

th
e
sco

p
e,
in

o
rd
er
to

ch
eck

for
u
n
iq
u
en
ess.

E
x
ecu

tion
tim

es
of
th
ese

static
sem

an
tic

ch
eck

s
th
u
s
grow

lin
ea
rly

w
ith

th
e
n
u
m
b
er
of
m
o
d
u
les

in
th
e
d
atab

ase.
T
h
e
tim

es
req

u
ired

b
y
C
h
O
p
N
a
m

a
n
d
D
l
O
p
e
r
a
t
in
crease

co
n
sid

erab
ly
as

w
ell.

T
h
e
reason

for
th
is
is
th
at

a
h
igh

n
u
m
b
er
of
ob
jects

h
ave

to
b
e
v
isited

to
ch
eck

th
e
u
n
iq
u
en
ess

of
op
eration

n
am

es.

F
ig
u
re

4
.1
9
d
isp

lay
s
th
e
relation

sh
ip

b
etw

een
tim

es
req

u
ired

for
b
en
ch
m
ark

op
eration

s
on

an
eigh

t-level
d
ata

b
ase

in
clu

d
in
g
th
e
su
ccessive

tran
saction

com
m
it.

It
th
u
s
re�

n
es

th
e
last

row
of
F
ig
u
re

4
.1
8.

It
sh
ow

s
th
at

ten
of
th
e
op
eration

s
w
ith

th
eir

su
ccessiv

e
com

m
its

req
u
ire

m
ore

th
a
n
5
00

m
illisecon

d
s.

In
th
e
ca
se

of
C
h
O
p
N
a
m
e
an
d
D
e
l
e
t
e
O
p,
th
e
tim

e
ev
en

ex
ceed

s
5
secon

d
s,

w
h
ich

m
u
st
b
e
regard

ed
as

in
to
lera

b
ly

slow
.
T
h
ese

�
gu
res

su
ggest

th
at

P
C
T
E
's
p
erform

a
n
ce

o
f
com

m
it
o
p
era

tion
s
for

tra
n
saction

s
w
ith

a
h
igh

n
u
m
b
er

of
w
rite

accesses
is
far

to
o
slow

.

F
igu

re
4.2

0
d
ep
icts

h
ow

th
e
tim

es
req

u
ired

for
trav

ersal
op
eration

s
d
ep
en
d
on

th
e
d
atab

ase
size.

U
n
p
arsin

g
a
m
o
d
u
le

con
sta

n
tly

req
u
ires

ab
ou
t
800

m
illisecon

d
s.

U
n
p
arsin

g
an

arch
i-

tectu
re

lin
ea
rly

in
crea

ses
u
p
to

5,8
00

m
illisecon

d
s
for

an
eigh

t-level
d
atab

ase.
U
n
p
arsin

g
an

a
rch

itectu
re

is
faster

th
a
n
a
seco

n
d
for

arch
itectu

res
sm

aller
th
an

40
m
o
d
u
les.

4.3. STRUCTURALLY OBJECT-ORIENTED DATABASE SYSTEMS 75

C
re

M
od

ul

C
rM

od
T

yp

C
rM

od
C

om

C
rM

od
Im

p

C
rI

m
pO

bj

C
rE

xp
O

pe

C
rO

pe
Pa

r

C
rO

pe
C

om

C
hM

od
N

am

C
hM

od
T

yp

C
hM

od
C

om

C
hO

pe
N

am

C
hP

ar
N

am

D
lO

pe
C

om

D
lO

pe
Pa

r

D
lO

pe
ra

t

D
lI

m
pO

bj

D
lI

m
pR

el

D
lM

od
ul

e

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

E
la

ps
ed

 R
ea

l T
im

e
[m

s]

Commit

Operation

Figure 4.19: PCTE Update Operations and Commit in a Large Database

Levels in Initial Database

E
la

ps
ed

 R
ea

l T
im

e
[m

s]

0

1000

2000

3000

4000

5000

6000

3 4 5 6 7 8

UnparMod

UnparArc

AnaUsage

ClosTrav

Figure 4.20: Dependency of Traversal Operations on Database Size

Finally, Figure 4.21 elaborates on the disk space utilisation of PCTE/OMS. The PCTE volume
used for the benchmark had a �xed size of 25 MBytes. The real space utilisation in the volume
has been obtained with a vol scan command. The disk space increases linearly with the
number of modules in the architecture. The ratio is about 28 KBytes per module. Surprisingly,
the utilisation is better than in Oracle with a denormalised schema and also better than in
GRAS.

In short, the performance of PCTE/OMS must be considered too slow if it is used for syntax
graphs of large size. Only simple operations, such as CrModImp, CreOpCom, ChModCom, ChParNam or
DelOpCom where a small number of objects are modi�ed, will meet the performance requirement
of less than a second for an operation, commit and successive unparsing.

76 CHAPTER 4. SELECTING A DATABASE SYSTEM

3 4 5 6 7 8

Levels in Initial Database

0

2000

4000

6000

8000

10000

Si
ze

 o
f I

ni
ti

al
 D

at
ab

as
e

[K
B

yt
es

]

Figure 4.21: Disk Space Used by PCTE

Distribution

PCTE/OMS has a distributed database architecture. Objects managed by PCTE/OMS phys-
ically reside on volumes. The concept of volumes does not impose any constraints on links.
Unlike GRAS, where edges are con�ned within graphs, links in PCTE may span between arbi-
trary volumes. For each volume a particular host is selected as the volume server. Other hosts
may mount volumes and, by doing that, provide tools running on that host with transparent
distributed access to objects physically stored on remote volumes. Objects that are rarely
updated but frequently read may be held as replicated objects on several volumes in order to
decrease network tra�c or to limit the impact of unreachable volume servers. PCTE/OMS
then manages updates to these replicated objects transparently.

Administration

PCTE/OMS provides the PSDE administrator with a number of facilities. A backup tool can
be used by the administrator to write composite objects or even complete volumes incremen-
tally onto backup media. A few tools, particularly for starting hosts, mounting or un-mounting
volumes and managing data replication, are o�ered to control data distribution. User admin-
istration is done by maintaining a user identi�cation �le with standard UNIX tools. Tools for
performance monitoring purposes are not available.

Interfaces

The functional PCTE speci�cation is available for two programming language bindings, Ada
and C. Besides the problems addressed earlier, these bindings su�er from the fact that they do
not meet the requirement of object identi�cation appropriately. Objects stored in PCTE/OMS
can either be identi�ed by path names or by reference objects. Path names are character strings,
which de�ne the navigation path from the common root object to the object to be addressed.
These paths are unique throughout the whole database. Unfortunately they cannot be used for
object identi�cation purposes as they change when a link name on the path changes. Moreover,
they occupy substantial internal storage space and objects addressed by path names can only
be accessed ine�ciently. This is because the OMS must interpret the name by navigating
from the common root to the object. As many disk accesses may be required as there are link

4.4. OBJECT DATABASE SYSTEMS 77

names occurring in the path name. To deal with this, reference objects have been introduced.
These objects are not unique within the whole database, but only valid in the current process
or its sub-processes. They are handled in the same way as UNIX �le descriptors, which
means that only a few reference objects may be declared. Therefore, they cannot be used
for identifying several thousand nodes in the portion of a project-wide abstract syntax graph
currently displayed.

PCTE/OMS o�ers two user-interfaces. The �rst one is a textual shell where every function of
the programming interface is available as a command. This can be used for navigating through
the database. A graphical SDS design tool is also provided, which enables the schema to be
de�ned in terms of an extended entity relationship model and can generate and compile an
SDS from a model.

Summary

PCTE/OMS has been built for the management of coarse-grained objects and is, therefore,
only of limited use for managing project-wide abstract syntax graphs. The data de�nition
language lacks facilities for de�ning attribute types. Moreover, it cannot express ordered
multi-valued edges. PCTE/OMS does not have any data manipulation language, thus op-
erations accessing and modifying abstract syntax graphs can only be implemented in a host
programming language. The concept of working schemas can be used for implementing views.
Schema updates are possible, and PCTE updates any existing objects that have been instanti-
ated from the schema before. Version management of syntax graphs can be implemented with
the PACT VMCS though only with signi�cant performance overheads. PCTE o�ers a con-
cept to implement ACID transactions, but activities are not supported. The performance of
the available PCTE/OMS implementation meets the requirements imposed by syntax-directed
tools not in all cases. Both distribution and administration are well supported. The program-
ming interfaces provided have di�culty in meeting the requirement of object identi�cation in
syntax-directed tools.

4.4 Object Database Systems

In the mid-eighties, a new class of database systems combining object-oriented programming
languages with database technology became available. Recently, a standard for this class of
database systems has been released [Cat93]. In accordance to the standard de�nition we call
these systems object database systems (ODBS). Meanwhile a substantial number of systems
such as GemStone [CM84], O2 [LRV88], Ontos [AHS91], Versant [Gor87], Orion8 [KBC+89]
and ObjectStore [LLOW91] are available as products.

The common features that any ODBS must support were initially de�ned in [ABD+90]. Be-
sides these mandatory features a high number of extensions such as versions, views, active
capabilities or schema updates have also been proposed. Most of them are important for
PSDE construction and have been implemented in one or the other ODBS. Among the sys-
tems that o�er the greatest functionality is the O2 ODBS since extensions required for PSDE
constructions have been added in the GOODSTEP project [GOO94]. As we have this sys-

8The product name of Orion was changed to ITASCA. As all of the concepts of the ITASCA product have
been built for the Orion system, we consider Orion in this thesis only.

78 CHAPTER 4. SELECTING A DATABASE SYSTEM

tem available for practical experiments, we present the review of this class of DBSs using the
particular functionality o�ered by the O2 system and only mention other ODBSs when they
have important di�erences. While doing so, we enhance and re�ne the arguments presented
in [EKS93].

Data De�nition and Manipulation Language

To implement project-wide abstract syntax graphs, node types are implemented as classes
of the database schema. Classes in O2 are de�ned in the O2C data de�nition language.
GemStone provides a dedicated language called OPAL, and Orion uses CommonLisp, whereas
all other ODBSs use C++ as data de�nition language. They could, therefore, equally well be
considered as persistent C++ programming language implementations. Nodes are represented
by instances of these classes then. They are objects whose instance variables represent edges
and attributes. Navigation along these edges is done by dereferencing instance variables. It is
a slight drawback that instance variables only support navigation in one direction. Therefore,
whenever navigation in both directions is required, a pair of instance variables must be de�ned
to implement an edge. For implementation of multi-valued edges, type constructors such as
lists (if the edges are ordered) or sets (otherwise) are used. Navigation is then expressed in
terms of an object query language (OQL) or iteration primitives.

The type-compatibility in an O2C schema is checked at compile-time which, compared with
run-time type checking in OPAL, achieves better type safeness and improved performance.
The set of target nodes of a particular edge should, therefore, be restricted to those types of
nodes that are allowed according to syntax and static semantics of the language. Therefore, we
exploit the type-system provided by typed ODBSs (such as O2) to de�ne the types of instance
variables as a �rst step towards type safeness.

For schema simpli�cation, multiple inheritance is used to de�ne common properties of nodes
such as outgoing syntactic or non-syntactic edges or attributes in a super class, only once.
Subclasses of this super class then inherit the de�nition. Moreover, edges do not always
connect nodes of the same type. Heterogeneous edges, i.e. edges leading to di�erent types of
nodes can be implemented using polymorphism.

Integrity constraints are enforced by encapsulation, i.e. applications are not allowed to modify
instance variables directly, but must use the methods de�ned. This form of encapsulation is
only made possible by the computational completeness of the schema de�nition language.

In any ODBS, persistence of objects is de�ned by reachability from a persistent object. The
DDL of O2, therefore, includes the concept of names that can be de�ned in a schema. An
object that is assigned to a name at run-time is called named object. Named objects are
persistent. A tool schema will, therefore, include a name whose type is a set of document
root nodes. Then any node in a document's subgraph whose root node is included in the set
becomes persistent, because they are all reachable from the root node.

Schemas in O2 can be structured into di�erent sub-schemas. Therefore, particular sub-schema
components can be designated as exports and then other sub-schemas can import these com-
ponents. Hence the information hiding paradigm is not only applied for single classes but also
on a more coarse-grained level for schemas, i.e. sets of classes.

4.4. OBJECT DATABASE SYSTEMS 79

Views

Various view de�nition facilities for ODBSs [SLT91], [Ber92], [AB91] and [HZ90] have recently
been suggested. The fact that they allow de�nition of di�erent interfaces for the same objects
is a feature common to all of them. For the O2 ODBS the view mechanism proposed in [AB91]
has been implemented [SAD94]. As the implementation is available for practical use, we now
consider this view mechanism in more detail.

The view mechanism of O2 allows a tool builder to specify virtual schemas and virtual
databases. A virtual schema de�nition is based on a conceptual schema called root schema.
A virtual schema can hide classes de�ned in the root schema and can modify the interface of
classes de�ned in the root schema. To achieve this modi�cation, virtual classes can be de�ned
on the basis of root class de�nitions. Objects contained in databases that instantiate the root
schema are represented according to the respective virtual class de�nitions when they are ac-
cessed through a virtual schema. We then refer to these objects as virtual objects. Therefore,
the virtual schema de�nition implicitly de�nes virtual databases.

Object-oriented views partly overcome the view update problem of relational databases. As
argued in [SLT91] this is due to the concept of object identity. Opposed to relational databases,
where the schema designer must designate unique key attributes to address tuples, ODBSs
de�ne object identity in a way transparent to the schema designer. In relational databases,
views can be constructed that hide primary key attributes of base relations and then these
views are no longer updatable. In object-oriented views, virtual objects always store the object
identity of their base object. Then it is always de�ned into which base object to migrate a
virtual object update.

The view mechanism of O2 is particularly suitable for a tool builder for de�ning di�erent views
on a project-wide abstract syntax graph as was required in Section 3.3. As discussed in [Bec95],
the overall structure of the graph can be de�ned in a conceptual schema using O2's schema
de�nition language. Based on this schema a number of virtual schemas can be de�ned for tools
so that each tool is provided with its own view of the abstract syntax graph. For a class that
implements a node type in the conceptual schema, the virtual schema for a tool includes a
virtual class that shows only those edges that are of concern for the tool and hides any others.
Node types that must not be seen at all can be hidden by not de�ning a virtual class for this
class. Moreover, the virtual schema can hide those methods that implement modi�cations that
ought not be invoked by a tool. It can add additional methods that have not been de�ned
in the conceptual schema for instance to implement di�erent unparsing schemes or di�erent
parsers in di�erent tools. Using the view mechanism in this way, a tool builder enables di�erent
tools to use di�erent schemas particularly suited for their purposes, while sharing nodes in the
project-wide abstract syntax graph with other tools.

Schema Updates

Almost each of the above mentioned ODBSs supports incremental updates to an already es-
tablished schema. Only ObjectStore, Objectivity, Versant and O2, however, enable an existing
database to migrate to a changed schema. Of these systems, the O2 ODBS o�ers the most
sophisticated support for controlling migration after a schema update. We, therefore, discuss
the problem of schema updates in ODBSs using the particular choices taken in the O2 system
as discussed in [FMZ94b].

80 CHAPTER 4. SELECTING A DATABASE SYSTEM

In the O2 system, changes to bodies of methods can be performed without any additional
measures. The change is in place as soon as the transaction that performed the change is
completed. Updates to signatures of methods can be done as well. O2 then compiles all
depending method bodies anew. The change becomes e�ective if all depending bodies have
been successfully compiled and the transaction that performed the change has been completed.
These schema updates do not a�ect the consistency of existing databases at all.

Unlike changing a method de�nition, changes to instance variable declarations in classes will
a�ect the database, if it contains objects of these classes. To support such a change and
have all existing objects of the respective class migrating to the new class de�nition, O2

o�ers conversion functions [HVZ90]. A conversion function is an O2C function with an input
parameter of the old class' type and a result type of the new class' type. After a change,
such a conversion function can be associated with the modi�ed class and the database system
executes this function for each object of the changed class before it is accessed the next time.

When to execute conversion functions can be determined by the tool builder by choosing
between an immediate or lazy strategy. In the immediate strategy all objects of the changed
class are converted during the schema update transaction. In the lazy strategy an object is
only converted when a transaction is about to access the object. Whichever strategy is chosen,
for tools operating on the changed schema the e�ect is always the same [FMZ94a].

These facilities can be exploited in order to change the structure of an existing abstract syntax
graph stored in O2 consistently. New types of nodes can be introduced by de�ning new classes.
Edges can be added to or deleted from existing nodes by adding or deleting an instance variable
to or from the class. If an instance variable is added, a conversion function can determine the
target node of the edge. Depending on the number of nodes, immediate or lazy conversions of
the existing nodes can be performed.

Versions

Only few of the available ODBSs provide support for versioning at all. ObjectStore and Versant
support versions of objects by providing a prede�ned class from which other classes can inherit
the property of being versioned. This can be used to maintain versions of single nodes but is
of very limited use for the implementation of versions of subgraphs of the project-wide syntax
graph.

Only Orion and O2 provide support for the versioning of composite objects. In Orion composite
objects are de�ned statically within the schema, whereas in O2 composite objects are deter-
mined in a more exible way during run-time by including objects in a versionable container
object. We, therefore, consider this approach in more detail.

O2's version manager provides a prede�ned class Version [DM93]. An object of class Version
acts as a container for a set of objects that are under version control together. The class in-
cludes data structures for maintaining the version history of the composite object and methods
for navigating through the version history graph. Version o�ers methods to add or remove
objects to or from the composite object. As soon as an object is added to an object of class
Version, this object is under version control. Moreover, Version o�ers methods to set the
current version of a container, to derive versions from the current version and to set default
versions, i.e. to determine which version of a composite object is to be used if other objects
do not address a particular version.

4.4. OBJECT DATABASE SYSTEMS 81

The class Version is particularly suited for implementing versions of subgraphs of the project-
wide abstract syntax graph as shown in [Bru94]. In the implementation of each node of the
abstract syntax graph that represents a document (document node), an instance variable of
class Version can be added. Then, whenever a node is created, the object implementing the
node is added to the container object of the document node to which the node belongs. When
a node is deleted, the node is removed from the container object. To derive a new version of a
document, the implementation of the document node need only call the derive method of the
container object. A similar strategy is chosen for navigation through the version graph of a
document, establishing current and default versions and so on.

Transactions

By de�nition every ODBS supports conventional transactions with ACID properties. These
transaction mechanisms can be exploited to group a set of operations that modify a project-
wide abstract syntax graph so that they are either completely performed and then persistent
or, in the case of a failure, they are not performed at all.

In most of the systems, a PSDE administrator can decide to give up one or the other of
the ACID properties statically, i.e. for complete sessions. In GemStone, for instance, the
administrator can decide not to perform concurrency control thus giving up the isolation
property of transactions. In O2, the administrator can decide to access databases without
logging, i.e. the atomicity and durability properties are abandoned. We have not found
any system, however, in which a tool builder could decide for each transaction whether or
not concurrency control should be performed. Hence our requirements regarding adjustable
transaction mechanisms have not been ful�lled completely.

Performance

The Merlin Benchmark was implemented and executed with GemStone Version 3.0.3 and O2

Version 4.3. In single-user modes, these systems have shown more or less the same results. We,
therefore, only discuss the results of O2. The performance �gures for GemStone are presented
and discussed in [EK92].

Figure 4.22 displays the performance of update operations for various initial database sizes.
The �gures include the time for executing the operation as well as the time needed for the
successive commit. The performance of these operations is fairly balanced. Not a single opera-
tion required more than 900 milliseconds. Six operations required more than 500 milliseconds.
It is remarkable that there is no signi�cant decrease in the performance if the database gets
larger. This is because consistency checks were performed with dictionaries that were imple-
mented with external hashing techniques as suggested in [Pea90]. The slowest operation is
CreModul. This is because the operation was performed at the beginning of each benchmark
execution while the database was in a cold state, i.e. the database caches were empty. The
impact of database caches becomes evident by comparing the performance of CrModCom and
CrOpCom, which perform the same operation, except that the module comment is created in a
colder state and, therefore, takes about 250 milliseconds longer. The second slowest operation
is ChModTyp, which changes a type and thus has to perform a change propagation to a high
number of increments using this type. In short, update operations in O2 are signi�cantly faster
than in GRAS and PCTE, though about 250 milliseconds slower than in Oracle.

82
C
H
A
P
T
E
R
4.

S
E
L
E
C
T
IN
G

A
D
A
T
A
B
A
S
E
S
Y
S
T
E
M

CreModul
CrModTyp

CrModCom
CrModImp
CrImpObj

CrExpOpe
CrOpePar

CrOpeCom
ChModNam
ChModTyp

ChModCom
ChOpeNam
ChParNam

DlOpeCom

DlOpePar

DlOperat

DlImpObj

DlImpRel

DlModule

O
perations

3

5

7L
evels in Initial

D
atabase

0 200 400 600 800 1000

Elapsed Real Time [ms]

F
igu

re
4
.22:

U
p
d
ate

O
p
eration

s
in
O
2

CreModul

CrModTyp

CrModCom

CrModImp

CrImpObj

CrExpOpe

CrOpePar

CrOpeCom

ChModNam

ChModTyp

ChModCom

ChOpeNam

ChParNam

DlOpeCom

DlOpePar

DlOperat

DlImpObj

DlImpRel

DlModule

0

100

200

300

400

500

600

700

800

900

1000

Elapsed Real Time [ms]

C
om

m
it

O
peration

F
igu

re
4.23

:
O
2
U
p
d
a
te

O
p
eration

s
an
d
C
om

m
it
in

a
L
arge

D
atab

ase

F
igu

re
4.2

3
d
isp

lay
s
th
e
relation

sh
ip
s
b
etw

een
b
en
ch
m
ark

op
eration

s
an
d
com

m
it
tim

es
for

an
eigh

t-level
d
atab

a
se,

i.e
it
re�

n
es

th
e
last

row
of

F
igu

re
4.22.

T
h
e
tim

es
req

u
ired

fo
r
a

co
m
m
it
are

ab
ou
t
3
50-400

m
illiseco

n
d
s.

T
h
u
s
th
e
com

m
it
tim

e
d
om

in
ates

th
e
p
erform

an
ce

of
m
ost

op
eratio

n
s.

It
is
a
lso

th
e
reason

w
h
y
O
racle

is
faster.

T
h
e
op
eration

s
th
em

selv
es

m
erely

p
erfo

rm
as

fa
st

a
s
in

O
racle,

b
u
t
O
racle

seem
s
to

b
e
op
tim

ised
to

a
h
igh

tran
saction

th
ro
u
gh
p
u
t
w
ith

a
co
m
m
it
req

u
irin

g
on
ly

b
etw

een
50

an
d
150

m
illisecon

d
s.

4.4. OBJECT DATABASE SYSTEMS 83

Levels in Initial Database

E
la

ps
ed

 R
ea

l T
im

e
[m

s]

0

1000

2000

3000

4000

5000

6000

7000

8000

3 4 5 6 7 8

UnparMod

UnparArc

AnaUsage

ClosTrav

Figure 4.24: Dependency of Traversal Operations on Database Size

Figure 4.24 displays the performance �gures for traversal operations. In O2 the performance of
the operation to unparse a module is constantly about 800 milliseconds. It is thus much faster
than in Oracle with a normalised schema, as fast as in PCTE and Oracle with a denormalised
schema and 400 milliseconds slower than in GRAS. In O2 it takes 2,300 milliseconds to unparse
an architecture with 256 modules and is thus faster than in any other database system. It is
more than twice as fast as in Oracle with a normalised schema, in PCTE and in GRAS and
still about 800 milliseconds faster than in Oracle with a denormalised schema.

Figure 4.25 displays the disk space utilisation we obtained for O2. The required disk space for
an initial database grows linearly with the number of modules in the database. The ratio is
about 95 KBytes per module, which is the worst result of all investigated systems.

In short, the performance of O2 is reasonably good. If we consider only operations performed
in a warm database state (which is the usual situation during editing sessions), performing
an operation, the successive transaction commit and unparsing a complete module can be
executed in less than 1,300 milliseconds. The heavy disk space requirements of O2 are clearly
a drawback, but we assume that due to advances in secondary storage devices, larger and
faster disks will become available at lower costs. Thus disk space will be a less important
factor in the future.

3 4 5 6 7 8

Levels in Initial Database

0

5000

10000

15000

20000

25000

Si
ze

 o
f I

ni
ti

al
 D

at
ab

as
e

[K
B

yt
es

]

Figure 4.25: Disk Space Used by O2

84 CHAPTER 4. SELECTING A DATABASE SYSTEM

Distribution

All ODBSs o�er distributed access to a database by a client/server architecture. We found
client-based and server-based architectures. O2 and ObjectStore are client-oriented, whereas
GemStone is server-oriented. In experimentations with both the client-oriented and the server-
oriented architecture, we found that the client-oriented architecture is more tolerant of a
higher load. This is because most of the computation load for executing abstract syntax graph
operations is taken by the clients.

None of the ODBSs we have looked at is capable of managing distributed databases. As long
as this is the case, ODBSs cannot be used in large projects.

Administration

In GemStone and O2 the following facilities are o�ered to the database administrator:

� incremental backup facilities for storing databases on secondary storage media. Gem-
stone even supports replicated databases,

� secondary storage management facilities in order to monitor physical disk space utilisa-
tion, and

� database maintenance facilities in order to improve the fragmentation of the database
and to perform garbage collections.

In short, these facilities can be considered su�cient for administering project-wide abstract
syntax graphs in PSDEs.

Interfaces

All of the ODBSs mentioned in the introduction to this section have a programming interface
to C++. In most of the systems, C++ is even used as schema de�nition language in the
sense that the schema is derived from a set of C++ class de�nitions by a preprocessor. These
systems then inherit the unsafeness from C++, which we consider a severe drawback.

Only in GemStone and O2, are dedicated languages, namely OPAL and O2C, used and a
schema that has been established in one of these languages can be exported to C++. This
export mechanism generates a twin C++ class for each class de�ned in the schema. Objects
of these classes can then be used as object identi�ers in the programming language. In O2,
even O2C method de�nitions can be exported to C++. The export mechanism then generates
methods, with the same name and the same parameter list as in the respective O2C class for
each object identi�er class. The methods de�ned in the schema can then be called using these
generated methods and the exported object identi�ers encapsulated according to the schema
de�nition. These object identi�ers can, therefore, in general be used for the association between
increments and nodes of the abstract syntax graph.

The user interfaces o�ered by GemStone and O2 provide the database user with facilities for:

� incrementally creating, modifying and deleting schema de�nitions,

� performing ad-hoc queries and browsing through the schema de�nitions,

4.5. SUMMARY 85

� debugging schema de�nitions,

� browsing through the objects contained in the database, and

� creating, modifying and deleting objects in the database.

In particular, these facilities support a tool builder during the tool constructing process.

4.5 Summary

Our detailed investigation of di�erent kinds of database systems revealed that relational
database systems should not be used as DBSE because their data model is inappropriate for
expressing project-wide abstract syntax graphs, they do not support versioning and relational
views are not updatable in general.

From a data-model perspective, structurally object-oriented systems have managed to over-
come some of the de�ciencies of RDBSs. They still su�er from not supporting encapsulation
of data structures and application speci�c attribute types cannot be de�ned. Moreover, all
the systems we looked at had a granularity problem. The graph-based systems have been
built to manage a high-number of small objects and relationships e�ciently. To achieve the
required performance, concessions have been made with respect to multi-user support, transac-
tion management and distribution. The entity relationship model oriented systems were built
in order to manage coarse-grained objects and they do not achieve the performance required
for management of project-wide abstract syntax graphs.

Our investigations revealed that ODBSs in general are the most promising systems to take.
They provide a powerful data model that is very suitable for de�ning abstract syntax graph
structures, as well as graph access and modi�cation operations. O2 and the Orion system can
identify composite objects in order to o�er version management primitives. The primitives
have been proved to be su�cient for version management of subgraphs that represent docu-
ments. View mechanisms have been proposed for a number of object database systems. The
mechanism implemented in O2 is suitable for de�ning and updating virtual abstract syntax
graphs based on a conceptual abstract syntax graph. Schema updates in O2 can be done in
a way that allows abstract syntax graph structures to be changed. Existing graphs migrate
to the new schema incrementally. This is very important for the maintenance of tools in a
commercial context, but we will not consider schema updates further and focus on tool con-
struction rather than on their maintenance. A number of abstract syntax graph operations
can be grouped as a transaction that has ACID properties. These transactions will later be
used to implement syntax editor commands. They will ensure that commands can be executed
concurrently and that the e�ect of completed commands is preserved against any failures. Un-
fortunately ODBSs do not support activities. Graph access and update operations can be
performed from distributed workstations based on the multi-level client/server architecture
that is commonly used in ODBSs. Finally, the Merlin Benchmark implementations on O2

and GemStone provide evidence that ODBSs perform faster than relational or structurally
object-oriented database systems. We, therefore, suggest using object database systems as the
platform for development of syntax-directed tools. Of the class of ODBSs O2 is the system
most suitable. This is due to the extensions done to O2 in the GOODSTEP project. They pro-
vide a higher standard of mechanisms, such as views, schema updates and versions, than those
o�ered by other systems. We continue in the next chapter with the design of an architecture
for syntax-directed tools that is based on object database systems.

86 CHAPTER 4. SELECTING A DATABASE SYSTEM

Chapter 5

A Tool Architecture Based on

Object Databases

In this chapter, we present design rationales for a generic, object-oriented architecture for tools.
Tools constructed according to this architecture will meet both end-user and environment
builder requirements as discussed in Chapter 2. The architecture is based on using an object
database. Documents are represented as subgraphs of a project-wide abstract syntax graph
according to the discussions in Section 3.1. These abstract syntax graphs are stored in an
object database according to the considerations in Section 4.4.

For the underlying notation for the architectural considerations in this chapter, we slightly
modify1 the concepts and the notation that have been suggested for the Groupie system [ES94].
They trace back to [Lew88]. As we are developing an object-oriented architecture, we only use
abstract data type modules. Abstract data type modules are, moreover, used in a restricted
way so that they only export one type with a set of operations. We, therefore, consider these
modules as classes in the following chapters. The use relationship between classes is displayed
as a solid arrow. Dashed arrows represent a special kind of use relationship which we denote
as call-back relationship. Inheritance relationships are represented by dotted arrows. A class
inheriting from another class is a subclass. Operations may be deferred in the sense that
they must be rede�ned in subclasses. A class that has a deferred operation is referred to as
deferred class. Besides the exported operations, classes may also de�ne hidden operations. In a
graphical depiction, classes are represented as rectangles. In order to deal with the complexity
of this architecture and thus perform the discussion at several levels of abstraction, we use
the concept of subsystems. A subsystem is graphically represented by a rectangle with an
underlying shadow. At a higher-level of abstraction, subsystems represent a set of classes or
even subsystems. In a subsystem's re�nement, some classes are declared to be exported by the
subsystem. In the graphical notation, this is marked with a small black square in the upper
left corner of the rectangle. The other classes are internal to the subsystem and cannot be
used by subsystems or classes contained in other subsystems. Hence, the information hiding
paradigm is applied not only to instance variables and operations contained in classes, but
also at a more coarse-grained level to classes contained in subsystems. A use relationship
between two subsystems means that classes in the source subsystem can import classes that
are exported by the target subsystem.

1A more thorough investigation of these modi�cations is provided in [Bay95].

87

88 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

Layout
Computation

Control

uses
calls−back

subsystem

Legend:

class

UserInterface

UIMS

ODBS

ToolSpecific
 Services

Message Router
 Interface

 Tool
Kernel

Tool
Schema

SoftwareProcess
Communication
 Protocol

Tool
API

Command
Execution

Figure 5.1: Architecture of Tools based on Object Databases

Figure 5.1 displays a �rst overview of the tool's architecture. We will re�ne it further in this
chapter. The ToolSchema is a subsystem of classes de�ned in an object-oriented schema de�-
nition language. These classes implement the structure and the available operations for those
subgraphs of the project-wide abstract syntax graphs that represent documents, which are per-
sistently stored in an object database. All other components will be implemented in C++. The
ToolAPI subsystem, therefore, provides the other components with a programming interface
to the schema. The LayoutComputation class arranges for textual or graphical representa-
tion of the abstract syntax graph. The CommandExecution subsystem is capable of computing
pop-up menus based on the current selection context and of executing a user's choice. The
UserInterface subsystem exports a number of tool-speci�c window classes, the construction
of which are based on a user interface management system (UIMS). The ToolKernel subsystem
encapsulates the basic tool functionality. It can create new documents, open documents, delete
documents, keep track of the currently opened editors, create pop-up menus and arrange for
command execution. Moreover, it uses the transaction mechanism exported by ODBS in order
to preserve integrity and execute commands concurrently. The ToolSpecificServices class
exports operations that can be used to implement tool-speci�c services. It imports from a
SoftwareProcessCommunicationProtocol that, in turn, uses an interface to a message router,
such as Sun ToolTalk. Finally, the Control class controls the tool execution and translates
various incoming events, such as user-input, requests of tool services or a deadlock in the
database, into calls of operations exported by underlying components.

5.1. CONTROL 89

As discussed in Subsection 2.4, we are faced with the requirement of e�cient tool generation.
In order to meet this requirement, the tool architecture is constructed in such a way that
a substantial number of components can be reused in arbitrary tools. During the course of
this chapter, we will explain why each component can or cannot be reused. The distinction
between reusable and tool-speci�c classes is shown in Figure 5.1. Rectangles representing
reusable components are shaded in grey. If a subsystem does not only consist of reusable
classes, it is only partly shaded in grey. In fact, the strategy to simplify tool construction
based on reusing components is not new, but has been applied to earlier approaches to tool
generation as well. Editors generated by the Centaur system, for instance, share a virtual tree
processor, a user interface library and a rule interpreter [BCD+88].

5.1 Control

The architecture contains a number of external components, which we obtain from third party
suppliers, which means that we cannot change them. These components are the UIMS, the
ODBS and the MessageRouterInterface. These components need to interact with the internal
components of the architecture. They are not only called by internal components, but also
need to call internal components.

Situations in which external components have to notify internal components about particular
incidents are called events. The common way to implement them is to pass a call-back op-
eration, as an argument, to a registration operation supplied by the external component and
thus associate the call-back with the event. If the external component detects the event, the
registered operation is called back.

From an architectural point of view, the relationship between an external component and a
call-back operation could be considered as a use-relationship, since the external component
uses the call-back operation when an event is detected. The immediate consequence, however,
is cyclic use-relationships, which should be avoided. These cause problems, for instance, during
the determination of an order for compiling components when the components depend on each
other.

We, therefore, mark those usages that lead to cyclic use-relationships explicitly as call-back
relationships and only use them with external components, i.e. when they cannot be avoided.
Thus, the use-relationship between all internal architecture components remains acyclic. In
addition, we declare all the call-back operations within a single class so that call-backs are not
distributed over the whole architecture. This class is the Control class.

For reasons that will become clear in Section 5.5, there are events that are caused by user-input
and are detected by the UIMS. Some of these events cannot be handled by the UIMS but have
to be communicated to higher-level architecture components. Therefore, we require call-back
operations for reaction to user-input events in the Control class.

Most ODBSs follow a two-phase lock protocol. As already discussed in Section 3.6, this
protocol may cause a transaction to wait for the completion of another concurrent transaction.
Furthermore, it is not deadlock-free. These situations are detected as events by the ODBS
system. If these events occur, an operation of the Control class will be called back. This
operation can then invoke operations exported by the ToolKernel subsystem in order to notify
the user about these events and ask whether to wait or to abort the current command execution.

90 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

If a service is requested from a tool, this request will be detected as an event by the message
router interface. It then invokes a call-back in the Control class. This operation investigates
the request to see whether the requested service is generic or tool-speci�c. If it is a generic
service such as creating a document, deriving a version or opening a document in an editor,
it will call operations exported by the ToolKernel subsystem. If the requested service is tool-
speci�c, it will call an operation exported by ToolSpecificServices, which implements the
particular service.

5.2 Tool Kernel

As discussed in Subsection 2.2.2, a user may want to display or edit multiple documents
simultaneously. A tool must, therefore, be seen as a number of editors, each of which is used
to display or edit one opened document. One of the purposes of the ToolKernel subsystem,
is to meet this requirement by managing the set of editors that are displayed by the tool.
Furthermore, the ToolKernel subsystem implements the command execution cycle as discussed
in Figure 3.4 on Page 31. In doing so, it o�ers operations to the Control class that are used
for reacting to user-input as well as to service requests. Finally, it o�ers an operation to the
Control class for reacting to events detected by the database engine. All these tasks remain
the same for arbitrary tools. Therefore, the whole ToolKernel subsystem is constructed in
such a way that it can be reused among arbitrary tools and it is included in our reuse library.

Editor

Selection

 Editor
Manager

 Opened
Document

Figure 5.2: Architecture of the Tool Kernel Subsystem

The architecture of the ToolKernel subsystem is depicted in Figure 5.2. The export of this
subsystem is the class EditorManager. During start-up, each tool creates an object of this class
and stores it in an instance variable of the Control class. To invoke operations exported by
the ToolKernel, the Control class then invokes a method from this object. The method itself
uses other methods from Editor, OpenedDocument and Selection. We now discuss each of these
classes in more detail.

Editor Manager

A user of a tool can open multiple editors in order to view or edit multiple documents at the
same time. The purpose of class EditorManager is thus to implement the set of editors that are
currently in use. Its main data structure is, therefore, a set where it inserts or deletes objects
of class Editor whenever documents are opened or closed respectively.

5.2. TOOL KERNEL 91

Class EditorManager exports a set of operations which are used by the Control class to react
to user input as well as to service requests. For most of the tasks listed below, an operation
is exported, which obtains its parameters, such as document names, version names or �le
names, from dialogues with the user. Therefore, EditorManager imports from the user interface
subsystem. Furthermore, most of these tasks represent generic services that should be o�ered
by tools. During the execution of these services, there is no user who could be asked for
parameters. Therefore, for each of the tasks, a second operation is exported, which obtains its
parameters from arguments passed during operation invocation. Class EditorManager supports
the following tasks:

� creating a new document and opening it in a new window in edit mode,

� importing a document from a textual representation stored in the �le-system,

� opening an existing document version in edit or view mode,

� exporting a document version to the �le-system,

� deleting a document,

� selecting an increment of a document version to become the current increment,

� computing a menu of commands applicable to the current increment,

� executing a command selected from the menu,

� aborting the current command execution to recover from a deadlock,

� freezing a version of a document,

� deriving a version of a document,

� merging two versions of a document and

� deleting a version of a document.

Among the tasks listed above, there are some, such as creating a new document or executing
a command chosen from a menu, that modify the underlying abstract syntax-graph and must,
therefore, be performed as ACID transactions. Class EditorManager thus imports operations
from the ODBS to start and end a transaction. A transaction is started before the �rst object
is modi�ed and �nished as soon as the last object has been modi�ed. Besides ACID transac-
tions, some ODBSs also support the concept of read-only transactions that are sequences of
operations that do not modify any objects. In O2, for instance, programs implement read-only
transactions. These read-only transactions do not acquire any read locks on objects they ac-
cess. We exploit this concept to improve the performance of tools and transaction throughput.
Task that do not modify the underlying abstract syntax graph, such as selecting an increment
or computing a menu, are thus executed as read-only transactions. Performance is improved,
since time consuming locking is not performed during the execution of these tasks. Transaction
throughput is increased, since locks are held for shorter periods of time and the probability of
blocking concurrent transactions is decreased.

The method ExecuteCommand, which executes a command, imports classes and operations
exported by the CommandExecution subsystem. After a command execution is completed,
ExecuteCommand commits the current transaction and tool execution resumes as a read-only
transaction. It must then redisplay any changes the command has caused in the project-wide
abstract syntax graph. To improve the performance, changes must be redisplayed in an incre-
mental manner. ExecuteCommand, therefore, implements the following strategy. If the command
execution did not modify any increments, nothing needs to be done. The information as to

92 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

whether or not any object was modi�ed during a command execution is returned by the oper-
ation from the CommandExecution subsystem. If objects were modi�ed, the current increment is
redisplayed, for it is most likely that this has been modi�ed. Moreover, each increment that is
additionally changed is registered in a set called ModifiedIncrements associated with each doc-
ument. ExecuteCommand then iterates over all documents that are currently displayed and then
iterates over their ModifiedIncrements sets and redisplays each of the increments in these sets.
To redisplay an increment, ExecuteCommand imports a method called UnparseToUserInterface

that is exported by class OpenedDocument. Finally, each set is emptied.

Editor

The main purpose of class Editor is to implement the editors where documents are displayed.
Class Editor, therefore, maintains references to a document, which is an instance of class
OpenedDocument, an edit window (i.e. an instance of class EditWindow that is imported from the
UserInterface subsystem), an instance of class Selection to keep track of the currently selected
increment and an instance of class EditorErrors, which displays errors of the current increment
in more detail2. Instances of class Editor are created in class EditorManager whenever a new
document is opened. They are deleted whenever a document is closed.

The operations exported by Editor are used by methods from class EditorManager. A common
feature is that they access or modify the state of an editor. The operations in particular are:

� selection of an increment,

� obtaining the current increment, if any,

� opening and closing error windows, and

� raising an editor that may be hidden behind other windows.

The Editor class imports methods to create and delete edit windows and error windows from
the user interface subsystem. It also imports methods to create and delete edit documents
and selection objects.

Opened Document

The purpose of the class OpenedDocument is to maintain a reference to the database object
implementing the root node of the document subgraph. In addition, it has a reference to an
object of class LayoutComputation that encapsulates the unparsing rules for the document. An
argument of the object constructor is the name of a document which is used in a database
query to obtain the root node of the subgraph. Also during creation, the instance of class
LayoutComputation is created.

The operations exported by OpenedDocument access and modify the state of an edit document.
In particular, they enable the Editor and the EditorManager classes to:

� obtain the database object implementing the root node of the document,

� incrementally recompute the textual or graphical representation of an increment. There-
fore, the old representation is deleted �rst and then a new representation is inserted.

2Remember that errors in documents are only visualised by underlining and a more detailed error description
is displayed in a separate window on demand.

5.3. LAYOUT COMPUTATION 93

Class OpenedDocument uses operations exported by the ToolAPI subsystem to obtain the refer-
ence to the root node of the document subgraph. It imports a method to delete an increment
representation from class EditWindow. Finally, it imports the unparseIncrement from class
LayoutComputation in order to insert a new increment representation.

Selection

The purpose of class Selection is to store a reference to the current increment. The reference
is needed in both the Editor class and the CommandExecution subsystem. The Editor class
needs this information to compute the contents of the error window. The CommandExecution

subsystem needs it for computing context-sensitive menus according to the current selection.
In order not to store this information redundantly, we included class Selection for storing a
reference to this database object and for sharing objects of this class among objects of the
CommandExecution subsystem and the editor objects.

5.3 Layout Computation

The purpose of the LayoutComputation class is to implement the unparsing schema and to
arrange for associations between increments and portions of text or graphics. As di�erent
tools may have di�erent unparsing schemas, this class is tool-dependent and cannot become
part of the reuse library for tool construction.

Due to the need to re-compute the layout incrementally, di�erent increment types have to be
used as starting points. The di�erent increment types depend on the supported language and,
therefore, di�er from tool to tool. On the other hand, the ToolKernel subsystem should not
be aware of the di�erent kinds of increments that can occur in a document in order to reuse
the subsystem between di�erent tools. The object-oriented paradigm is used to solve this
dilemma as follows. UnparseIncrement has an argument which determines the increment to be
redisplayed. The type of this argument is the class Increment exported by the ToolAPI. As we
will see later, any tool-speci�c increment class de�ned in the tool's schema inherits from this
class. Exploiting polymorphism, arbitrary increments may, therefore, be passed as arguments
to the unparseIncrement operation. Therefore, the signature of the unparseIncrement operation
remains stable between di�erent tools. Furthermore, for each type of increment that can occur
in the respective language, the class includes a hidden operation that implements the unparsing
scheme for this type of increment. These hidden layout computation operations are invoked by
unparseIncrement. Which particular operation is invoked by unparseIncrement is determined
during run-time by the type of increment passed as argument.

The hidden operations that are used to compute the textual or graphical representation of an
increment insert segments into the edit window. A segment is an atomic portion of text or
a bitmap. To insert text or graphics into the window, the LayoutComputation class needs a
reference to the EditWindow which is passed as an argument to the object constructor. The
operations, therefore, use an operation InsertIncrementPart provided by class EditWindow and
pass the text as an argument. To insert the textual representation of a child increment, they
call the respective layout computation operation available for this type of child increment.
Figure 5.3 indicates the segments for the function displayed in an edit window of the Groupie
module interface editor on Page 14.

94 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

\n

\n

FUNCTION (IN p :

(

IN

TWindow \n;

: TPosition ;upper_left

IN : TPosition \n;lower_right

IN : ;name STRING TWindow

\n

\n

:

CreateWindow

/* creates a new window */

Figure 5.3: Segments of Text in an Edit Window

The LayoutComputation class for this tool contains an operation unparseFunction that �rst
inserts a segment containing the keyword FUNCTION and then a blank segment. After that, an
operation unparseOpName is called. As argument to that operation, the increment identi�er of
the operation name is passed, which, in turn, is obtained from a traversal function exported
by the ToolAPI subsystem. UnparseOpName then inserts the value of the function identi�er as a
new segment into the window and returns. UnparseFunction then continues inserting a blank
segment, calls unparseParameterList and so on.

In order to allow the user interface subsystem to associate segments with increments, the
operation InsertIncrementPart has an additional parameter where the layout computation
operations pass increment identi�ers, which they obtain from the ToolAPI subsystem during
traversal. Hence, the �rst two segments in Figure 5.3 are associated with the function incre-
ment, the third segment is associated with the operation name increment, the �fth segment is
associated with the parameter list and so on. If the user then clicks on a segment, e.g. the �rst
segment containing FUNCTION, the UIMS passes the function increment identi�er to the call-back
operation in the Control class which uses this information to call the select operation exported
by the EditorManager class.

As required in Subsection 2.2.1, editors have to visualise inter-document consistency con-
straint violations and static semantic errors. This visualisation can best be implemented in
the LayoutComputation class. Before inserting a segment into the edit window, the layout
computation operations check whether the corresponding increment is error free. They do
so using the operation has error, which is de�ned in the underlying database schema in the
most general class Increment and is thus available for arbitrary increments. The operation
InsertIncrementPart has another parameter which determines whether the new segment is to
be marked or not. To implement the visualisation of errors, the layout computation operations
only pass the result of the call to has error as an argument to InsertIncrementPart and the
implementation of InsertIncrementPart in class EditWindow marks the segment or not.

The class LayoutComputation has to access a number of operations from the schema. It,
therefore, imports operations from the ToolAPI subsystem. The operations include traversal
operations for navigating through the abstract syntax graph stored in the ODBS. Furthermore,
has error is imported from a class exported by ToolAPI. In addition, the LayoutComputation

class intensively uses the InsertIncrementPart operation, exported by the EditWindow class
contained in the user interface subsystem.

5.4. COMMAND EXECUTION 95

5.4 Command Execution

The purpose of the CommandExecution subsystem is to export two operations. The �rst one is
used for computing a list of strings that represent command names for a given selection. The
second operation is used for executing a command. These two operations are imported by the
EditorManager class in order to implement operations that are used by call-back operations in
the Control class. The Control class, in turn, reacts to events detected by the user interface
subsystem, such as pushing the right mouse-button or selecting an item from a pop-up menu.

Three properties characterise a command. It has a name, a precondition and a list of operations
that are executed when the user has selected the command. This list may include operations
implementing user dialogues as well as operations on the project-wide abstract syntax graph,
which are implemented in the tool's schema. The list of operations has ACID properties as
required in Section 2.3.2. A menu, in turn, consists of a collection of commands that satisfy
the precondition for the current selection.

Each command is implemented in a separate class. We call these classes interactions. Upon
construction of objects of such a class, an object of class Selection representing the current
increment is passed as an argument and stored in an instance variable. The class has three
methods, which implement the properties of commands: GetName returns the name of the
command as a string, IsAvailable returns a boolean value that determines whether or not
the command is available for the current selection and �nally, Execute executes the command.
It returns true, if the command was successfully completed and false, if it was aborted. This
return value is evaluated by the EditorManager in order to call a database transaction commit
or abort operation.

Menus are implemented as collections of interactions in class InteractionCollection. The
class, therefore, stores a list of interactions in an instance variable. It exports an operation
to obtain a list of strings that represents the names of commands to be presented in a menu.
It also exports an operation to execute a particular operation. It is implemented by invoking
the Execute operation of the respective interaction. The constructor of this class obtains
an object of class Selection, which identi�es the current increment. It then constructs the
context sensitive menu by creating instances of interaction classes, testing for their availability
and including them in the collection if IsAvailable returns true. It is a problem to decide
which commands to consider when an interaction collection is built. If any command the tool
supports is considered, menu computation is certain to be too ine�cient.

Commands in structure-oriented editors are always applied to the current increment, or its
parents in the abstract syntax. This observation can be exploited for an e�cient computation
of menus. Therefore, interactions are grouped by increment types. Furthermore, an interaction
collection class is de�ned for each increment type. During construction of an interaction col-
lection, the collection only considers interactions de�ned for one increment type. To compute
the available interactions, we only have to consider the interaction collection that is de�ned
for the type of the current increment, and the collection that is de�ned for the parent type of
the current increment. These collections have to be merged.

Now we again have the problem that increment collection classes are language- and thus
tool-speci�c, though their use in the ToolKernel subsystem requires a uniform interface.
We solve the problem by following the same strategy as that used during layout computa-
tion. We create a new class MenuConstruction and declare this class to be an export of the

96 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

CommandExecution subsystem. The only parameter of the constructor of this class is an object
of class Selection representing the current increment. Upon construction it decides which
interaction collections to construct based on the actual type of the current increment. It then
exports an operation which returns the computed increment interaction collection. The incre-
ment type speci�c interaction collection classes are, in turn, implemented as subclasses of class
InteractionCollection. Exploiting polymorphism, MenuConstruction may thus return a lan-
guage speci�c interaction collection to the EditorManager class. As this inherits its signature
from the prede�ned class InteractionCollection, the ToolKernel subsystem remains language
independent and thus can still be reused in di�erent tools.

Inheritance can also be exploited to share commands between di�erent, but similar, increment
types. As an illustrating example, consider procedures and functions as used in the interface
de�nition language of Figure 2.4 on Page 14. Commands for creating and changing names,
parameter lists and comments had to be included in both menus. Therefore, a lot of interac-
tions had to be de�ned redundantly for both functions and procedures. This can be avoided
completely if an interaction collection for an abstract increment type Operation is de�ned.
Interactions implementing commands that are applicable to functions and procedures are as-
sociated with increment type Operation. During the construction of this interaction collection
for Operation, the interactions for type Operation have to be considered. The collections
for functions and procedures then have to inherit from the Operation interaction collection.
During the construction of these child interaction collections, we need only ensure that the
constructor of the parent interaction collection is executed.

IncIntAct_11 IncIntAct_1m... IncIntAct_21 IncIntAct_2o... ... IncIntAct_n1 IncIntAct_np...

...

Interaction
Collection

Interaction
Collection_1

Interaction
Collection_2

Interaction
Collection_n

Interaction
Collection_m

...

Menu
Construction

IncIntAct_m1 IncIntAct_mj

Figure 5.4: Design of Command Execution Subsystem

This inheritance mechanism can also be exploited for reusing command de�nitions that are
common to arbitrary tools. Every tool, for instance should have commands for version and
con�guration management of documents. An abstract increment class DocumentVersion that
has the property of being the unit of version management can, therefore, be introduced. All
prede�ned interactions implementing commands for version management can then be attached
to this increment class and the interaction collection for class DocumentVersion arranges for

5.5. USER INTERFACE 97

inclusion of these interactions in a menu. If a tool is to support version management, the
interaction collection for the root increment type of this tool can then be declared to inherit
from the collection for the prede�ned abstract class DocumentVersion. Similarly, interactions
implementing commands for building con�gurations are attached to an abstract increment
class UsingIncrement from which language-speci�c increment classes, representing imports from
other documents, inherit.

For a summary of the discussion consider the architecture of the CommandExecution sub-
system displayed in Figure 5.4. The subsystem exports classes InteractionCollection and
MenuConstruction. Their export interface remains stable in di�erent tools. During instantia-
tion of an object of class MenuConstruction for a current increment, two interaction collections
are constructed and merged afterwards. During construction of an interaction collection, all
interactions that are de�ned for an increment type or its super types are constructed and in-
cluded in the collection, only if they are available. This is determined by operation IsAvailable

that is de�ned in each interaction class. After that an interaction collection can be obtained
by the EditorManager class from the MenuConstruction class. The collection will contain only
those interactions that are applicable in the current selection context. Interactions can be
inherited by de�ning inheritance relationships between the respective interaction collection
classes. This allows for the sharing of commands between di�erent increment types as well as
for the reuse of prede�ned commands between di�erent tools.

5.5 User Interface

The purpose of the UserInterface subsystem is to export a small number of classes that im-
plement all user dialogues occurring in syntax-directed tools. The subsystem is, therefore,
reusable among di�erent syntax-directed tools. The subsystem imports from a UIMS that ex-
ports a high number of high-level primitives, called widgets, for construction of application
speci�c window types. The user interface subsystem then aggregates these widgets to appli-
cation speci�c window types and adds classes implementing dialogues. It, therefore, hides the
complex use of the UIMS from the other architecture components. The UIMS, in turn, is built
on top of a basic window system such as X-Windows, OpenLook, SunView or GKS. The same
UIMS is most often available for di�erent basic window systems. It thus arranges for portability
of the whole tool on top of various user interface platforms.

The dialogues implemented by the user interface subsystem are either non-exclusive or ex-
clusive. In a non-exclusive dialogue, a user can start interacting with a tool and change to
another dialogue without having to complete the �rst dialogue. As an example consider edit-
ing a document in one edit window. The tool must support the editing of another document
in another window without having to close the �rst window. In some situations, however, it
is not important to have these non-exclusive dialogues or even required to force completion
of a dialogue before another dialogue can be started. This is most often the case when the
dialogues are short. Examples of this are dialogues that display a message to the user or have
the user selecting a choice from a selector window. The property, whether or not a dialogue
is exclusive is implemented by the window that is used during the dialogue. We, therefore,
distinguish non-exclusive from exclusive windows in the following.

From an architectural point of view, exclusive dialogues can be implemented by a single ex-
ported operation. These operations return the result of a dialogue as soon as the dialogue
is completed. Implementing a non-exclusive dialogue by a single exported operation, how-

98 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

ever, is impossible. If we tried to do so, that operation would return when the dialogue was
completed. Then, however, any other dialogue would be blocked. To implement these non-
exclusive dialogues, we have to give control to the user-interface management system instead,
as soon as the tool is idle. The user-interface management system must then inform the tool
as soon as a user-input event happens. In order to do so, we require call-back operations in
the Control class. Hence implementation of the non-exclusive windows requires de�nition of
call-back operations.

Edit
Window

LineEdit
Window

TextEdit
Window

Message
Window

Text TextSet

Selector
Window

MultiSelector
 Window

SelectOrEnter
 Window

Start
Panel

Error
Window

Figure 5.5: Architecture of the User Interface

The overall architecture of the user interface subsystem is displayed in Figure 5.5. Classes
Text and TextSet export a number of operations that implement exclusive dialogues. These
dialogues are implemented using elementary window types such as line-edit or message windows
that are not exported. Classes EditWindow, ErrorWindow and StartPanel, in turn, implement
non-exclusive windows. They export a number of operations such as inserting a new segment
into an edit window or highlighting all the segments that belong to a given increment. These
operations can then be used by higher-level layers of the architecture in order to implement
output operations during non-exclusive dialogues.

In order to implement the user interface subsystem, a number of features are required from
the underlying UIMS. First of all the UIMS must o�er all the widgets required for construction
of the window types depicted in Figure 5.5. These include text widgets with sliders, which
implement scroll bars, menus, buttons, dialogue boxes, icons, various kinds of polygons and
the like. The construction of window types will become signi�cantly easier if the UIMS o�ers
an interactive graphic editor for aggregating widgets to window types. Finally, an important
requirement arises during the implementation of increment selection. When the user clicks
on a text segment contained in an edit window, the UIMS must be able to communicate the
identi�er of the increment that is associated with the segment to the Control class. Only then
is the Control class enabled to invoke the respective operations from the EditorManager class
e�ciently. Hence, we require that the invocation of call-back operations after event detection
in the UIMS can pass application speci�c arguments to a call-back operation.

5.6 Tool Speci�c Services

In Section 2.2.2, we classi�ed services into generic and tool-speci�c services. As we have
seen, all generic services are implemented by the operations of the EditorManager class. The
purpose of the ToolSpecificService class is then to implement services, such as the creation
of a particular relationship, that are speci�c to a particular tool.

5.7. SOFTWARE PROCESS COMMUNICATION PROTOCOL 99

If a service request arrives at the communication subsystem, an operation exported by
the Control class is called back. This call-back operation invokes an operation from the
SoftwareProcessCommunicationProtocol subsystem to obtain a message object that represents
the particular service request. This message object obtains service parameters from the com-
munication subsystem and temporarily stores them. If the message represents a tool-speci�c
service, a new service object will be constructed by the Control class as an instance of the
ToolSpecificService class. The respective message object is passed to the constructor as an
argument. The constructor then investigates the type of the message and invokes one of the
hidden operations in class ToolSpecificService.

Each of these operations implement a tool-speci�c service. The constructor passes the service
parameters stored in the message object to the operations as arguments. If the service is
synchronous, the operation returns a result. Upon termination of the service this result is
passed to the message object which, in turn, arranges to transfer the result to the process that
requested the service and is waiting for its completion.

To implement services, the hidden operations must be able to access and modify documents.
Hence, this class has to access and modify the underlying abstract syntax graph. It, therefore,
imports classes, which implement nodes and edges, from the tool API subsystems. Moreover,
the constructor of the class imports from the SoftwareProcessCommunicationProtocol subsys-
tem. It uses operations to obtain a service's arguments and to provide the service requester
with the result of the service execution.

5.7 Software Process Communication Protocol

The purpose of the SoftwareProcessCommunicationProtocol subsystem is to provide tools with
a communication protocol for sending events to the process engine and receiving service re-
quests from there. The subsystem will be built on top of a session-oriented message router
such as Sun ToolTalk [Sun93], HP SoftBench [Cag90], DEC FUSE. In these systems, several
processes can join a session and afterwards communicate with each other by exchanging mes-
sages. We aim to use one of these systems, rather than operating system primitives such as
sockets or pipes, for inter-process communication because they enable communication to be
de�ned at a much higher level of abstraction. Using operating system primitives we would
gain a slight performance bene�t. The results of benchmarks performed with SoftBench and
ToolTalk [Ger94], however, suggest that these systems require between 50-100 milliseconds for
a complete communication cycle, which we consider to be fast enough.

The rationale for providing a subsystem on top of one of these basic message routers is the
same as for the UserInterface. The message routing is hidden from the rest of the tool
architecture in order to allow for portability and to provide a dedicated, safe and application-
speci�c protocol for communication between tools and process engine. Figure 5.6 displays an
overview.

The CommunicationChannel class provides the channel for all communications between tools
and the process engine. Each tool has a reference to an object of class CommunicationChannel,
which is stored in an instance variable of the Control class. Upon creation of this object the
basic message router interface is initialised and the tool joins a particular session with the
process engine. If the message router interface has informed the Control class about a new
service request, a read operation will be invoked reading the message from the communication

100 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

Communication
Channel

Message

Synchronous
Message

Asynchronous
Message

Open
Message

Redisplay
Message

Close
Message

Quit
Message

Create
Message

Merge
Message

Freeze
Message

AddRelationship
Message

Import
Message

Export
Message

Delete
Message

DeleteRelationship
Message

DeleteVersion
Message

Derive
Message

Figure 5.6: Architecture of the Software Process Communication Protocol Subsystem

channel object. The read operation investigates what kind of request it is and constructs an
instance of one of the subclasses of class Message. Similarly, a write operation is provided in
order to enable the tool to inform the process engine about process events.

Service requests, as well as events, are represented as messages. Hence the read operation of
the communication channel returns an object of class Message and the parameter of the write

operation is an object of Message as well. During the construction of a message that represents
a service request, the parameters of the service request are obtained from the communication
subsystem and stored in instance variables of the respective message objects. Access operations
for each of these service parameters are provided. During construction of a message that
represents an event, the event parameters are passed as arguments to the constructor. As
most of the services and events have di�erent parameter types, di�erent message classes are
de�ned. They inherit from class Message, which is a deferred class. Polymorphism is used for
the argument and result type of the write or read operation of the communication channel in
order to pass the appropriate kind of message.

In order to implement asynchronous services and asynchronous events, it is su�cient to read
or write a message from or into the channel. The tool can continue operating as soon as the
communication channel has completed execution of the read or write operation respectively.
To implement a synchronous service or event, however, additional measures have to be taken in
order to inform the process engine of the completion of the service or to obtain the response to
an event from the process engine. To write the result of a synchronous service, each subclass of
class SynchronousMessage exports an operation write result. The parameter of this operation
is message speci�c. Besides transferring the result, it also implements the noti�cation that
the service has been handled. A design problem is then how to obtain the result of an event
noti�cation from the process engine. A �rst option would be to send the respective message
using a synchronous protocol, as o�ered by the various basic message routers, and return the
result of the event as a result of the write message. This option, however, is inappropriate since
the tool would then be waiting under the control of the message router for the handling of the
message. As a consequence, actions, such as resizing a window of the tool or moving a window
to another position while the tool is waiting, are not handled appropriately in the tool. This is
because the required updates to the window contents are not performed: the window manager,
which handles these actions, is independent of the tool and runs in a separate operating system

5.7. SOFTWARE PROCESS COMMUNICATION PROTOCOL 101

process. It requests updates on window contents from the UIMS of the tool in the case of a
resize or move operation. If the tool is waiting for a response to a message (which may take
a while, depending on the load of the process engine), the UIMS cannot handle the required
updates accordingly. The second and better option is, therefore, to wait under the control of
the UIMS. Therefore, the message has to be sent using an asynchronous protocol. In the write

operation of the communication channel, we then invoke an operation from the UIMS, which
returns after a �xed amount of time (say a tenth of a second). After the UIMS operation
has returned, we check whether the result has arrived. If not, the UIMS operation is invoked
again. Otherwise, we return from the write operation. The result of an event may then be
obtained or determined by the operation read result, which is exported by all subclasses of
class SynchronousMessage.

The software process communication protocol as suggested above can be reused in arbitrary
tools. It implements the required communication between process engine and tools for all
generic services and events. It even implements some tool-speci�c services and events. There-
fore, message types are parametrised. Rather than having di�erent message types for creating
di�erent kinds of relationships, for instance, the message AddRelationship has a parameter
which denotes the relationship type. Nevertheless, a need may arise to add tool-speci�c mes-
sages to the protocol in order to implement tool-speci�c services or tool-speci�c events.

We have to require several facilities from the underlying message router in order to be able to
implement the communication protocol as suggested above. The overall requirement is that the
communication protocol must allow us to implement message objects transfer, i.e. instances of
the various message classes, between the process engine and tools and vice versa. Therefore,
these message objects have to be transformed into low-level messages, i.e. as sequences of
atomic message components, which the message router can transfer. With respect to these
low-level messages, we have the following requirements:

Message types: As we have seen above, synchronous services and events cannot be imple-
mented using synchronous communication primitives. To implement them we require
instead a low-level message type from the communication mechanism that we call re-
quest. These requests are a bi-directional means of communication between tool and
process engine. The �rst direction is used to send a message representing a request. The
message router then returns control to the tool or process engine, respectively. As soon
as the request is handled, the requested process adds an acknowledgement to the request
message and sends it back to the requesting process. The message is then destroyed
by the requesting process. To implement asynchronous services and events, we require
a low-level message type noti�cation, which implements one-way communication. The
sender of this message does not care about whether the service/event has actually been
handled. The message is destroyed by the noti�ed process.

Parameter types: The router should allow for composition of atomic message components,
which we call message parameters, to complex messages. As types for these parameters,
boolean, integer, char and string are required at the very least.

Message routing: It may be too complex for the process engine to keep track of which tools
have been started and to explicitly route messages to particular tools. Therefore, the
messages de�ned above do not include any routing parameters. For messages that are
sent from tools to the process engine, routing is obvious. For these messages, peer-to-peer
routing may be used. For messages from process engines to tools, broadcast routing is
required.

Fault tolerance: The mechanism must tolerate and correct errors. As an example consider

102 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

that an addressee of a message is not reachable. In this case the message router may
correct the error by starting the tool or process engine. If the mechanism cannot correct
errors, tools and process engines must be noti�ed about failures in message delivery.

E�ciency: Message delivery by the router should not result in any signi�cant decrease in the
overall tool performance. We, therefore, require a round trip for a request type message
to perform faster than 50 milliseconds.

Distribution: We required tools to run in a distributed environment. Therefore, tools must
be able to join sessions from remote workstations. The message router should be fully
supportive in this respect and be able to transfer messages between di�erent workstations
using a local area network.

In short, we have de�ned an architecture that implements a communication protocol between
the process engine and tools. We have discussed how this architecture can be used to implement
both services and requests. The communication protocol implementation is reusable among
arbitrary tools. To implement tool-speci�c services, additional message classes may have to be
added. Of the available message routers, ToolTalk ful�ls these requirements, but the available
versions of the HP BMS and DEC FUSE do not meet the distribution requirement. We,
therefore, select Sun ToolTalk for our implementation as a message router.

5.8 Tools Application Programming Interface

The components of the tool architecture that we have discussed so far have to be implemented
in C++. The reason is that the third party components, namely the message router interface
and the UIMS have programming interfaces for C++, but not for other object-oriented lan-
guages such as SmallTalk, Ei�el or Beta. The object database schema de�ning the structure
and available operations for syntax graphs will not necessarily be de�ned in C++. In Gem-
Stone, for instance, a dedicated schema de�nition language called OPAL must be used, Orion
schemas have to be de�ned in CommonLisp, and O2 schemas are de�ned in O2C. Thus a
need arises for interfacing the higher-level architecture components with the database schema
de�nition. This is necessary, for instance, in the layout computation class in order to navigate
through an abstract syntax graph or for the command execution subsystem to invoke methods
in order to change the syntax graph. The purpose of the tool application programming inter-
face (ToolAPI) is to arrange for this inter-operability. In object database systems where the
schema is de�ned in C++, for instance, Ontos or ObjectStore the ToolAPI can be omitted.

All databases that have their own schema de�nition language support a C++ interface to access
the database from applications written in C++. To achieve these accesses, the database system
can be requested to generate a twin C++ class for a class of the database schema. The twin
C++ class can be generated in such a way that it exports the same methods as the methods
of the schema class, or a subset thereof. Objects of the twin C++ class are called persistent
pointers in the following paragraphs because they point to persistent database objects. Their
classes are called persistent pointer classes, accordingly. Invoking a method on a persistent
pointer then e�ectively invokes the method for the database object.

As an example, consider an O2 class Function that is written in O2C. It implements nodes of
type Function of the abstract syntax graph that was depicted in Figure 3.1 on Page 21. To
access and modify objects of this class, a number of methods are de�ned whose purpose is of
no concern at the moment.

5.8. TOOLS APPLICATION PROGRAMMING INTERFACE 103

class Function inherit Increment

type tuple(...)

method

...

public expand_name(Str:string):boolean,

end;

The following O2 export command creates a persistent pointer class Function in C++. This
class declares the given methods as its export. The class hierarchy of the persistent pointer
classes is identical with the hierarchy in the database schema.

export in "."

class Function

methods expand_name

to C++;

The persistent pointer class Function may then be used as follows to instantiate the template
class o2 for instance in a method of a C++ class contained in the CommandExecution subsystem
for function increments.

Boolean FunctionInteraction1::Execute() {

o2<Function> f;

Text t;

TextSet * err;

f=(o2<Function>)SelectionContext->GetTheSelection()->father();

t=Text("");

if(t.LINE_EDIT("Enter Function Name")) {

if (f->expand_name(t.CONTENTS())!=TRUE) {

err=new TextSet(f->get_set_of_errors());

err->DISPLAY();

delete err;

return(FALSE);

} else

return(TRUE);

}

}

The second line declares f as a persistent pointer to an O2 object of class Function. The next
two lines declare user interface objects that are used to implement particular user dialogues
during the command execution. Assuming that the currently selected increment is a function
name place holder, the �rst statement obtains the increment and navigates to the enclosing
increment, which is a function, and assigns a reference to the O2 object implementing this
function node to f. Then the user is requested to enter a new name for the function. If the di-
alogue is completed by the user, the method expand name is invoked with the persistent pointer
object. This, in turn, causes the O2 C++ interface to invoke the O2C method expand name,
which performs the modi�cations to the syntax graph as de�ned in the schema. It returns
the O2C value true if the modi�cation has been successfully completed. Then the O2C value
true is translated by the interface into the C++ counterpart and the command execution is
successfully completed. This is signalled to the ToolKernel subsystem, which, in turn, commits
the transaction, by returning TRUE. Otherwise the C++ method get set of errors is invoked.
This method is de�ned by the C++ persistent pointer class for a prede�ned class Increment

and inherited by the pointer class Function. This method returns a textual representation of
the errors that have been obtained at an increment. The result is translated into a C++ string

104 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

by the C++ interface and displayed with a newly created dialogue element. Then the dialogue
element is deleted and failure of the syntax graph update is signalled to the ToolKernel by
returning FALSE. The ToolKernel in that case aborts the current O2 transaction in order to
undo any changes.

5.9 Tool Schema

As argued in Section 3.1, structure and available operations of a tool's abstract syntax graph
should be de�ned and controlled within a database schema. In Section 4.4, we sketched at a
quite high level of abstraction, how this can be done with object database systems. In this
section, we discuss in detail how a schema for storing and manipulating abstract syntax graphs
is de�ned in an object-oriented schema de�nition language. We keep the discussion general so
that it can be applied to several object database systems. To illustrate it, we use examples
that are de�ned in O2C, the schema de�nition language of O2, which we identi�ed as the most
appropriate ODBS for tool construction.

Along the lines of our previous architectural considerations, we focus on reuse of tool schema
components. We, therefore, �rst identify properties of tool schemas that are common to
arbitrary tools. These properties are implemented in classes that can be reused within di�erent
tool schemas. As these classes are implemented up-front, we call this part of a tool's schema
prede�ned schema and the classes prede�ned classes. The other part contains tool-speci�c
classes, which use properties from prede�ned classes. The use can be by inheritance or by
de�ning instance variables whose types are prede�ned classes. This reuse of prede�ned schema
components again simpli�es the tool construction process.

5.9.1 Prede�ned Classes

Properties that are common to any tool schema and that should, therefore, be implemented
in the prede�ned schema are:

� nodes of the abstract syntax graph are persistent,

� nodes either represent a place holder or an expanded increment,

� nodes may be optional,

� nodes may be leaf nodes or inner nodes of the abstract syntax tree,

� nodes may have outgoing multi-valued aggregation edges,

� nodes may represent erroneous increments,

� nodes may represent a scoping block,

� nodes belong to a subgraph that represents a document,

� nodes may have reference edges to nodes contained in other documents and these edges
are used for con�guration management,

� edges must be traversable in both directions3,

� documents have an external unique name,

3N.B. Edges, if implemented by instance variables, are only traversable in one direction.

5.9. TOOL SCHEMA 105

� documents are the unit of ownership,

� documents are the unit of version management and

� documents have a time stamp of their last modi�cation.

These properties are implemented in classes contained in the prede�ned schema as depicted
in Figure 5.7. It includes two disjoint class hierarchies. The subclasses of Increment are called
increment classes. They are used to de�ne common properties of node types. The subclasses
of Attribute are referred to as non-syntactic classes. They de�ne properties of types for node
attributes.

AttributeIncrement

Symbol
 Table

Version
Vector

Version
VectorTableError

TerminalIncrement
 List

Document Usable
Increment

 Using
Increment

 Optional
Increment

Increment
 List

Terminal
Increment

Document
 Version

Document
 Pool

Syntax
 Error

Date

Document
Table

Duplicate
SymbolTable

NonterminalIncrement
 List

Nonterminal
Increment

Figure 5.7: Classes Contained in the Prede�ned Schema

Class Increment is the generalisation of arbitrary node types. Therefore, each class implement-
ing a node type should be a subclass of Increment. It has an instance variable father that
implements an edge to the father node with respect to the abstract syntax. For each node,
it implements the reverse edge to the syntactic edge that leads to the node. This instance
variable is initialised during object creation. It is updated whenever the node is moved to
some other position in the abstract syntax graph. Moreover, class Increment maintains a set
of error descriptors that represent the semantic errors the increment is involved in. The in-
crement is considered to be erroneous if this set is not empty. The class exports an operation
that can be used for checking whether the node represents an erroneous increment. Moreover,
it exports an operation that returns a set of strings as textual representations of the error
set. A further instance variable of class Increment is used to indicate whether the increment
is already expanded or still a place holder. Objects of class Document implement root nodes of
syntax trees that span up subgraphs of the project-wide abstract syntax graph representing
documents. Class Document has an instance variable of type string in order to store the owner
of the document and an instance variable of class Date to store the time stamp of the last
document modi�cation. Class OptionalIncrement specialises Increment in that objects of this
class represent nodes that are optional. It de�nes methods in order to delete or expand an
optional increment.

The classes TerminalIncrement and NonterminalIncrement de�ne the properties of leaf nodes
in the abstract syntax tree and of inner nodes, respectively. Subclasses of TerminalIncrement
are called terminal increment classes and subclasses of NonterminalIncrement are called non-
terminal increment classes. The common properties of nodes that have an outgoing multi-
valued aggregation edge are de�ned by class IncrementList. The class TerminalIncrementList
and the class NonterminalIncrementList are more specialised in that the target of the multi-
valued edge are inner nodes and leaf nodes, respectively. These list classes de�ne a multi-valued
instance variable to implement the multi-valued aggregation edge and then o�er methods, for
instance to add, insert and delete elements of the list.

106 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

Class DocumentVersion represents an abstraction for those document types that are version-
able. In our implementation it uses the O2 Kernel class Version (c.f. Page 80) for version
management purposes. During creation of an object of class Increment, which is implementing
a node, the object must be entered into the version unit object of the respective document
and, during destruction of an object, the object has to be removed from the respective version
unit object. DocumentVersion then o�ers a number of methods for version management such as
freezing a document, deriving a new version, merging two versions, establishing a default ver-
sion, navigating through the version history graph of the document and so on. UsableIncrement
and UsingIncrement implement nodes with incoming and outgoing inter-document reference
edges. These classes o�er methods for implementation of con�guration management, such
as selecting a particular version of a used document. For con�guration management pur-
poses class DocumentVersion internally uses instance variables of classes VersionVector and
VersionVectorTable.

An object of class DocumentPool is declared as a persistent root in each schema in order to
implement persistence of documents. This object is persistent by de�nition, as an object
reachable from a persistent root is persistent. DocumentPool then has an instance variable
of class DocumentTable. Root nodes of documents may then be inserted in this table. As a
consequence, each root node of a subgraph that represents a document is persistent, too. As
each node of the subgraph is reachable from the root node of the respective subgraph, all nodes
are persistent.

Objects of class SymbolTable arrange for associations between symbols and nodes, i.e. objects
of class Increment. Hence they can be used for implementing scoping rules of the static
semantics of a language. They o�er methods to declare a new symbol, to look up whether a
given symbol has been de�ned, to retrieve a node associated with a given symbol and to delete
an association. DocumentTable is a more speci�c symbol table where increments are instances
of class Document. DuplicateSymbolTable is a speci�c symbol table that can manage duplicate
symbols. It is required if violations of scoping rules are to be temporarily permitted.

5.9.2 Tool-speci�c Classes

The classes that have to be added to the prede�ned schema to complete the de�nition of a tool
schema depend on the syntax and static semantics of the language to be supported by the tool.
The syntax determines the di�erent node types in the abstract syntax tree. Static semantics
determine reference relationships that must be implemented between node types. For each
node type, a separate class must be de�ned. The class must be given a name and be positioned
in the class hierarchy. Therefore, the class must be de�ned as a subclass of one or more
prede�ned classes. Then instance variables must be de�ned and �nally method signatures and
their implementations must be provided. In the following paragraphs, we discuss guidelines as
to how this can be achieved for the tool-speci�c part of a schema. Moreover, we discuss schema
integration that is required for the implementation of inter-document consistency constraint
checks and their preservation.

5.9.2.1 Instance Variables

For a non-terminal class, the tool builder must declare instance variables that implement edges
to abstract syntax child nodes. Most ODBSs are statically typed and, therefore, types must

5.9. TOOL SCHEMA 107

be de�ned for instance variables. For single-valued edges, the type of a variable is simply the
class implementing the target node type of the edge. For multi-valued edges, variables may
be used whose type is constructed from a base type by list or set type constructors. Type
constructors for lists and sets exist by de�nition in all ODBSs [Cat93].

As an example consider the O2C type declarations given below for nodes of types Function

and ParamList from the abstract syntax graph on Page 21. Function includes a number of
single-valued edges leading to child nodes. ParamList de�nes an ordered multi-valued edge
to parameters. Class Parameter is in fact an abstract class from which classes InParameter

and InOutParameter will inherit. By exploiting polymorphism, a function's parameter list may
then contain instances of these two classes.

class Function inherit Increment

type tuple(read name:OpName, class ParamList inherit OptionalIncrement

read pl:ParamList, type tuple(read params:list(Parameter))

read type:UsingType, ...

read com:Comment) end;

...

end;

Terminal classes do not have outgoing aggregation edges. Instead, an instance variable is
required that stores the lexical value, that is the character string, which matches the respective
terminal symbol of the grammar. This instance variable is inherited from the prede�ned class
TerminalIncrement.

Instances of both non-terminal and terminal classes may be source or target nodes of reference
edges that represent semantic relationships. Then additional instance variables have to be
declared for each incoming or outgoing reference edge.

As an example, let us consider class UsingType from the Groupie module interface tool schema.
In the �gure on Page 21, reference edges connect nodes of type UsingType with declaration
nodes of types TypeName or TypeImport. We, therefore, introduce an abstract class TypeDecl as
super class of TypeName and TypeDecl and de�ne instance variables in UsingType and TypeDecl

in order to implement this reference edge.

class UsingType inherit Increment class TypeDecl inherit Increment

type tuple(read DefinedIn:TypeDecl) type tuple(read UsedIn:set(UsingType))

... ...

end; end;

Finally, additional instance variables may be added in order to implement node attributes.
These node attributes will most often be used for static semantic checks. They, therefore,
store symbol tables or type information.

As an example, consider Module nodes from the �gure on Page 21. These module nodes carry
an attribute for storing scope information such as the set of identi�ers that have been de�ned
within the scope of the module. To implement this attribute, an instance variable of class
SymbolTable may be added:

108 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

class Module inherit DocumentVersion

type tuple(name:ModName,

com:Comment,

typ:TypeName,

op_list:OperationList,

imp:ImportInterface,

DefinedNames:SymbolTable)

...

end;

In short, instance variables are used to implement syntactic and reference edges, lexical values
and attributes required during static semantic checks.

5.9.2.2 Methods

Any class should de�ne a constructor method, which initialises all instance variables and
invokes the init methods of all super classes in order to initialise inherited instance variables
as well. The constructor in O2C is the initmethod, which is implicitly called by O2. The class
should also declare a destructor method collapse, which is invoked when the object is deleted.
This method should delete all child increments, reference edges and free space occupied by
instance variables that implement node attributes.

For non-terminal classes the following methods should also be de�ned:

� an expand method that expands the increment from the state where it represents a place
holder to a template where all its child increments are place holders,

� a parse method that, for a given increment, examines a string passed as an argument
and returns an abstract syntax tree if the string is syntactically correct,

� an unparse method that traverses the abstract syntax tree starting from the increment
and computes a textual representation.

These methods implement access and modi�cation operations to the instance variables that
implement syntactic edges. They also access and modify the instance variable that stores the
information as to whether or not an increment is a place holder.

For each terminal class the following methods should be de�ned:

� a scan method that checks for the lexical correctness of the terminal increment,

� an unparse method that returns the lexical value of the terminal increment.

These two methods provide the access and modi�cation operations to the instance variable
value which is hidden from the outside.

If a class implements a node type whose instances are source nodes of reference edges, two
methods have to be added for each of these edges in order to control the value of the instance
variables implementing the edge. The �rst method set implements an operation that estab-
lishes the edge. The parameter of the method is the increment to which the edge is to be
drawn. It not only sets the instance variable to the object passed as a parameter, but also
invokes an operation from the object in order to establish the reverse direction of the edge.
The second method delete implements the operation to delete a reference edge. It sets the
value of the instance variable to the unde�ned value nil and invokes an operation on the target
of the edge in order to delete the reverse direction of the edge as well.

5.9. TOOL SCHEMA 109

Each class implementing a node type that participates in static semantics or inter-document
consistency constraints must include additional methods that check for violation of the con-
straints. The purpose of these methods is to include error descriptors in the error set attribute
that any increment inherits from class Increment. In addition, these methods have to control
the existence of reference edges and invoke the methods outlined above for this purpose. An-
other aim of these methods is to update symbol tables as soon as new identi�ers are declared
or existing identi�ers are modi�ed or deleted.

In addition to these standardised methods, a tool builder may freely decide to add particular
methods that use the methods suggested above, in order to implement particular operations re-
quired from the schema. These methods may then be used to implement particular commands
required from the tool.

As an example, consider the methods de�ned for class Function below. Methods init,
collapse, expand, parse and unparse are those common to arbitrary non-terminal classes,
though some of their signatures vary. Methods speci�c to class Function are the other meth-
ods which implement modi�cation operations on a Function's child increments.

class Function inherit Increment

type tuple(read name:OpName,

read pl:ParamList,

read type:UsingType,

read com:Comment)

method

public init (f : Increment),

public collapse,

public expand,

public parse(Str:string):Function,

public unparse:string,

public expand_name(Str:string):boolean,

public change_name(Str:string):boolean,

public expand_type(Str:string):boolean,

public change_type(Str:string):boolean,

public expand_comment(Str:string):boolean,

public change_comment(Str:string):boolean

end;

In short, terminal and non-terminal classes must export a number of methods. Some of them
such as the constructor and destructor methods exist in arbitrary classes. Others should be
available only for terminal (e.g. scan) or non-terminal classes (e.g. parse). In addition to
these methods that should be exported by all classes, there are methods that are speci�c to
particular increment classes. The implementation of method bodies, however, varies from class
to class and cannot be de�ned in advance.

5.9.3 Data Integration

So far, we have only considered the schema of one tool. In a PSDE, however, many tools have
to be included. If these tools have to be integrated a-priori, we will have to consider data
integration, i.e. integration of schema de�nitions belonging to di�erent tools.

This integration could be achieved in a very crude way by simply accumulating all class de�ni-
tions of the various tools within a single schema. However, the immediate consequence would

110 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

be that the development and maintenance of di�erent tools would no longer be independent
of, but would strongly interfere with, each other. As development and maintenance is most
often carried out by a team of tool builders rather than individuals, these tool builders would
have to agree on class names and inheritance hierarchies if all de�nitions were stored in one
schema. In addition, the schema is the granularity of access control for schema changes. If all
de�nitions were stored in a single schema, we could not prevent tool builders from changing
de�nitions belonging to tools they were not responsible for. We, therefore, reject this option
and require that all schema de�nitions belonging to one tool are stored in one schema.

There remain two options for the integration of di�erent tool schemas: horizontal and vertical.
In horizontal integration di�erent tool schemas coexist and export/import schema de�nitions
to/from another. In vertical integration, tool schemas are considered as views that are con-
structed on top of a common conceptual schema. In the rest of this subsection we consider
these two issues in more detail and discuss when each of them should be applied. We �nally
demonstrate how horizontal and vertical data integration can be implemented using concepts
o�ered by O2.

5.9.3.1 Horizontal Integration

In order to implement e�cient checks of inter-document consistency constraints and even au-
tomatic preservation thereof, inter-document reference edges are required. Intra-type reference
edges need not be considered during data integration because the respective class de�nitions
are included in the same schema. To de�ne inter-type reference edges, however, class de�ni-
tions contained in other schemas have to be used as types of instance variables and method
parameters.

For an example, let us revisit Figure 3.1 on Page 21. There are inter-type reference edges
between nodes representing entities of the E/R diagram and nodes of an architecture document
representing modules. The syntax graphs for E/R diagrams are de�ned in schema ER-Diagram

and the graphs for architecture documents are de�ned in schema Architecture. Below, the
class de�nitions implementing node types Entity and ADTModule are given. The type de�nition
of class Entity in schema ER-Diagram contains an instance variable of type ADTModule. Likewise,
class ADTModule in schema Architecture contains an instance variable of type Entity. This
pair of instance variables implements the reference edge between nodes of the two di�erent
document subgraphs.

schema ER-Diagram; schema Architecture;

... ...

class Entity inherit Increment class ADTModule inherit Increment

type tuple(read name:EntityName, type tuple(read name:ModName,

read pos:Position, ... ,

read ToADTSpec:ADTModule) read ToEntity:Entity,

method method

public change_name(Str:string):boolean, public set_entity(e:Entity),

... public change_name(Str:string):boolean,

end; ...

end;

To be able to de�ne the two classes in this way necessitates the use of classes that are de�ned
in other schemas. From an architectural point of view schemas play the role of subsystems
and we have, therefore, to import classes from other subsystems. As discussed in [ES94] this

5.9. TOOL SCHEMA 111

should be done in a restricted way. In particular, there should be a means to restrict the
visibility of classes de�ned in one schema in order to achieve information hiding not only for
data structures of classes, but also in-the-large for schemas. We, therefore, have to de�ne those
classes as exports of a schema representing node types that participate in inter-document type
reference edges. These classes may then be imported from other schemas, but all other classes
of a schema are hidden.

O2C supports this information hiding in-the-large. A schema de�nition can be exported and
then it might be imported from other schemas. In the above example, we would declare
the following exports and imports and then we could de�ne classes Entity and ADTModule as
indicated above.

schema ER-Diagram; schema Architecture;

export schema export schema

class Entity, class ADTModule,

name AllERDiagrams; name AllArchitectures;

name AllERDiagrams:DocumentPool; name AllArchitectures:DocumentPool;

import schema Module_schema import schema ER-Diagram_schema

class ADTModule, class Entity,

name AllArchitectures; name AllERDiagrams;

... ...

From a type-level perspective, which is most often the only one considered in architectural
discussions, the measures outlined so far are su�cient. Since we deal with persistent objects
in this thesis, we also have to consider an instance-level perspective. A schema might be
instantiated in several databases. This means that several databases may contain objects
whose classes are de�ned in one schema. This is particularly useful because several projects
of a software house might be using the same tool and with that the same schema, but their
documents might have to be stored in di�erent databases to avoid interference with each other.
If a tool has to instantiate reference edges between nodes whose implementations are stored
in di�erent databases, the tool must identify the database where to search for the node. To
do so, we not only have to import schemas, but must also import a particular database from
the set of databases that were instantiated from a schema.

In O2, databases are referred to as bases. In addition to schema import, O2C provides the
concept of a base import to address other databases. The O2C statements given below display
the required imports for the example given above. The statements create new databases
for entity relationship diagrams and ADT module de�nitions for two projects A and B. The
set base command establishes a database as current base and then all changes to the database
apply to the current base. Hence, the tables for storing documents that are created next
are stored in the two databases of project A. The import base commands then enable the
ER-Diagram database of project A to have references to documents in the Module database of
project A. References between the entity relationship diagrams of project A and modules of
project B, however, are inhibited by these de�nitions.

112 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

schema ER-Diagram; schema Architecture;

name AllER-Diagrams: DocumentTable; name AllArchitectures: DocumentTable;

export schema class Entity; export schema class ADTModule;

name AllER-Diagrams; name AllADTModules;

import schema Module_schema import schema ER-Diagram_schema

class ADTModule, class Entity,

name AllADTModules; name AllER-Diagrams;

create base ER-Diagram_ProjA; create base Module_ProjA;

create base ER-Diagram_ProjB; create base Module_ProjB;

set base ER-Diagram_ProjA; set base Module_ProjA;

AllER-Diagrams:=new DocumentTable; AllADTModules:=new DocumentTable;

import base Module_ProjA; import base ER-Diagram_ProjA;

... ...

In short, horizontal data integration requires, from a type-level point of view the use of classes
and names that are de�ned in other database schemas. Therefore, the schema de�nition
language must o�er import and export statements to allow for information hiding in-the-large.
From an instance level point of view, a schema might be instantiated in several databases.
Then we must de�ne, for a database, to which other databases it refers.

5.9.3.2 Vertical Integration: Views

As mentioned in Section 3.3, there are document types, such as module interface de�nitions
and successive implementations, which include redundant information and should, therefore,
be implemented using views. The rationale for using a view mechanism for vertical data
integration is then to have several virtual abstract syntax graphs de�nitions for the di�erent
document types with slightly di�erent node and edge types and di�erent available operations,
while only one common representation of the graph is stored persistently. In this subsection,
we discuss how the common persistent representation should be de�ned and how views should
be constructed on top of such a representation.

The structure and available operations of virtual abstract syntax graphs are implemented in a
virtual schema in the same way as discussed for plain schemas. The rest of the tool architecture,
therefore, will not be a�ected by the fact that virtual syntax graphs are not stored persistently.
Thus, each virtual node type is implemented in a virtual class of the virtual schema. Each
edge type starting from the virtual node type is declared by a pair of instance variables in the
connected virtual classes.

The structure of the common persistent representation of several virtual abstract syntax graphs
must be de�ned in a common conceptual schema. Therefore, a base class must be available
in the conceptual schema for each virtual class of each view that will be constructed on top.
Note that several virtual classes may have the same base class, also there may be base classes
that are only used in some views, while they are hidden from other views. Moreover, instance
variables must be available in each base class for each instance variable of those virtual classes
that were derived from the base class. Again one instance variable of the base class might be
used for instance variables of several virtual classes.

A virtual schema is then de�ned based on such a conceptual schema. Virtual classes are derived
from base classes. During that process instance variables of the base class, which should not
be visible in the virtual class, are hidden. Operations that were available in the base class
can be hidden as well. In addition, the virtual class de�nition can de�ne new operations, for

5.9. TOOL SCHEMA 113

instance to implement di�erent parsing or unparsing schemes for the virtual abstract syntax
graph.

To illustrate the use of views in the O2 ODBS, we de�ne two views on top of a conceptual
schema as an example. The views partly implement the two virtual syntax graphs depicted in
Figure 3.2 on Page 25. The conceptual schema de�ning the structure of the real syntax graph
of that example contains the class de�nitions given below.

schema Module_schema;

base Module_base1;

name AllModules:DocumentVersionTable;

class OperationList inherit Increment class Operation inherit Increment

type tuple(opl:list(Operation)) type tuple(name:OpName,

method pl:ParamList,

public init(f:Increment) com:Comment,

public collapse, vd:VarDeclList,

public expand, st:StatementList)

public add(o:Operation,after:Operation), end;

public insert(o:Operation,before:Operation)

end;

class Procedure inherit Operation class Function inherit Increment

method type tuple(typ:UsingType)

public init(f:Increment), method

public collapse, public init(f:Increment),

public expand, public collapse,

end; public expand

end;

class StatementList inherit Increment class VarDeclList inherit Increment

type tuple(sl:list(Statement)) type typle(vl:list(Statement))

method method

public init(f:Increment), public init(f:Increment),

public collapse, public collapse,

public expand, public expand,

public add(s:Statement,after:Statement), public add(s:VarDecl,after:VarDecl),

public insert(s:Statement,before:Statement) public insert(s:VarDecl,before:VarDecl)

end; end;

...

Based on this conceptual schema, consider an excerpt of the de�nition of virtual classes in two
views. The �rst is a view for the module interface tool and the second de�nes a view for the
module implementation tool displayed in Figure 2.1. The two view de�nitions implement the
virtual node types displayed in Figure 3.2.

114 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

virtual schema Interface_view virtual schema Source_view

from Module_schema; from schema Module_schema;

virtual class IOperationList virtual class SOperationList

from OperationList; from OperationList;

inherit Increment; ... inherit Increment; ...

virtual class IOperation virtual class SOperation

from Operation; from Operation;

inherit Increment; inherit Increment; ...

hide attribute vd,st; ...

virtual class IProcedure virtual class SProcedure

from Procedure; from Procedure;

inherit IOperation; ... inherit SProcedure; ...

virtual class IFunction virtual class SFunction

from Function; from Function;

inherit IOperation; ... inherit SProcedure; ...

hide class VarDeclList; virtual class SVarDeclList

from VarDeclList;

inherit Increment; ...

hide class StatementList; virtual class SStatementList

from StatementList;

inherit Increment; ...

The �rst two lines declare two new views, namely Interface view and Source view, based on the
common schema Module schema. The declaration of Interface view hides classes VarDeclList

and StatementList from the view. Consequently, the instance variables vd and st imple-
menting syntactic edges between operations and variable declarations or statement list nodes,
respectively, are hidden in the view as well. On the other hand, view Source view implements
virtual node types for variable declarations and statement lists, as they occur in syntax graphs
of programming languages. Consequently, Source view does not hide the respective instance
variables from class SOperation.

As an example of how di�erent methods are de�ned for two virtual classes, we consider the
two virtual classes that were derived from class Function in more detail.

virtual class IFunction virtual class SFunction

from Function; from Function;

inherit IOperation; inherit SProcedure;

method method

public unparse:string, public unparse:string,

public parse:string, public expand_var_decl,

public expand_type(s:string):boolean, public expand_stmt_list,

public change_type(s:string):boolean end;

end;

end;

Both virtual classes declare an unparse method with the same signature. The implementa-
tions of these methods, however, di�er in that they implement di�erent unparsing schemes
of functions. Moreover, the view de�nitions enforce changes to interfaces of functions to be
performed in the design, since Source view does not o�er any methods for changing a func-
tion's interface. The Source view de�nition of a function, however, does provide methods for
expanding variable declarations or the statement list implementing the body, which are not
available in the interface view.

Each view must declare a counterpart to the named object de�ned in the conceptual schema
in order to get a common root for all virtual abstract syntax graphs. This root is, for instance,
used as a starting point for navigations through the virtual abstract syntax graph. This

5.9. TOOL SCHEMA 115

starting point is de�ned as a virtual named object in the view. Its contents may be restricted
by an object-oriented query to a subset of real objects. During this query, real objects are
transferred into virtual objects by conversion functions.

The example below de�nes the virtual named object for the Interface view. It selects all
modules that exist in the database, translates them into modules of the interface view and
includes them in the virtual named object AllInterfaces.

virtual schema Interface_view from Module_schema;

virtual name AllInterfaces:set(IModule);

has value

select As_IModule(d)

from d in AllModules->VALUES();

We can also explain now why virtual abstract syntax graphs, which are implemented with
views as outlined above, can be updated. The required updates are the creation of a new
virtual node, changes of virtual node attributes, the creation and the deletion of a virtual
edge and the deletion of a virtual node. The creation of a virtual node requires the creation
of a new virtual object in the view. To create the new object we apply the new operator to
a virtual class, for instance IFunction. The new operator invokes the constructor. The view
mechanism, in turn, has generated the constructor for IFunction in such a way that it �rst
creates a new object of the base class Function. This creation implies the execution of the
constructor of Function, which, in turn, properly initialises all instance variables of the base
object. That means that, during the creation of a virtual object, not only the instance variables
for the virtual object, but also the instance variables that are hidden in the view are properly
initialised. In the example, the constructor would also initialise instance variables vd and st,
although they are not visible in the view. In RDBS views, this is not the case due to the lack of
appropriate object constructors. Finally, the constructor of the virtual class stores a reference
to the base object in the virtual object. This reference is, in fact, the only instance variable
that is really stored in the virtual object. Any other instance variable access or modi�cation
is mapped to an instance variable access or modi�cation of the real object, which is identi�ed
by the stored reference. Node attribute changes and the creation and deletion of edges are
implemented in terms of such instance variable modi�cations. They persist because they are
e�ectively mapped to changes of instance variables in the real object. Suppose, for example,
that we want to create a new edge between a virtual function and a virtual parameter list in
the interface view. We then have to assign the virtual parameter list object to instance variable
pl of the virtual function. The view mechanism will e�ectively assign the base object of the
virtual parameter list to the instance variable pl of the base object of the virtual function. In
this way the update persists in the database and is also visible in the implementation view.
Deletion of a virtual object from the view is simply done by assigning the unde�ned value of
nil to the reference that referred to the object. In the persistent representation, the garbage
collector of the database takes care that any objects without references to them are deleted.

In short, the view mechanism of O2 facilitates vertical data integration. Using this mechanism,
a number of tools can share a conceptual schema in a controlled way. While sharing the
schema, tools also share the persistent representation of syntax graphs. Using the O2 view
mechanism, it is then possible to declare di�erent virtual schemas based on the conceptual
schema, one for each tool, and implement di�erent structures and behaviours of the same
persistent representation.

116 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

5.9.3.3 Combining Horizontal and Vertical Integration

Given that there are two methods for data integration, we are faced with the problem of when
to use which. In principle, vertical data integration could be implemented with horizontal
integration. We would have to materialise basically all the virtual syntax graphs that we
would have in the case of vertical integration. Therefore, we would have to export each node
type from one schema, import it to the other schemas and vice versa. We would then have to
create objects and change instance variables in the materialisations of all virtual syntax graphs,
whenever the respective objects and instance variables materialising some other virtual syntax
graph are changed. If the schemas and their instantiations in bases are, from a structural point
of view, very similar there are a number of serious implications. Firstly, tool schemas will be
very hard to maintain since a change in the structure of one schema a�ects all other schemas.
Secondly, tools will perform slower as they always have to perform updates in implementations
of other virtual syntax graphs. Finally, physical disk space utilisation will be worse than with
vertical integration, since each object is physically duplicated as often as it occurs in di�erent
syntax graphs.

On the other hand, vertical integration cannot be used to implement horizontal integration.
Using import/export statements, we do not impose any strategies concerning when to propa-
gate a change into a document of another type. In the example given above, changing a name
of an entity does not imply an immediate change to the name of the ADT speci�cation of
that entity. For instance, it may well be deferred in order to give some other developer, who
is in charge of the ADT speci�cation, the chance to reject that change. This is not possible
if syntax graphs are virtual and implemented with views. If a node is changed, the change is
visible, after commit of the transaction that performed the change, in all the counterparts of
that node in other virtual syntax graphs. In the example, if class Entity was a virtual class
and ADTModule was another virtual class and both were derived from the same base class, then
the change of the name of a virtual object of class Entity would have been visible immediately
in the corresponding virtual object of class ADTModule.

This means that views cannot be used for data integration if changes made to nodes are not
to be propagated immediately into other nodes. If immediate visibility of changes is required,
however, views are the preferred means of integration. In practice, therefore, a hybrid data
integration approach that combines vertical and horizontal integration will be used in most
PSDEs. If we take above examples, the most bene�cial integration of the schema, for the entity
relationship editor with the schema for the module interface editor and the source code editor,
is the following. The interface and source code editors both declare a view each based on a
common conceptual schema and, therefore, share their physical syntax graph representations.
The entity relationship editor schema is integrated with the former two by importing from and
exporting to the conceptual schema of the two other editors. Thus, changes of an entity name
can be performed without immediately changing the module name.

5.9.4 Summary

We have seen that the schema of a tool can be divided into a reusable and a tool-speci�c part.
The reusable part contains class de�nitions which implement properties that are common to
arbitrary tools. These classes can be used by inheritance or declaration of instance variables
in classes contained in the tool-speci�c part. As tool-speci�c classes vary from tool to tool,
we have discussed how to identify these classes based on the syntax and static semantics

5.10. RELATED WORK 117

of the underlying languages and have suggested strategies for de�ning inheritance, instance
variables and methods of these classes. In the last paragraphs, we have discussed how to
integrate schemas of di�erent tools in order to implement inter-document (type) consistency
constraints. We have suggested a horizontal and a vertical strategy for data integration and
have discussed when the strategies are to be employed and how they can be combined.

5.10 Related Work

A number of syntax-directed tools have been discussed in literature. Among the �rst were tools
developed in the Gandalf project [HN86] (e.g. IPE [MF81], GP [HN86] or GNOME [GM84]),
the Cornell Program Synthesizer [RT81] or tools developed in the Mentor project [DGHKL84].
The architectures of all these tools contain a subsystem of some sort that maintains abstract
syntax trees of documents in main memory. These subsystems o�er operations in order to
dump syntax trees to a persistent representation on an operating system �le and to restore
trees from such a representation. Working on a syntax tree representation in main memory
that is not the persistent representation has a number of serious consequences. First of all,
checking for inter-document consistency constraints cannot be based on edges that span be-
tween documents. Therefore, these tools do not adequately address the issue of checking for
consistency between di�erent types of documents. Sometimes di�erent unparsing schemes are
used to display di�erent document types. In this case, however, changes made to one document
are immediately visible in its corresponding document, which may not always be appropriate.
Secondly, updates of concurrent users that a�ect the document a user is working on cannot be
handled appropriately, as there is no common persistent representation. Moreover, tools are
not tolerant of hardware or software failures and users might lose signi�cant e�ort in the case
of a failure. Finally, none of these tools support version and con�guration management of doc-
uments. Di�erent revisions of a �le representation of an abstract syntax could be maintained
by controlling them with basic versioning mechanisms such as SCCS or RCS [Tic85]. Then,
however, neither predecessor and successor relationships between documents nor consistency
of con�gurations can be maintained by the tools.

For tools contained in the IPSEN environment [Nag85, ENS87], a fundamentally di�erent
architecture is chosen [Sch86]. First of all, the tools do not operate on a transient document
representation, but work directly on the persistent representation managed by the GRAS
database system (c.f. Subsection 4.3.1). All documents are stored in a single GRAS graph.
Each document is represented, in turn, by a subgraph with reference edges leading to other
documents' subgraphs, thus facilitating e�cient checks of static semantics and inter-document
consistency constraints. The GRAS transaction mechanism is used and, therefore, loss of e�ort
in the case of failures is restricted to the last completed command. Revisions of documents are
supported in a later version of the IPSEN prototype [Wes89b] based on the functionality o�ered
by the GRAS database system. Con�gurations that select di�erent versions of a document,
however, are not supported. Concurrent editing by multiple users is not possible in IPSEN,
since all documents are stored in one graph which has to be locked exclusively as soon as a user
wants to modify a document. If documents were stored in separate graphs in order to have a
�ner granularity of locking, reference edges between di�erent graphs and exploitation of the
transaction mechanism would be inhibited due to the limitations of the GRAS database (c.f.
Page 66). Further drawbacks are the lack of schemas and views in GRAS. Finally, the IPSEN
architecture is not open. It might be extended with a subsystem for service execution, but
then concurrency control problems might occur since services have to be executed concurrently

118 CHAPTER 5. A TOOL ARCHITECTURE BASED ON OBJECT DATABASES

to editing sessions. This is not possible with the GRAS database if both service and editing
sessions have to access the same graph.

The problem of openness is, to a certain extent, solved by the architecture of the Field pro-
gramming environment [Rei90]. The environment contains a number of tools including textual
editors and graphical viewers for source code. These tools are open and communicate with
one another based on a message passing subsystem. They send a message of a particular
type to a broadcast message server4 which, in turn, broadcasts the message to any other tool
which has registered as being interested in messages of that type. The problem with Field
and its broadcast message server is that it is still a single-user solution as the server cannot
route messages to remote workstations. In addition, exchanging messages in no way solves the
problem of di�erent users concurrently changing related documents.

5.11 Summary

The architecture developed in this thesis overcomes all the above de�ciencies by storing ab-
stract syntax graph representations of documents in object databases. The structure of, and
available operations on, these syntax graphs are de�ned and controlled by the ToolSchema

subsystem, de�ned in an object-oriented schema de�nition language. Version management of
documents is supported, based on version management primitives for composite objects, which
are to date only o�ered by Orion and O2. Simple support for con�guration management is
implemented in the ToolKernel of the tool architecture. Data integration of tools, i.e. mea-
sures for preserving inter-document (type) consistency constraints, is based on export/import
between di�erent schemas, an object-oriented view mechanism or a combination of these.

Communication between tools and the process engine is done via a communication protocol
built on top of a message router. Commands are executed as ACID database transactions,
which are controlled by the ToolKernel in order to secure the integrity of the syntax graph
against failures, as well as arranging to save, concurrent updates of related documents. Dis-
tributed execution of tools is supported, though not reected in the tool architecture. It is
transparent to tool builders since it is achieved by the client/server architecture of current
object database systems.

During the course of this chapter, we have separated components of the tool architecture into
reusable and tool-speci�c components. The reusable components are the Control class, the
ToolKernel, SoftwareProcessCommunicationProtocol and UserInterface subsystems and some
of the classes contained in the CommandExecution, ToolAPI and the ToolSchema subsystems.
The ODBS, the MessageRouterInterface and the UIMS subsystems are third party components
and have been reused in any case. The reusable components can now be reused in any tool
architecture. This signi�cantly simpli�es the tool construction process. Nevertheless, there
are a number of components which still have to be constructed anew for each tool. These are
the LayoutComputation class, the ToolSpecificServices class and most of the classes in the
CommandExecution, ToolAPI and ToolSchema subsystems.

4The Broadcast Message Server product fromHewlett Packard was, in fact, built according to the architecture
of the server in the Field Environment.

Chapter 6

The GOODSTEP Tool

Speci�cation Languages

In the last chapter we identi�ed the architecture components that are tool-speci�c. They
are tool-speci�c because they depend on the syntax and static semantics of the language
supported by the tool, the consistency constraints to other documents and the particular
editing, analysing and browsing commands that are to be o�ered by the tool. Although a
signi�cant amount of code for architecture components can be reused, the implementation of
the tool-speci�c components is still far too time consuming. We thus suggest a number of
domain-speci�c graphical and textual languages that a tool builder can use to systematically
and e�ectively engineer the tool-speci�c components. We call these languages GOODSTEP
Tool Speci�cation Languages (GTSL)1.

These speci�cation languages must be able to express the di�erent concerns that vary from
tool to tool. They should provide di�erent levels of abstraction in order to support a tool
builder in the step-wise re�nement of a tool speci�cation. The highest-level language should
provide a concise overview of the tool speci�cation components. This overview will aid the tool
builder in getting a speci�cation development started. We are going to de�ne an extended
and normalised BNF that serves this purpose. The productions of the BNF will then be
used to identify increment classes. A lower-level language will allow a tool builder to de�ne
the structure of increment classes, such as semantic attributes and relationships with other
increment classes. We will customise OMT entity relationship diagrams for that purpose. At
the lowest level of abstraction, we will then provide a language for the de�nition of increment
class behaviour. This language will enable increment layout and increment-speci�c commands
as well as static semantics and inter-document consistency constraints of increment classes to
be de�ned.

The speci�cation languages will provide primitives for reusing and customising prede�ned
increment class speci�cations2. Customised speci�cations will, in turn, be reusable in the
same way as prede�ned speci�cations. The speci�cation languages that we suggest will follow
the object-oriented paradigm in order to achieve this. The structural and behavioural concerns
de�ned in increment classes are inherited by subclasses and are thus reused there. Classes can

1The languages that we present here have been developed and evaluated within the ESPRIT-III Project 6115
(GOODSTEP) [GOO94]. We dedicate the name of the languages to this project to acknowledge the bene�ts
that we gained from working in its stimulating scienti�c atmosphere.

2These are, in fact, the speci�cations of the classes that are contained in the prede�ned schema.

119

120 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

be customised to address more speci�c problems by rede�ning concerns. The e�ort required
for the speci�cation of a tool will then merely depend on the degree to which the required
properties di�er from prede�ned properties.

In the next section we will discuss the requirements that the di�erent languages must meet. In
Section 6.2, we will suggest a language for de�ning extended and normalised BNFs (ENBNFs)
so as to de�ne the concrete syntax of a language that is supported by a tool. Section 6.3 sug-
gests customisations to the OMT entity relationship model to make it particularly suitable for
the structure de�nition of increment classes. An entity relationship model then appropriately
visualises navigation paths between increments that are required for de�ning static semantics
and inter-document consistency. The detailed behavioural increment class de�nition is struc-
tured into an external class interface de�nition and an internal class speci�cation. Section 6.4
discusses class interface de�nition, while we present the language primitives for class speci�-
cations in Section 6.5. We conclude this chapter with a comparison with related work where
we indicate the contributions of this thesis to state-of-the-art tool speci�cation.

In the next chapter, we will discuss a tool builder's requirements for an integrated develop-
ment environment for tool speci�cation. This environment will contain a tool for each of the
languages that are discussed in this chapter. Moreover, the environment will check and even
preserve inter-document consistency constraints that exist between the di�erent languages. We
cannot reasonably discuss these inter-document consistency constraints in this chapter, since
their de�nition can only be understood after all the di�erent languages have been introduced.

6.1 Requirements of Tool Speci�cation Languages

In order to set the scene for this chapter, we have to discuss language design issues, i.e. we must
de�ne the requirements that the di�erent speci�cation languages must meet. The languages
should be speci�c to the domain of tool speci�cation in order to support tool builders as
much as possible. This implies that the languages can express all the information required to
generate the tool-speci�c components of the tool architecture as identi�ed in the last chapter.
Only then will it be feasible to build a compiler that generates executable tools from the
speci�cation without having to code further components manually. The languages should,
therefore, provide dedicated language constructs for the following concerns.

Abstract Syntax: A tool speci�cation for syntax-directed tools must include a de�nition
of the language supported by the tool. The syntax of a formal language is usually de�ned
by a grammar given in terms of an EBNF. Production rules de�ne the component increments
for each increment of the language. On a lower level of abstraction, the speci�cation of
the structure of increments should be distinguished from the speci�cation of the concrete
increment representation in order to allow for a more exible adoption of document layout or
even de�nition of several document layouts [KLM83]. The syntactic structure of a language
is denoted as abstract syntax. To de�ne the abstract syntax, a tool speci�cation language
must be capable of de�ning the di�erent increment types and their component increments.
Moreover, it must include appropriate primitives for specifying increment lists and optional
increments.

6.1. REQUIREMENTS OF TOOL SPECIFICATION LANGUAGES 121

Unparsing Schemes: Since the abstract syntax only speci�es the internal structure of a
language, the external representation of the language must be de�ned elsewhere. This external
representation must be de�ned in terms of unparsing schemes. The unparsing schemes de�ne
the layout of documents with line breaks and indentations. Moreover, they de�ne the concrete
syntax in terms of keywords and an order in that abstract syntax children occur in the external
representation.

Static Semantics and Inter-Document Consistency Constraints: Tool speci�cations
must de�ne static semantics such as scoping and type compatibility rules of a language. More-
over, inter-document consistency constraints need to be de�ned. From a structural point
of view, these constraints de�ne additional attributes and relationships between increments.
From a behavioural point of view, the speci�cations must determine how attribute values are
computed and the way relationships are established. Besides de�ning the constraints them-
selves, speci�cations must also de�ne whether violations of static semantics or inter-document
consistency constraints are tolerable or not. If errors are tolerated, speci�cations must also
de�ne the error messages that are presented to the user. In order not to complicate the spec-
i�cation language unnecessarily, the concepts de�ned for de�nition of static semantics should
also be applicable to the speci�cation of inter-document consistency constraints.

User Commands: Besides generic commands, such as opening or closing a document and
copying or pasting increments, tools will have to o�er increment speci�c commands. Hence the
tool speci�cation languages must be able to de�ne these commands. The language must be
capable of expressing the functionality of commands, the preconditions for their appearance in
a context-sensitive menu and also the user-dialogue that is carried out during the execution of
the command. As we have required user commands to be the unit of concurrency control and
persistence, the tool speci�cation language should o�er transaction control statements such as
commit or abort, for specifying the success or failure of a command.

Structure and Reuse: The above paragraphs have identi�ed the di�erent concerns that a
tool speci�cation must de�ne. The complexity of these concerns is so great that the languages
must provide structuring facilities so that a tool speci�cation can be properly structured into
di�erent independent components. Among these components it will be possible to identify
components that are similar in structure and behaviour. The speci�cation languages should,
therefore, allow the tool builder to identify these similarities and to specify common structure
and behaviour in one component and reuse it for similar components. The object-oriented
paradigm appropriately meets both requirements. It can be used to structure the overall
de�nition into components, namely classes, and can de�ne inheritance relationships to reuse
properties in subclasses.

Level of Abstraction: In the last chapter we exploited the concepts of classes and inheri-
tance relationships of object-oriented schema de�nition languages for structured and reusable
schema components. We must, however, consider schema de�nition languages as not providing
the appropriate level of abstraction for specifying a tool. From a structural point of view, pairs
of instance variables are not the appropriate for de�ning relationships among increments. From
a behavioural point of view, tool builders would have to code unparsing schemes, multiple-
entry parsers and checkers for static semantics and inter-document consistency constraints in

122 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

terms of methods, which means in an imperative way. Instead, tool builders demand higher-
level speci�cation languages where they can declaratively describe abstract syntax, unparsing
schemes, tool commands, static semantics and inter-document consistency for a tool and have
a compiler generating the implementation in the schema de�nition language. The di�erent
speci�cation languages should be at di�erent levels of abstraction. The highest-level language
should provide a concise overview of the components. At a lower-level, the structure of each
component should be re�ned, and at the lowest-level the behaviour of components should
be declared. In the next section we will suggest a language for the highest level of abstrac-
tion, which is, therefore, particularly useful as a starting point for a tool development since it
identi�es the di�erent components of the speci�cation.

6.2 Extended, normalised Backus-Naur Forms

The syntax of a formal language is usually de�ned by a grammar of some sort. In languages
that occur in software engineering practice the syntax is context-free. We, therefore, need not
consider languages at higher-levels of the Chomsky hierarchy. Most often a Backus-Naur Form
(BNF) is used for de�ning context free grammars. We found plain BNFs to be not expressive
enough. As already discussed in [ES89] their way of de�ning list, alternative and optional
increments is not very concise. We, therefore, extend BNFs to deal with these concerns more
e�ciently. For the later use of extended BNFs, in particular as an input for the genera-
tion of speci�cations at lower levels of abstraction, it is necessary to normalise the extended
BNFs. The language de�nition for our extended and normalised BNF (ENBNF) is displayed
in Figure 6.1. The notation is plain BNF.

<enbnf> ::= <production-list>

<production-list>::= <production>

<production-list>::= <production> <production-list>

<production> ::= <symbol> "::=" <alternative>

<production> ::= <symbol> "::=" <structure> "."

<production> ::= <symbol> "::=" "|" <structure> "."

<production> ::= <symbol> ":" <reg-exp> "."

<production> ::= <symbol> ":" "|" <reg-exp> "."

<alternative> ::= <symbol> "|" <alternative>

<alternative> ::= <symbol> "|" <symbol>

<structure> ::= <component-list>

<component-list> ::= <component>

<component-list> ::= <component> <component-list>

<component> ::= <keyword>

<component> ::= <symbol>

<component> ::= <list>

<list> ::= "{" <symbol> "}" <opt_delimiter>

<opt_delimiter> ::=

<opt_delimiter> ::= "(" <keyword-list> ")"

<keyword-list> ::= <keyword>

<keyword-list> ::= <keyword> <keyword-list>

<keyword> : ["].*["]

<reg-exp> : ['].*[']

<symbol> : [a-zA-Z_][a-zA-Z_-0-9]*

Figure 6.1: Syntax De�nition of ENBNFs

6.2. EXTENDED, NORMALISED BACKUS-NAUR FORMS 123

An ENBNF consists of a list of productions. The normalisation of the EBNF is enforced by
the language syntax. It de�nes �ve di�erent kinds of productions: alternatives, structures,
optional structures regular expressions and optional regular expressions. A symbol is terminal,
if it is de�ned by a production with a regular expression on the right-hand side, otherwise
it is non-terminal. Alternative productions provide for a choice of a number of non-terminal
symbols. Note that structures or lists as alternatives are not supported in this normalisation.
Structure productions contain symbols and keyword de�nitions. A structure production is a
list production if it contains an element that has been produced by production <list>. This
list might then de�ne delimiter items that separate several list elements. A static semantic
constraint will ensure that only further keywords are included on the right-hand side of these
productions. Regular expressions de�ne the lexical syntax of a terminal symbol. Finally,
optional productions provide for a choice between the empty string and a structure or the
empty string and a regular expression.

Obviously syntax de�nitions de�ned in ENBNFs must obey certain static semantic constraints.
These are as follows:

SV1: Each symbol used on the right-hand side of a production must be declared by a produc-
tion where it appears on the left-hand side, otherwise the grammar would be incomplete.

SV2: Symbols must be declared only once, otherwise there would be alternatives in the gram-
mar that are not de�ned as alternative productions in the ENBNF.

SV3: If a structure production contains a list on the right-hand side, there must not be any
other symbols included in the component list of that production.

Throughout this chapter, we will take examples from the Groupie module interface editor.
An excerpt of the syntax of the module interface de�nition language supported by Groupie is
de�ned as an ENBNF below.

Module ::= ADTModule | FModule | ADOModule | TCModule .

ADTModule ::= "DATATYPE" "MODULE" ModName ";"

Comment

"EXPORT" "INTERFACE" "TYPE" TypeName ";" OperationList

"END" "EXPORT" "INTERFACE" ImportInterface

"END" "MODULE" ModName "." .

OperationList ::= {Operation} .

Operation ::= Function | Procedure .

Function ::= "FUNCTION" OpName ParameterList ":" UsingType ";" Comment .

Procedure ::= "PROCEDURE" OpName ParameterList ";" Comment .

ParameterList ::= | "(" {Parameter}(";") ")" .

Parameter ::= InParameter | InOutParameter .

InParameter ::= "IN" ParName ":" UsingType .

InOutParameter::= "INOUT" ParName ":" UsingType .

...

ModName ::= '[A-Za-z][A-Za-z0-9]*' .

ParName ::= '[A-Za-z][A-Za-z0-9]*' .

TypeName ::= '[A-Za-z][A-Za-z0-9]*' .

OpName ::= '[A-Za-z][A-Za-z0-9]*' .

UsingType ::= '[A-Za-z][A-Za-z0-9]*' .

Comment ::= | '/"*"([^*/]|[^*]"/"|"*"[^/])*"*"/' .

...

The alternative production Module de�nes the four di�erent types of modules supported by
the Groupie module interface de�nition language. The next structure production de�nes the
syntax of an ADT module in more detail. In particular, an ADT module has children for

124 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

the module name, a comment, an exported type, an exported operation list and an import
interface. As examples of list productions, consider operation lists and parameter lists. Notice
how we used the delimiter construct to de�ne the way parameters are delimited. Note also
that parameter lists as well as comments are optional productions. Finally, comments and
several kinds of identi�ers are de�ned by a number of regular expression productions.

Summarising the discussion, ENBNFs are suitable for de�ning the abstract and concrete syntax
of a language that is to be supported by a syntax-directed editor. The ENBNF de�nes the
syntax in a very concise way and in addition the di�erent productions identify the increment
classes that have to be re�ned. It thus serves, at a very high-level of abstraction, as a starting
point for a tool development. However, it does not yet de�ne any semantic relationships. We,
therefore, continue at a lower level of abstraction with the de�nition of a language that serves
this purpose.

6.3 OMT Entity-Relationship Diagrams

An ENBNF de�nition can be used to generate an abstract syntax tree de�nition, which de�nes
the abstract syntax of the language at a lower level of abstraction. Each ENBNF production
represents a node type of the tree and each symbol on the right-hand side of a production
represents an outgoing aggregation edge to a child node. The target node type of an outgoing
edge is determined by the respective symbol. The edge may be heterogeneous, i.e. lead
to di�erent node types, if the symbol is de�ned by an alternative production. For a list
production, the outgoing edge is an ordered multi-valued collection of edges. Due to the
normalisation of the ENBNFs, these are the only cases that we have to consider.

One could argue that the ENBNF de�nition is obsolete because an abstract syntax tree def-
inition would be su�cient to de�ne the syntax. We object to this argument since, �rstly, an
abstract syntax tree de�nition does not de�ne the concrete syntax. Secondly, the ENBNF
provides the syntax de�nition in a very concise way, and thirdly, the ENBNF is an excellent
starting point for a tool development since it guides the tool builder towards the identi�cation
of node types.

It has been concluded in Section 3.1 that abstract syntax trees are insu�cient for the e�cient
implementation of static semantics and inter-document consistency checks. Therefore, we have
generalised abstract syntax trees to abstract syntax graphs by introducing reference edges.
Thus, we have to develop facilities to support a tool builder in the enhancement of an abstract
syntax tree de�nition, which will be generated from the ENBNF, with semantic relationships
and attributes. Besides de�ning these relationships and attributes, the language to be de�ned
should also allow for a concise graphical overview of navigation paths that will occur in the
de�nition of consistency constraints. Moreover, the static semantics should be de�ned in a
way that speci�cation errors are excluded as far as possible.

Entity relationship models3 can be used to appropriately de�ne these abstract syntax graphs.
They are graphical notations and are appropriate for visualising graph structures. Entities can
be considered as types that, in turn, provide the basis for the de�nition of a type system. The
type system can then contribute to the detection of speci�cation errors. Entities can be used
to represent the di�erent node types that occur in a syntax graph and relationships model the

3In fact, we have already used the model successfully for the structure de�nition of abstract syntax graphs
during the development of the Merlin Benchmark.

6.3. OMT ENTITY-RELATIONSHIP DIAGRAMS 125

di�erent types of edges. The entity relationship model as de�ned in [Che76], however, does
not give adequate support if we consider heterogeneous or ordered multi-valued relationships.
Since these are common problems, numerous proposals have been made to extend the original
approach. From these variants, the OMT entity relationship model [RBP+91] gives the best
support for our problem because it

� distinguishes between aggregation and reference relationships,

� includes ordered multi-valued relationships,

� suggests multiple inheritance of attributes and relationships and

� supports polymorphism.

The distinction between aggregation and reference relationships is required because syntactic
relationships have aggregation semantics, whereas semantic relationships have reference seman-
tics (Refer to the discussion of aggregation and reference edges on Page 20). Ordered multi-
valued relationships are required for modelling multi-valued collections of syntactic edges.
Inheritance of attributes and relationships increases the modelling power signi�cantly and �-
nally polymorphism enables heterogeneous edges, that is edges that lead to di�erent node
types, to be de�ned.

From now on we refer to entities as classes to emphasise the object-oriented nature of entities
in our context. Classes are depicted as rectangles in the entity relationship model. Attributes
of a class, if any, are depicted in the lower half of the rectangle that represents the class.
Relationships are drawn as arrows. Solid arrows represent the aggregation relationship between
classes. Dashed arrows, in turn, represent reference relationships. Arrows start from and lead
to circles that are connected to classes. The colour of these circles determines the cardinality
of the relationship. A white circle denotes a one-end and a black circle denotes a multi-valued
relationship. Circles drawn on an arrow show that a multi-valued relationship is ordered.
We subsume attributes, incoming and outgoing relationships under the term property in the
following paragraphs. Lines with triangles denote inheritance relationships between classes:
The class(es) below the triangle inherit from the class(es) the triangle points to. Classes have a
name, and relationships have a �rst name and an optional second name. The �rst name denotes
the navigation in the arrow direction and the second name denotes the reverse direction.
First and second names are delimited by a slash. Aggregation relationships model syntactic
relationships only. Each increment is, therefore, reachable from exactly one other increment
via an aggregation relationship. We can, therefore, omit the second name for aggregation
relationships and refer to it uniquely as father if required.

Parameter
List

type

name

Using
Type

ParNameParameter

 In
Parameter

 InOut
Parameter

Type
Decl

DefinedIn/UsedBy

par_list

Figure 6.2: An OMT Entity Relationship Diagram

Figure 6.2 displays how we exploit the OMT extensions for the de�nition of abstract syntax
graphs. The example is taken from the entity relationship model of the Groupie interface
editor. Note how classes and aggregation relationships have been directly computed from the

126 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

respective ENBNF productions. The names of aggregation relationships identify the syntactic
edges that start from an increment. They cannot be derived from the ENBNF but have to
be added in the entity relationship model. The reference relationship models the semantic
relationship between usage and declaration of types. The relationship par list is an ordered
multi-valued relationship and models the multi-valued edge between a parameter list and
its several children. A parameter, in turn, can be an in parameter or an in-out parameter.
This alternative is modelled by the inheritance relationship. Note that both InParameter and
InOutParameter inherit the aggregation relationships name and type from Parameter. Moreover,
we exploit polymorphism, since instances of both subclasses of Parameter can be included in
the multi-valued relationship par list.

Even though the extensions of the OMT entity relationship model are very useful, the notation
is still not fully appropriate for the purpose of modelling abstract syntax graph structures. We
have to customise the notion to provide a tool builder with adequate modelling power. Our
modi�cations are

1. de�nition of application-speci�c static semantic constraints that exclude a number of
speci�cation errors,

2. de�nition of precise static semantics for multiple inheritance,

3. introduction of hierarchical decomposition,

4. introduction of covariant rede�nition of relationships and

5. removal of obsolete language constructs.

Static Semantics: Obviously, an entity relationship model must respect certain static se-
mantic constraints. Class names must be unique in order to be able to uniquely identify
classes by their name. Property names must be unique among the properties that are de�ned
for a class. Aggregation relationships model syntactic edges. If we only consider aggregation
relationships, the entity relationship model de�nes the structure of a syntax tree. Therefore,
aggregation relationships must not start at a multiple end, otherwise the structure de�nition
would enable increments with more than one father to occur. Multi-valued aggregation re-
lationships must be ordered because they embody ENBNF list productions. We can exclude
unordered aggregation relationships because a user of a tool will become confused if the tool
does not keep the order of list elements as they were inserted by the user. The inheritance
relationship must be acyclic, otherwise a class could be a subclass of itself and late binding
might not terminate.

Multiple Inheritance: We have seen that polymorphism is used to model heterogeneous
edges. In the behavioural speci�cation of increment classes, edges will be created or changed
by assigning increments to variables. Polymorphism will be restricted by the inheritance
hierarchy, in that assignments to variables are only correct if the static type of the variable is
a super type of the static type of the expression that is assigned. This polymorphism rule is
in place in most typed object-oriented languages (e.g. Ei�el, C++ or Beta). It contributes to
type safety since it ensures that properties de�ned for the static type of a variable are available
for objects the variable refers to at run-time.

We might now have to use a class in polymorphic assignments with respect to di�erent contexts.
As an example consider types in the Groupie interface editor. A type declaration in an interface
de�nition can be made in terms of either exporting or importing a type. In both ways we

6.3. OMT ENTITY-RELATIONSHIP DIAGRAMS 127

declare a type that can then be used in a parameter list for example. We have to distinguish
the di�erent type increments, because type name increments denoting an imported type must
not occur in an export interface and, vice versa, type name increments denoting an exported
type are not allowed in import lists. For creating the semantic relationship DefinedIn/UsedBy

(c.f. Figure 6.2), however, we should not be aware of the distinction. We, therefore, declare
TypeName and TypeImport as subclasses of class TypeDecl, which, in turn, is the target class for
DefinedIn/UsedBy. Exploiting polymorphism, both kinds of type name increments can then
be used as target increments at run-time.

Imports that occur in import lists in Groupie interface de�nitions denote either type imports
or operation imports. These have to be distinguished because operation imports must not
be used as parameter or result type. For the de�nition of import lists, however, this dis-
tinction is irrelevant. Import lists only de�ne a multi-valued aggregation relationship to an
abstract import class. Import, in turn, has two subclasses, namely TypeImport and OpImport.
TypeImport, therefore, multiply inherits from TypeDecl and Import as shown in Figure 6.3. In-
crements of class TypeImport can thus occur in import lists and also in the semantic relationship
DefinedIn/UsedBy.

Using
Type

Import
 List

imports
Import

OpImport

DefinedIn/
UsedBy

Type
Import

Type
Name

Type
Decl

Figure 6.3: Multiple Inheritance for Polymorphism of di�erent Properties

Multiple inheritance can be implemented with single inheritance. The result, however, will not
be as concise and safe as with multiple inheritance. The di�erent alternatives of implementing
our example with single inheritance are displayed in Figure 6.4. In the �rst alternative, on
the left-hand side of the �gure, the problem is resolved by declaring TypeDecl as a subclass of
Import. Then TypeImport transitively inherits the property of being an import via TypeDecl.
In the second alternative, Import is de�ned as a subclass of TypeDecl and then TypeImport

inherits the property of being a type declaration transitively via Import. The pitfall with these
approaches is that classes inherit properties that they should not have. In the �rst alternative,
exported type names could be inserted into import lists and in the second alternative imported
operations could be used as types. The type system cannot exclude these speci�cation errors,
whereas they cannot occur in the solution with multiple inheritance. In the third alternative,
on the right-hand side, we resolve the problem by not using polymorphism for the semantic
relationship DefinedIn/UsedBy but duplicate it instead. The obvious consequence then is that
later behavioural speci�cations that control the instantiation of these relationships become
more complex. In addition, this approach does not work with ordered relationships, because
we would not be able to retain the order of relationship elements if the relationship is split into
two or more other relationships. In order to make the language safer and at the same time
support concise speci�cations, we support multiple inheritance in entity relationship models
as OMT does.

The introduction of multiple inheritance is not as simple as suggested above. Ambiguities
might arise in a subclass due to name clashes in di�erent super classes. An un-resolvable

128 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

Import
 List

imports

Import

OpImport

DefinedIn/
UsedBy

Type
Import

Type
Name

Type
Decl

Using
Type Import

 List

imports

OpImport

DefinedIn/
UsedBy

Type
Import

Type
Name

Using
Type

Type
Decl

Import
 List

Import

OpImport

DefinedIn/
UsedBy

Type
Import

Type
Name

Using
Type

imports

Import

Figure 6.4: Implementation with Single Inheritance

ambiguity arises if a class D inherits from two (or more) classes B and C while both classes
de�ne a property a. If a is now applied to an instance of D, an ambiguity arises as to whether
a from B or C is to be used. This situation is referred to as incorrect multiple inheritance.
Rumbaugh et. al. consider this problem as an implementation detail: \Conicts among
parallel de�nitions create ambiguities that must be resolved in implementations" [RBP+91].
We contradict to Rumbaugh and consider it as a design problem. As we shall see, resolving
ambiguities might require changes to the class hierarchy which must be reected in an entity
relationship model. We, therefore, de�ne static semantic constraints for the entity relationship
model that highlight ambiguous declarations.

There are several options for resolving ambiguities. If the properties denote distinct concepts
that both have to be visible in the subclass, the tool builder should change the property name
in either B or C in order to reect the di�erence. Another option to resolve the ambiguity is by
rede�ning a in subclass D. This rede�nition can then choose the property to take. This in fact
hides the other property. If the two properties really denote the same concept that by chance
is de�ned twice, the duplicate de�nition of the property should be removed. Therefore, a new
class A should be introduced, which then de�nes a. The de�nition of a is removed from B as
well as C and both classes are declared as subclasses of A. Class D then still inherits property
a twice (via B and C). At this time, however, the ambiguity can be resolved automatically
because A is known as the origin of the property de�nition. This situation is also known as
repeated inheritance.

Another option for dealing with these multiple inheritance problems, would have been to pro-
vide explicit language constructs for renaming multiply de�ned entities in the subclass where
the conict appears. This approach is chosen in Ei�el [Mey92] and in the schema de�nition
language of the O2 ODBS [LR89]. O2 even performs automatic renaming. Renaming proper-
ties in subclasses complicates both the understanding of a speci�cation and the speci�cation
language de�nition. We do not consider the overhead to be justi�ed here. Explicit renaming
of subclass properties is only required when super classes cannot be changed. This is the case
for reusable classes such as the ones that we suggested. Those class libraries will, however,
not be very large. The library of prede�ned classes that we suggest only consists of twenty
classes. Tool builder can, therefore, carefully design class libraries in order to avoid potential
name clashes upfront.

6.3. OMT ENTITY-RELATIONSHIP DIAGRAMS 129

Hierarchical decomposition: Entity relationship models that are used to model the struc-
ture of abstract syntax graphs in the way discussed above become reasonably complex. For
each ENBNF production, the entity relationship model contains a class with as many outgoing
aggregation relationships as there are symbols on the right-hand side of the respective produc-
tion. The number of relationships may decrease through the introduction of abstract classes
that pass on relationships to multiple subclasses. This, however, does not reduce the complex-
ity signi�cantly. The total number of classes will even increase. For languages whose syntax
de�nitions require a signi�cant number of productions, the entity relationship model will be-
come too complex to be understandable. The syntax for C++ class de�nitions, for instance,
contains some 80 productions and the corresponding model can hardly be understood. Struc-
turing mechanisms are required that allow a tool builder to hide the fragments of an entity
relationship model de�ning the structure of fairly independent subgraphs. These fragments
should then be de�ned on a lower level of abstraction, within some re�nement. Rumbaugh
et. al. suggest modules as a structuring facility for their model. Modules, however, do not
allow for hierarchical decomposition but rather coexist loosely. Therefore, they do not support
di�erent levels of abstraction, and understanding a set of modules is not signi�cantly easier
than understanding the overall model. In addition, consistency constraints that exist between
di�erent modules are not de�ned in OMT at all. We, therefore, introduce subsystems4 as a
means of hierarchical decomposition and perform the discussion about consistency constraints
that Rumbaugh et. al. omit. The overall entity relationship model of a syntax graph will then
be structured into a hierarchy of several entity relationship diagrams.

A subsystem is represented by a rectangle with an underlying shadow in an upper-level entity
relationship diagram. The subsystem is then re�ned by another entity relationship diagram
at a lower level. In the higher-level diagram, the subsystem may have aggregation, reference
and inheritance relationships with classes and other subsystems. These relationships at the
upper-level impose design obligations on the re�ning diagram. These obligations ensure that
the diagrams at the di�erent levels of abstraction are properly interconnected and that the
semantics of the hierarchical diagram can be de�ned by an equivalent at diagram. The basic
concept for de�ning these obligations is the concept of a port. Ports have been successfully
used to de�ne hierarchical Petri Nets [Feh93]. What we de�ne here is the adaption of the
concept to entity relationship diagrams. Ports always represent classes from other diagrams
and are, therefore, displayed in the same way as classes except that their colour is grey.

Each class that is connected to a subsystem at the upper level is included as a port in the
diagram that re�nes the subsystem. The relationship that connects the class and the sub-
system then has to be redirected in the re�nement from the port to one or more classes or a
nested subsystem that is declared in the re�nement. For subsystems that are nested within
a re�nement and have ports connected to them, those ports have to appear again as ports in
the re�nement of the nested subsystem. The relationship then has to be redirected within the
nested subsystem. Thus the way in which classes de�ned in nested subsystems are connected
to classes de�ned in higher-level diagrams is well-de�ned.

As mentioned above, we also want to support relationships between subsystems. If we did not
support them the classes that interconnect subsystems would have to be declared in the upper
level diagram and could not be hidden within re�nements. Relationships between subsystems,
however, have to be re�ned in a di�erent way from relationships between classes and subsys-
tems. A relationship between two subsystems A and B shall denote that there is at least one

4We have chosen a di�erent term, as in OMT, for the structuring concept in order to reect the precise
de�nition also in the notion.

130 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

class in the re�nement of A that has this relationship with at least one class in the re�nement
of B. To ensure this, we require that the re�nement of A includes at least one port that is
de�ned as a class in the re�nement of B. Vice versa, the re�nement of B must include at least
one port that represents a class of the re�nement of A. The port in the re�nement of A which
represents a class from the re�nement of B must then be connected to some class or subsystem
declared in the re�nement of A with the relationship between A and B. If it is connected to a
subsystem, then the port must again be included as a port in the re�nement of the subsystem.
This is to be repeated until the relationship �nally connects the port with a class. The same
constraints must hold for the ports representing classes from A included in the re�nement of
B. In that way it is ensured that subsystems are never used as ports. Let us now consider an
example.

par_list

ModName

OpName

Comment

Operation
List

Import
Interface

Parameter
List

ImportList ImpModule

type

op_list name

comment

result_type

Param
List

imp import
_lists

from
Module

imports

Identifier

type

name

Using
Type

Types

Operations

Imports

Commentcomment

Modules

Parameters

ImpFrom/ExpTo

ImpFrom/ExpTo

DeclaredIn/UsedBy

ImpFrom/ExpTo

ImpFrom/ExpTo

opl

tdl

name

Figure 6.5: Entity/Relationship View of Groupie Interface Editor

The top level diagram of the entity relationship model of the Groupie interface editor is dis-
played in Figure 6.5. Subsystem Modules de�nes the classes that inherit from class Module and
de�ne the various Groupie module types. Operations contains the classes that de�ne opera-
tions. Imports de�nes operation and type imports. Parameters contains the classes that re�ne
the di�erent kinds of parameters that are available in the Groupie interface language. Note
that Modules has relationships with several classes and the subsystem Types. The re�nement
of Modules and these relationships are displayed in Figure 6.6.

comment

Module

 ADT
Module

 ADO
Module TCModuleFModule TypeName

 Listtdl
tdl

name

imp
imp
imp

ModName

Operation
List

Import
Interface

ImportList

Comment

TypeNametype

ImpFrom/ExpTo

opl

opl
opl

DefinedNames

Figure 6.6: Re�nement of Subsystem Modules given in Figure 6.5

6.3. OMT ENTITY-RELATIONSHIP DIAGRAMS 131

The classes that were connected to subsystem Modules appear in the re�nement as ports. In
addition, port TypeName, which is de�ned in subsystem Types appears as a port in order to
meet the constraints that we had de�ned for relationships between subsystems. Vice versa,
classes TypeNameList and ADTModule will appear as ports in the re�nement of subsystem Types.
The diagram then de�nes how the various relationships that were de�ned between subsystem
Modules and various classes, are re�ned by relationships between classes of the re�nement and
ports. The diagram de�nes, for instance, that any kind of module has a name and a comment
as children. Therefore, relationships comment and name are inherited by all module classes.
Moreover, any module inherits the property that it is the target of the semantic relationship
ImpFrom/ExpTo from Module. A type collection module has no import interface, but only a
further type de�nition list that is an ordered list of type names. All other module classes have
an import interface and an operation list. ADTModule additionally has a type.

We note that the de�nition of subsystems and ports in our entity relationship model is con-
siderably simpler than the original one for Petri Nets. One reason for that is that Petri Nets
are bipartite graphs and the notion of re�nement must respect this. A further reason is the
formal de�nition of the dynamic semantics of Petri Nets. The semantic de�nition has to be
extended due to the de�nition of subsystems. The fact that we do not need to de�ne any dy-
namic semantics for our entity relationship model, since we only use them to de�ne structural
concerns of abstract syntax graphs, is a further reason why our notion of subsystem is so much
simpler than the one in Petri Nets.

The semantics of a hierarchical entity relationship diagram is then de�ned in terms of a map-
ping to an equivalent at diagram. We refer to this mapping as attening. In order to atten
a hierarchical diagram, subsystems in the upper-level are replaced by their re�nements. The
relationships with the replaced subsystem are redirected, as determined by the relationships
of the ports in the re�ning diagram. This substitution is repeated until all subsystems have
disappeared.

Covariant rede�nition of relationships: During the discussion of multiple inheritance,
we identi�ed the rede�nition of properties as a means of dealing with name clashes. More-
over, property rede�nition can be extremely useful for rede�ning properties in a subclass even
though there is no name clash. Since OMT does not include relationship rede�nition, we
de�ne it here. As a rationale consider an abstract class IncrementList that de�nes the com-
mon properties of arbitrary lists of increments. It will then de�ne an ordered multi-valued
aggregation relationship il with class Increment. The behavioural speci�cation of the class
will then de�ne, for instance, the user commands that are required for arbitrary increment
lists. In order to inherit these commands in some other increment class, say OperationList, we
will have to declare the other class as a subclass of IncrementList. Then OperationList also
inherits the aggregation relationship il whose target can be instances of arbitrary subclasses
of Increment. To restrict the targets to being operations of some sort, we rede�ne the target
class of il to become Operation. This restricts polymorphism in the required way.

In fact, for reasons of type safety we cannot allow arbitrary rede�nitions but only specialisa-
tions. Rede�nitions, therefore, have to be covariant [Car85], i.e. the rede�nition of relation-
ships is only allowed to subclasses of the original class. We refer to this condition as covariant
rede�nition rule in the following paragraphs. As an example of what will happen if we allow
rede�nitions of any kind, consider Figure 6.7.

132 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

Module
export

Export Operation

TCModule
export

TypeList
type_list

TypeName

op_list

Figure 6.7: Unsafe Property Rede�nition

The rede�nition of aggregation relationship export in class TCModule is unsafe for the following
reason. In a behavioural speci�cation we could assign an instance of TCModule to a variable e

whose static type is Module in order to instantiate a relationship, for instance. The traversal
along relationships export and op list would be valid from a static point of view. The last
step of this traversal, however, is invalid at run-time because the traversal from e over export
leads to a TypeList increment, which does not have an outgoing relationship op list. With
the covariant rede�nition rule in place, we can detect this speci�cation error.

A further problem can arise from the combination of relationship rede�nition and multiple
inheritance. Suppose there are two super classes B and C of some class D. Assume further that
B and C have a common super class A. D repeatedly inherits the relationships de�ned in A. If
one of these relationships is rede�ned in B or C, or even in both classes, then we again have an
ambiguity. The target class of the relationship in D is ambiguous. We refer to this situation as
incorrect repeated inheritance. It has to be resolved by additionally rede�ning the respective
relationship in class D.

Unrequired Language Constructs: OMT de�nes a number of additional concepts be-
yond the language constructs discussed above. OMT provides, for instance, the means to
de�ne relationship attributes and the set of operations that are exported from a class. We do
not use any of these additional constructs. Relationship attributes are not required, because
relationships in our case connect classes that represent nodes in a syntax graph and are thus
of very �ne granularity. Attributes are, therefore, always attached to classes rather than rela-
tionships. We shall see later that this will signi�cantly reduce the complexity of behavioural
speci�cations since we need not consider relationships as �rst class objects. For relationships
with attributes, we would have to de�ne additional behavioural speci�cation components for
each relationship. We do not de�ne operations in the entity relationship model, because it is
to provide an overview of the syntax graph structure while operations already contribute to
the behavioural speci�cation. In addition, attaching operations to classes would again signi�-
cantly increase the complexity of the diagrams. Operations will be de�ned in the behavioural
de�nition of classes instead.

Summary: We have adapted OMT entity relationship diagrams so that they are particularly
suitable for the de�nition of these abstract syntax graph structures. We have increased the
modelling power of OMT diagrams by de�ning multiple inheritance, hierarchical decomposition
and covariant rede�nition precisely and have indicated why other OMT concepts are not
required. In short, the entity relationship model now de�nes the following application speci�c
static semantic constraints, which will enable a number of speci�cation errors to be detected:

6.4. CLASS INTERFACES 133

ER1: Class names are unique within all diagrams that belong to the entity relationship model.

ER2: Property names are unique among the set of properties de�ned for a class.

ER3: Aggregation relationships always start at a one-end, i.e. a class cannot be a component
of more than one other class.

ER4: Multi-valued aggregation relationships must be ordered.

ER5: The inheritance hierarchy is acyclic.

ER6: Each subsystem is re�ned by one, and only one, diagram.

ER7: Each class that has a relationship with a subsystem is given as a port in the diagram
that re�nes the subsystem.

ER8: For each subsystem that has a relationship with another subsystem, there are classes
of the re�nement that are depicted as ports in the re�nement of the other subsystem.

ER9: For each relationship of a subsystem, the re�nement contains at least one relationship
of the same name, direction and cardinality between a port and a class or subsystem.

ER10: Name clashes between multiple super classes are resolved by rede�nition or by explicit
renaming in the super classes.

ER11: Rede�nition of relationships is covariant.

ER12: Incorrect repeated inheritance is resolved by rede�nition in the subclass that inherits
repeatedly.

We are now in a position to use ENBNFs to de�ne the abstract and concrete syntax of the
language that must be supported by a tool. An ENBNF de�nition can then be translated
into an abstract syntax tree de�nition in terms of an entity relationship diagram. Additional
attributes and semantic relationships can be added to the entity relationship model, which
then de�ne the structure of the underlying abstract syntax graph. We do not yet have any
speci�cation primitives that could be used for de�ning the behaviour of the tool. From the
requirements list discussed in Section 6.1, we cannot yet de�ne unparsing schemes, static
semantics, inter-document consistency and tool commands. Primitives for the speci�cation of
behavioural concerns of classes will be de�ned in the next two sections. For each class identi�ed
in the entity relationship model, we de�ne its external and internal behaviour separately. The
external behaviour de�nition includes properties that other classes can use for their internal
de�nition. We, therefore, call the external de�nition class interface. The internal behaviour
de�nition is then referred to as class speci�cation.

6.4 Class Interfaces

Due to the heterogeneity of the di�erent behavioural concerns, it will hardly be possible to �nd
a unique formalism that will be appropriate for their speci�cation. Instead, we will separate the
di�erent concerns and o�er the most appropriate formalism for each of them. The class inter-
faces and speci�cations will, therefore, be structured into di�erent sections that o�er di�erent
paradigms to specify unparsing schemes, static semantics, inter-document consistency and tool
commands appropriately. We integrate these di�erent formalisms into a multi-paradigm lan-
guage and de�ne, again, the static semantics so that a number of speci�cation errors between
di�erent sections can be detected.

134 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

In Section 6.1 we required from a speci�cation language that it should enforce structuring
of the overall speci�cation into manageable components. The language should then support
reuse of speci�cation components. Object-oriented languages are known to support both
reasonably. We, therefore, continue along these lines and consider the increment classes that
were identi�ed in the entity relationship model as the components of a tool speci�cation.
The behavioural de�nition of the overall tool will, therefore, be structured into the behaviour
de�nitions of increment classes. In the same way as subclasses inherit structural de�nitions,
such as attributes and relationships, they will inherit behavioural de�nitions from their super
classes. As we will see, this allows reuse and greatly reduces the overall e�ort for specifying a
tool.

Note that structuring a tool speci�cation is simpli�ed due to the fact that we do not have to
consider relationship attributes in our application domain. If relationships had attributes that
model particular relationship states, the behavioural de�nition would also have to determine
transitions between these states. Then we would not only have to provide structuring facilities
for increment classes, but also for the behavioural speci�cation of relationships. Since rela-
tionships have no state apart from their existence, we can consider relationships as properties
of the classes that have the relationship. Thus, the remaining concept for structuring a tool
speci�cation is the increment class.

The increment classes that are de�ned in the entity relationship model play di�erent roles
in the behavioural speci�cation. If we ask a tool builder to make these roles explicit, we
will be able to detect a number of speci�cation errors. Abstract increment classes specify
common properties of their subclasses. In a behavioural speci�cation, however, a tool builder
must not create any instances of an abstract class, because the class does not model nodes
of the abstract syntax graphs. Classes that de�ne leaves of the abstract syntax tree must
not have commands to expand child increments, whereas classes for inner syntax tree nodes
require these commands. Classes for inner nodes must specify the unparsing scheme that
de�nes the textual representation of their instances. In order to be able to detect speci�cation
errors that would violate the above and further constraints, we distinguish di�erent kinds of
increment classes, namely abstract classes, non-terminal classes and terminal classes. We call
instances of non-terminal classes non-terminal increments and instances of terminal classes
terminal increments. We refer to them as increments, if their position in the syntax tree is not
important. Besides increment classes, we additionally introduce non-syntactic classes that will
be used for the declaration of non-atomic attribute types, such as error lists or symbol tables.
Instances of these classes are referred to as attributes. If the distinction between attributes
and increments is not important, we will denote instances of classes as objects.

The behavioural de�nitions in class interfaces and speci�cations must rely on the structural
speci�cation de�ned in the entity relationship model and re�ne it further. Semantic relation-
ships and attributes that have been de�ned in the entity relationship model, for instance,
will be used in the de�nition of static semantics and inter-document consistency constraints.
Obviously, the consistency between structural de�nitions in the entity relationship model and
behavioural de�nitions in the increment class de�nitions must be de�ned and checked. The
question arises whether de�nitions from the entity relationship model should be included in
class de�nitions or not. If we include them, the abstract syntax graph structure will be partly
redundantly speci�ed. If we do not include them, the structural concerns of classes are not
fully determined. We might recover from that by extending the entity relationship notation to
de�ne additionally, for instance, attribute types, non-syntactic classes and the distinction be-
tween increment classes. Then, however, diagrams are overloaded with de�nitions that are not

6.4. CLASS INTERFACES 135

necessary to understand the syntax graph structure. In addition, the compilers for class inter-
faces and speci�cations then have to take a graphical diagram as input to check for consistency
between declaration of syntax graph structures and their use in behavioural de�nitions. As an
immediate consequence, we are no longer able to use standard techniques for the generation
of an increment interface class compiler, but have to hand-code a compiler that understands
graphical entity relationship diagrams. We, therefore, take the �rst alternative and include
the de�nition of syntax graph structures into the increment class de�nition. As we will see
later, this is not a real disadvantage, because the structural de�nitions in the classes are in-
crementally generated by the entity relationship editor and their consistency is checked by the
tools contained in the GENESIS environment.

In the next two sections, we will restrict ourselves to presenting the main rationales for the
de�nition of various concepts for the behavioural de�nition of increment classes. We are going
to demonstrate their appropriateness with a number of examples. We will discuss alternative
solutions and why the introduced concepts are su�cient. We will explain the semantics of
the concepts informally. Here we are not going to de�ne the concepts formally. The syntax
and static semantics of the di�erent concepts have been formally de�ned to provide a basis for
detailed discussions about the concepts and as a correctness speci�cation for the class interface
and speci�cation compilers. This formal de�nition is included in Appendix A.

6.4.1 Inheritance

The inheritance section determines the super classes of a class. It is included in the class
interface de�nition because all the super classes contribute to the export of a class. The
inheritance sections below are examples taken from the Groupie interface de�nition editor
speci�cation. The examples also display how the di�erent kinds of classes are syntactically
distinguished.

ABSTRACT INCREMENT INTERFACE Module NONTERMINAL INCREMENT INTERFACE ADTModule

INHERIT Document, ScopingBlock; INHERIT Module, Commentable;

... ...

END ABSTRACT INCREMENT INTERFACE Module. END NONTERMINAL INCREMENT INTERFACE ADTModule.

TERMINAL INCREMENT INTERFACE Comment INTERFACE SymbolTable

INHERIT TerminalIncrement; INHERIT Attribute;

... ...

END TERMINAL INCREMENT INTERFACE Comment. END INTERFACE SymbolTable.

The classes identi�ed in the inheritance section must be de�ned in another class interface. The
inheritance section is mandatory, like in Smalltalk. Therefore, at least one of the prede�ned
increment class speci�cations, whose interfaces are discussed and de�ned in Appendix B, must
be de�ned in the inheritance section. The inheritance hierarchies of increment and non-
syntactic classes must be disjoint, i.e. an increment class cannot inherit from a non-syntactic
class and vice versa, otherwise tool builders could mix up the concepts of attributes and
increments. The prede�ned library includes a root increment and a root non-syntactic class.
Non-terminal and terminal classes must be leaves in the inheritance hierarchy. In that way, we
will be able to de�ne concepts for non-terminal and terminal classes, that cannot reasonably
be inherited safely.

It has often been discussed that there are di�erent kinds of use relationships in object-oriented
languages [Mey88]. The inheritance relationship imposes a very strong use relationship be-

136 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

tween classes. When de�ning a class as a subclass of a super class, all de�nitions of the super
class are used. The export of the super class even fully contributes to the export of the sub-
class. Therefore, the inheritance relationship must be used very carefully. In particular, it
should never be used when there is an export of a super class that should not become an
export of the inheriting class.

6.4.2 Import Interface

The import/export relationship (sometimes also called client/supplier relationship) imposes a
much weaker dependency between the classes involved. It should be the preferred means of
using other classes. This relationship can be considered as a contract between an exporter
and an importer. Each class has a subset of properties that it o�ers as export. The contract
becomes e�ective if another class, as an importer, orders some of the o�ers of the exporter.
The two concerns of o�er and order are in fact neglected by most object-oriented languages.
They only consider the o�er. In fact one cannot easily decide, in these languages, on which
other classes a class depends. This is buried within the code of the class. It might be inferable
by some tool but the designer is not forced to be aware of the dependencies. In trading, any
importer would keep a list of the suppliers that exported goods to him or her. He or she
would not want to go into his or her stores and look at the stamps of the goods to see where
they come from. Being aware of dependencies is most important for him or her if he or she
is to remain in business. For the same reason we support a tool builder in being aware of the
dependencies of classes and introduce import interfaces. For the tool builder this awareness
is important in order to be able to decrease the number of dependencies to achieve narrow
interfaces. In the class interface, the import section denotes classes that are used in the export
interface. Any other class importing from the class might have to import a subset of the
imported classes in order to use the class' exports e�ectively. The import section of the class
interface, therefore, plays a similar role to that played by the common parameter section in
the �-language [CFGGR91].

The import section in the interface of class ADTModule is depicted below. It imports classes
TypeName, Operation and ImportInterface in order to declare its abstract syntax children. A
class that uses ADTModule then has to import a class, such as TypeName, in order to traverse to
the type name increment that represents the exported type of an ADT module.

NONTERMINAL INCREMENT INTERFACE ADTModule;

...

IMPORT INTERFACE

IMPORT TypeName;

IMPORT Operation;

IMPORT ImportInterface;

...

END IMPORT INTERFACE;

...

Obviously, the classes identi�ed in the import interface must exist, i.e. be de�ned in another
class interface. Together with the inheritance section, the import interface then de�nes the set
of classes that are declared in the class interface. These are the class itself, all classes that are
in the transitive closure of the inheritance relationship and the classes that are declared in the
import interface. The set of declared classes then induces the set of declared types that may
be used in the interface. Classes are distinct from types because we have to support atomic

6.4. CLASS INTERFACES 137

types and we must be able to construct multi-valued types by applying type constructors to
classes in order to represent multi-valued relationships. The atomic types that are known
without any further declaration are BOOLEAN, STRING, INTEGER, CHAR and ERROR TYPE. The latter
type represents error descriptors that identify error messages for static semantic errors. Type
constructors are applied to a base type, which can be any atomic type or any declared class.
The available constructors are LIST, SET, BAG and DICTIONARY. Lists are ordered collections of
elements. Sets are collections of unique elements. Bags may include duplicate elements and
dictionaries are indexed collections that provide e�cient associative access via a key of type
STRING. Note that we do not support nested application of type constructors. These nested
types are not required in abstract syntax graph structures because inner values of these types
would not have an identity of their own and, therefore, would not correspond to syntax graph
nodes. In addition, they could not be mapped to any concept that is available in the entity
relationship model.

6.4.3 Abstract Syntax

Aggregation relationships of the entity relationship model are reected in class interfaces within
an abstract syntax section. The abstract syntax section is available for abstract and non-
terminal increment classes. It is not de�ned for terminal increment classes, because these do
not have children by de�nition. If a child is de�ned in an abstract class it is inherited by
all subclasses. Children are speci�ed in the abstract syntax section with the name that was
attached to the corresponding aggregation relationship in the entity relationship model. If the
aggregation relationship is multi-valued, the type of the abstract syntax child is constructed
by the LIST type constructor. The type (or base type respectively) of the abstract syntax child
must be the target class. Below there are several examples of abstract syntax sections taken
from the Groupie interface de�nition tool.

ABSTRACT INCREMENT INTERFACE Module; ABSTRACT INCREMENT INTERFACE Commentable;

... ...

ABSTRACT SYNTAX ABSTRACT SYNTAX

name:ModName; com:Comment;

END ABSTRACT SYNTAX; END ABSTRACT SYNTAX;

... ...

NONTERMINAL INCREMENT INTERFACE ADTModule; NONTERMINAL INCREMENT INTERFACE OperationList;

INHERIT Module, Commentable;

... ...

ABSTRACT SYNTAX ABSTRACT SYNTAX

typ:TypeName; il:LIST OF Operation;

op_list:OperationList; END ABSTRACT SYNTAX;

imp:ImportInterface; ...

END ABSTRACT SYNTAX;

...

An ADT module exports a type that is an instance of class TypeName. Moreover, it contains
a list of operations that is an increment of class OperationList. OperationList, in turn, has
an increment whose type is constructed using the type constructor LIST applied to base type
Operation. The class Operation is an abstract increment class. Due to polymorphism, instances
of subclasses such as Procedure or Function may be included in the operation list. Finally, an
ADT module has an import interface, which is an instance of the nonterminal increment class
ImportInterface. The overall abstract syntax components of class ADTModule are determined

138 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

by computing the union of the abstract syntax components de�ned in the class itself with those
de�ned in the super classes. Therefore, the abstract syntax components of class ADTModule also
include a component of class Comment, since ADTModule inherits this component from its super
class Commentable and a component of class ModName inherited from class Module.

The distinction between di�erent kinds of classes enables us to exclude a number of potential
speci�cation errors. It does not make sense, for instance, to have a terminal increment class
that inherits from an abstract class, which, in turn, de�nes abstract syntax children. In that
case the terminal class would inherit these children and no longer be terminal. The static
semantic de�nitions for abstract syntax sections, therefore, exclude these situations. The type
of all abstract syntax children must have been declared in the class. If the type is multi-valued,
it must have been constructed with the LIST type constructor for the same reason as multi-
valued aggregation relationships in the entity relationship model must be ordered. In addition,
it is unreasonable to have attributes or atomic types as syntax children. The static semantic
de�nition, therefore, requires that types or base types of abstract syntax children have to be
increment classes. Without the domain speci�c distinction between di�erent kinds of classes,
such as if we used an object-oriented programming language, we would not have been able to
exclude these unreasonable abstract syntax de�nitions.

6.4.4 Unparsing Schemes

As a �rst concept for the behavioural de�nition of a tool we now introduce unparsing schemes.
They de�ne mappings for input and output between abstract syntax graphs and the external
representation. Unparsing schemes are de�ned for non-terminal increment classes only. They
cannot be de�ned for abstract increment classes. In that case abstract syntax children that
might be added in subclasses would not be reected. Neither are unparsing schemes required
for terminal increment classes. For terminal increments the layout computation only needs to
output the terminal increment's lexical value. This is the character string that was matched
with the regular expression de�ning the lexical syntax of the terminal increment class, and
this need not be speci�ed any further.

The unparsing scheme consists of a list of unparsing items delimited by commas. An unparsing
item can either be a keyword, a white space, a child increment reference or a formatting item.
Keywords are given in quotes and are required during parsing and output during unparsing.
White spaces are de�ned as WS. During parsing any character string that consists of at least
one blank, tabulator or new line matches a white space. During unparsing, a single blank is
inserted as white space. References to child increments are given by the name of the child as
de�ned in the abstract syntax section. Such a reference indicates that a child increment has
to be parsed and unparsed at the speci�ed position. For multi-valued child increments, an
optional delimiter speci�er may de�ne unparsing items that must be input and output between
elements of the list. Formatting items are de�ned in round brackets. They are distinguished
from keywords since they do not contribute to the syntax de�nition and, therefore, can be
neglected during parsing. They are typically used for de�ning indentations. (NL) is a special
formatting item that causes a line break in the output representation.

How the output representation is actually computed is de�ned by the notion of nested boxes.
Each increment has a box. The increment representation is inserted into the increment's box.
This means that all keywords, white spaces and pretty-printing items are output into the
increment's box. In particular, the scope of a new-line is restricted to the increment's box.

6.4. CLASS INTERFACES 139

This means that an implicit indentation is made according to the left margin of the increment's
box. For each child increment a nested box is inserted and the child increment's representation
is inserted into that box. The upper left-corner of an increment's box is determined by the
current insertion point where the child increment is referenced. As an example, consider the
unparsing schemes of ADTModule and OperationList below, taken from the Groupie interface
tool speci�cation.

NONTERMINAL INCREMENT INTERFACE ADTModule; NONTERMINAL INCREMENT INTERFACE OperationList

... ...

UNPARSING SCHEME UNPARSING SCHEME

"DATATYPE",WS,"MODULE",WS,name,";",(NL),(NL), il DELIMITED BY (NL),(NL) END

(" "),com,(NL),(NL), END UNPARSING SCHEME;

(" "),"EXPORT",WS,"INTERFACE",(NL),(NL),

(" "),"TYPE",WS,typ,";",(NL),(NL),

(" "),op_list,(NL),

(" "),imp,(NL),(NL),

"END",WS,"MODULE",WS,name,".",(NL)

END UNPARSING SCHEME;

...

The unparsing scheme of ADTModule de�nes that an abstract data type module de�nition is
introduced by the keywords DATATYPE and MODULE that are delimited by a white space. Then
a nested box is inserted for the representation of the module name. The position of that box
is, in fact, indented 16 blanks from the left margin of the outer-most box. A semicolon is
printed immediately after the module name. Then a blank line is inserted before the module's
comment. The comment is pretty-printed in a nested box that is indented three blanks from
the module's left margin. After that, a blank line is inserted before the export interface is
introduced by the keywords EXPORT and INTERFACE. Again a blank line is inserted and then
the exported type is printed with an indentation of six blanks. Beneath the type, the box for
the module's operation list is inserted. According to the unparsing scheme of OperationList
on the right-hand side, operations are delimited by a blank line in the output representation.
Note that the left margin of the operation list box is six characters from the left margin of the
outer-most box. Then the box for the import interface is inserted with an indentation of three
blanks from the left margin. Again a blank line is inserted. The tail of the interface de�nition
consists of the keywords END and MODULE, the module name and a full stop.

We de�ne again a number of static semantic correctness conditions for unparsing schemes to
be able to draw the tool builder's attention to speci�cation errors. Any reference included in
the item list must denote the name of an abstract syntax child that is a direct or inherited
abstract syntax child. Vice versa all inherited abstract syntax children must occur at least
once in the unparsing scheme, otherwise they would be useless. References to child increments
that are followed by a delimiter declaration must denote multi-valued child increments.

We have de�ned a declarative means to specify how tools compute the external representa-
tion of documents. It is de�ned on a type level of abstraction in the unparsing schemes of
non-terminal increment classes. Furthermore, we have de�ned a number of static semantic
constraints that restrict the use of unparsing schemes in such a way that many speci�cation
errors are excluded. We have not and will not de�ne a means to de�ne di�erent unparsing
strategies for the same document type. This would be a straight-forward extension, we would
only have to name the unparsing schemes and afterwards let the tool user decide on which
particular strategy to use. We have not included multiple unparsing schemes, since the lack of
this feature does not a�ect the overall proof that tools can be e�ectively constructed on top
of object database systems.

140 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

6.4.5 Lexical Syntax

The lexical syntax has been de�ned by the regular expression productions in the ENBNF. It is
again included in the interfaces of terminal increment classes in order relieve the class compilers
from also considering the ENBNF de�nition. Consistency between the lexical syntax de�nition
in the terminal increment class interfaces and the corresponding ENBNF will be controlled
and maintained by the ENBNF and class interface editors of the GENESIS environment.

The lexical syntax of terminal classes is speci�ed as a regular expression in the mandatory
regular expression section of a terminal increment class interface. As terminal increment classes
in GTSL cannot have subclasses, the lexical syntax de�nition cannot be inherited. As we aim at
specialisation of all inherited properties, inheritance of lexical syntax de�nition would, in fact,
not be very reasonable. In that case we would have to de�ne a concept for the specialisation
of regular expressions, which is hardly ever possible. The syntax for these regular expression
sections facilitates de�nition of extended regular expressions. They are identical with those
used in lex [JPAR68]. As examples consider the following regular expression de�nitions for
identi�ers and comments of the Groupie language.

TERMINAL INCREMENT INTERFACE Identifier;

...

REGULAR EXPRESSION

[A-Za-z][A-Za-z0-9$_]*

END REGULAR EXPRESSION;

...

TERMINAL INCREMENT INTERFACE Comment;

...

REGULAR EXPRESSION

/"*"([^*/]|[^*]"/"|"*"[^/])*"*"/

END REGULAR EXPRESSION;

...

According to the fairly simple regular expression on the left-hand side, identi�ers consist of at
least one letter. Then an arbitrary long sequence of letters, numbers and the special symbols
$ and may follow. The de�nition for comments is more complicated. It uses alternatives
that are separated by |. The operator ^ matches any character except the character that
immediately follows. The regular expression on the right-hand side indicates that a comment
starts with /* and ends with */. Between these, a sequence of arbitrary characters may be
included, provided that this sequence does not contain a subsequence that would end the
comment.

The lexical values of terminal increments are important for static semantics and inter-document
consistency checks. The lexical values, such as a module name or a type import, are the units
of terminal increments that carry semantics. Therefore, we store the character string that is
matched with a regular expression of a terminal increment in an implicit attribute value. This
attribute can then be used during static semantics and inter document consistency de�nitions
to retrieve the lexical value of terminal increments.

6.4.6 Attributes

Globally visible attributes are de�ned in the entity relationship model. Beyond these, we may
have to de�ne attributes that are only locally visible, i.e. that are not exported and, therefore,
cannot be accessed from other increment classes. In addition, the entity relationship model
does not yet declare attribute types. This is because attribute types are not important in
the early stage of a tool development. To prevent unnecessary complexity, our notion of
entity relationship diagrams does not include types. When it comes to accessing attributes

6.4. CLASS INTERFACES 141

in behavioural de�nitions, however, the consistency of the access must be checked in order to
exclude speci�cation errors. We need the notion of types for that purpose. The class interface
de�nition, therefore, includes an attribute section in order to re�ne attribute de�nitions from
the entity relationship model.

An attribute de�nition declares a name and a type of an attribute. All types that have been
declared by inheritance or import within the class de�nition interface may be used here. In that
way, we provide a rich variety of language constructs for de�ning the structure of attributes.
Non-syntactic classes can also be used to impose a particular behaviour on attribute types.
We do not address non-syntactic classes any further here. Refer to the appendix for a detailed
discussion. In general non-syntactic classes provide the expressive power of an object-oriented
language including multiple inheritance, construction of types and encapsulation with methods.
As an example, consider the following example from the Groupie interface editor de�nition.

ABSTRACT INCREMENT INTERFACE Module;

...

ATTRIBUTES

DefinedNames:SymbolTable;

END ATTRIBUTES;

...

This attribute section de�nes an attribute DefinedNames. Its type is the non-syntactic class
SymbolTable. A SymbolTable is an association between character strings and increments. As
soon as a new identi�er is declared within a module, a static semantic constraint de�nition will
establish an association between the value of the identi�er and the increment that declares the
identi�er. This association is then further used during semantic analysis and inter-document
consistency checks.

Attributes are inherited from super classes. Attribute types can be rede�ned by including
a declaration, with the inherited attribute name into the attribute section of the subclass.
Rede�nition of attributes is required for the same reason as for relationships. In the above
example, the symbol table is inherited by the di�erent module types. In type collection
modules, however, only type names are included in the symbol table. We might want to
exploit this knowledge and rede�ne DefinedNames to become a TypeTable. The rede�nition
also has to be covariant to exclude type errors. In the example this means that TypeTable has
to be a subclass of SymbolTable and then all operations that are available for symbol tables
are available on the type table, too.

For the notion of covariant rede�nition of attributes, however, we need to de�ne the notion of
subtypes. Therefore, we need to distinguish single- and multi-valued types. In the single-valued
case, atomic types do not have any subtypes. If the type is a class, all subclasses are subtypes
of the type. In the multi-valued case, those types are subtypes of a given type t that are
constructed with the same type constructor applied to a subtype of the base type of t. Then
rede�nitions are safe for the same reason as for relationships. Note that the type system is
considerably simpli�ed compared to the type system of O2C due to the fact that we were able
to omit nested types. In particular, the notion of subtypes in O2C is much more complicated
because several levels of nesting have to be considered rather than one level in our case.

A tool builder can prevent other importing classes from accessing an attribute by restricting
its visibility and declaring it as hidden. This contributes to the software engineering princi-
ple of information hiding. To do so the attribute declaration is preceeded by the keyword
HIDDEN. Then the attribute cannot be imported from other classes. Note that hidden at-

142 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

tributes are also declared in subclasses. We do not want to support selective inheritance,
because this is inherently unsafe. Assume, for instance, that class Increment declares an at-
tribute HIDDEN Errors:SET OF ERROR TYPE as well as operations to add or delete errors from
that set. Some subclass, say ADTModule, inherits the operations. Without inheriting the at-
tribute Errors, the inherited operations would have no attribute to operate on and would have
to raise a run-time error.

The rede�nition of attributes must not change the attribute's visibility. Due to polymorphism
there is no way to decide statically whether such a change in visibility is safe. Consider again
the above example. Suppose now that Errors was exported by Increment. If the visibility
was changed to HIDDEN in subclass ADTModule and an object of ADTModule was assigned to a
property e whose static type is Increment, the attribute access e.Errors would be statically
valid because Increment exports Errors. At run-time, however, the access would be invalid
because the increment e refers to an object of class ADTModule, which hides the attribute. As
we have not found any situation where this unsafe rede�nition would be required, we exclude
it.

The de�nition of attributes may also cause name clashes due to multiple inheritance. Also
incorrect repeated inheritance might occur if the attribute type is rede�ned in one super class
but not in the others. These situations are de�ned in a similar way to relationships and not
considered here further.

6.4.7 Semantic Relationships

We re�ne semantic relationships within increment class de�nitions rather than de�ning a
concept orthogonal to increment classes. Any increment that has an incoming or outgoing
reference relationship in the entity relationship model, will declare a semantic relationship
section. Semantic relationships are speci�ed by pairs of unidirectional links in the semantic
relationship sections of the two increment classes that participate in the relationship5. The
explicit link denotes the direction from the source to the target increment class. The implicit
link denotes the reverse direction. The main rationale for including links in the class interface
de�nition is to de�ne static semantic rules that ensure the safe use of relationships during the
speci�cation of static semantics and inter-document consistency constraints.

Relationships are created and deleted during static semantics and inter-document consistency
checks. Creation of a relationship is speci�ed on a type level of abstraction by assigning an
expression that denotes an increment to an explicit link. Such an assignment �rst deletes
the existing relationship, if any. Then the increment denoted by the expression is assigned
to the explicit link. Finally the implicit link is established by including the source increment
in the set that stores the implicit link. A relationship is deleted by assigning the unde�ned
value NIL to the explicit link of the relationship. Thus creation and deletion of relationships
is only controlled by the target increment class of a relationship or its subclasses. This fur-
ther contributes to the enforcement of structured speci�cations. As an example, consider the
re�nement of relationship ImpFrom/ExpTo between classes TypeImport and TypeName that are
taken from the Groupie interface editor speci�cation.

5The terminology follows the concepts for relationships that have been introduced in the PCTE data
model [GMT87].

6.4. CLASS INTERFACES 143

TERMINAL INCREMENT INTERFACE TypeImport; TERMINAL INCREMENT INTERFACE TypeName;

INHERIT TypeDecl; INHERIT TypeDecl;

SEMANTIC RELATIONSHIPS SEMANTIC RELATIONSHIPS

ImpFrom:TypeName; IMPLICIT ExpTo: SET OF TypeImport.ImpFrom;

END SEMANTIC RELATIONSHIPS; END SEMANTIC RELATIONSHIPS;

... ...

Increment class TypeImport de�nes an explicit link ImpFrom that leads to an increment of class
TypeName. Using that link, a TypeImport increment can refer to the TypeName increment that
it imports. If the relationship does not exist, ImpFrom has the unde�ned value of NIL. In the
behavioural speci�cation of TypeImport we then assume that the corresponding TypeName does
not exist. The relationship is established by assigning an instance of class TypeName to the link.
After that, ImpFrom may be used to navigate to the corresponding TypeName increment. The
implicit link ExpTo in class TypeName contains an implicit reference to the TypeImport increment
as soon as the assignment of an increment to ImpFrom has been made. That link is exploited
for the de�nition of change propagations or a browsing command that visits all increments
that use a particular type.

We exclude again a number of potential speci�cation errors with additional static semantic
constraints. The type of a link must be an increment class. It must not be a non-syntactic
class or an atomic type because relationships between increments and attributes or atomic
values would make no sense. The type of an implicit link must match with the declaration of
an explicit link. This means that the class identi�ed in the type must declare the explicit link
that is de�ned after the dot in the implicit link type. Otherwise the implicit link would not
correspond to an explicit link.

Note that it is unreasonable to de�ne hidden links. The main rationale for de�ning relation-
ships and thus for de�ning links is to use them for navigation purposes. The application of
links for navigation purposes is obviously not con�ned to the class where the link is de�ned.
On the contrary, links are most often used in the behavioural speci�cation of other classes.
Hidden links could never serve this purpose. We, therefore, do not de�ne means for declaring
links as hidden.

6.4.8 Methods

We will require di�erent levels of abstraction during the behavioural speci�cation of those
concerns that we have not yet addressed, namely tool commands, static semantics and inter-
document consistency constraints. At the lowest level of abstraction, there will be accesses
and modi�cations of attributes, abstract syntax children and semantic relationship links. At a
higher level of abstraction several accesses and modi�cations will be structured into operations.
At an even higher level of abstraction, these operations will be used for the de�nition of tool
commands, static semantics and inter-document consistency constraints. At yet a higher level
of abstraction, tool commands and static semantic constraints that have already been de�ned
are reused in subclasses. These di�erent levels of abstraction are required to provide a tool
builder with the exibility that is needed to specify arbitrary tools. We shall, however, help
the tool builder to avoid using the lower levels of abstraction whenever possible.

To enforce well structured tool speci�cations, we de�ne the following visibility rules for proper-
ties. A property is visible in some other class if it is not hidden and has been properly imported
(c.f. Page 147). It may then be used for navigation purposes in path expressions. It will not
be permitted for classes that have imported a property to change the property's value. Only

144 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

those classes can modify a property that have either declared it or inherited it from a super
class. If some other class needs to modify a property, it must use an operation instead. The
visibility rules for properties are, therefore, the same as those de�ned for instance variables in
Smalltalk [Gol84]. Operations are de�ned in terms of methods of a class. The methods de�ned
for an increment class, therefore, provide other increment classes with the only interface for
changing properties and also for performing recursive navigations.

The methods that are available for a class are declared in the method section of the class
interface. This declaration will include the method name, its parameter list and the method's
result type, if any. Methods may be declared as hidden by preceeding the declaration with the
keyword HIDDEN. Hidden methods cannot be used by client classes. They are only used in the
behavioural speci�cations of the class and its subclasses. Similar to attributes, the visibility of
methods cannot be changed in subclasses to avoid unsafe situations. As an example consider
the methods that are de�ned for class Module in the Groupie interface editor speci�cation.

ABSTRACT INCREMENT INTERFACE Module;

...

METHODS

METHOD expand_name(Str:STRING):BOOLEAN;

METHOD change_name(Str:STRING):BOOLEAN;

END METHODS;

...

The �rst method is used to expand the module name increment and check the string that is
passed as parameter for conformance to the regular expression that de�nes the lexical syntax of
module names. The second method changes a module name that has already been expanded.
It might perform additional change propagation to import lists in order to change the imported
module name there as well.

As we have seen in Section 5.9.2.2 (c.f. Page 108), there are a number of methods, such as parse
or unparse, that should be available in arbitrary increment classes. These methods cannot be
inherited because their bodies depend on the increment class and, therefore, really di�er. To
relieve the tool builder from having to de�ne method bodies for the operations identi�ed above,
we introduce the concept of implicit methods. These are those methods that we identi�ed and
their declarations in the method section are preceeded with the keyword IMPLICIT. Their
bodies are not speci�ed by the tool builder, but generated from the declarations that have
been provided in other sections. In that way a tool builder can use these sections at a lower
level of abstraction, e.g. for the de�nition of particular tool commands. The examples of classes
ADTModule and ModName below display how implicit methods are de�ned for non-terminal and
terminal increment classes.

NONTERMINAL INCREMENT INTERFACE ADTModule; TERMINAL INCREMENT INTERFACE ModName;

... ...

METHODS METHODS

IMPLICIT METHOD init(f:Increment); IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand; IMPLICIT METHOD collapse;

IMPLICIT METHOD collapse; IMPLICIT METHOD scan(Str:STRING):BOOLEAN;

IMPLICIT METHOD parse(Str:STRING):ADTModule; IMPLICIT METHOD unparse:STRING;

IMPLICIT METHOD unparse:STRING; END METHODS;

END METHODS; ...

...

The dynamic semantics of these implicit methods can best be explained by using state tran-
sition diagrams. Consider, therefore, Figure 6.8. It displays two state transition diagrams,

6.4. CLASS INTERFACES 145

one for non-terminal and the other for terminal increments. If increments exist they can be
in one of the states expanded or not expanded. Initially, they do not exist. To create an in-
crement, method init is executed, which transfers it into state not expanded. In that state
it can be unparsed and the result will be the class name included in pointed brackets, which
represents a place holder. By method expand a non-terminal increment is transferred into the
state expanded where all its child increments are created but not yet expanded. In addition, it
changes into this state when the method parse is applied and the string is syntactically cor-
rect. In that case, the abstract syntax tree representing the increment is fully expanded. For
terminal increment classes, the equivalent operation is scan. It performs the transition only
if the string conforms to the increment's regular expression. In state expanded, the unparse
method can be applied as well. For a non-terminal increment it will compute a character string
as determined by the unparsing scheme. For terminal increments it will return the result of
the lexical value. Methods parse and scan can also be applied to non-terminal resp. terminal
increments that have already been expanded. In case the string passed as argument is correct,
they remain in the state, otherwise the increment will transit back into the state of a place
holder. Method collapse deletes abstract syntax children of a non-terminal increment or the
lexical value of a terminal increment and, after its execution, the increment will no longer be
expanded.

not expanded expanded

init

parse

expand

unparse unparse

parse

parse

collapse
not expanded expanded

init

unparse unparse

collapse

scan

scan

scan

Non−terminal Increments Terminal Increments

Figure 6.8: Dynamic Semantics of Implicit Methods

Methods will be invoked, in the Smalltalk style, by passing a message to an object. Due to
polymorphism of properties, we will have to support inheritance of methods. If we do not
support this, we end up with unsafeness that cannot be detected statically. Consider as an
example the exported methods of Module. Assume we declare some property e of type Module

that at run-time refers to an instance of class ADTModule. If ADTModule does not inherit the
methods from Module, method invocations like e.expand name will be statically correct, but
have to reveal a run-time error, because expand name is not available for the ADTModule object.
As an additional advantage of method inheritance, the code of method bodies can be reused.
This contributes to our overall goal of simplifying tool de�nitions.

Given that methods are inherited, tool builders should also be able to rede�ne inherited meth-
ods in a subclass. As a consequence, binding of methods to messages can no longer be static,
but has to be dynamic. With method rede�nition, tool builders will then be able, for exam-
ple, to de�ne a change propagation in a subclass, when this propagation is unreasonable in
the general case and, therefore, cannot be de�ned in the super class. Whether or not change
propagation is or is not performed then depends on the class of the object that receives the
message. A tool builder may also want to use more speci�c types as parameter and result
types in order to use properties and methods that have been added in these more speci�c

146 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

types. Therefore, method rede�nition can be covariant, which enables changes to parameter
and result types to occur in the same way as suggested by Cardelli [Car85]. A tool builder may
rede�ne a method with parameter and result types that are subtypes of the respective types
in the original method de�nition. Together with polymorphism, covariant method rede�nition
may cause type errors in rare cases6. As discussed in [CLZ94], type safeness for this prob-
lem is statically undecidable. The paper suggests a technique called type data ow analysis
that will highlight all type errors. Type data ow analysis is a pessimistic approximation and
might detect situations that at run-time do not cause errors. The technique has been used for
languages such as Ei�el and O2C, which support covariant de�nition in the same way as we
have suggested. It can, therefore, easily be adapted to ensure type safety of covariant method
rede�nitions in our increment class de�nitions.

A tool builder might want to de�ne the behavioural de�nition of commands that are common
to a number of classes in a common super class of these classes and then let the subclasses
inherit this de�nition. If the particular modi�cations that have to be carried out during these
commands di�er, the tool builder might exploit late binding in order to de�ne the modi�cations
in methods that are speci�c to these classes. In order to use these methods safely in a super
class, however, the super class must somehow de�ne obligations that enforce the de�nition
of the respective methods in subclasses. We use the concept of deferred methods7 to express
these obligations. A method that is declared as deferred in a super class has to be rede�ned in
subclasses. For all non-terminal and terminal subclasses we require deferred methods of super
classes to be rede�ned in the class itself or in a super class that is a subclass of the class with
the deferred method.

Name clashes can occur with methods de�ned in multiple super classes of a class. In conjunc-
tion with method rede�nition, incorrect repeated inheritance can occur for the same reason as
it can for relationships. We de�ne these situations in the same way as we do for relationships.
The tool builder will have to resolve them similarly by renaming methods in the super classes,
or rede�ning methods. The precise de�nition is included in the appendix.

6.4.9 Summary

In this section we have de�ned the language concepts that are available for the external be-
havioural speci�cation of increment classes. These are the unparsing scheme and the method
section. We have suggested inheritance of methods and implicit methods to raise the level of
abstraction that a tool builder has to use for de�ning a tool. The other sections have been
included in class interface de�nitions because they specify the behaviour of implicit methods
and, therefore, need to be known in classes that use the class. We now continue with concepts
for class speci�cations.

6During the evaluation of the language in the GOODSTEP project, we have not found a single type error
that would trace back to a covariant method rede�nition.

7Deferred methods ful�l the same purpose as the Ei�el concept of the same name or as pure virtual member
functions in C++.

6.5. CLASS SPECIFICATIONS 147

6.5 Class Speci�cations

6.5.1 Import Interface

The private part of the behavioural class de�nition is used to de�ne static semantics, inter-
document consistency constraints and tool commands for increments of the class. These de�-
nitions will be based on declarations that are exported from other classes. With regard to the
explicit declaration of imports, our concern not to bury dependencies between classes inside
the implementation, is now reinforced. We, therefore, introduce an import interface section
for class speci�cations as well. Unlike class interfaces, entries in this interface not only declare
the import of classes, but also the particular properties and methods exported by the supplier
that are used during the class speci�cation. As an example, consider the import relationship
of the speci�cation of class ADTModule.

INCREMENT SPECIFICATION ADTModule;

IMPORT INTERFACE

IMPORT TypeName INCLUDING scan, value;

IMPORT OperationList INCLUDING expand, add_element, insert_element, delete_element;

IMPORT ImportInterface INCLUDING import_lists, unremove;

IMPORT SymbolTable INCLUDING associate,deassociate;

IMPORT ImportList INCLUDING imports;

IMPORT Operation INCLUDING name;

END IMPORT INTERFACE;

Class ADTModule can now use methods de�ned for abstract syntax children as well as nested
abstract syntax children for navigation purposes. These navigations will be de�ned in terms
of path expressions.

6.5.2 Path Expressions

The purpose of a path expression8 is to statically, i.e. on a type level of abstraction, de�ne a
navigation from an increment of a particular class along syntactic and semantic relationships to
remote increments. Before we actually de�ne path expressions in detail, we discuss a number
of properties that tool builders will require from primitives for de�ning navigation paths.

Expressiveness: Path expressions must serve as a concise primitive for searching, from a
given increment, for other semantically related increments. We, therefore, require traver-
sal primitives such as navigating to abstract syntax children, the abstract syntax father
or following links of semantic relationships. Furthermore, our language supports the con-
cept of structured attributes for storing semantic information and, in particular, symbol
tables. The contents of these attributes will also have to be accessed for searching seman-
tically related increments. Path expressions must, therefore, be de�ned in such a way
that they can include attribute accesses and, in particular, symbol table lookups. Then
a number of operators for path expressions in graph grammars [ELS87, Sch91a], such as
iterations, unions or intersections, become obsolete. Increments can then be located by
symbol table lookups rather than by graph traversals that visit a huge amount of nodes.

8The path expressions de�ned in this thesis should not be confused with those de�ned in [CH74]. That
paper suggests path expressions as a concept for synchronisation of concurrent processes.

148 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

Safeness: The notion for path expressions should exclude de�nitions of invalid navigation
paths. We consider a path to be invalid if it can never exist in a given structure de�nition
of the underlying syntax graph.

E�ciency: Path expressions should de�ne navigation paths in such a way that it can be
e�ciently decided whether the path exists. If the path exists, the increment or the set
of increments that are addressed by the path should be e�ciently computable from the
path expression.

A path expression in our language consists of a sequence of steps delimited by a dot. A step,
in turn, can be a navigation to an abstract syntax child, to the abstract syntax father or
along a link of a semantic relationship. A step can also be a method call. This supports
structuring path expressions, since subpaths can then be de�ned in methods. As methods can
call themselves recursively, path expressions can be recursive as well.

We do not support intermediate steps in a path expression that are multi-valued abstract
syntax children or links. These multi-valued steps are not required because below we will
introduce the dedicated operators FOREACH and EXISTS that can be used to split multi-valued
path expressions. As we will see, this restriction to single-valued intermediate steps will
increase performance during evaluation of path expressions and contributes to meeting the
safeness requirement, which we consider now.

Path expressions are statically de�ned in the context of some increment classes c. The �rst
step in the path expression has to denote a property of the class or SELF. SELF denotes the
object for which a path expression is currently being executed. Note that this might be an
instance of a subclass of c due to polymorphism. Each step s of a path expression is associated
with a static type. For the �rst step, this is the type of the property identi�ed by the step
or c if the �rst step is SELF. Due to the single-value requirement, the type of s is a class if
s has a successor step s0. For the correctness of s0, we then require the name of the step to
be either an abstract syntax child, the abstract syntax father, a semantic relationship link or
a method of the class denoted by the previous step s. In that way, we ensure that the path
expression can always exist. We are able to highlight speci�cation errors if path expressions
do not conform to the underlying abstract syntax graph structure.

Due to polymorphism, steps may lead to increments of more speci�c types than de�ned by the
static type of the respective property or method used in the step. Sometimes a tool builder has
to exploit knowledge about dynamic types and specialise the static type in the path expression.
We include a cast operator for that purpose. This is inherently unsafe. Therefore, [Mey92]
suggests \No such thing [as a type cast] exists in Ei�el. This is essential if we want to have any
trust in our software". Although it is unsafe, we require type casts. As an example consider
the general purpose class Increment that will be contained in a library of reusable increment
classes (c.f. Appendix B). Increment implements a path expression to the root increment of
a document in terms of a method get doc. The result type of this method is the abstract
increment class Document, which is again contained in the library of reusable increment classes
and models the common properties of root increments of an abstract syntax tree. Each tool
speci�cation will, therefore, de�ne a root increment class as a subclass of Document. Any
execution of get doc will return instances of these subclasses, since abstract increment classes
cannot be instantiated. In order to access properties or invoke methods from these results,
however, the static type of get doc needs to be specialised. This can be done with covariant
rede�nition or assignments against the polymorphism rule. For covariant rede�nition, an
additional subclass of Increment, which covariantly rede�nes the get doc method, would have

6.5. CLASS SPECIFICATIONS 149

to be de�ned. This is reasonable if the method is applied on enough occasions to justify the
introduction of a new class. Therefore, GTSL includes covariant rede�nitions. Another option
would be to rede�ne get doc in all classes. Then, however, we do not reuse methods but, on
the contrary, have to multiply them in the speci�cation. Meyer also admits the need for type
specialisations and has included the ?= operator in the most recent Ei�el language de�nition.
The polymorphism rule is abandoned for this operator. The assignment is performed if the
dynamic types are compatible, otherwise the operator assigns NIL. This approach has two main
disadvantages. First, it is as unsafe as type casts due to the unsafeness of invoking a feature
on NIL. Moreover, requiring assignments for performing a specialisation would run contrary
to expressive path expressions. A tool builder would then have to declare additional local
variables and split path expressions in order to apply the ?= operator. We, therefore, include
type casts in GTSL. Unlike casts in C or C++, however, we severely restrict their applicability.
We require that the static type can only be specialised, whereas in C++ arbitrary casts, even
between atomic types, are allowed. In addition, the language includes a number of operators,
such as IS OF CLASS or IS KIND OF, that implement inquiries on the dynamic type of a property
or method result. These operators can then be used for safeguarding the use of type casts.
Moreover, the type data ow analysis technique discussed during covariant method rede�nition
can be applied to ensure the safe use of type casts [CLZ94]. As examples, consider the following
path expressions that are taken from the Groupie interface de�nition.

INCREMENT SPECIFICATION ImportList;

...

fromModule.ImpFrom.father

...

INCREMENT SPECIFICATION UsingType;

...

(<Module>SELF.my_op().father.father).DefinedNames

...

Note how understanding these path expressions is simpli�ed by considering the entity relation-
ship diagrams in Figures 6.5 and 6.6 on Page 130. The �rst path expression is de�ned in the
context of class ImportList. It traverses to the ImpModule and then follows an explicit semantic
relationship link to a ModName to obtain the document by traversing along the abstract syntax
father. The reference might then be assigned to the explicit link ImpFrom in class ImportList

in order to establish the semantic relationship. The second path expression is de�ned in the
context of class UsingType in order to obtain the increment that declares the type. Therefore,
it traverses to the operation increment that includes the using type by method my op, and tra-
verses twice along syntactic fathers in order to obtain the root increment. It then specialises
the static type with a cast to become Module. Only then is it valid to access the symbol table
attribute DefinedNames de�ned in class Module. The attribute may then be used further to
perform a symbol table lookup to the increment that is associated with the lexical value of
the using type increment.

6.5.3 Method Bodies

Bodies of implicit methods are generated by the compiler from speci�cations given in other
sections and deferred methods are re�ned in subclasses. A tool builder, therefore, only has
to implement the bodies of explicit methods. They are de�ned in the method section of class
speci�cations. Path expressions may be used in expressions contained in method bodies for

150 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

addressing sets of remote increments. The class speci�cation language thus includes primitives
for statements as they are known in most object-oriented languages. The static semantics
de�nes the obvious constraints and we do not consider them here. Refer to the detailed
de�nition in the appendix. As an example, consider the explict method body change name

exported by class Module. The purpose of the method is to propagate the change of a module
name to all places where the name is imported so as to avoid the introduction of inter-document
consistency constraint violations.

INCREMENT SPECIFICATION Module;

...

METHODS

...

METHOD change_name(Str:STRING):BOOLEAN;

BEGIN

FOREACH i:ImpModule IN name.ExpTo DO

i.react_on_change(Str);

ENDDO;

RETURN(name.scan(Str))

END change_name;

END METHODS;

The example displays the use of the prede�ned operator FOREACH with a multi-valued path
expression. It declares a cursor i that iterates over the set of those import lists that are
de�ned by the multi-valued path expression name.ExpTo. During each iteration it informs
another import list about the ongoing change. The method react on change, in turn, performs
a change of the identi�er in the import list as well. After completion of this change propagation,
the change is performed to the module name by applying the implicit method scan to the
abstract syntax child name. The result of scan is returned as result of change name. Methods
like change name will then be used in command de�nitions to implement user commands.

These explicit methods provide tool builders with the exibility to express arbitrary compu-
tations. This is necessary to be able to build process-sensitive tools. In particular, they allow
the tool builder to combine implicit methods, deferred methods or methods that are reused
from prede�ned classes, with tool-speci�c traversals through the abstract syntax graph. The
example above is taken from the Groupie module interface editor speci�cation. As already
discussed on Page 7 the Groupie approach to consistency management is process dependent.
To customise the tool for a di�erent process where change propagations are inappropriate, we
simply omit this and other FOREACH statements and generate the tool anew.

Admittedly, the level of abstraction provided by explicit methods is still rather low. We, there-
fore, do not consider these methods the ultimate solution for tool speci�cation. In Chapter 9,
we shall see that they are required for the industrial applications within the GOODSTEP
project. There we use them for the speci�cation of tool-speci�c services and gain initial expe-
riences with these services. Starting from these experiences, it might be possible to identify
more abstract concepts. Our approach is, therefore, similar to design patterns [GHJV93] that
are now emerging for object-oriented programming languages. A design pattern describes
a number of methods or a set of related classes that solve a particular common problem.
In [GHJV93] a number of patterns, like object factories or wrappers have been deduced from
experiences with object-oriented programming gained in several large-scale projects.

6.5. CLASS SPECIFICATIONS 151

6.5.4 Semantic Rules

Attributes and semantic relationships are concepts that can be used for de�ning data structures
for static semantics and inter-document consistency constraints. Changes of attribute values
and the creation or deletion of semantic relationships will be de�ned in tool command de�-
nitions by invoking methods. These changes, however, usually require a number of follow-on
activities in order to check static semantic constraints for related increments.

As an example, consider the creation of a new type import increment in the Groupie module
interface tool speci�cation. A command will invoke a method which creates a new type import
increment, scans a given string and inserts the type import increment into an import list
increment. Then it must be checked to see whether the type import matches with an exported
type in the respective imported module. In that case the semantic relationship ImpFrom/ExpTo

must be established between the two increments, otherwise the type import must be considered
wrong and an error attribute of the type import increment should include a respective error
descriptor. By accessing this error attribute, the tool command can decide if the type import
is correct or not. If not, it might then de�ne whether to tolerate or to reject the error. If
the type import is correct or the tool command tolerates the error, the import now extends
the set of declared types and the symbol table attribute DefinedNames of the module must be
updated. This, in turn, might require checking using type increments such as parameter types
or function result types. They could have become correct by the change if their lexical value
is identical to that of the type import. Then their error attributes will have to be updated in
order to reect the correction of this error.

If we did not de�ne any other concept than methods, tool builders would have to �nd valid
execution orders to perform the required follow-on actions for all potential attribute and se-
mantic relationship changes. We strongly consider this to be at the wrong level of abstraction.
Tool builders require instead a declarative concept for de�ning the correctness of the various
static semantic and inter-document consistency constraints. This concept should, in partic-
ular, relieve them from worrying about the order in which evaluations are performed. The
new concept should also support our structuring paradigm and be de�ned in terms of incre-
ment classes. In addition, the concept must enable the e�cient evaluation of static semantic
constraints to be carried out as this has to be done on-line, i.e. during the execution of user
commands. It must, therefore, meet the time restrictions required in Section 2.3.3. We now
de�ne semantic rules that will meet the above requirements.

Each semantic rule consists of a list of statements called action that is bound to a condition.
The condition is speci�ed after the ON clause and the action is de�ned between ACTION and
END ACTION keywords. Temporal predicates may be used to specify conditions, namely CHANGED

and DELETED. A CHANGED predicate becomes TRUE if its argument has been created or changed
since the last execution of the semantic rule. The DELETED expression becomes TRUE if its
argument is about to be removed. Arguments of a CHANGED or DELETED expression may be
attributes or semantic relationships of any other increments. Path expressions are used to
determine attributes or semantic relationships of remote increments. A name of an attribute
may only occur as the last name in a path expression. Compound conditions can be built by
using the OR operator. An EXISTS operator is used in the usual sense of �rst order logic to
specify that the rule has to be executed as soon as some other condition holds for an element
in a multi-valued syntax component or a multi-valued semantic relationship. This predicate,
in fact, resolves the situation for semantic rules that intermediate steps in path expressions
cannot be multi-valued.

152 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

INCREMENT SPECIFICATION TypeImport;

...

SEMANTIC RULES

// Rule 1

ON CHANGED(father.ImpFrom.DefinedNames) OR CHANGED(value)

// symbol table of imported module or lexical value of type import changed

VAR i: Increment;

ACTION

i := father.ImpFrom.DefinedNames.increment_at(value);

IF (i == NIL) // Name undefined?

THEN ImpFrom:= NIL; // Type Import not o.k.

ELSE

IF (i.IS_OF_CLASS("TypeName")) // Is Defined Name a TypeName?

THEN ImpFrom := <TypeName>i; // o.k: establish semantic relationship

ELSE ImpFrom := NIL; // Type Import not o.k.

ENDIF;

ENDIF;

END ACTION;

Figure 6.9: Semantic Rule in Class TypeImport

As a �rst example, consider a semantic rule from class TypeImport of the Groupie interface
editor speci�cation that is displayed in Figure 6.9. The condition of this rule de�nes that the
rule will be executed if either the value of attribute DefinedNames in the symbol table of the
imported module or the lexical value of the type import itself has been changed.

If the condition of a rule becomes true, the list of GTSL statements given in the action is se-
quentially executed before attributes and links that are modi�ed by the rule are accessed the
next time. The available statements for semantic rule actions are assignments of expressions
to attribute values, invocation of methods reading or modifying attribute values, creation of
relationships and control ow primitives such as IF or FOREACH statements. In order to facili-
tate encapsulation and avoid side e�ects, semantic rules of a class may only modify attributes
or relationships de�ned or inherited by that class. Note that actions must, therefore, not
invoke methods via path expressions that would modify attributes of remote increments. This
is excluded by a static semantic constraint

The purpose of the action in the �rst semantic rule in the above example is to determine
the existence of semantic relationship ImpFrom. The �rst statement reads the DefinedNames

attribute in order to obtain the increment that is associated with the lexical value of the
TypeImport. If there is no such association, then the semantic relationship should not exist
and NIL is assigned to ImpFrom, otherwise the rule checks whether the dynamic type of the
increment really is a type name in order to prevent the import of some other resource, such
as an operation that might be exported under the same name. If the association denotes a
type name, we can specialise the static type using the cast operator and establish the semantic
relationship ImpFrom/ExpTo between the import and the corresponding export, otherwise the
relationship should not exist, since the increment that is de�ned in the symbol table is not a
type name. A very similar rule is de�ned for class OpImport in Figure 6.10. It establishes the
ImpFrom/ExpTo relationship between operation imports and the respective exported operation.

The two classes TypeImport and OpImport share the common characteristic that the increments
are considered erroneous whenever the semantic relationship between import and export does
not exist. This common behaviour is de�ned in the common super class Import as displayed in

6.5. CLASS SPECIFICATIONS 153

INCREMENT SPECIFICATION OpImport;

...

SEMANTIC RULES

// Rule 1

ON CHANGED(father.ImpFrom.DefinedNames) OR CHANGED(value)

// symbol table of imported module or lexical value of op import changed

VAR i: Increment;

ACTION

i := father.ImpFrom.DefinedNames.increment_at(value);

IF (i == NIL) // Name undefined?

THEN ImpFrom:= NIL; // Operation Import not o.k.

ELSE

IF (i.IS_OF_CLASS("OpName")) // Is Defined Name an OpName?

THEN ImpFrom := <OpName>i; // o.k: establish semantic relationship

ELSE ImpFrom := NIL; // Type Import not o.k.

ENDIF;

ENDIF;

END ACTION;

Figure 6.10: Semantic Rule in Class OpImport

INCREMENT SPECIFICATION Import;

...

SEMANTIC RULES

// Rule 1

ON CHANGED(ImpFrom) // If link has changed

ACTION

IF (ImpFrom == NIL) // See whether it (still) exists

THEN Errors.append_error(#NotAValidExport);// add respective error

ELSE Errors.clear_error(#NotAValidExport); // delete error

ENDIF;

END ACTION;

END SEMANTIC RULES;

Figure 6.11: Semantic Rule in Abstract Class Import

Figure 6.11. The rule is, therefore, inherited by both subclasses. The value of Errors depends
on the existence of semantic relationship ImpFrom/ExpTo. The condition of the rule in class
Import, therefore, includes a CHANGED expression with the link ImpFrom as the argument. To
be able to de�ne it this way, we have to de�ne the link ImpFrom in class Import. It is then
covariantly rede�ned in subclasses to lead to OpName or TypeName, respectively. The rule's
precondition becomes TRUE, if for example the �rst semantic rule has modi�ed the link. In
this case, a check is made whether the link exists. If it does not exist then the import is
wrong and an error message is added to the Errors set, otherwise the import is correct. The
corresponding error message is removed because the import might have been incorrect before.

Note that we explicitly de�ne the dependencies between rules and attributes. As with import
interfaces, these dependencies might be inferred by some static analysis tool. It is, however, im-
portant that the tool builder is aware of the dependencies. As with imports these dependencies
should be minimised. The rationale here is to facilitate e�cient rule evaluation. Moreover, the
explicit declaration of dependencies, as with imports, simpli�es the impact analysis if attribute
or relationship declarations are changed.

154 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

As a further example consider the rules below that modify and access the DefinedNames symbol
table in an ADTModule whenever elements of the export are changed. These changes must be
reected in the symbol table in order to keep imports consistent. The �rst rule enters a type
name into the symbol table whenever the value of the exported type is changed. The second
rule uses the EXISTS predicate in order to update the symbol table DefinedNames, whenever
the lexical value of an operation name changes. Then the method associate of the prede�ned
non-syntactic class SymbolTable is invoked in order to store the operation as an entry with its
new name as the key. If necessary the old key is deleted.

INCREMENT SPECIFICATION ADTModule

...

// Rule 1

SEMANTIC RULES

ON CHANGED (type.value)

ACTION

DefinedNames.associate(type.name, type.name.value);

END;

// Rule 2

ON EXISTS op in opl.op_list:CHANGED(op.name.value)

ACTION

DefinedNames.associate(op.name, op.name.value);

END ACTION;

...

Figure 6.12: Semantic Rule in Class ADTModule

The next rule is de�ned in class OpName and uses the symbol table DefinedNames of its root
increment in order to check for the uniqueness of operation names. If the symbol table contains
another increment such as a type name under the same key, then an error message is added
to the Errors set, otherwise the message is deleted.

INCREMENT SPECIFICATION OpName;

...

// Rule OpName::1

ON CHANGED father.father.father.DefinedNames

ACTION

IF father.father.father.DefinedNames.is_duplicate(value) THEN

Errors.append_error(#NameAlreadyDefined)

ELSE

Errors.remove_error(#NameAlreadyDefined)

ENDIF

END ACTION;

...

Figure 6.13: Semantic Rule in Class OpName

The dynamic semantics of semantic rules is informally de�ned as follows. Rule evaluation is,
in fact, divided into two phases. The �rst phase is a propagation phase where attributes and
semantic relationships are stamped as dirty whenever they are modi�ed. All semantic rules that
read dirty attributes or relationships are also stamped as dirty. Then the property of being
dirty is transitively propagated to all attributes or relationships that are modi�ed by dirty
rules. The propagation phase ends when all a�ected rules, attributes and relationships have
been marked dirty. The second phase evaluates rules and it starts whenever a dirty attribute

6.5. CLASS SPECIFICATIONS 155

or relationship is about to be accessed (e.g. during unparsing). Then all rules are executed
according to the propagation path de�ned in the propagation phase. This execution brings
the attribute or relationship back into state clean. Only then is the attribute or relationship
really accessed.

The conditions of semantic rules specify static dependencies between di�erent semantic rules.
We do not want to enable computations or even modi�cations to be de�ned in these condi-
tions. Such modi�cations could produce serious side e�ects and lead to situations where the
rules can no longer be understood by the tool builder. In particular, the tool builder had to
know the order in which change predicates are evaluated and it was the main motivation for
semantic rules to relieve the tool builder from this burden. Path expressions as de�ned above
include steps that may invoke methods and in these methods side e�ects could be produced.
Method invocations would be required to determine recursive path expressions as they occur,
for instance, during speci�cation of nested scoping blocks. Upon increment creation, however,
recursive path expressions can always be materialised within auxilliary semantic relationships.
Then these relationships can be used in semantic rule conditions. We can, therefore, disable
method invocations to occur in steps of path expressions of semantic rule conditions.

In short, we have de�ned a declarative language for the de�nition of static semantics and inter-
document consistency constraints. Note that we have not de�ned any execution order between
the di�erent semantic rules that we have discussed. A valid execution order will be inferred
statically from the dependencies between rules, attributes and relationships. Semantic rules
enforce well-structured static semantics and inter-document consistency constraint de�nitions
because the language does not enable rule actions to modify attributes or relationships that
do not belong to the class. Moreover, subclasses inherit semantic rules from super classes.

6.5.5 Interactions

From the list of requirements identi�ed in Section 6.1, we have not yet addressed the speci�ca-
tion of tool commands. A tool builder will have to de�ne the command names that appear in
context-sensitive menus that the user can pop up. This includes the de�nition of preconditions
that must be ful�lled for the appearance of the command in the menu. Moreover, the partic-
ular dialogues between tool and user, if any, must be de�ned. The tool builder might want
to de�ne di�erent dialogue styles in di�erent tools. In particular, the process model might
require a particular way of handling static semantic errors or inter-document consistency con-
straint violations. The command de�nition language must be exible enough to support these
di�erent concerns. Moreover, a number of command de�nitions are very similar among mul-
tiple increment classes. A tool builder will appreciate it if commands can be de�ned once
and can then be reused in di�erent classes. To meet these requirements, we add a concept of
interactions to the class speci�cation language that supports the de�nition of commands as
required.

The de�nition of an interaction encompasses an internal and an external name, a selection
context, a precondition and an action. The external name appears in context sensitive menus.
The internal name is used to determine the rede�nition of an inherited interaction. The
selection context de�nes which increment must be selected so that the interaction is considered
for inclusion in a menu. It is actually included if the precondition that follows the ON clause
evaluates to TRUE. The action is a list of GTSL statements that is executed as soon as the user
chooses the interaction from the menu.

156 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

We de�ne two further prede�ned classes that can only be used in interaction bodies. These
classes are TEXT and TEXT SET. They o�er primitives for user dialogue speci�cations. TEXT

o�ers user interaction primitives to cope with strings. It has methods for displaying a string
in a message window, editing a single text-line or editing a text that consists of arbitrary
lines. TEXT SET o�ers primitives to handle input and output of sets of strings. Among these
are methods for selection windows in which users can select single or multiple entries. As an
example, consider in Figure 6.14 the interaction that changes a module's name.

INCREMENT SPECIFICATION Module;

...

INTERACTIONS

INTERACTION ChangeName

NAME "Change Module Name"

SELECTED IS name

ON (name.expanded)

VAR t:TEXT;

err:TEXT_SET;

BEGIN

t:=NEW TEXT(name.unparse);

IF (t.LINE_EDIT("Enter New Module Name!")) THEN

IF (NOT name.change_name(t.CONTENTS())) THEN

err:=NEW TEXT_SET(name.get_errors());

err.DISPLAY();

ABORT

ENDIF

ENDIF

END ChangeName;

Figure 6.14: Command De�nition to change a Module Name

This interaction is considered to be o�ered if the current increment is the module's name. It
is actually o�ered if the name identi�er has already been expanded. If this is the case and the
user has requested a menu, the string Change Module Name will become a menu item. If the
user chooses this item, the action is executed and the user will be prompted to edit the name
of the module in a line edit window. The default character string in this line edit window is
the old module name that is computed by sending message unparse to abstract syntax child
name. If the dialogue is completed, the LINE EDIT method returns TRUE and the increment
modi�cation operation change name (c.f. Page 150) is executed. The operation returns TRUE if
the identi�er is lexically correct, otherwise it returns FALSE and an error message is displayed.
Afterwards the command is aborted, i.e. the state of the document is restored to its state
before the command execution started.

Subclasses inherit interactions from their super classes. The interaction ChangeName de�ned
above is, in fact, inherited by the four di�erent subclasses of Module. Interactions might be
rede�ned. As an example of this, consider type collection modules in the Groupie interface
speci�cation. They de�ne very low-level modules, which are often imported from a very great
number of other modules. For these modules, the above interaction might not be appropriate.
Suppose that the command for type collection modules should warn the user if the change
impacts more than a �xed amount of other modules, say 10. In that case, it would also be
inappropriate to tolerate static semantic errors as was the case in the other interaction. Due
to the exibility of the class speci�cation language we can then rede�ne the interaction in class
TCModule to take these considerations into account. The rede�ned interaction is depicted in
Figure 6.15.

6.5. CLASS SPECIFICATIONS 157

INCREMENT SPECIFICATION TCModule;

...

INTERACTIONS

INTERACTION ChangeName

NAME "Change Module Name"

SELECTED IS name

ON (name.expanded)

VAR t,warning:TEXT;

err:TEXT_SET;

cont:BOOLEAN;

BEGIN

IF name.ExpTo.SIZE>10 THEN

warning:=NEW TEXT("Module is imported by more than ten other modules!");

cont:=warning.ASK_TO_CONTINUE("Do you want to continue?");

ENDIF;

IF cont THEN

t:=NEW TEXT(name.unparse);

IF (t.LINE_EDIT("Enter New Module Name!")) THEN

name.change_name(t.CONTENTS());

IF NOT name.Errors.IS_EMPTY()) THEN

err:=NEW TEXT_SET(name.get_errors());

err.DISPLAY();

ABORT

ENDIF

ENDIF

ENDIF

END ChangeName;

Figure 6.15: Rede�ned Command De�nition to change a Module Name

The rede�ned interaction accesses the semantic relationship ImpFrom/ExpTo between module
names and their counterpart in import lists. If the number of entries in the implicit link is
bigger than the upper bound, a warning will be displayed on the user's screen. If the user
ignores the warning, the change operation is performed. Note that this time we access the
Errors attribute of the name regardless of the result returned by change name. At this state,
Errors will be dirty for the following reason: method change name modi�es the lexical value
attribute that, in turn, outdates the set of de�ned modules. Since the error set of the module
name will depend on that attribute it will become dirty as well. The access of the error set
attribute that checks whether the set is empty will, therefore, cause semantic rules to �re re-
evaluating the static semantic constraints and bringing Errors back into clean state. If the set
includes any error descriptor, they will be formatted and then the command will be aborted
and thus all performed changes will be undone.

Due to multiple inheritance and rede�nition, ambiguous situations may occur. These are sim-
pler than for methods because interactions do not have parameters or types and are, therefore,
not considered here any further. The formal de�nition in the appendix includes constraints
that exclude name clashes and incorrect repeated inheritance of interactions.

Interactions have transaction properties. They are atomic i.e. they are either performed
completely or not at all. They are the unit of concurrency control, i.e. an interaction may
be delayed or even aborted in case of concurrency control conicts with other concurrent
interactions. Hence interactions are performed in isolation. Once completed, the e�ect of an
interaction is durable, i.e. all changes that were made during the interaction persist even if
the tool is stopped accidentally by a hardware or software failure.

158 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

6.5.6 Summary

We have de�ned an object-oriented language for the behavioural de�nition of increment classes.
Compared to object-oriented programming languages (such as our implementation languages
C++ and O2C), our language considerably raises the level of abstraction at which tool builders
specify tools. We have de�ned unparsing schemes as a declarative concept for de�ning the ex-
ternal representation of documents. We have included primitives for de�ning the abstract and
lexical syntax of increments. Beyond this higher-level of abstraction, the language provides
the exibility for a tool builder to use a lower-level of abstraction, if required. Implicit meth-
ods of increment classes provide an interface to these de�nitions so that they can be used in
methods at a lower-level of abstraction. We have de�ned semantic rules as a declarative formal-
ism to specify static semantics and inter-document consistency. Compared to programming
languages, this particularly relieves the tool builder from worrying about execution orders.
Finally, we have added a concept for de�ning tool commands including their appearance in
context-sensitive menus and primitives for user dialogue speci�cation.

The language supports the structuring of speci�cations particularly well. Components are
increment classes that are identi�ed in the ENBNF and entity relationship model. Their
inheritance and import/export relationships are explicit. Reuse of de�nitions is supported
because all de�nitions are inherited by subclasses and can be rede�ned there if required. The
language distinguishes di�erent kinds of classes and di�erent kinds of properties in order to
enable domain speci�c static semantic constraints to be de�ned. A signi�cant number of
potential speci�cation errors are excluded by these constraints. In an object-oriented pro-
gramming language, even if it is as strongly typed as O2C, these speci�cation errors cannot
be highlighted due to the lack of domain knowledge.

6.6 Related Work

This section reviews the most powerful existing tool generators with respect to the tool speci�-
cation languages they use and compares the approaches with GTSL. Subsection 6.6.1 presents
ordered attribute grammars as they are used by the Cornell Synthesizer Generator [RT84].
Section 6.6.2 discusses the Centaur System [BCD+88] with respect to its speci�cation lan-
guages. The language PROGRESS [Sch91a] developed in the IPSEN project is dedicated to
the speci�cation of general graph structures. As such it has been applied to the speci�cation
of abstract syntax graphs as well. PROGRESS is then discussed in Subsection 6.6.3.

6.6.1 Attribute Grammars

Attribute grammars have been suggested in [Knu68] for the speci�cation of the semantics
of context-free languages. While they fail to express dynamic semantics appropriately, they
have been successfully used for the de�nition of static semantics of languages. Ordered at-
tribute grammars [Kas80] are an important subclass. For this subclass it is e�ciently de-
cidable at compile-time whether the static semantic evaluations terminate. They have been
proved expressive enough to de�ne the syntax and static semantics of most programming lan-
guages [KHZ82]. Ordered attribute grammars are the basis for the speci�cation language SSL
of the Cornell Synthesizer Generator [RT84, RT88, RT89]. SSL enables hybrid syntax-directed
tools to be speci�ed.

6.6. RELATED WORK 159

Abstract Syntax Speci�cation in SSL: The abstract syntax of a language is de�ned in
SSL in terms of productions. The left-hand side of a production is a phylum. The right-hand-
side consists of a set of operators delimited by |. Phyla represent non-terminal symbols of a
grammar and operators represent productions. The arguments of operators are again phyla
and represent the right-hand side of a production. As an example, we model the abstract
syntax of the Groupie language with SSL. The excerpt given below corresponds to the GTSL
fragment on Page 137 in order to simplify the comparison.

root module;

module : ModulePlaceholder()

| ADTModule(identifier comment type operation_list import_part identifier)

| ADOModule(...)

| FModule(...)

| TCModule(...);

optional comment;

comment : CommentNull()

| CommentPlaceholder()

| Comment(COMMENT);

list operation_list;

operation_list : OpList ()

| OpListPair(operation operation_list);

...

In the �rst line, the phylum module is declared to be the root phylum of the speci�cation. The
next production de�nes that a module phylum can correspond to the empty word, i.e. still
be a place holder or have child phyla according to the four productions that model the four
di�erent Groupie module types. Here there are notable di�erences to GTSL. Firstly, SSL does
not de�ne names for child phyla. As we will see this will complicate understanding successive
SSL speci�cation fragments. Secondly, common properties of phyla cannot be designated
as such. All operators that produce the four module types will have the �rst two and the
last argument in common. In GTSL this can be de�ned in an abstract increment class from
which other classes can inherit. Finally, place holders have to be de�ned explicitly with an
operator. In GTSL these are implicitly de�ned by the attribute expanded that is inherited from
Increment. The keyword optional in the following line de�nes that comments are optional
phyla. This declaration is redundant, since an additional operator producing the empty word
is also de�ned. In GTSL increments are de�ned as optional by inheriting from the prede�ned
class OptionalIncrement. The SSL speci�cation then de�nes a further operator whose argument
is a regular expression de�nition called Comment. This corresponds to the regular expression
section of terminal GTSL increments. The next statement declares the phylum operation list

as a list phylum. The two operators in the next production then produce operations as abstract
syntax children of operation list. In GTSL, this can be more easily de�ned by inheritance
from the prede�ned class NonterminalIncrementList.

Unparsing Schemes in SSL: To de�ne the textual representation of the abstract syntax,
SSL o�ers language constructs for de�ning unparsing schemes. Besides de�ning the textual
representation, these schemes also determine the increments that are selectable and whether
or not they can be freely edited.

160 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

module : ModulePlaceholder[^ :]

| ADTModule[@ ::= "DATATYPE MODULE " @ ";" error "%n%n%t"

@ "EXPORT INTERFACE %n%n%t"

@ "%n%n%t"

@ "%n%b%b"

@ %n%b

"END MODULE" @ ".\%n\%n\%n"]

| ADOModule[...]

| FModule[...]

| TCModule[...] ;

Unparsing declarations for each applicable operator of a phylum must be de�ned in an un-
parsing scheme. The example above depicts the unparsing scheme for phylum module. Each
de�nition for the di�erent operators is given in square brackets after the operator speci�cation.
They consist of a left- and right-hand side, which are separated by : or ::=. If the separator
is :, the increment is not freely editable and it can be edited when declared with ::=. The
property of being freely edited is de�ned in GTSL in an interaction. This interaction can
be de�ned in a common super class where all subclasses inherit it from. Phyla in unparsing
schemes are represented by either @ or ^. @ de�nes that the phylum can be selected and a
phylum represented as ^ cannot be selected. The textual representation of a phylum is then
de�ned by the right-hand side of the unparsing de�nition. Therefore, strings including op-
tional formatting items (characters with a leading %) can be interleaved with the enumeration
of child phyla. Here we �nd the SSL representation harder to understand and to de�ne than
the GTSL counterpart, since the child increments are not explicitly named. This may easily
lead to speci�cation errors.

Static Semantics and Inter-Document Consistency in SSL: SSL o�ers a means of
de�ning static semantics of languages in terms of attributes and equations. Attributes are
attached to phyla. Equations are attached to operators. Assignment of values to attributes
is de�ned in equations. Each attribute must be declared either as synthesised or inherited.
A synthesised attribute is computed based on attributes of child phyla, whereas an inherited
attribute is computed based on attributes of an ancestor phylum. An equation can also invoke
a tool-speci�c function. To de�ne these, SSL o�ers a C-like notation.

As an example, consider a scoping rule for the Groupie module interface language in Fig-
ure 6.16. The rule de�nes that a module's name must be unique within the module. The
speci�cation of this scoping rule in terms of SSL attributes, equations and functions is de-
picted below. It corresponds to the semantic rules of the Groupie speci�cation on Page 154.

The �rst three lines de�ne the phylum name list as a list of identi�ers. This phylum is
then used as an attribute type for the declaration of attribute elist. Elist is attached as
a synthesised attribute to the phyla module, operation list and operation. Its values are
lists of those identi�ers that are de�ned in the scope of a module. The next declaration
de�nes another synthesised attribute for a module phylum which is meant to store an error
message. The operator ModulePlaceholder initialises the name list attribute of a module
to be an empty list. The operator ADTModule, in turn, de�nes the elist attribute of an
ADT module as concatenation of the module's identi�er, the module type identi�er and the
elist attribute of operation list. Similar equations, which are for reasons of brevity not
depicted here, have to be de�ned for all other phyla operators where identi�ers are declared.
A non-empty error message is assigned to a module's error attribute, if the module identi�er
occurs more than once in the module's elist attribute. This computation relies on the SSL

6.6. RELATED WORK 161

list name_list;

name_list : NameListNil()

| NameListPair(identifier name_list);

module,

operation_list,

operation { synthesized name_list elist;};

module { synthesized STR error;};

module: : ModulePlaceholder {module.name_list = NameListNil();}

| ADTModule {

module.elist = NameListPair(type,

NameListPair(identifier, operation_list.elist));

module.error = MultiplyDefinedErr(identifier,module.elist);

};

INT Occurrences (identifier i, name_list l) {

/* compute number of occurrences of i in l */

(i==IdentifierPlaceholder) ? 0 :

with (l) (NameListPair(mod,nl):

(mod == i) ? 1 : 0,

default:0

) + Occurrences(i,nl)

}

STR MultiplyDefinedErr(identifier i, name_list l) {

/* returns error message, if i occurs more than once in l */

(Occurrences(i,l)>1) ? "identifier multiply defined" : "")

}

Figure 6.16: Speci�cation of Static Semantics in SSL

function MultiplyDefinedErr which, in turn, uses Occurrences. The error attribute is used
in the module's unparsing scheme and speci�es how the error message is displayed within the
document representation.

One of the strengths of attribute grammars for specifying static semantics is that a tool builder
need not bother about execution sequences. This is the same in GTSL. An order for the e�cient
and incremental evaluation of equations is automatically derived by the Synthesizer Generator
from dependencies between equations. In the example above, a module's error attribute, for
instance, depends on the module's elist attribute, which, in turn, depends on the values of
module name and type identi�er and the elist attribute of operation list. Therefore, in
a tool generated by the Synthesizer Generator, the �rst equation would always be evaluated
before the second equation. It is shown in [Kas80] that it is possible for ordered attribute
grammars to �nd an evaluation sequence that at most performs one assignment per attribute.
In addition, assignments can be ordered in such a way that time-consuming context switches
that visit other nodes are minimised. To accelerate the re-evaluation of attributes even further,
the Synthesizer Generator applies an incremental attribute evaluation technique which takes
into account that only those attributes changed after the last evaluation and the transitive
closure of attributes depending on the changed attributes, have to be re-evaluated. As will be
shown in Section 8.2.1, GTSL semantic rules can also be evaluated incrementally.

A serious weakness of attribute grammars, however, is that they are based on the syntactic
structure of one language. Equations can only be de�ned using attributes that belong to phyla

162 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

of the language. Therefore, consistency constraints between phyla of di�erent documents can-
not be expressed since they do not have a phylum in common. This could be simulated by
de�ning an arti�cial root phylum and considering di�erent documents as children of that root
phylum. All documents would then collapse into one super-document. In that case, however,
concurrent editing of multiple users on di�erent related documents could not be supported for
two reasons. Firstly, each tool would open, display and save the super-document since all these
operations by de�nition operate on documents. Then concurrent development would be ham-
pered since users would have to manually merge their changes in the documents. This might
be solved by storing the underlying abstract syntax tree in an object database system. Sec-
ondly, concurrent development would be hampered because each inter-document consistency
constraint would have to be speci�ed by equations modifying root phylum attributes. Then
multiple users working on the same set of documents would cause many concurrency control
conicts since all inter-document consistency checks would have to modify the attributes of
that root phylum. Hence the root phylum would become a bottleneck. In GTSL this is solved
by the implicitly de�ned common root increment of class DocumentPool, semantic relationships
and the transaction properties of interactions. The implicitly de�ned instance of DocumentPool
serves as a root increment for all documents. Unparsing, however, starts at documents, i.e. at
the children of DocumentPool. The document pool may be used in path expressions in order
to establish semantic relationships between di�erent documents. For that purpose no changes
need be carried out at the document pool. If a semantic relationship is once established, it
can be used to establish further (more �ne-grained) relationships. As an example consider
the ImpFrom/ExpTo relationships between OpImport and OpName increments on Page 152. They
are based on the ImpFrom/ExpTo relationship between ImportList and Module. To create the
relationship between OpImport and OpName increments, therefore, the document pool need not
be accessed at all. Therefore, concurrency control conicts merely occur if new documents are
created or existing documents are deleted concurrently. Evenso conicts are unlikely because
documents are not created or deleted very often. Moreover, the granularity of transactions
are commands, and locks are held only during command execution, i.e. for a few hundred
milliseconds.

As the direct comparison between the semantic rules on Page 153 and the SSL counterpart
further suggests, GTSL semantic rules are more concise. This is because semantic rules are
inherited from super classes where common semantic properties of several increment classes
can be de�ned. In addition, GTSL contains a number of prede�ned classes and attributes such
as SymbolTable, ErrorSet and errors. A tool builder may exploit these de�nitions in his or
her static semantics and inter-document consistency speci�cation.

Command De�nition in SSL: Transformations can be de�ned for each SSL phylum.
Transformations can be used to de�ne tool commands. Either they are o�ered at the user
interface in pop-up menus, or they can be invoked from a command-line interface. Trans-
formations are speci�ed in SSL by means of pattern matching. As an example, consider the
transformations below that de�ne commands for modules of the Groupie interface language.

transform module

on "Expand Module"

ADTModule(a,b,OpList,d,e,f) : ADTModule(a,b,operation,d,e,f),

on "Expand Module"

ADTModule(a,CommentNull,c,d,e,f) : ADTModule(a,CommentPlaceholder,c,d,e,f),

on "Delete Comment"

ADTModule(a,b,c,d,e,f) : ADTModule(a,CommentNull,c,d,e,f),

6.6. RELATED WORK 163

The string that follows the keyword on is the name of the transformation. Each transformation
is then speci�ed by means of two patterns delimited by a colon. A transformation name is
included in a menu if a match can be found for the selected increment with the left-hand side
pattern. If the user selects a transformation, the right-hand side is substituted for the matched
pattern. Command Expand Module is, therefore, included in the menu if either the operation
list is still a place holder, or the comment has been deleted. Admittedly, this pattern matching
based command de�nition is more concise than interactions in GTSL. As a trade-o�, however,
a further weakness arises.

This weakness is that SSL cannot express the fact that particular static semantic constraints
must not be violated. Instead it postulates a laissez-faire strategy. This is because the above
transformations only depend on the abstract syntax and a tool builder cannot specify that a
transformation has to be undone in case of a particular static semantic error. Tools tolerate
any erroneous input and only display errors to the user. As discussed in Section 2.3, there are
situations where this is not appropriate. In GTSL the required behaviour can be de�ned within
interactions and ABORT statements can be used that undo the e�ect of command executions
that would otherwise cause intolerable errors.

A further weakness is that a signi�cant number of transformation rules will be redundant for
di�erent phyla. For those phyla, such as operations or imports that also have comments as child
phyla the same transformations have to be de�ned. In GTSL the respective commands are
de�ned in interactions of super classes and inherited by subclasses. The Groupie speci�cation,
for instance, contains a class Commentable that serves as a common super class for the various
increment classes that have comments as abstract syntax children.

SSL is in no way capable of de�ning concurrency constraints on tool execution, unlike GTSL
interactions which have the semantics of ACID transactions. In addition, the tool builder may
use COMMIT or ABORT statements in order to explicitly determine the success or failure of the
interaction. In the case of a failure, all modi�cations performed within the interaction are
undone. Upon success they are immediately persistent and visible to all concurrent users.

Structuring SSL speci�cations: SSL itself does not provide any structuring concepts.
Within an SSL speci�cation, declaration of phyla, operators and functions may be arbitrarily
interleaved. Thus, the burden of arranging for an understandable structure is put completely
on the tool designer. A designer may structure an SSL speci�cation into several UNIX-�les.
As the Synthesizer Generator �rst runs the C-preprocessor on its input, the CPP #include

directive can be used to compose the di�erent �les to obtain the overall input. In contrast,
GTSL de�nes a number of concepts for structuring tool speci�cations. Import and export
interfaces are included for classes. Properties can be hidden from client class speci�cations.
In addition, properties that are common to more than one class can be declared in a common
super class and are then inherited in all subclasses.

Reuse: Reuse of SSL speci�cations is not supported by the language, since SSL has no
language constructs for designating reusable components. GTSL has been de�ned in a way
that allows classes to be easily reused. Import statements and inheritance directives display
the dependencies that a class has to other classes. If the class is to be reused, all imports
and inheritance statements have to be resolved. This can be done either by reusing the
imported and inherited class as well or by satisfying the imports and inheritance statements
by substitutes.

164 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

Validation: SSL has well-de�ned scoping rules and an elaborated type system. The con-
straints imposed by them are checked during generation of a tool. The scoping rules and the
type system of GTSL are equally well elaborated and formally de�ned. They are more complex
than the SSL static semantic rules due to polymorphism, multiple inheritance, rede�nition and
import/export of properties and methods.

6.6.2 METAL, TYPOL and PPML

The Centaur system evolved from the Mentor-Project [DGKLM84] that was carried out at
INRIA between 1974 and 1986. Mentor, as well as its successor Centaur, are meant to sup-
port the prototyping of languages. Therefore, they provide a framework which can be used
to de�ne a language in terms of syntax, static and even dynamic semantics. To do this,
Centaur o�ers di�erent languages. Abstract and concrete syntax is de�ned using the lan-
guage METAL [KLM83]. Unparsing schemes are de�ned in the pretty-printing meta language
(PPML). Static semantics and also dynamic semantics can be de�ned in a rule-based language
which is called TYPOL [Des88]. TYPOL is based on structural operational semantics [Plo81].

Abstract Syntax in Metal: Similar to SSL, METAL supports the de�nition of the abstract
syntax of a language in terms of phyla and operators. Identi�ers in lower-case letters denote
operators and phyla identi�ers are given in upper-case letters. An operator declaration consists
of two components delimited by ->. The left-hand side de�nes the name of the operator and
the right-hand side de�nes a list of argument phyla. A phylum is declared by an identi�er
followed by ::= and a list of operators, which can be applied to the phylum. For a better
comparison with GTSL and SSL, consider the METAL fragment below. It de�nes an excerpt
of the abstract syntax of the Groupie interface language.

definition of MIE is

abstract syntax

MODULE ::= adt_module ado_module f_module tc_module;

COMMENT ::= comment comment_nil;

OP_LIST ::= op_list;

OPERATION ::= function procedure

adt_module -> IDENT COMMENT IDENT OP_LIST IMPORT_PART IDENT;

ado_module -> IDENT COMMENT OP_LIST IMPORT_PART IDENT;

f_module -> IDENT COMMENT OP_LIST IMPORT_PART IDENT;

tc_module -> IDENT COMMENT IDENT_LIST IDENT;

function -> IDENT PAR_LIST IDENT COMMENT;

procedure -> IDENT PAT_LIST COMMENT;

op_list -> OPERATION * ...;

comment -> implemented as STRING;

comment_nil -> implemented as SINGLETON;

...

List phyla declarations (such as OP LIST) are easier in METAL and GTSL than in SSL. Also
place holder de�nitions are implicit in METAL and GTSL while they have to be explicitly
speci�ed in SSL. As in SSL, common properties of operators cannot be speci�ed in METAL
as such. Instead they have to be duplicated for each operator. GTSL overcomes this by the
inheritance of abstract syntax children.

6.6. RELATED WORK 165

Concrete Syntax in Metal: The Centaur system distinguishes between the de�nition of
the input syntax and the output representation of an abstract syntax tree. The input syntax
is de�ned in METAL, whereas the output representation is de�ned in a dedicated language
(PPML). The concrete syntax in METAL is de�ned in terms of rules. A rule in METAL
resembles a production in context-free grammars, except that it adds a call to a tree building
function. This call de�nes the relationship to the abstract syntax de�nition. As an example,
consider the concrete syntax de�nition excerpt below.

rules

<module> ::= #DATATYPE #MODULE <ident> #; <comment>

<ident><op_list><import_part>

#END #MODULE <ident>#.;

adt_module(<ident>.1,<comment>,<ident>.2, <op_list>,

<import_part>,<ident>.3)

<comment> ::= %STRING ;

comment-atom(%STRING)

...

Besides de�ning the input syntax a METAL speci�cation must determine those increments
that can be edited in free textual input mode. Therefore, METAL provides the means to
de�ne entry points for the multiple entry parser. Entry point speci�cations are also given in a
rule based format. The left-hand side of the rule de�nes the axiom of the grammar. The right-
hand side consists of the name of the entry phylum and the respective non-terminal symbol
of the concrete syntax speci�cation. Phyla MODULE, COMMENT and OP LIST of the example are
declared as entries below. These entry point de�nitions correspond to interaction de�nitions
in GTSL, which de�ne free textual input commands.

rules

<module> ::= [COMMENT] <comment> ;

<module> ::= [EXPORT_PART] <export_part> ;

<module> ::= [OP_LIST] <op_list> ;

...

In short, the way of de�ning the abstract and concrete syntax of a language as well as the
entry points for a parser is rather lengthy. This is because information about the abstract
syntax is redundantly contained in the BNF-like rule de�nition of the concrete syntax and,
similarly, information about the BNF-like rule de�nition is also contained in the entry point
de�nition. As a consequence, changes to the syntax may cause tedious updates of the METAL
de�nition.

Unparsing Schemes in PPML: Unparsing schemes are de�ned in Centaur using the
pretty-printing meta language (PPML). They are called prettyprinters. More than one pret-
typrinter may be de�ned for a tool. A tool user can then switch at run-time between the
di�erent prettyprinters in order to change the way documents are displayed. A PPML speci�-
cation consists of a set of rules that map operators, de�ned in the abstract syntax de�nition,
to a textual output representation. A rule has the form pattern -> [format]. A pattern rep-
resents an operator with formal parameters. A format de�nition de�nes how these parameters
are positioned and interleaved with text, such as keywords and symbols. The formatting is
based on the notion of a box. Each leaf of the abstract syntax tree and each text is considered
to form an atomic box. Atomic boxes are glued to compound boxes by square brackets in
a formatting speci�cation. In doing so, separator de�nitions between boxes given in pointed

166 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

brackets de�ne how a box is aligned. As an example consider an excerpt of a prettyprinter for
Groupie interface de�nitions below:

prettyprinter Standard of MIE is

rules

adt_module(*ident1, *comm, *ident2, *op_list, *import_part, *ident3) ->

[<v 0,0> [<h> "DATATYPE MODULE " *ident1 ";"]

<v 4,1> *comm

<v 4,1> [<v 0,0> "EXPORT INTERFACE"

<v 2,1> [<h> "TYPE " *ident2]

<v 2,1> *op_list

]

<v 4,2> *import_part

<v 0,1> [<h> "END MODULE " *ident3 "."]

]

op_list(*operation, **op_list) ->

[<v 0,0> *operation(**oplist)

]

...

end prettyprinter

The �rst rule de�nes the unparsing of a complete ADT module. A module is composed of
�ve vertically aligned boxes. The �rst box contains the module head. It is itself composed
of three atomic boxes, which are horizontally aligned. The second box is an atomic box that
contains a module's comment. It has a horizontal indentation, to the outer box, of four spaces.
Moreover, a blank line is inserted before the comment. Similar de�nitions de�ne alignments for
the type identi�er, operation lists, import interface and the module tail. The unparsing scheme
de�nition is very similar to both GTSL and SSL. PPML is more powerful in this respect since
it supports the de�nition of several prettyprinters, which GTSL does not for reasons that have
already been discussed.

Static Semantics in TYPOL: A TYPOL speci�cation is based on a METAL abstract
syntax de�nition. This syntax de�nition is imported with a use directive. A TYPOL speci�-
cation then consists of sets of rules. Each set of rules is a named collection of inference rules.
These rules de�ne a formal system in which it is possible to prove that a particular proposition
holds. The declaration part of a set contains a judgement which is a signature de�nition for the
proposition to be proved by the set. Each of the inference rules has two parts called numerator
and denominator. The general form of a rule is:

<nominator>

<denominator>

The denominator is a sequent and the nominator is a list of sequents also called premises.
In natural semantics sequents express the fact that some hypotheses are needed to prove a
particular proposition. A sequent, therefore, has two parts which are delimited by the turnstile
symbol `. The �rst part of the sequent contains the hypotheses and the second part is called
consequent. The consequent of the denominator sequent is called subject of the rule. Sequents
are built from lists of expressions which are, in turn, formed from variables and operators
de�ned in the METAL abstract syntax speci�cation. Premises are then formed by a list of
sequents separated by the ampersand sign &.

6.6. RELATED WORK 167

program SCOPING_MIE is

set MODULE_OK is

judgement MODULE |- MODULE;

NAME_OK(MOD|-ID2) & TYPE_OK(MOD|-ID2) & OPLIST_OK(MOD|-OPL) & IMPORT_OK(MOD|-IM)

--

MOD |- adt_module(ID1,_, ID2, OPL, IM, ID3);

...

END MODULE_OK;

set NAME_OK is

judgement MODULE |- IDENT;

EQUAL(ID1|-ID3) & NOT_EQUAL(ID1|-ID2) & NOT_IN_OPLIST(OPL|-ID1)

MOD |- adt_module(ID1,_, ID2, OPL, IM, ID3);

...

end EXPORT_OK;

set NOT_IN_OPLIST is

judgement OP_LIST |- IDENT;

op_list[] |- _;

NOT_EQUAL(OPID|-ID) & NOT_IN_OPLIST(TAIL|-ID)

--

op_list[procedure(OPID,_,_).TAIL] |- ID;

NOT_EQUAL(OPID|-ID) & NOT_IN_OPLIST(TAIL|-ID)

--

op_list[function(OPID,_,_,_).TAIL] |- ID;

end OP_LIST_OK;

...

end SCOPING_GRE;

Figure 6.17: Excerpt of a TYPOL Speci�cation De�ning a Scoping Rule

Intuitively, an inference rule states that if all the sequents in the premises hold, the proposition
expressed by the denominator sequent holds. The order of the premises in a rule is not
important. An example of a TYPOL speci�cation is shown in Figure 6.17. It de�nes a
fragment of the scoping rules for the Groupie interface language.

The �rst rule set de�nes the overall correctness of modules. The subject of the �rst of its rules
is determined by the METAL operator adt module. Thus, this rule de�nes static semantics of
modules that are ADT modules. Such a module is correct if the sequents in the nominator
part can be proved. These require the ADT module's name, its type, the operation list and the
import to be correct. Very similar rules are de�ned for the other module types, but they are
omitted here for reasons of brevity. In order to prove the correctness of the module name, the
judgement de�ned in the rule set NAME OK must hold for the match determined by MODULE OK.
Thus, we must be able to deduce the module identi�er from the module hypothesis. In order
to prove this, the three sequents in the nominator part of the rule must hold. Informally,
this means that the identi�er in the module's head must be equal to the identi�er in the tail.
Moreover, this identi�er must be di�erent from the exported type name. The third sequent
requires that the module identi�er must not occur in the operation list. While the rule sets
for the �rst two sequents are trivial, the set to be proved for the third sequent requires a list

168 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

traversal. This is de�ned in rule set NOT IN OPLIST. It consists of three rules. The �rst is
an axiom that always holds. It de�nes that the empty operation list does not contain any
identi�ers. The second rule de�nes that the identi�er does not occur in the list if the �rst
element is a procedure, its name is unequal to the identi�er and the identi�er does not occur
in the tail of the list. The third rule de�nes the same for functions.

TYPOL provides a powerful means for de�ning scoping rules and the type system of a language.
The tool builder can de�ne them in a declarative way and abstract from particular execution
dependencies. Resolution of these dependencies is implemented in the TYPOL compiler by
mapping a TYPOL program to a Prolog program which exploits backtracking in order to �nd
a valid execution sequences of rules.

Just as de�ciencies were identi�ed for SSL in the previous section, TYPOL is not capable of
expressing inter-document consistency constraints. Again the reason is that the universe over
which expressions can be de�ned in TYPOL is determined by the abstract syntax speci�cation
of one language.

In addition, TYPOL rules are not as concise as they could be. Consider the last two rules in set
NOT IN OP LIST. They only di�er in the operator that is applied to the �rst list element in order
to bind OPID. Similarly, the de�nitions of rules in set MODULE OK only di�er regarding the checks
of exports since all module types have imports and names. In GTSL, this de�ciency is removed,
since semantic rules are inherited by subclasses. The rule for module name correctness, for
instance, is speci�ed in class Module and inherited by all subclasses.

A further drawback of TYPOL is that it can only de�ne correctness conditions for static se-
mantics. It is not possible to de�ne error messages to be displayed if an error is detected.
Hence, it is particularly di�cult for a user who may be unfamiliar with a language to under-
stand why a sentence is considered wrong. Moreover, in TYPOL, it is not possible to de�ne
the means that would prevent the introduction of errors, such as change propagation to depen-
dent increments. GTSL di�ers from that in that it includes a number of exible mechanisms
that can be used to de�ne error messages and also that the strategy for accepting or rejecting
erroneous input can be de�ned in interactions.

Tool Interactions: Centaur cannot generate tools that support structure-oriented editing.
It can only generate editors that facilitate free textual input of those increments whose phyla
have been declared as entries. Therefore, Centaur does not have any means for de�ning the
interactions and their preconditions. Moreover, concurrent free textual input of multiple users
is not supported at all.

Structuring Metal, TYPOL and PPML speci�cations: METAL and PPML speci�-
cations can be structured into chapters, which may be nested. An atomic chapter, which is
not nested further, consists of an abstract syntax speci�cation and of concrete syntax rules.
Chapters are meant to be used for structuring the overall METAL speci�cation according to
the semantic concepts of the language. Besides grouping related component speci�cations to-
gether, chapters do not have any further semantics. A TYPOL program is structured into sets
of rules, each of which is a formal system. Moreover, the METAL abstract syntax de�nition a
TYPOL program is based on must be de�ned by a use directive.

6.6. RELATED WORK 169

Structuring in GTSL is horizontal, that is di�erent properties of the same increment are
speci�ed together in an increment class. This is particularly appropriate since the di�erent
properties are highly dependent on each other. Changes to the abstract syntax immediately
a�ect the unparsing scheme as well as semantic rules. Many changes can thus be performed
in a GTSL speci�cation without a�ecting any other class at all. In addition, explicit imports
denote the dependencies that have to be considered during a change. Unlike this, structuring
in Centaur is vertical in the sense that the same properties of di�erent increments are speci�ed
together and only dependencies of these properties are explicit. This structuring principle is
inferior to GTSL since many dependencies of other properties are not explicit at all. The
TYPOL example rule set NOT IN OP LIST, for instance, uses the METAL operators function

and procedure without having to declare their use explicitly.

Reusing Metal, TYPOL and PPML speci�cations: METAL, TYPOL and PPML
speci�cations do not support reuse. As we have seen above, it is possible to identify di�erent
components of these speci�cations. The relationships they have to each other, however, are
not explicit. If a component is to be reused it is hard to identify the other components that
must be either reused as well or constructed anew.

Validating Metal, TYPOL and PPML speci�cations: METAL, TYPOL and PPML
are strongly typed languages with well de�ned scoping rules. They are validated during editing
of speci�cations with dedicated editors that have been generated with Centaur itself. Moreover,
Centaur o�ers a debugger which can be used for validating dynamic semantics of TYPOL
programs. As mentioned above, inter-document consistency constraints between METAL,
PPML and TYPOL speci�cations are not validated.

6.6.3 PROGRESS

PROGRESS is a speci�cation language for de�ning graph grammars. It evolved from the
IPSEN [Nag85] project where graph grammars were used for the de�nition of abstract syntax
graph structures [ELS87, ELN+92]. PROGRESS, however, is not explicitly devoted to the
speci�cation of syntax graphs, but is intended as a language for the de�nition of arbitrary
graph classes. In [Sch91a], for instance, it is used for the de�nition of family chart graphs and
recently it has been successfully applied to the de�nition of a CIM environment. As a general
purpose language, it can obviously not provide the speci�c support for tool speci�cation that
SSL, the Centaur languages and also GTSL provide. We shall now discuss the extent to which
PROGRESS meets our requirements. The comparison with GTSL will highlight the bene�ts
of de�ning a domain speci�c language for tool speci�cation. GTSL, however, will almost
certainly fail if it is used for specifying problems from other domains.

Abstract Syntax: A PROGRESS speci�cation consists of the de�nition of node types, node
classes, attributes, edge types, a start node type, path expressions, graph tests, graph rewriting
rules and transactions. A node type is de�ned by declaring a type name and determining
at least one super node class. Node classes, in turn, de�ne common properties that several
node types inherit. Node classes can, themselves, inherit from multiple other node classes.
Attributes in PROGRESS are used to store lexical values as well as semantic information.
Attribute types, however, cannot be de�ned in PROGRESS. A programming language has to

170 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

be used for this purpose. An edge type is de�ned by determining a name and de�ning the
source and target node classes. PROGRESS is polymorphic. Therefore, edges may start from
or lead to nodes whose types have been derived from the respective node class determined in
the edge type de�nition. This corresponds to property polymorphism in GTSL. As an example,
consider an excerpt of a PROGRESS speci�cation for the Groupie interface tool depicted in
Figure 6.18.

node class GRAPH_NODE end;

intrinsic Id: Number := 0;

end;

node class IDENTIFIER is a GRAPH_NODE

intrinsic Name:STRING:=nil;

end;

node class LIST_HEAD is a GRAPH_NODE end;

node class LIST_ELEM is a GRAPH_NODE end;

node class MODULE is a GRAPH_NODE end;

node class PLACEHOLDER is a GRAPH_NODE end;

node class MOD_NAME is a IDENTIFIER end;

node class OPERATION is a LIST_ELEM end;

node class OP_LIST is a LIST_HEAD end;

...

node type PhModule: PLACEHOLDER,MODULE end;

node type ADTModule: MODULE end;

node type ADOModule: MODULE end;

node type ModName: MOD_NAME end;

node type PhOpList: PLACEHOLDER,OP_LIST end;

node type OpList: OP_LIST end;

node type PhOp: PLACEHOLDER,OPERATION end;

node type Function: OPERATION end;

node type Procedure: OPERATION end;

edge type ToFirst: LIST_HEAD --> LIST_ELEM;

edge type ToLast: LIST_HEAD --> LIST_ELEM;

edge type ToElem: LIST_HEAD --> LIST_ELEM;

edge type ToNext: LIST_ELEM --> LIST_ELEM;

...

Figure 6.18: Abstract Syntax Graph Structure in PROGRESS

The most general node class is GRAPH NODE. Node class IDENTIFIER de�nes an attribute Name,
which is used to store the lexical value of the identi�er. The attribute is declared to be
intrinsic, which means that values will be assigned externally.

PROGRESS does not include any primitives for ordered multi-valued edges that are required
in syntax graph de�nitions and are, therefore, included in SSL, METAL and GTSL. In fact,
a number of additional edges are needed to implement these list structures. Inheritance may
be used to partly overcome this de�ciency. The example, therefore, de�nes two abstract node
classes LIST HEAD and LIST ELEM for that purpose. Heads implement a class for the source nodes
of a multi-valued edge and LIST ELEM de�nes the target class. Four edge types are introduced
for lists, namely ToFirst, ToLast, ToElem and ToNext. Edges of the �rst two types connect the
head of a list with the �rst or last element respectively. ToElem edges connect the head with
each element and ToNext edges connect each element of a list with its successor element.

Node class MODULE de�nes the common properties of arbitrary module node types. Therefore,
the class of node type ADTModule and the other kinds of Groupie modules is MODULE. Note
that we also have to de�ne a node type to model module place holders. This is due to the
fact that PROGRESS, as a general purpose language, does not provide implicit mechanisms
to handle the concept of place holders since these are rather speci�c to syntax-directed tools.
GTSL de�nes this concept in the basic prede�ned class Increment and implements it in implicit
methods. It thus relieves the tool builder from de�ning a number of additional node types
that are required in PROGRESS.

To fully determine the structure of abstract syntax graphs a number of graph rewriting rules
have to be de�ned. The graph class de�ned by the PROGRESS speci�cation is then the set
of those graphs that can be generated from a start node by applying the rewriting rules. An
example of a graph rewriting rule is given below. It de�nes a generic rule that expands a place
holder with four children.

6.6. RELATED WORK 171

::=

end;

production ExpandWithFourChildren<Root:GRAPH_NODE;1st,2nd,3rd,4th:PLACEHOLDER) =

2:PLACEHOLDER 2’:Root
To1st

To2nd

To3rd

To4th

3’:1st

5’:3rd

4’:2nd

6’:4th

The rule may then be applied within a transaction that determines actual parameters of the
formal node type parameters. A transaction that invokes the above rewriting rule in order to
expand the di�erent types of modules is de�ned below:

transaction ExpandModule(Current:Number; type:String) =

ASTIsOfType<MODULE>(Current) &

choose

when valid type '=' "ADTModule" then

ExpandWithFourChildren<ADTModule,ModName,TypeName,OpList,ImportInterface>();

else

when valid type '=' "ADOModule" then

ExpandWithThreeChildren<ADOModule,ModName,OpList,ImportInterface>();

else

when valid type '=' "FModule" then

ExpandWithThreeChildren<FModule,ModName,OpList,ImportInterface>();

else

when valid type '=' "TCModule" then

ExpandWithTwoChildren<TCModule,ModName,TypeNameList>();

end;

The transaction uses the test ASTIsOfType to check whether the node Current, which is to be
expanded, is a MODULE place holder node. Tests are similar to left-hand sides of graph rewriting
rules. They return a boolean value that de�nes whether the test was successful or not. If the
selected increment is a place holder of a subtype of MODULE then a case switch selects which
particular rule to apply based on the argument type. Note that this case switch is necessary
because the actual node type parameters of the graph rewriting rules need to be determined.
In GTSL this is solved in a more elegant way by the implicit methods expand and scan to
establish an abstract syntax tree and collapse to delete it. The case switch performed in
the transaction above is implicitly performed in GTSL during dynamic binding. An expand

message sent to an increment is dynamically bound to the right expand method, which is the
one de�ned in the class of the increment. Therefore, the test ASTIsOfType is not required in
GTSL, either.

A further weakness arises if we consider the de�nition of documents. Besides the edge types
that represent abstract syntax relationships, we will also have to de�ne edge types for se-
mantic relationships. These might connect nodes from di�erent documents. PROGRESS,
however, does not separate these edge types. Therefore, we cannot identify documents within
a project-wide abstract syntax graph. As discussed in Section 3.1, the de�nition of documents
is of primary importance for version and con�guration management purposes. Therefore, the
speci�cation has to be extended with additional node and edge declarations that specify doc-
uments. This is extensively discussed in [Wes91]. In GTSL this speci�cation overhead is not
required because documents are implicitly de�ned due to the distinction of abstract syntax
children and semantic relationships. Documents are then determined by root increments, i.e.

172 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

instances of the prede�ned class Document. All increments that are reachable from a given root
increment via abstract syntax children implicitly belong to the document.

Lexical Syntax, Concrete Syntax and Unparsing Schemes: The problems of de�ning
syntax and unparsing schemes are highly speci�c to syntax-directed tools. In addition, they
cannot reasonably be speci�ed with graph grammars. As a language for graph grammars,
PROGRESS does not provide any primitives for unparsing schemes, concrete and lexical syntax
and these concerns cannot be de�ned at all with PROGRESS.

Static Semantics and Inter-Document Consistency Constraints: Graph rewriting
rules are not only used for generating abstract syntax trees. They are also suitable for de�ning
static semantics and inter-document consistency. For an eager approach to handling these
constraints, which does not tolerate errors, graph rewriting rules may restrict the applicability
of the rule to contexts that do not violate static semantics. Path expressions can be used to
de�ne these context sensitive restrictions on the left-hand side of the rule. The rule is then
applicable only if a match can be found in the host graph that includes a path that is conform
to the expression. As an example consider the following rule, which de�nes that using type
place holders may only be expanded if the new value matches a declaration.

ToResType
::=

end;

Selection
1:Cursor

2:Function 3:PhUsingType

SearchId(Id)

2’:2
ToResType

3’:UsingType

4’:4

DeclaredIn

4:TypeDecl

transfer 3’.Name=Id

production ExpandResultType(Id:STRING) =

Path expressions are graphically depicted in the graph rewriting rule as double-lined arrows
labelled with their name and the actual parameters of their invocation. Informally, the path
expression SearchId searches for the node of type TypeDecl where the string passed as param-
eter is declared. As the path expression appears on the left-hand side of the rewriting rule,
the rule can only be applied if such a path to a TypeDecl node can be found in the host graph.
If found, the related identi�ers are connected with a context-sensitive edge, which reects the
use/declare relation between the two nodes. The formal de�nition is given below:

path SearchId(p:STRING):IDENTIFIER --> IDENTIFIER =

instance of UsingType & <--ToResType--

& <--ToElem--

& <--ToOpList--

& ((--ToExpTyp--> & Definition(p))

or (--ToImpInt-->...))

end;

restriction Definition(Id:STRING) : IDENTIFIER =

valid self.Name=Id;

end;

6.6. RELATED WORK 173

Note that PROGRESS path expressions are more powerful than their counterpart in GTSL.
PROGRESS path expressions can express parallelism which is not required for tool speci�-
cation and, therefore, neither included in the example nor in GTSL. PROGRESS path ex-
pressions are set-oriented, i.e. intermediate steps are always sets of nodes rather than single
nodes as in GTSL. GTSL path expressions are, however, safer. Firstly, steps in GTSL path
expressions have an explicit cardinality and the type system can prove that the assumptions
of a tool builder regarding the cardinality hold. In PROGRESS the tool builder cannot be
sure whether a path expression matches multiple target nodes. In the above case, the path
expression SearchIdmust be considered wrong if it reveals a set of nodes rather than the single
node that declares the identi�er. The PROGRESS type system cannot �nd out about that. As
a further contribution to safer path expressions, GTSL o�ers covariant property rede�nition.
In PROGRESS it is not possible to rede�ne edge types in such a way that they connect more
speci�c node types. The above example, therefore, uses an instance of operator, which is the
equivalent of a GTSL type cast, to be able to traverse along an outgoing ToResType edge from
a node whose static type is IDENTIFIER. In GTSL the use of unsafe type casts can always be
avoided with covariant rede�nition of abstract syntax children or semantic relationship links,
for example.

The applicability of path expressions and restrictions is not con�ned within an abstract syntax
graph of one document. Therefore, inter-document consistency constraints may be expressed
in the same manner as static semantics constraints.

While PROGRESS is very appropriate for the de�nition of eager enforcement of static se-
mantics and inter-document consistency constraints, a strategy that tolerates errors is more
di�cult to de�ne. The task that has been performed by the single rule in the eager strategy
is, for the lazy strategy, split into four rules as given in Figure 6.19. The �rst rule expands
the place holder of a using type without checking for its consistency. The second rule binds
a correct using type to its declaration with a semantic edge DefinedIn. It also removes an
error descriptor from a set of errors that is associated as an attribute to the using type node.
The third rule unbinds a using type, whose declaration is no longer available, and removes
the semantic edge DefinedIn. The last rule inserts an error descriptor into a set of errors for
each using type node that is not properly bound to a declaration. Note that this speci�cation
exploits the fact that PROGRESS rules are applied non-deterministically by the PROGRESS
interpreter.

It is unclear to us how e�ciently the PROGRESS interpreter, which is still under construction,
can execute lazy speci�cations like the one above. It will involve a signi�cant complexity to
check all types that do not have an outgoing semantic edge against path expression SearchId.
This concern is reinforced if we consider the complexity that is required for interpretation of
path expressions like SearchId. In PROGRESS any step in a path expression is an operation
on a set with the inherent complexity. In GTSL steps that denote abstract syntax children
or links in semantic relationships in path expressions are interpreted within the constant time
that is required for dereferencing an instance variable. It would be even more complex to check
whether the binding of all bound types is still correct, since it involves negation of a rather
complex path expression. This might require signi�cant backtracking. In GTSL this problem
is remedied, since the speci�cation of static semantic rules guides an incremental evaluation
in the sense that rule predicates refer to incremental changes or deletions made since the last
check.

174 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

ToResType
::=

end;

Selection
1:Cursor

2:Function 3:PhUsingType 2’:2
ToResType

3’:UsingType

4’:4

DeclaredIn

4:TypeDecl

DeclaredIn
::=

3:UsingType 3’:3

SearchId(3.Name)

end;
transfer 3’.Errors=3.Errors \ {"TypeNotDeclared"}

4’:44:TypeDecl

DeclaredIn
::=

3:UsingType 3’:3

SearchId(3.Name)

end;

4’:44:TypeDecl

::=

3:UsingType 3’:3

end;
 ∪ {"TypeNotDeclared"}transfer 3’.Errors=3.Errors

DeclaredIn

transfer 3’.Name=Id

production ExpandResultType(Id:STRING) =

production BindUnboundDecl =

production UnbindWronglyBoundDecl =

production MarkWronglyBoundDecl =

Figure 6.19: Scoping Rule in PROGRESS

Tool Commands: A tool builder can de�ne the preconditions under which a command is
o�ered using the left-hand side of graph rewriting rules. It is, however, not possible to de�ne
how a user can choose to apply a particular graph rewriting rule to a host graph. Neither can
PROGRESS de�ne particular user dialogues that are required in order to inform a user about
some particular error, for example. PROGRESS speci�cations are instead used to generate
an abstract data type module which implements the graph class de�ned by the PROGRESS
speci�cation. Transactions and rewriting rules are generated into operations of this abstract
data type and some upper layers, which have to be coded or generated otherwise, might use
these operations to implement tool commands, for example.

We have seen that PROGRESS transactions can be used to bind multiple graph tests and
rewriting rules together into a larger execution unit. The semantics of a transaction in
PROGRESS is then atomicity and durability, i.e. all rules are applied completely or not
at all. Once successfully completed, the e�ect of a transaction is persistent. Compared with
transactions in database systems, or interactions in GTSL, a PROGRESS transaction lacks
the isolation property. Therefore, PROGRESS transactions cannot be used for specifying
concurrent accesses of multiple users to the abstract syntax graph.

6.7. SUMMARY 175

Di�erent levels of abstraction: PROGRESS does not o�er di�erent levels of abstraction
on its speci�cation as GTSL does. Obtaining an overview of the abstract syntax graph struc-
ture is rather di�cult. A tool builder, therefore, has to consider several related graph rewriting
rules and must assume an order in which they are applied. In GTSL, the entity relationship
model is devoted to this purpose and represents the structure in a hierarchical manner on a
type level of abstraction.

6.7 Summary

In this chapter, we have delineated a number of requirements of tool speci�cation languages.
These languages must support the de�nition of an abstract syntax for target languages to
be edited and analysed by the speci�ed tool. Moreover, the concrete syntax and unparsing
schemes for target languages must be de�nable. Any tool speci�cation language must enable
static semantics and inter-document consistency constraints to be de�ned, even between doc-
uments of di�erent types. They have to support de�nition of concurrently executable user
commands. These de�nitions should be carried out at appropriate levels of abstraction. As
general speci�cation language requirements, they should enforce structuring of speci�cations
into components to obtain comprehensible, maintainable and reusable speci�cations.

We have introduced several languages for tool speci�cation on di�erent levels of abstraction.
At a very high-level of abstraction, the syntax of the language is de�ned in terms of an
extended and normalised BNF. At a lower level of abstraction, we have suggested an extended
entity relationship model based on the OMT notation. It can be used to add structural
concerns for static semantics and inter-document consistency based on an abstract syntax tree
de�nition that is generated from an ENBNF. We have then suggested a domain-speci�c object-
oriented language that de�nes the behaviour of increment classes, which have been identi�ed
in the entity relationship model. Unparsing schemes declare the textual representation of
documents. Methods de�ne the operations that are exported to other classes in order to
allow for increment modi�cations. Semantic rules de�ne static semantics and inter-document
consistency constraints in a declarative way. Interactions de�ne tool commands and their
appearance in context-sensitive menus. The language distinguishes between di�erent kinds
of increment classes in a domain-speci�c way and distinguishes between di�erent kinds of
properties, i.e. attributes, abstract syntax, and semantic relationship links. These distinctions
enable a domain-speci�c type system to be de�ned. That type system enables a number of
speci�cation errors to be detected. We have then suggested a library of prede�ned classes
that provide solutions to very common problems including command de�nitions for structure-
oriented editing and version and simple con�guration management. Inheritance de�ned for
GTSL is then exploited to reuse classes from this library in tool-speci�c classes.

None of the related tool speci�cation languages ful�ls all requirements. The reason is that they
have been de�ned for di�erent purposes. The Synthesizer Generator has been built to generate
tools for programming environments. These environments are typically used by single users
and are only built for a single language. Thus inter-document consistency constraints, concur-
rency control mechanisms or version and con�guration management strategies for supporting
multiple-users have not been considered at all. Consequently, SSL cannot be used to de�ne
these concerns. The Centaur environment was intended as an environment for prototyping
language de�nitions. For this purpose, it is again not important to have concurrency control,
version and con�guration management and inter-document consistency constraints. Nor do

176 CHAPTER 6. THE GOODSTEP TOOL SPECIFICATION LANGUAGES

user-interactions play an important role here. Therefore, the languages used by Centaur do
not address these concerns. PROGRESS is intended as a general purpose language for the
de�nition of graph grammars. As such it does not address the speci�c requirements that arise
during construction of syntax-directed tools, such as de�nition of lexical and concrete syntax,
unparsing schemes and tool commands. However, what all the languages that we reviewed
have in common is that their dynamic semantics is formally de�ned. This is not the case for
GTSL which is subject to further work.

Chapter 7

The GENESIS Environment

ENBNFs, entity relationship models, class interfaces and speci�cations fully determine the
tools of an environment. To make the practical use of these languages easier we require a
further speci�cation. It will provide the tool builder with an overview of the class hierarchy
of a tool speci�cation. A fundamental understanding of the class hierarchy is very important.
Firstly, it determines inherited properties, methods, semantic rules and interactions. Secondly,
it is important to know whenever an expression is assigned to a property, because assignments
are polymorphic and the static type of the expression must be a subtype of the static type of
the property. The subtype relationship is, in turn, induced by the inheritance hierarchy. We,
therefore, refer to this new language as inheritance diagrams. These diagrams are required
because the inheritance hierarchy is only determined by the inheritance section of the class
interfaces. Even if the tool speci�cation environment o�ers sophisticated browsing capabilities,
it will be too time-consuming to investigate all these sections in order to get an overview of the
class hierarchy. Instead, tool builders require a graphical notation that provides this overview
at a glance. Inheritance diagrams are de�ned in Section 7.1.

The di�erent languages specify the same tool at di�erent levels of abstraction. They, there-
fore, address one of our main requirements. The disadvantage is that there is an inherent
redundancy between the contents of the speci�cations written in the di�erent languages. An
immediate consequence of this redundancy is that changes to one de�nition will a�ect the
consistency of another de�nition if it contains speci�cation fragments that are redundant to
that which was changed. We, therefore, need to de�ne consistency constraints to be able to
detect these situations. As examples consider productions of the ENBNF that must be re�ned
by classes in the entity relationship model, which, in turn, have to be re�ned with an interface
and a speci�cation. Keywords on the right-hand side of an ENBNF production determine
keywords in unparsing schemes of non-terminal increment classes. Aggregation relationships
in an entity relationship diagram must be reected by abstract syntax children, and reference
relationships have to be re�ned in semantic relationships. With the introduction of inheri-
tance diagrams, the inheritance sections of class interfaces must correspond to the subclass
relationship in the graphical notation. We, therefore, de�ne consistency constraints like the
above in more detail in this chapter.

Like a programmer who works incrementally and intertwined between design and implemen-
tation, a tool builder wants to be able to edit ENBNF, inheritance and entity relationship
diagrams, and have the impact of changes propagated into class interfaces and class speci�-
cations, for example. The paths for these propagations will be determined by the consistency

177

178 CHAPTER 7. THE GENESIS ENVIRONMENT

constraints between the di�erent languages. The need for an integrated environment support-
ing tool speci�cation arises. In particular, the environment must check and even preserve con-
sistency between the various speci�cations. This environment is called GENESIS (Generation
of syntax-directed integrated software development tools).

UNIX NFS

Syntax View
 Editor

 Inheritance
View Editor

 E/R
Editor

Interface
 Editor

Specification
 Editor

O2 Database
 GTSL
Compiler

Figure 7.1: The Genesis Environment

The main building blocks of the GENESIS environment are displayed as rectangles in Fig-
ure 7.1. Arrows denote usage of services. GENESIS contains integrated editors for the di�er-
ent languages that were identi�ed. These �ve editors are integrated on top of an O2 database.
The inter-document consistency constraints and the way they are handled by these editors are
discussed in Section 7.2. In addition, GENESIS contains a compiler that translates a GTSL
speci�cation into an executable tool. Therefore, class interfaces and speci�cations are dumped
from the database to the �le-system and are then translated into a tool that is also stored
in the �le-system. By means of the compiler, GTSL speci�cations become executable. The
implementation of the compiler will be discussed in the next chapter.

7.1 Inheritance Diagrams

In inheritance diagrams, classes are again represented as rectangles. The class names are
enclosed in these rectangles. Rectangles that represent increment classes have a solid shape,
whereas rectangles that represent non-syntactic classes are depicted by a dashed shape. An
arrow that leads from a rectangle ci to a rectangle cj denotes that class ci inherits from cj . As
an example, consider the inheritance diagram of the Groupie module interface tool, displayed
in Figure 7.2.

Besides de�ning the inheritance hierarchy itself, the inheritance diagram also identi�es those
classes that belong to the speci�cation of a tool. Hence there are as many inheritance diagrams
in an environment speci�cation as there are tools that need to be generated. Contrary to that,
there is only one entity relationship model for an environment de�nition. It de�nes the union
of all classes contained in the di�erent inheritance diagrams. Then semantic relationships
between di�erent document types are de�ned in a �ne-grained manner as relationships between
classes that belong to di�erent tools. The hierarchical structuring mechanisms will be used to
separate the classes that belong to di�erent tools into di�erent subdiagrams.

In addition to tool-speci�c classes, all prede�ned classes that participate in inheritance rela-

7.2. TOOLS OF THE ENVIRONMENT 179

Increment

TCModule ADOModule FModule ADTModule

ParName UsingTypeOptionalIncrement TypeDefList TypeDeclUseableIncrement UsingIncrement Import Document

ModNameParameterListImportInterfaceComment OpName TypeName TypeImport ImpModule OpImportId OpImport DocumentVersion

Module

Commentable

Function Procedure

Operation

TypeDef

InParameter InOutParameter

TypeNameList ImportList OperationListParameter

Figure 7.2: Inheritance Diagram of Groupie Interface Editor Speci�cation

tionships with tool-speci�c classes are included in the inheritance diagram. This allows a tool
builder to identify properties, methods, semantic rules and interactions that a tool inherits
from prede�ned classes. Note that not all prede�ned classes appear in the inheritance diagram,
but only those that have tool-speci�c subclasses. This avoids overloading the diagram with un-
necessary information. A tool builder can, nevertheless, de�ne entities in tool-speci�c classes
whose types are prede�ned classes that were not included in the inheritance diagram. The
Groupie interface tool speci�cation, for instance, de�nes an attribute DefinedNames in class
Module whose type is the prede�ned class SymbolTable although SymbolTable is not included
in the inheritance diagram.

The obvious static semantic constraints that must hold for the inheritance diagram are the
following:

IV1: class names are unique and di�er from names of prede�ned classes,

IV2: only one arrow may be de�ned between two rectangles,

IV3: the inheritance hierarchy is acyclic, and

IV4: if ci inherits from cj then ci and cj are of the same kind, i.e. they are either both
increment classes or both non-syntactic classes.

7.2 Tools of the Environment

Software development tools are software, too. Tools for developing software development tools
should, therefore, meet the requirements that we have identi�ed in Chapter 2 for software
development tools. Thus, each tool should support hybrid syntax-directed editing of the
respective documents, check and visualise static semantic errors, manage di�erent versions and
con�gurations of the documents and facilitate concurrent editing of multiple tool builders. In
particular, the tools should be integrated so that they check and even preserve the various
inter-document consistency constraints between the di�erent languages.

We aim at constructing the required tools for the GENESIS environment using the languages
that have been de�ned in this thesis. This will be discussed in Chapter 9. We, therefore, have to
de�ne tool requirements. The requirements with respect to syntax and static semantics have
already been determined during the introduction of the di�erent languages in the previous

180 CHAPTER 7. THE GENESIS ENVIRONMENT

chapter. What is still missing is a de�nition of the inter-document consistency constraints.
This de�nition must also determine the way in which inconsistencies are handled or even
avoided. In fact, this de�nition will be the requirements de�nition for tool integration in the
GENESIS environment.

The general strategy for constraint handling should be to preserve consistency as far as possible
without confusing the tool builder(s) involved. There are by de�nition two di�erent documents
involved in an inter-document consistency constraint. Among these, it is possible to identify
a determining document and a dependent document. The determining documents are those
at the higher level of abstraction where development usually starts. The style to constraint
handling will be such that changes made in a determining document are propagated into
the dependent document. Consistency constraints will be preserved then. Changes in the
dependent document, however, are not propagated to the determining document because it
determines the dependent document and not vice versa. We, therefore, guide the tool builder
to think about a change at the appropriate level of abstraction, perform the change there
and then he or she will have the impact of the change propagated to the a�ected lower-level
documents. In a dependent document, therefore, the style of constraint handling will be lazy
in the sense that tools visualise violations, but do not reject commands that cause violations.
In that way tool speci�cation is not hampered by enforcing consistency, but guided towards a
consistent speci�cation.

7.2.1 ENBNF Editor

ENBNFs are determining documents for the entity relationship model, the inheritance diagram
and class interfaces. We �rst de�ne a number of constraints for consistency between these
languages. These constraints will then be handled in such a way that changes are propagated
to depending documents. In that way, the tool speci�cation process is again accelerated since
these change propagations will generate a signi�cant number of speci�cation fragments from
the syntax de�nition in lower-level documents.

7.2.1.1 Consistency Constraints

We now exploit the normalisation of the ENBNFs to de�ne consistency constraints. They are
de�ned on the basis of the di�erent kinds of productions. For each structure production sp of
an ENBNF, there has to be a non-terminal increment class c(sp). This class must be reected
in the entity relationship model. Further constraints on the entity relationship model, the
inheritance diagrams and class interfaces will de�ne that the class will be reected in lower-
level documents as well. The name of c(sp) in the di�erent documents must match the name
of the symbol on the left-hand side of sp.

For each symbol com that appears in the component list of sp, the entity relationship diagram
that includes c(sp) must de�ne an aggregation relationship. The source class must be c(sp)
or one of its super classes. The target class of the aggregation relationship must be the class
identi�ed by com. Since we cannot ensure this constraint without the existence of that class in
the entity relationship diagram, we require that static semantic constraint SV1 always holds.
The constraint that com must also be reected in the abstract syntax section of the class
interface will be de�ned indirectly via a constraint on the entity relationship diagram and,
therefore, need not be considered here.

7.2. TOOLS OF THE ENVIRONMENT 181

Each keyword that appears on the right-hand side of a structure production sp has to occur
as a keyword in the unparsing section of c(sp). For each symbol s on the right-hand side of
sp, there has to be a child increment of the respective type in the unparsing section of c(sp).
The order of keywords and symbols in sp must be respected by the order of the equivalent
de�nitions in the unparsing section of c(sp). Note that other de�nitions such as pretty-printing
items may be included in an unparsing section. Since these do not have any impact on the
language they have no counterpart in the ENBNF.

For a structure production sp, the class c(sp) has to inherit from the prede�ned increment
class NonterminalIncrement. This inheritance relationship has to be reected in the inheritance
diagram.

For each regular expression production rp given in an ENBNF, there has to be a terminal
increment class c(rp). c(rp) must be reected in the entity relationship model. The name
of the symbol on the left-hand side of rp has to be equal to the class name of c(rp). The
expression de�ned in the regular expression section in the class interface of c(rp) has to be
equal to the regular expression given on the right-hand side of rp.

For a regular expression production rp the respective class c(rp) has to be a subclass of the
prede�ned increment class TerminalIncrement. Therefore, the inheritance diagram de�nition
has to include the required inheritance declarations.

For each list production lp of an ENBNF, there has to be a non-terminal increment class
c(lp) in the entity relationship model. The name of c(lp) and the name of the symbol on the
left-hand side of lp must be equal.

For each list production lp, the entity relationship model must de�ne an ordered multi-valued
aggregation relationship. The source class must be c(lp) or one of its super classes. The
target class has to be the class identi�ed by the name of the symbol given in braces. Again a
constraint de�ned for the entity relationship model will de�ne that the abstract syntax child
is also reected in the interface de�nition of class c(lp)

The multi-valued abstract syntax child in c(lp) has to be referenced from the unparsing scheme.
If a delimiter de�nition is given in round brackets in lp, the keywords contained in the de�nition
have to be inserted into the GTSL DELIMITED BY clause that follows a multi-valued abstract
syntax child in the unparsing section.

The class c(lp) that originates in a list production in general has to be a subclass of the
prede�ned GTSL class IncrementList. It is de�ned as a subclass of TerminalIncrementList,
if the symbol on the right-hand side of lp is declared in a regular expression production. It
is de�ned as a subclass of NonterminalIncrementList, if the symbol on the right-hand side is
declared in a structure production. The class hierarchy has to be de�ned accordingly in the
inheritance diagram.

For each optional production op a class c(op) has to be de�ned. The name of the symbol on the
left-hand side of op must match the class name of c(op). The class c(op) has to be a subclass
of the prede�ned increment class OptionalIncrement. A respective inheritance declaration,
therefore, has to be included in the inheritance diagram. An optional production op is either
an optional regular expression or an optional structure production. Class c(op) is terminal if
op is an optional regular expression production and then the constraints for regular expression
productions are applied accordingly, otherwise it is non-terminal. The constraints for structure
productions must hold for op if it has a structure on the right-hand side.

182 CHAPTER 7. THE GENESIS ENVIRONMENT

For each alternative production ap, there has to be an abstract increment class c(ap) in the
entity relationship model. The name of the symbol on the left-hand side of ap has to be equal
to the name of class c(ap).

For each symbol a that appears as an alternative on the right-hand side of ap, a class c(a)
is available. This is ensured by the static semantic constraints on the ENBNF and previous
constraints. These classes c(a) have to be subclasses of c(ap). This must be reected in the
entity relationship model. A further constraint for the entity relationship model will ensure
that the inheritance relationship is also reected in the inheritance diagram. In general, c(ap)
inherits from the prede�ned increment class Increment. It may inherit from a more speci�c class
depending on the subclasses c(a). If they are all subclasses of NonterminalIncrement, c(ap) also
inherits from NonterminalIncrement. If they are all subclasses from TerminalIncrement, c(ap)
has to be a subclass of TerminalIncrement as well. These inheritance relationships need not
be reected in the entity relationship model, but must be de�ned in the inheritance diagram.

7.2.1.2 Constraint Handling

The ENBNF de�nition determines the entity relationship model, the inheritance diagram and
the class interface de�nition. Therefore, changes of the syntax will be propagated to these
depending views. The inheritance diagram and class speci�cations are further determined
by the entity relationship model and class interfaces, respectively. Therefore, changes will
be propagated further to these, if required. We demonstrate what these propagations can
achieve by means of an example taken from the Groupie speci�cation. The ENBNF fragment
below is taken from the Groupie module interface language de�nition and will now be used
for illustration purposes.

Module ::= ADTModule | FModule | ADOModule | TCModule .

ADTModule ::= "DATATYPE" "MODULE" ModName ";"

Comment

"EXPORT" "INTERFACE" "TYPE" TypeName ";" OperationList

"END" "EXPORT" "INTERFACE" ImportInterface

"END" "MODULE" ModName "." .

OperationList ::= {Operation} .

Operation ::= Function | Procedure .

Function ::= <ComponentList> .

Procedure ::= "PROCEDURE" OpName ParameterList ";" Comment .

ParameterList ::= | "(" {Parameter}(";") ")" .

Upon creation of a new ENBNF de�nition, a new inheritance diagram is created as well. In
addition, a new subsystem in the environment's entity relationship model is created. During
insertion of a new structure production into the list of ENBNF productions, the name of the
left-hand side symbol is determined by the tool builder. After that the production is inserted
into the list (like the production with Function on the left-hand side above). The ENBNF
editor has also triggered change propagations to the entity relationship model. It will further
propagate the change to the class interface de�nitions. The subsystem that corresponds to the
ENBNF now includes a new class Function.

If an element is inserted into the component list of a structure production, a number of
subsequent changes are performed in the unparsing sections and abstract syntax section of
the class interface that originated in the production. If the component element is a keyword
(like "PROCEDURE" above), it is inserted as plain text into the unparsing scheme. If the new

7.2. TOOLS OF THE ENVIRONMENT 183

component is a symbol (like OpName in production Procedure), a new aggregation relationship
is inserted into the entity relationship model and that, in turn, will trigger the creation of
a new child in the abstract syntax section of the interface (of class Procedure). In addition,
a place holder for a child is inserted into the unparsing scheme at the respective position.
If the new element is a list (like fParameterg in production ParameterList) a multi-valued
aggregation relationship is inserted into the entity relationship model, which will further ensure
that an abstract syntax child with a list type is inserted into the abstract syntax section of
the class interface. The base type is expanded to the name of the symbol given in braces.
Like a symbol, a place holder is inserted into the unparsing section in the right position.
Changes to the delimiter parts of the list component are mapped onto respective changes in
the DELIMITED BY clause of the unparsing scheme. As an example consider the GTSL class
interface fragments below, which have (transitively) been generated from the two productions
Procedure and ParameterList.

NONTERMINAL INCREMENT INTERFACE Procedure; NONTERMINAL INCREMENT INTERFACE ParameterList;

INHERIT <SuperClassList>; INHERIT OptionalIncrement;

EXPORT INTERFACE EXPORT INTERFACE

ABSTRACT SYNTAX ABSTRACT SYNTAX

<Child>:OpName; <Child>:LIST OF Parameter;

<Child>:ParameterList; END ABSTRACT SYNTAX;

<Child>:Comment

END ABSTRACT SYNTAX; UNPARSING SCHEME

"(", <Child> DELIMITED BY ";" END, ")"

UNPARSING SCHEME END UNPARSING SCHEME;

"PROCEDURE", <Child>, <Child>, ";", ...

<Child>

END UNPARSING SCHEME;...

We have only considered those changes above that, due to increment creation, were propagated
to the entity relationship model and indirectly into class interface de�nitions. We also have to
consider the inheritance diagram and de�ne propagations for increment creation operations.
Moreover, we have to consider operations that change or delete increments and de�ne change
propagations. This is done in a very straight-forward manner and, therefore, not considered
here further.

7.2.2 Entity Relationship View Editor

The entity relationship model determines inheritance diagrams and class interfaces in the
sense that any change to a class in the entity relationship model must be reected in the class'
interface de�nition and might also have to be reected in the inheritance diagram.

7.2.2.1 Consistency Constraints

Each diagram er that re�nes a subsystem of the top-level entity relationship diagram is associ-
ated with an inheritance diagram. For each class erc contained in er or its nested subsystems,
there must be a tool speci�c increment class c(erc) in the inheritance diagram. The names
of erc and c(erc) have to be equal. For each inheritance relationship in the entity relation-
ship model that de�nes erci as subclass of ercj , c(erci) has to be a subclass of c(ercj) in
the inheritance diagram. Note that we do not require the reverse, i.e. there may be inheri-
tance relationships that are not reected in the entity relationship model so as to decrease the

184 CHAPTER 7. THE GENESIS ENVIRONMENT

complexity. Only those relationships should be reected that contribute to the inheritance of
relationships and thus impact navigation paths. The inheritance diagram serves as a complete
overview of the inheritance hierarchy.

For each aggregation relationship ars that de�nes ercj as a component of erci, there must
be an abstract syntax child e in class c(erci) The child name must be equal to the name of
ars in the entity relationship model. With regard to the type of e, we have to distinguish
single-valued and multi-valued relationships. If ars is single-valued, the type identi�er of e
must be equal to the name of c(ercj). If ars is multi-valued, the type of e must have been
constructed with the list type constructor applied to c(ercj). Vice versa, for each abstract
syntax child e of class c(erci) there must be an aggregation relationship ars starting from
erci. If e is single-valued, ars must be single-valued as well and lead to the class in the entity
relationship model that corresponds to type(e). If e is multi-valued, ars must be multi-valued,
ordered and lead to the class that corresponds to the base type of type(e).

For each reference relationship rrs that refers in the entity relationship model from class erci
to ercj there has to be a semantic relationship between c(erci) and c(ercj). The �rst name
n1 of rrs determines the explicit link e of the corresponding semantic relationship. The name
of e must be n1. The type of e depends on the cardinality of rrs. If rrs is single-valued, the
type of e must be c(ercj), otherwise the type is a set type with c(ercj) as base type. If a
second name n2 is given for rrs, we assume that the tool builder needs the implicit link for
the relationship and require that there is an implicit link i de�ned in the semantic relationship
section of c(ercj) whose name equals n2. The type of i must be c(erci). Vice versa, for each
explicit link de�ned for class erci, there must be a reference relationship to the class in the
entity relationship model that corresponds to the type or base type of the link. The name of
the explicit link must be equal to the �rst name of the reference relationship. If the explicit
link has a corresponding implicit link, the name of the implicit link must match the second
name of the relationship.

7.2.2.2 Constraint Handling

The entity relationship editor supports the creation and deletion of new subsystems and the
various kinds of reference relationships. It supports the creation of abstract classes in order to
de�ne common properties of several subclasses. It then supports the introduction and deletion
of inheritance relationships. The de�nition of properties that are common to all subclasses of
an abstract class may be moved to the abstract class. We consider this as property generalisa-
tion. The reverse command, i.e. property specialisation, transfers the property de�nition to all
subclasses that are leaves in the inheritance hierarchy. Moreover, subsystem and relationship
names can be expanded and changed. The editor supports navigation through the decompo-
sition hierarchy in terms of zoom-in/zoom-out commands. These navigation commands are
o�ered for subsystems. The graphical layout of the diagram can be modi�ed and, in particular,
classes can be moved to lower- or upper-level subsystems. These operations will automatically
insert ports as required by the static semantic constraints.

An initial diagram that represents a tool in the entity relationship model of an environment is
created together with the ENBNF de�nition of the tool. Change propagations of the ENBNF
editor ensure that the entity relationship model is kept consistent with the ENBNF de�nition.
Note that terminal and non-terminal classes cannot be created or deleted in the entity rela-
tionship editor. Also aggregation relationships cannot be created or deleted, they can only be

7.2. TOOLS OF THE ENVIRONMENT 185

generalised or specialised, which does not impact the abstract syntax.

The entity relationship editor performs a number of change propagations to preserve inter-
document consistency constraints to inheritance diagrams and class interfaces. The tool builder
can change names of aggregation relationships in the entity relationship editor. These changes
are propagated to the abstract syntax sections of the target class of the changed relationship
in order to change the child name accordingly. In addition, the tool builder can create new
reference relationships and modify or delete existing ones. These commands require propa-
gations to semantic relationship sections of class interfaces. If a new reference relationship is
created, a new explicit link is inserted into the semantic relationship section of the class where
the reference relationship starts. Expanding or changing the �rst name of the reference rela-
tionship expands or changes the name of the explicit link. Expanding the second name creates
a new implicit link in the semantic relationship section of the target class of the reference
relationship. Deleting a reference relationship triggers deletion of the corresponding explicit
and implicit links. Finally, the tool builder can create, change or delete attributes of a class.
These commands trigger the changes to be made in the attribute section of respective class
interfaces.

The introduction of new inheritance relationships are propagated from the entity relationship
model to inheritance diagrams. Similarly deletion of inheritance relationships in the entity
relationship model triggers a propagation that deletes the relationship from the inheritance
diagram as well.

We have de�ned above an editing command that allows for generalisation of properties. The
generalisation command can move the de�nition of a property p that is de�ned for all sub-
classes of an abstract class erc from the subclasses erc1; : : : ; ercn to erc. Without any further
action, this would reveal inconsistencies in class interfaces. Therefore, the declarations of p in
c(erc1); : : : ; c(ercn) are removed and inserted into c(erc). In particular, this command simpli-
�es the actions that are required for the generalisation of properties. Likewise, specialisation
is handled in such a way that de�nitions are moved from the abstract class to its non-terminal
and terminal subclasses.

Upon creation of a new abstract class, this class is inserted into the inheritance diagram
during a change propagation. Creation or deletion of inheritance relationships causes change
propagations that insert or delete the inheritance hierarchy from the inheritance diagram.

7.2.3 Inheritance Diagram Editor

An initial inheritance hierarchy for increment classes is established by change propagations
from the entity relationship editor. This inheritance hierarchy might be edited by further
introducing new abstract increment classes and rede�ning the inheritance relationships of
generated increment classes. Creation of further non-terminal or terminal increment classes
or deletion of classes that were contained in the initial inheritance hierarchy is not supported.
The entity relationship model does not include non-syntactic classes that are used to de�ne
attribute types, since these do not contribute to the de�nition of navigation paths. Non-
syntactic classes can, therefore, be created with the inheritance diagram editor as subclasses
of prede�ned non-syntactic classes. Since these editing commands are o�ered, further inter-
document consistency constraints have to be de�ned.

186 CHAPTER 7. THE GENESIS ENVIRONMENT

7.2.3.1 Consistency Constraints

Each class c in the inheritance diagram that is not prede�ned must be re�ned by a class
c(c) with an interface and a speci�cation. If the class is an abstract increment class (it has
subclasses), it must have an abstract increment class interface. If it does not have subclasses
and does not de�ne or inherit outgoing aggregation relationships, c(c) must be a terminal
class. If it does not have subclasses, but de�nes or inherits outgoing aggregation relationships,
it must be de�ned by a non-syntactic class. If it is a subclass of a prede�ned non-syntactic
class, it must be re�ned by a non-syntactic class.

The inheritance relationships de�ned in the inheritance diagram must be reected in the in-
heritance sections of the class interface de�nitions. Therefore, for each inheritance relationship
that de�nes class ci as a subclass of cj , there must be an entry in the super class list of the
inheritance section of c(ci) that de�nes the name of c(cj).

7.2.3.2 Constraint Handling

For an abstract increment class of a non-syntactic class c that is created in the inheritance
diagram, a class interface de�nition c(c) has to be de�ned. The interface will be an abstract
increment interface if the class in the inheritance diagram was an increment class and it
will be a non-syntactic interface otherwise. The creation of this interface will further cause
a propagation by the class interface editor that also creates a class speci�cation document.
Likewise, if a class ac is deleted, the class interface c(ac) will also be deleted. This deletion
will, as a follow-on propagation, also delete the respective class speci�cation.

Creation or deletion of an inheritance relationship that de�nes ci as subclass of cj will change
the inheritance section of c(ci). If a new relationship is created in the inheritance diagram, the
name of cj will be added in the inheritance section of ci. In the case of a deletion, the name
of cj will be deleted from the inheritance section of ci.

7.2.4 Class Interface and Speci�cation Editors

Class interfaces de�ne the external behaviour of a class. This external de�nition is then re�ned
in the internal class speci�cation. While the inter-document constraints we discussed above
were always between di�erent types, we now have inter- as well as intra-type consistency
constraints. The import interfaces and inheritance sections in class interfaces impose intra-
type inter-document consistency constraints on other class interface de�nitions. Inter-type
consistency constraints require, for instance, each property or method imported by a class
speci�cation to be exported by the respective interface or the explicit methods de�ned in the
interface of a class to be speci�ed in the method section of the speci�cation.

For reasons of brevity, we cannot address the constraints in full detail here. They are formally
de�ned in Appendix A. We, therefore, restrict ourselves to discussing the way the interface
editor propagates changes to other class interfaces in order to deal with intra-type constraints
and to other speci�cations in order to deal with inter-type constraints.

The existence of a class speci�cation depends on the existence of the interface of a class. The
class interface editor, therefore, propagates the creation of a class to the class speci�cation

7.3. SUMMARY 187

editor in order to create a class there as well. When a class interface is deleted, the class
speci�cation must also be deleted.

Initial class names are determined with the entity relationship and inheritance editors. If
names are changed there, they will propagate the change to the interface view. The interface
editor will, in turn, propagate the change further to

� all inheritance sections of subclasses,

� all import interfaces of class interface de�nitions that imported the class, and

� all import interfaces of class speci�cation that imported the class.

The interfaces, in turn, will propagate the change further to property types, local variable
types, method parameter and result types where the class might be used as a type name.

If the entity relationship editor propagates the change of a property name to the interface
editor, the change must be propagated further to all interfaces of subclasses that inherit the
property. In addition, all speci�cations of subclasses that use the name in semantic rules,
methods or interactions must be informed so as to change the property name there as well.
The name may in addition have been imported in client class speci�cation. Then the name
change must be propagated to those imports from where it is further propagated to the places
where it is used.

Any explicit method of a class interface must have a body de�ned in the speci�cation of the
class. Upon creation of a method in the interface a place holder is created in the speci�cation
as well. Any change to an explicit method such as creation, change or deletion of a parameter,
changes to the result type are propagated to the respective method in the class speci�cation.

7.3 Summary

We have de�ned a number of inter-document consistency constraints between the di�erent
document types that were identi�ed for the speci�cation of tools. The constraints are de�ned
between a determining and a dependent document type. They de�ne paths for propagating
changes from a determining into a dependent document. The di�erent paths are summarised
in Figure 7.3.

Each rectangle represents a document type and an arrow represents a propagation path from
a determining document type to a dependent type. The annotations of arrows denote the sub-
ject of a propagation. Classes and aggregation relationships are created by the ENBNF editor
in the entity relationship model. Furthermore, it creates the inheritance relationships between
increment classes and prede�ned classes in the inheritance diagram. Finally, it directly creates
regular expressions and unparsing scheme de�nitions in the class interface. The entity rela-
tionship editor, in turn, propagates the de�nition of classes to the inheritance diagram editor.
Moreover, it creates properties, i.e. attributes, abstract syntax children and semantic relation-
ships in the respective class interface. The inheritance diagram editor generates class interfaces
and also determines their inheritance sections. Finally, changes to property and method de�ni-
tions are propagated from the interface editor to the respective class speci�cations. In this way
a tool builder can incrementally de�ne a tool speci�cation at di�erent levels of abstraction; the
tool builder can choose the appropriate level of abstraction for the particular concern that has
to be de�ned. While working on a document at a higher level of abstraction, fragments for tool

188 CHAPTER 7. THE GENESIS ENVIRONMENT

C
la

ss
es

,
In

he
rit

an
ce

re
la

tio
ns

hi
ps

 Inheritance
Diagram Editor

 E/R
Editor

Interface
 Editor

Specification
 Editor

Regular expressions,

Unparsing schemes

Classes,
Aggregation relationships

Classes,

Inheritance

sections

P
roperties

Inheritance relationships

for pre−defined classes

Classes,
Properties,
Methods

ENBNF
Editor

Figure 7.3: Propagation Paths

speci�cations are created, modi�ed or deleted by the environment in lower-level documents.

It is our strong belief that the de�nition of our tool speci�cation environment, as exempli�ed
here, can be generalised to environments for many software processes. Any software process
model will include documents at di�erent levels of abstraction. High-level documents are,
for instance, data ow diagrams, petri nets or informal requirements de�nitions. At lower
levels, documents such as architecture diagrams and component interface de�nitions will be
de�ned and at even lower levels programming languages will be de�ned that are used to
implement components. These documents will be written in a formal language of some sort.
They will always include redundant information. To cope with this redundancy, propagation
paths should be de�ned from the higher levels of abstraction into the lower levels. At lower
levels, violations of inter-document consistencies should be visualised in order to guide users
so as to enable them to produce statically correct software. The implementation of these
inter-document consistency constraints and the propagation paths at the appropriate level of
abstraction, in turn, will be supported by the GOODSTEP tool speci�cation languages and
the GENESIS environment.

Chapter 8

The GTSL Compiler

In this chapter, we discuss the design and implementation of the compiler that is used to
translate class interface and speci�cation de�nitions into executable tools. A number of inter-
esting problems arise during construction of this compiler. Most of them are related to the
question of how the various tool-speci�c architecture components, which have been identi�ed
in Chapter 5, can be derived from a GTSL speci�cation. In the next chapter, we then evaluate
GTSL by constructing a number of tools. In particular, we will discuss the speci�cation of
tools for the GENESIS environment that were constructed with a bootstrap approach.

A principle in the construction of the GTSL compiler was to support independent compilation
of class interface and speci�cation de�nitions. Only this approach enables incremental and
cooperative development of tools to be e�ected. If all class de�nitions were stored in a single
�le, only one developer could edit or compile it at the same time and cooperation would be se-
riously hampered. Each class interface and speci�cation is, therefore, compiled independently.
As there are obvious dependencies between interfaces and speci�cations, it is necessary to write
a speci�cation that controls the order in which di�erent sources are compiled. This could be
done in terms of a make-�le, but we consider this as too low a level of abstraction. Instead, the
compiler should use information, de�ned in the inheritance and entity relationship diagrams
about classes and relationships, to determine a valid compilation order. Here we run into a
dilemma because we need tools of the GENESIS environment to be able to construct the tools.

We solve the dilemma by introducing an intermediate tool speci�cation document. We refer to
this document as tool con�guration. It will determine the di�erent increment and non-syntactic
classes, their inheritance relationships, the root increment class and the error messages that
are to be associated with error descriptors. Tool con�gurations thus serve the same purpose
as system �les that are required to compile Ei�el programs. When the other tools are �nished,
the con�guration document will be generated from the ENBNF de�nition, inheritance and
entity relationship diagram. For the time being, however, the tool builder will have to write it
manually. The complete syntax and static semantics is de�ned in Appendix A. An example
of a con�guration de�nition is given below. It displays an excerpt of the Groupie module
interface editor con�guration.

189

190 CHAPTER 8. THE GTSL COMPILER

CONFIGURATION MIE

CONSISTS OF

INCREMENT CLASSES

Commentable INHERIT Increment;

Module INHERIT DocumentVersion, Commentable;

ADTModule INHERIT Module;

ADOModule INHERIT Module;

...

END INCREMENT CLASSES;

ROOT INCREMENT IS Module

ADDITIONAL ERRORS

#NameAlreadyDefined : "The given name has already been defined";

#NotATypeName: "The Import is not an exported type";

#NotAnOpName: "The Import is not an exported operation";

...

END ADDITIONAL ERRORS

END CONFIGURATION MIE.

As shown in Figure 8.1 the GTSL compiler consists of �ve components: A tool con�guration
compiler (conf), a class interface compiler (int), a class speci�cation compiler (spec), a linker
(link) and a controller (genesis) that serves as a user interface for the previous components.
The compilers store symbol tables and generated code in the �le-system.

genesis

int specconf link

NFS

Figure 8.1: Components of the GTSL Compiler

The main purpose of the tool con�guration compiler is to generate various build de�nitions.
Conf generates a make-�le from a tool speci�cation so that make [Fel79] can be used for control-
ling any further invocations of the GTSL compiler. In particular, this make-�le ensures that
the interface of a class is translated before its speci�cation and that a class interface is only
compiled when all interfaces of super classes have already been compiled. In addition, conf
generates make �les for compiling the O2 database schema with the O2C compiler, export-
ing the schema to C++ in order to create the ToolAPI subsystem, compiling all tool-speci�c
components of the tool architecture and linking the result with the library of reusable tool
components.

The purpose of the int compiler is to compile interface de�nitions of single GTSL classes. The
main result of such a compilation is a symbol table that is stored in the �le-system. That
table is loaded during compilations of dependent class interfaces (e.g. interfaces of subclasses
to check for correct inheritance) or speci�cations (e.g. to check whether imported entities or
methods are exported from the other class). Moreover, symbol tables serve as the source of
information during code generation, which is performed in the speci�cation compiler.

The spec compiler checks class speci�cations against their static semantics and validates inter-
document consistency constraints to class interfaces. It then generates code fragments for the
various tool-speci�c architecture components. The layout computation subsystem is derived
from the unparsing schemes. The required information is obtained from the class' symbol table

8.1. FRONT END 191

because unparsing schemes have already been compiled by the interface compiler. Parts for
the command execution subsystem are generated from interactions. Components of a rule in-
terpreter that incrementally evaluates semantic rules are generated from semantic rules. The
O2 class interface de�nitions stem from property and method de�nitions given in the class
interface. Implicit methods are generated from the various interface sections, and bodies of
explicit methods are generated from the method sections given in class speci�cations. The
code, however, must remain in fragments because the generation of the semantic rule inter-
preter requires all property accesses to be known. This is only the case after all increment
speci�cations have been compiled. Then the linker binds the fragments together and thus
completes code generation.

Each of the three compilers is fully-edged, that is it has a scanner, a parser, a semantic
analyser and a code generator. Scanner, parser and semantic analyser are called front end
of the compiler in the following paragraphs. The code generator is called back end. For the
construction of these compilers, we use the compiler construction tool kit Eli [GHL+92]. We
have chosen Eli rather than lex and yacc, or ex and bison because Eli not only supports
the generation of scanners and parsers, but also the generation of static analysers and code
generators. As the generation of scanners and parsers is done by Eli based on standard
techniques, we do not address it any further in this thesis. The next subsection about the
front end, therefore, focuses on the generation of static analysers for the three compilers. The
second subsection then addresses how the di�erent tool-speci�c components are generated.
During that, we focus on an algorithm for the incremental evaluation of GTSL semantic rules.

8.1 Front End

One could argue that there is no need to check static semantics in the GTSL compiler. The
GTSL speci�cations to be compiled are error free since they will be edited with the GENESIS
environment and its tools check for static semantics and inter-document consistency whenever
a tool builder performs a change. There are, however, a number of reasons that made us im-
plement static semantic analysis in the compiler. Firstly, the speci�cations for the GENESIS
tools have to be edited manually with conventional text editors, because we follow a bootstrap
approach and GENESIS is not yet available. GTSL speci�cations have a considerable com-
plexity. To ensure their correctness manually is very di�cult, if not impossible. If the GTSL
compiler checks static semantics and inter-document consistency this will give us considerable
support. Secondly, during the speci�cation of the GENESIS tools, we gained experience on the
use of GTSL. This included experience on the appropriateness of static semantic constraints.
In fact, some of these insights made us change the initial language de�nition, and the de�ni-
tion given in Appendix A is the result of an iterative language de�nition process. Without
a compiler to implement those changes it would be even harder to ensure the consistency of
GENESIS tool speci�cations after a change in the language. Finally, the code generation that
has to be implemented in the compiler requires data that must partly be gathered during static
semantic analysis.

The di�erent static semantic properties are de�ned formally in Appendix A and can be classi-
�ed into scoping and typing rules. The scoping rules are concerned with uniqueness of identi�ers
and whether a using application of an identi�er matches some declaration. They, therefore,
implement the mapping scope and the various mappings name that are de�ned in Appendix A.
The typing rules are concerned with the properties of identi�ers and thus implement the var-

192 CHAPTER 8. THE GTSL COMPILER

ious mappings type and kind given in the Appendix. On the basis of these implementations,
correctness of property and method rede�nition, multiple inheritance and the polymorphism
rule are checked. For reasons of brevity, we cannot discuss the implementation of all static
semantic constraints, but simply present some archetypical examples from these two cate-
gories. These examples then demonstrate how we exploit various basic mechanisms for the
implementation of static semantic analysis that are o�ered by Eli.

The basis for de�ning static semantic analysis is the availability of ordered attribute gram-
mars [Kas80]. We have already introduced them in Subsection 6.6.1, when we discussed the
Synthesizer Speci�cation Language. Eli o�ers a dedicated language for de�ning attributes,
attaching them to symbols and de�ning semantic functions based on a number of prede�ned
operators. In addition to this language, Eli o�ers a number of higher-level concepts such as an
identi�er table, a module for generating error messages, a mechanism for de�nition tables and
a property de�nition language. It also de�nes an interface to C so that we can de�ne dedicated
operators in cases where the prede�ned ones prove to be insu�cient. We now discuss how we
use these mechanisms in order to implement static semantic checks of GTSL.

Whenever a terminal symbol is scanned, the scanner can invoke a processor that stores the
value of the symbol in an identi�er table and returns the address of the value. This address
is also called a symbol. It can be used during static semantic analysis to obtain the value.
Therefore, symbols are usually stored as attributes of syntax tree nodes. The example below
is taken from the tool con�guration compiler and illustrates this:

ATTR Sym: int;

RULE rule_009 : incr_class_id ::= IDENTIFIER

COMPUTE

incr_class_id.Sym = IDENTIFIER.Sym;

END;

The �rst line declares that all nodes in the syntax tree have an attribute Sym of type int.
The next four lines declare a rule that determines how the value of this attribute is computed
for the name of an increment class. The head of the rule de�nes a rule name and declares
the production after the colon. Between the keywords COMPUTE and END a number of semantic
functions can be invoked and their results can be assigned to attributes. Here the identity
function is used and the value of the Sym attribute of node IDENTIFIER, which, in turn, was set
by the scanner, is assigned to attribute Sym of node incr class id. Attribute Sym is then used
to implement scoping rules based on Eli's mechanism for de�nition tables.

A de�nition table consists of a tree of scopes. The root scope is created by the operator
NewEnv. The result of a call to this operator is usually stored in a node attribute. A sub-
scope may be added by the operator NewScope, which takes an existing scope as argument and
returns a new sub-scope. A number of operators are available to update and query scopes.
Operator DefineIdn declares an identi�er that is identi�ed by a Sym attribute in a scope.
KeyInScope performs a lookup and checks whether or not an identi�er has been de�ned in
a scope. KeyInEnv not only queries the current scope, but also all its ancestor scopes. The
example below demonstrates how class identi�ers are entered into a scope and checked for
uniqueness.

8.1. FRONT END 193

ATTR ActEnv : Environment;

RULE rule_001 : configuration ::= 'CONFIGURATION' conf_id 'CONSISTS' 'OF'

conf_opt_import_part

conf_inc_part

conf_opt_att_part

conf_root_part

conf_opt_export_part

conf_opt_additional_errors

'END' 'CONFIGURATION' doc_using_id '.'

COMPUTE

ActEnv = NewEnv();

END;

SYMBOL incr_class_id : Done : Void;

SYMBOL incr_class_id : Key : DefTableKey;

RULE rule_009 : incr_class_id ::= IDENTIFIER

COMPUTE

incr_class_id.ActEnv = INCLUDING configuration.ActEnv;

incr_class_id.Done=IF(EQ(KeyInScope(incr_class_id.ActEnv, incr_class_id.Sym), NoKey),

DefineIdn(incr_class_id.ActEnv, incr_class_id.Sym),

message(ERROR, "Identifier already defined",

0, COORDREF));

incr_class_id.Key=KeyInScope(incr_class_id.ActEnv, class_id.Sym)

DEPENDS_ON incr_class_id.Done;

END;

The computation de�ned in rule 001 creates a new root scope and stores it in attribute ActEnv
of the root node of the con�guration syntax tree. In rule 009, the ActEnv attribute for an
increment class identi�er is determined by fetching the ActEnv attribute of the con�guration.
This is de�ned by the INCLUDING declaration that traverses the syntax tree to the root until it
obtains a node of type configuration. The next function performs a lookup in scope ActEnv

with the symbol of the identi�er and checks whether that lookup returns the invalid key NoKey,
in which case the symbol has not yet been de�ned. If so, it de�nes the symbol using operator
DefineIdn, otherwise it uses operator message to print an error message. The �rst argument
of message is the severeness of the error, ranging from warnings to fatal errors. The second
argument is the error message and the last argument is an operator that computes the error
coordinates in the input �le. Note that operator DefineIdn takes the symbol of the class
identi�er as an argument. Thus execution of the function depends on the assignment of the
symbol that was explained above. The attribute evaluator that is generated by Eli ensures that
these dependencies are respected without further explicit measures. It orders the evaluation
in such a way that �rst the assignment is performed and then the attribute is used. Upon
completion of the second function it assigns some value to the attribute Done. Only then is
the third function executed because it is declared dependent on attribute Done. That function
performs a lookup of the key and assigns it to attribute Key for later use during property
de�nition.

Eli supports the de�nition of properties for entries of a de�nition table. These properties are
then used during implementation of typing rules. Eli includes a property de�nition language
(PDL). A property has a name and a type. Eli generates for each property an update and a
query operator. The name of the update operator is the name of the property pre�xed with
Set. It takes a key of a de�nition table entry as the �rst argument. If the property has been
determined for this key, its value is replaced by the second argument. Otherwise, the third
argument is taken as the new value. The query operator's name is the name of the property
pre�xed by Get. The query operator has a key as �rst argument and a default property value

194 CHAPTER 8. THE GTSL COMPILER

as second argument. If the property has been determined for the key it returns its property
value, otherwise it returns the default. PDL is exploited in the GTSL compiler implementation
for the de�nition of the various properties of classes, methods, attributes, syntax children and
links that are given in Appendix A. As an example consider the property of being an increment
or non-syntactic class used in the con�guration compiler.

typedef enum {

IsNonSyntacticClass,

IsIncrementClass,

IsDocName,

IsRoot,

IsError,

Undefined} TypeOfDef;

Kind : TypeOfDef;

The �rst part declares an enumeration type TypeOfDef. It enumerates the di�erent roles that a
declaration in the tool con�guration can play. Then an Eli property Kind is de�ned. The type
of Kind is declared as TypeOfDef. This property is then used, for instance, to implement Con-
dition A.6, given in the appendix on Page 264. It ensures that the root class in a con�guration
is an increment class:

RULE rule_009 :

incr_class_id ::= IDENTIFIER

COMPUTE

SetKind(incr_class_id.Key, IsIncrement, IsIncrement);

END;

RULE rule_015 :

root_part ::= 'ROOT' 'INCREMENT' 'IS' root_id

COMPUTE

root_id.Key=KeyInScope(INCLUDING configuration.ActEnv, root_id.Sym)

IF (NE(GetKind(root_id.Key, Undefined), IsIncrement),

message(ERROR, "Root-identifier must be an increment",

0, COORDREF));

END;

Rule rule 009 determines the value of property Kind for the de�nition table entry of an incre-
ment class identi�er to be IsIncrement. Rule rule 015 then queries the de�nition table with
KeyInScope to obtain a de�nition table key of an identi�er that declares the value associated
with root id.Sym. The result can be a key that corresponds to an arbitrary declaration of an
identi�er. To ensure that it corresponds to an increment class, the key is used in a further
query that obtains the value of property Kind. If it is not equal to IsIncrement, an error
message is released.

By using the mechanisms presented above most GTSL static semantic constraints can be
implemented. The implementation of some constraints, however, requires operators that are
not available in Eli. As an example, consider the polymorphism rule or covariant method
rede�nition. These require an operator that checks whether some identi�er denotes a class that
is a subclass of a class denoted by some other identi�er. As this operator is highly speci�c, it is
obviously not available in Eli. It has, therefore, to be implemented in a programming language,
i.e. C or C++ using Eli's C-Interface. This interface, in particular, o�ers all operators that
are available in Eli's semantic function language as C-functions and provides for access to the

8.2. BACK END 195

identi�er table. The example below demonstrates how an operator implemented in C is used
in a semantic function to check the polymorphism rule:

RULE rule_083 :

assignment ::= ass_id2 ASSIGN attribute_creation

COMPUTE

IF(NE(SubtypeCheck(attribute_creation.actual_type_sym,

ass_id2.actual_type_sym), TRUE),

message(ERROR, "types are not compatible", 0,COORDREF)),

END;

The example is taken from the speci�cation compiler and implements the check of the poly-
morphism rule for the creation of a new instance of an attribute. The operator SubtypeCheck
returns TRUE if the symbol passed as �rst argument is the name of a subclass of the class
identi�ed by the symbol passed as second argument. If this is not the case, the assignment
is not correct according to the polymorphism rule. In that case an error message is released.
SubtypeCheck, in turn, is implemented in C based on the symbol table that is written by the
con�guration compiler. This symbol table contains all information about the class hierarchy
and is loaded by the speci�cation compiler upon start-up.

While it is fully acceptable to implement speci�c operators such as SubtypeCheck in a program-
ming language, Eli could have provided better support for the general problem of implementing
independent compilation of source �les. Persistence of de�nition tables is required for inde-
pendent compilation so as to perform inter-document consistency checks. The de�nitions that
have been made in one class have to be stored persistently in order to check for the correctness
of their use during compilation of other classes. Eli does not provide built-in facilities for that.
Upon successful compilation of a class we had, therefore, to iterate over the de�nition table
and dump relevant entries into a �le stored in the �le-system. This �le then had to be loaded
when processing an import statement and its de�nitions had to be entered into the de�nition
table of the other class. Thus we were forced to implement inter-document consistency checks
at a rather low level of abstraction. A further problem, which makes it di�cult to change
the language de�nition, is that both parser generator and static analyser generator require
the context free grammar de�nition as input. Unfortunately, the input format is di�erent and
the compiler builder has to maintain redundant grammar de�nitions. We would �nd it more
appropriate if the parser generator derived the grammar from the de�nition given in the input
for the static analysis generator, for example. We see the trade-o� that de�ning an attribute
grammar is more complex than de�ning a context-free grammar and this overhead is only
bearable if a static semantic analyser is generated.

8.2 Back End

The purpose of the back end of any GTSL compiler is to generate code in order to contribute to
the generation of the tool-speci�c architecture components. The most important and complex
component is the database schema. It implements the structure and behaviour of the abstract
syntax graphs that represent documents. Since we use object databases, there is no large
conceptual gap between properties and methods that have been de�ned in GTSL and instance
variables and methods to be generated in the target schema de�nition language O2C. O2C

instance variables and methods can basically be generated from their GTSL counterpart in a
one-by-one fashion. A large conceptual gap that we have to bridge, however, exists between

196 CHAPTER 8. THE GTSL COMPILER

the speci�cation of static semantics and inter-document consistency constraints in semantic
rules and their implementation in terms of O2C instance variables and methods. The �rst
subsection, therefore, presents an incremental evaluation algorithm for semantic rules and
discusses how the input for this algorithm is derived from GTSL semantic rules. The second
subsection briey discusses the di�erent techniques that are used to generate the tool-speci�c
architecture components.

8.2.1 Incremental Evaluation of Semantic Rules

Semantic rules are very similar to database triggers. It is, therefore, worthwhile to see whether
triggers can be used for the implementation of semantic rules. Triggers are among the exten-
sions that were developed in the GOODSTEP project for the O2 ODBS [CCS94]. A trigger in
O2 consists of an event, a condition and an action. Among the available events are creation or
deletion of objects or attribute changes. A condition is an OQL query and an action is an O2C

method body. To implement a semantic rule, we would then translate the rule condition into
an event and a condition of a trigger and translate the body of the rule into an O2C method
body. An example is given below. This trigger implements the second semantic rule of class
ADTModule that was discussed on Page 154.

create rule ADTModule_Rule1

coupling (deferred)

on update OpName->value with delta_OpNames

if (select opns into OP

from opns in delta_OpNames)

do {

o2 ADTModule __self;

for (opn in OP) do {

__self=((o2 ADTModule) opn->father->father->father);

__self->DefinedNames->associate(op->name,op->name->value);

}

}

It de�nes that whenever the value attribute of an OpName is modi�ed during a transaction,
the OpName is inserted into a set of delta objects. The deferred coupling mode de�nes that
the trigger is �red upon successful completion of a transaction. Before �nally committing the
transaction, the do part is executed. It inverts the path expression in the ON part of the semantic
rule for each element of the set in order to obtain the module to which the operation name
belongs. It then invokes an associate operation and thus inserts the value of the operation
name into the module's symbol table.

The approach looks very promising at �rst glance. There are, however, several problems that
force us to reject it. The �rst problem is that with deferred coupling, we cannot access the
results of the trigger execution within a transaction. This is required, for instance, to provide
the user of a tool with an error message if some static semantic constraint is violated. To
achieve this, the semantic rule must have been executed within the transaction that implements
the command. After that, the user might decide to undo the command and then the transaction
must be aborted. Therefore, deferred coupling cannot be used. The trigger mechanism of O2

o�ers a second coupling mode. With immediate coupling, the trigger is �red, as soon as
the event occurs. Immediate coupling is weak, if we consider e�cient tool execution. As
an example, consider parsing a document. If all triggers that depend on a symbol table �re
immediately whenever, for example, a new identi�er is entered during parsing, they �re much

8.2. BACK END 197

too often and the tools' performance will su�er from this ine�ciency. They should only �re
after the last identi�er has been inserted. The reason for this ine�ciency is that the trigger
execution subsystem in O2 is not aware of the dependencies between di�erent semantic rules.
What is required is a combination of immediate and deferred coupling, which in addition
exploits knowledge on the dependencies between the di�erent semantic rules. This knowledge
can be acquired during static semantic analysis of rules.

We, therefore, develop an algorithm for incremental evaluation of semantic rules. It is a
distributed adaption of the two-phase, lazy attribute evaluation algorithm for graphs presented
in [Hud87]. The two phases are a propagation phase where dependent rules and attributes are
informed about a change and marked as dirty, and an evaluation phase where dirty rules
are executed and brought back into a clean state. The distinction between these two phases
contributes to the overall e�ciency of the semantic rule evaluation. They are e�cient because
only a small excerpt of the documents that have been produced in a project are displayed in
some user's editor. Most of them reside only in the database. Only semantic rules contained
in these displayed documents have to be reevaluated immediately after they have been marked
as dirty. Dirty rules of increments that are not displayed only need to be reevaluated when the
increment is accessed the next time. It could well be that the rule receives further propagations
before it is displayed. Thus we save time for two reasons. Firstly, subsequent propagations
can terminate at the dirty increment because all transitively dependent rules were marked
dirty the �rst time. Secondly, the rule is only evaluated when really required and evaluations
between successive propagations are omitted.

The original algorithm has been adjusted for attribute evaluation in the PROGRESS sys-
tem [Sch91b]. PROGRESS uses a global scheduling graph storing all information about static
dependencies between attributes and semantic rules. Instead of a global scheduling graph
we use distributed scheduling information in combination with message passing in a locally
controlled algorithm. The main bene�t of our approach is that conicting updates of global
scheduling information by concurrent changes of the ASG are avoided.

Semantic rules have to consider those properties that carry semantic information, namely, at-
tributes and links of semantic relationships. For the rest of this chapter, we refer to attributes
or links as semantic variables. To keep track of the dependencies between di�erent semantic
rules and to allow for incremental evaluation, we have to consider and maintain scheduling
information. Thus, the main idea of the algorithm described below is to distribute the in-
formation about static dependencies by assigning local static scheduling information to each
semantic variable. Furthermore, dynamic scheduling information is maintained by each incre-
ment to describe its state of evaluation at run-time. Locally controlled variable evaluation is
synchronised by exchanging messages between a�ected increments.

The local static scheduling information is inferred by the spec compiler as a set of propagation
information items. Each item consists of a path expression and a unique propagation identi�er.
The path expression determines the set of increments that contain rules and semantic variables
that have to be stamped dirty. These are exactly those rules that have declared a dependency
in their ON condition to the variable that is becoming dirty. The path expression for a semantic
variable v is de�ned by inverting the path expression of the condition of the semantic rule,
which contains the semantic variable v as the last name1. The propagation identi�er in the
propagation information identi�es the particular semantic rule which has to be stamped dirty.

1For a detailed de�nition of the generation of path expressions for propagation informations we refer
to [Jah94].

198 CHAPTER 8. THE GTSL COMPILER

We assume that each semantic rule is identi�ed by a unique propagation identi�er. These
identi�ers are computed during static semantic analysis. If a semantic rule's condition contains
an OR expression it may be identi�ed by two or more propagation identi�ers, i.e. a set of
propagation identi�ers may exist for one semantic rule sr which we call pid(sr).

The inversion of path expressions required for this algorithm is only possible since we were
able to exclude method invocations from preconditions of semantic rules. We would not have
been able to invert path expressions like those in object-oriented programming languages
because they may include method invocations. These methods may compute non-injective
functions and, therefore, cannot be inverted in general. Instead, we again exploit domain-
speci�c restrictions here to be able to provide a simpler and more e�cient implementation.

Let PATH be the set of all possible path expressions. Furthermore, we de�ne Vc as the
set of all semantic variables that are declared in an increment class c. The static scheduling
information SIstv that is assigned to a semantic variable v 2 Vc is then de�ned as

SIstv � PATH � IN

In order to de�ne the dynamic scheduling information we de�ne SRc as the set of semantic
rules which are declared in class c or are inherited from a super class. Furthermore, let It
denote the set of all existing increments at time t. The dynamic scheduling information of
an increment of class c includes the state marks of each semantic variable (statv) and each
semantic rule (statsr) de�ned in c. Furthermore, a set (prems) is maintained for each semantic
rule sr of a class c containing all increments that have sent a change propagation identifying
sr after the most recent execution of sr. We de�ne the dynamic scheduling information of an
increment i 2 It of class c at time t as a three-tuple:

SI
dy
i (t) = hstatv; statsr; premsi with

statv : Vc ! f 'clean', 'dirty' g
statsr : SRc ! f 'clean', 'executing', 'dirty' g
prems : SRc ! P(It)

Each increment has a prede�ned method propagate. In the implementation it will be inherited
from the prede�ned class Increment. During the propagation phase this method is invoked to
stamp semantic variables and semantic rules as dirty according to the propagation information
of a semantic variable in the invoking class.

For the de�nition of the algorithm performed by method propagate in Figure 8.2 the following
de�nitions are required:

� Let Cs be the set of all increment classes in a speci�cation s.

� We de�ne a function (readvarsc) that returns the set of semantic variables for a semantic
rule that are read by the rule, i.e. the set of semantic variables that appear in the
condition of the rule.

readvarsc : SRc ! P(
S
d2Cs

Vd)
v 2 readvarsc(sr), v is read by sr 2 SRc

� modvarsc is a function that returns the set of semantic variables for a rule in class c,
which are modi�ed by the rule, i.e. the set of semantic variables in the action of the rule
that appear on the left side of an assignment or that are modi�ed by a method call.

8.2. BACK END 199

modvarsc : SRc ! P(Vc)
v 2 modvarsc(sr), v is modi�ed by sr

� Furthermore, we de�ne a function reachable which computes a set of increments for each
i 2 It based on a path expression, i.e. the evaluation of a path expression starting at i
at time t.

reachablei;t : PATHs ! P(It)
i0 2 reachablei;t(p), p denotes an existing path between i and i0 at time t

c::propagate(pid, sender)
begin

if 9sr 2 SRc : pid 2 pids(sr) then
prems(sr) := prems(sr) [fsenderg;
if statsr(sr) = 'clean' then

statsr(sr) := 'dirty';
foreach v 2modvarsc(sr) do

if statv(v) = 'clean' then

statv(v) := 'dirty';
foreach (path; pid0) 2 SIstv do

foreach i 2 reachableself;t(path) do
i.propagate(pid0 ,self);

repeat

repeat

�

repeat

�

�

end

Figure 8.2: Algorithm of Method propagate

In order to execute a propagation message for an increment of class c, an action is only
required if there is a semantic rule sr in class c that is dependent of the variable whose change
is being propagated, i.e. it is included in the set pids(sr). Then the increment that sent the
propagation is stored in prems for use during the evaluation phase. If the a�ected rule sr
has already been stamped as dirty the propagation terminates, otherwise the rule is stamped
as dirty. The propagation also terminates if sr does not modify any variable, otherwise the
modi�ed variables are stamped as dirty and a propagation message is sent to all increments
that have semantic rules with a dependency declared to any of these modi�ed variables.

As an example of a propagation scenario consider Figure 8.3. It displays an excerpt of an ASG
including two subgraphs of Groupie interface modules. The semantic rules from which the
propagations have been derived were discussed on Pages 152{154. Each rectangle represents
an increment. Attributes are represented as ovals. Semantic relationships are depicted as
dotted arrows. Dashed arrows indicate the sending of propagate messages. In the example
the name of the exported operation Close in module Window is changed to CloseWindow. The
operation is imported in module WindowStack and the semantic rules de�ne that the import
has to be marked as erroneous as soon as it is accessed.

The propagation starts at the changed increment of class OpName. The static scheduling infor-
mation SIstvalue for OpName indicates that the modi�cation must be propagated to the ADTModule
increment. SIstvalue is inferred from the precondition of Rule 2 in class ADTModule (c.f. Page 154).
The precondition de�nes that symbol table DefinedNames depends on the modi�ed attribute

200 CHAPTER 8. THE GTSL COMPILER

ADTModule Import
Interface

Import
 List ImpModule

OpImport

ADTModule ModName

Operation
 List Operation OpName

name

opl op_list name

imp import
_lists

from
Module

imports

ImpFromImpFrom

Defined
Names

name

value

value

’Window’

’Close’

value ’Close’ −> ’CloseWindow’

Errors

Defined
Names

WindowStack

Window

’Window’value

Errors

step 1

step 2

step 2

step 3

’{}’

step 3

Figure 8.3: Propagation Phase

value. When the ADTModule increment receives the propagation message its dynamic scheduling
information has to be updated: (1) Rule 2 is stamped dirty, (2) the sender of the propagation
is included in the set of premises (prems) associated with the a�ected rule and (3) attribute
DefinedNames, which is modi�ed by this dirty semantic rule, is also stamped as dirty. Then
the static scheduling information of class DefinedNames is considered in order to propagate the
possible modi�cation further. The static scheduling information for DefinedNames includes two
propagation items that are relevant for this example. The �rst item is inferred from Rule 1
of class OpName (c.f. Page 154). It controls the value of attribute Errors in class OpName. The
second propagation item addresses all increments in import lists that are connected via se-
mantic relationship ImpFrom to the ADTModule. The propagation item is inferred from Rule 1
in class OpImport (c.f. Page 153). The second propagation step, therefore, causes the following
updates to the dynamic scheduling information. Rule 1 of the OpImport increment and Rule 1
of the OpName increment are marked dirty. The ADTModule of Window is included in the set of
premises for these two increments and attribute Errors in the OpName and link ImpFrom in the
OpImport increments are stamped dirty because they might be modi�ed by the rules that have
become dirty. In a third propagation step, the Errors attribute of class OpImport is marked
dirty together with Rule 1 of class Import that the OpImport increment inherited. The static
propagation information is inferred from Rule 1 in class Import that is inherited by OpImport.
Then the propagation phase is complete.

Incremental semantic variable evaluation begins whenever a variable v of an increment of a class
c is dirty and about to be accessed. In this case method evaluate, a further prede�ned method
that any class inherits from class Increment, is executed. This ensures that the semantic checks
of a rule are performed on the basis of up-to-date information. The underlying algorithm is
presented in Figure 8.4.

In order to evaluate a dirty semantic variable v all dirty semantic rules have to be executed
that modify v. When a semantic rule sr is about to be executed the dynamic scheduling
information is examined to �nd out about dirty-state semantic variables that are read by
sr. These semantic variables are evaluated before the body of sr is executed. Therefore, an

8.2. BACK END 201

c::evaluate(v)
begin

if statv(v) = 'dirty' then

foreach sr 2 SRc : v 2modvarsc(sr) ^ statsr(sr) ='dirty' do

statsr(sr) := 'executing';
foreach node 2 prems(sr) do

foreach var 2 readvarsc(sr) do
node.evaluate(var);

repeat

repeat

execute(sr);
statsr(sr) := 'clean';
prems(sr) := fg;

repeat

�

if 9sr 2 SRc : v 2modvarsc(sr) ^ statsr(sr) ='executing' then

error('Cyclic dependency detected');
else

statv(v) :='clean';
�

end

Figure 8.4: Algorithm of Method evaluate

evaluation request is passed to all increments in prems(sr).

Semantic rules that are about to be executed change state from dirty to executing in order to
be able to detect occurrences of cyclic dependencies between semantic variables at evaluation
time2. A cyclic dependency is found if an increment of class c receives the request to evaluate
some semantic variable v that is modi�ed by a semantic rule sr 2 SRc and sr has already
changed its state to executing.

In Figure 8.5 the example of Figure 8.3 is continued assuming that attribute Errors of the
OpImport increment is about to be accessed. This is, for instance, the case during unpars-
ing when the LayoutComputation class decides whether to underline the representation of the
OpImport increment. In this case the body of Rule 2 is executed for the increment of class
ADTModule in document Window, because this increment is included in prems of the OpImport

increment. Before Rule 2 in class ADTModule can actually be be executed, attribute value of
the OpName increment has to be in clean state. This condition is ful�lled because there is no
semantic rule in class OpName that modi�es attribute value. Therefore, Rule 2 is executed for
the ADTModule and the increment and attribute DefinedNames changes to clean state. Then
Rule 1 of class OpImport is executed and it will delete the semantic relationship ImpFrom. After
that ImpFrom as well as the rule change to clean state. Then Rule 1 of class Import can be
executed and it will include the error descriptor #NotAnOpName into the Errors set. This, in
turn, will cause the operation import to be displayed as erroneous at the user interface.

For simpli�cation purposes we only discussed the incremental execution of semantic rules with
CHANGED expressions in their conditions. The presented algorithm and the scheduling informa-
tion has to be slightly extended for the execution of semantic rules with DELETED expressions in
their conditions. These semantic rules have to be executed immediately after the propagation,
otherwise the semantic rules could no longer access the deleted increments.

2As argued in [Sch91a] static cyclic dependencies of semantic variables in abstract syntax graphs occur so
frequently that it is unreasonable to reject them at compile time.

202 CHAPTER 8. THE GTSL COMPILER

ADTModule Import
Interface

Import
 List ImpModule

OpImport

ADTModule ModName

Operation
 List Operation OpName

name

opl op_list name

imp import
_lists

from
Module

imports

ImpFromImpFrom

Defined
Names

name

value

value

’Window’

’Close’

value

Errors

Defined
Names

WindowStack

Window

’Window’value

Errors

step 1

step 2

’{}’−>{#NotAnOpName}

’CloseWindow’

step 1: evaluate(Import.ImpFrom)

step 3: evaluate(OpName.value)

step 2: evaluate(ADTModule.DefinedNames)

Figure 8.5: Evaluation Phase

Furthermore, information about the nodes on the path in the ASG between an increment that
sends a propagation message and the receiving increment may be added to the propagation
message. When a semantic rule is executed this information can be used to bind the declared
identi�er in EXISTS expressions. This enables incremental computation of complex semantic
variables that depend on a large number of other variables. A symbol table, for instance, can
be updated incrementally when an identi�er has changed. Without the binding the entire
symbol table would have to be computed anew for each single modi�ed identi�er.

8.2.2 Code Generation

In Chapter 5, we identi�ed four main architecture components as tool-speci�c. These were the
database schema, the programming interface to the schema, the layout computation class and
the command execution subsystem. These components have to be generated from a GTSL
tool speci�cation in order to achieve full tool generation. We now sketch how this generation
is implemented in the code generation phases of the various GTSL compilers.

Database Schema: The database schema consists of a set of prede�ned and a set of tool-
speci�c classes. The prede�ned classes have already been discussed in Subsection 5.9.1. The
tool-speci�c classes are derived from GTSL classes and inherit from the prede�ned classes.
For each GTSL class c a class code(c) is generated in the database schema. Class name and
inheritance hierarchy are identical. This is possible since O2 supports multiple inheritance.
For each property of a class, an instance variable is de�ned in the respective schema class.
GTSL types are translated into O2C types in a straight-forward manner. For each method
of a GTSL class c, regardless of its kind, an O2C method is de�ned in code(c). Parameter
names are equivalent and types of parameter and results are generated in a straight-forward
manner. Note again that this is only possible since O2 supports the Cardelli approach to
covariant rede�nition in the same way as GTSL does. Signatures of methods that do not
have a counterpart in GTSL are generated for the following purposes: creation and deletion

8.2. BACK END 203

of semantic relationships, access operations for instance variables that stem from exported
properties, bodies of semantic rules and static scheduling data for semantic rule evaluation.
The interfaces of these methods can only be de�ned in the linker since, in order to obtain the
required information, all semantic rules must have been analysed.

For the code generation of bodies for explicit GTSL methods, we use syntax-directed transla-
tion. It is well supported by the program text generator (PTG) module of Eli. An Eli PTG
speci�cation de�nes a number of patterns that are very similar to unparsing schemes in syntax-
directed editors. A PTG operator that may be used in semantic functions is generated for
each pattern. The result of a PTG operator invocation is usually assigned to a code attribute
of an abstract syntax tree node. The code attribute, in turn, may be used as an argument
for other PTG operators. In this way, code is generated in a bottom-up manner and �nally a
dedicated PTG operator is applied to dump the contents of a code attribute to a �le in the
�le-system. As an example consider the generation of code for GTSL FOREACH statements:

ATTR Code : PTGNode;

String : string []

Tupel : $ $

ForEach : "{ " $ " " $ ";\n"

for (" $ " in " $ ")\n{\n"

$ "\n}\n"

"}"

RULE rule_087 :

action_iteration ::=

'FOREACH' action_foreach_id ':' type_declaration 'IN' expression 'DO'

action_statement_list 'ENDDO'

COMPUTE

action_iteration.Code=

PTGForEach(PTGTupel(PTGString("o2 "),type_declaration.Code),

action_foreach_id.Code,

action_foreach_id.Code,

expression.Code,

action_statement_list.Code);

END;

The �rst line de�nes that each node in the abstract syntax tree has an attribute Code of
type PTGNode. This attribute stores the code that is generated for its node. The next part
in this example de�nes three patterns. Pattern String converts a character string argument
into a PTGNode containing the string. Pattern Tuple de�nes that the result is obtained by
concatenating two argument values (each $ sign represents an argument). The third pattern
de�nes how the code for a FOREACH statement is composed of �ve argument values. First, the
"f" starts a new block so that the declaration of the cursor variable does not interfere with
outer declarations. The value of the next two arguments de�ne name and type of an O2 local
variable. Then an O2C for statement is generated. The next argument is again the name of
the cursor variable. It is delimited by the O2C keyword in from the code of a multi-valued
expression that shall be iterated. Then the code generated from a GTSL statement list is
inserted. Finally the block is closed by a "g". The semantic function de�ned in rule 087 shows
how the operators, which are generated from the pattern de�nition, are applied in order to
synthesise the code for a FOREACH statement from the code attributes of child nodes.

In the same style, patterns and semantic functions are included for each production in the
subset of the class speci�cation grammar that de�nes statement lists. The code attribute for

204 CHAPTER 8. THE GTSL COMPILER

statement lists is, then, not only used for the generation of explicit methods, but also for the
bodies of those O2C methods that execute semantic rule bodies.

This technique for syntax-directed code generation cannot reasonably be applied for the gen-
eration of code for implicit method bodies, such as init or parse, or for methods implement-
ing static scheduling data. Firstly, the information required during code generation of these
method bodies is spread over di�erent sections of the interface and speci�cation of a class.
These are compiled independently. Therefore, attribute grammars, as supported by Eli, fail
since there is not necessarily a syntactic relationship between the di�erent components that
could be used as attribute propagation path. Moreover, the computation of the bodies' code
cannot be expressed appropriately in the language that is available for semantic functions.
In particular, this language does not include primitives for loops or iterations that are re-
quired during generation of this code. We, therefore, designed a module, which supports code
generation for implicit method bodies based on the data that has been collected in terms of
properties of de�nition table entries. The module exports an operator, written in C, for each
possible implicit method, which, in turn, generates the code for the method's body.

The code for the init method is derived from the initialisation section of the class speci�cation
documents. In addition to these speci�ed initialisations, the initmethods assign the reference
to the father increment that is passed as an argument to the constructor to an instance variable.
Furthermore, the newly created object is inserted into the O2 version unit that is associated
with the document that contains the increment.

The bodies of the implicit methods scan try to match the string that is passed as a parameter
with the regular expression that has been provided in the class interface of the respective ter-
minal increment class. The implementation of the pattern matching is based on the algorithms
described in [AHU74]. We actually reuse the implementation of a public-domain package for
extended regular expressions called regexp, which is available via anonymous ftp from the
University of Toronto.

The bodies of the parse methods implement a recursive descent parser. We implement the
same strategy as suggested for the Ei�el parser library [Mey89]. By de�ning language speci�c
subclasses that rede�ne deferred parse methods, the Ei�el parser library can be specialised
to implement parsers for arbitrary context-free languages and is not con�ned to lower level
languages in the Chomsky hierarchy, such as LALR(1). We decided in favour of expressiveness
rather than e�ciency here. E�cient parsing is not so important in syntax-directed editors. In
the structure-oriented mode of editing, the user decides which particular productions to choose.
A parser is only required after free textual input in order to ensure syntactic correctness of
the input. Free textual input is usually performed with small increments such as statements,
parameters and expressions. The overhead of a context-free parser can be neglected for these
small increments. In addition, the time required to create persistent objects, which represent
syntax graph nodes, dominates the overall time required for parsing the text. The equivalent
of methods declared in the Ei�el parser library are, in our case, implemented as methods of
classes contained in the prede�ned schema. Unlike an Ei�el parser, however, the language
speci�c methods that are deferred in the Ei�el library need not be hand coded in our case,
but are generated from the abstract syntax and unparsing scheme speci�cations. The code
generation for tool-speci�c classes, therefore, generates the implementation of those deferred
methods of the Ei�el library and implement the particular syntax. The generated parser then
is a multiple-entry parser, since the target to be parsed is de�ned by the object for which a
parse method is executed. For a detailed description of the way in which parse methods are
generated we refer to [Bud92].

8.2. BACK END 205

Tool API Subsystem: Once the generated database schema has been established, i.e.
once it has been compiled by the O2C compiler and committed to the database, O2 itself
can generate the ToolAPI subsystem. As discussed in Section 5.8, the C++ interface of O2

supports the export of an O2C class, including a subset of the available methods, to C++.
To actually have O2 exporting a subset of the methods de�ned for a class, we only have to
generate an export command (c.f. Page 103) that de�nes all methods to be exported. These
are the methods that implement methods exported in GTSL class interface de�nitions and, in
addition, the methods that implement accesses to readable GTSL properties. For generation
of the export command, we again use syntax-directed translation with a number of dedicated
PTG patterns.

Command Execution Subsystem: As discussed in Section 5.4, each tool command is
implemented by an interaction class. The code for class de�nitions and implementations
of interaction classes is generated using syntax-directed code generation techniques in the
speci�cation compiler. The GetName method is generated from the GTSL interaction name,
the IsAvailablemethod is derived from the expression that follows an interaction's ON clause.
Finally, the Execute method is generated from the interaction body. For its generation a
number of PTG patterns are de�ned. Although these patterns transform syntactic elements of
statement lists, they di�er from the patterns for statement lists that we discussed during the
code generation of explicit method bodies. The reason is that now the target language for code
generation is C++ rather than O2C. The tool builder, however, does not need to be aware of
these di�erent target languages and can use the same GTSL statements in interaction, explict
method or semantic rule bodies.

Interaction collections that implement menus are generated in a straight-forward manner by
the speci�cation compiler as well. It creates an interaction collection class for each GTSL
increment class. The constructor of the interaction collection class creates an object of each
interaction class that has been derived from a GTSL interaction of that class. The constructor
then invokes the IsAvailablemethod and inserts the interaction object into its collection only
if IsAvailable returns TRUE, otherwise the interaction object is deleted. The implementation
of method GetCommandName is then generated to invoke the GetName method of each interaction
object included in the collection. The Execute method of the collection has a parameter i that
addresses the ith element of the collection. Execute from the interaction collection then invokes
the Execute method of the interaction object that is stored at position i in the collection.

Inheritance of GTSL interactions is implemented in the interaction collection as well. As
discussed in Section 5.4, there are inheritance relationships among interaction collections.
The inheritance hierarchy of interaction collections is the same as the hierarchy of GTSL
increment classes. Each constructor of an interaction collection executes the constructor of its
super classes before executing its own body. These super class constructors, in turn, create
and eventually insert interaction objects implementing interactions of GTSL super classes into
the collection. Thus the interaction collection includes interaction objects that correspond to
interactions of di�erent GTSL classes. Rede�nition of interactions is resolved by replacing an
interaction object that is already in the collection with a new one if they have the same name.

Layout Computation Class: As discussed in Section 5.3, the LayoutComputation class
exports a method unparseIncrement. It checks for the dynamic type of increment that is
passed as a parameter and invokes the respective hidden unparse operation for that type.

206 CHAPTER 8. THE GTSL COMPILER

Since all classes need to be known for that, the unparseIncrementmethod cannot be generated
by the speci�cation compiler, but is created by the linker.

The bodies of hidden unparse methods are generated by the speci�cation compiler. These
hidden operations perform a depth-�rst traversal of the syntax tree starting from the increment
that was passed as an argument to unparseIncrement. Each operation interprets the unparsing
information stored in the symbol table of each class and generates invocations of method
InsertIncrementPart, which is exported from the user interface subsystem for pretty-printing
items and keywords. In order to insert text segments from a child increment into the edit
window, the hidden unparse operation generated for that type is invoked.

8.3 Summary

We have discussed the importance of having static semantic checks in the front ends of the
various GTSL compilers and how these checks can be generated from an ordered attribute
grammar de�nition using the techniques that are implemented in Eli. Some weaknesses of
Eli have been identi�ed in the process. In general, however, Eli proved to be very useful
for the \construction of application generators" as claimed in [Kas94]. We then discussed
code generation that is performed in the back end of the compilers. For most tool-speci�c
architecture components generation is straight-forward. The implementation of semantic rules,
however, is not as obvious. The reason is the conceptual gap between declarative speci�cation
of rules in GTSL and the basic mechanisms that can be used for their implementation. We
have discussed why semantic rules cannot be implemented with triggers and instead suggested
an incremental evaluation algorithm. Finally, we sketched how the tool-speci�c architecture
components are generated by the back ends of the various GTSL compilers. We are now in
the position to generate tools for the GENESIS environment from GTSL speci�cations.

Chapter 9

Evaluation

GTSL and the GTSL compiler have been successfully used on a number of occasions. The
Groupie module interface editor, which we used as a running example throughout this thesis,
has been generated from a GTSL speci�cation. In [dSR95] a tool for the design of Beta class
de�nitions [LMN93] was speci�ed in GTSL and integrated a-posteriori with a graphical editor
for the OMT notation. Moreover, we used GTSL to specify and generate a subset of the tools
for the GENESIS environment. Finally, GTSL was used to specify and generate several tools
for C++ class library development and maintenance.

The purpose of this chapter is to highlight the strengths and weaknesses of our tool construc-
tion approach. The evaluation will be carried out with respect to three dimensions. Firstly,
we will assess whether tools generated from GTSL speci�cations meet the functional require-
ments that we demanded in Chapter 2. Secondly, we want to see whether or not GTSL can
express the various concerns that are tool-speci�c. In particular, we evaluate the way for
modelling di�erent strategies of inter-document consistency constraint handling. We also set
out to quantify the e�ort that is required for the GTSL speci�cation of tools and compare it
with the case where tools are implemented in an object-oriented programming language. As
we especially focussed on e�ciency within this thesis we, �nally, also evaluate the run-time
performance of generated tools. The evaluation is based on two complementary evaluation
scenarios, tools for C++ class library development and tools of the GENESIS environment.

This chapter will further be structured as follows. We outline the evaluation scenarios in the
next section and discuss why they are appropriate and to what degree they are complementary.
Then we discuss, from a user's point of view, how well the functional tool requirements are met
by tools that were generated from GTSL speci�cations. After that, in Section 9.3, we evaluate
the appropriateness of GTSL for tool speci�cation purposes. We discuss this from a qualitative
as well as from a quantitative perspective. We then discuss performance measurement results
of the execution times of archetypical tool commands that we obtained during the execution
of the various generated tools in Section 9.4.

207

208 CHAPTER 9. EVALUATION

9.1 Evaluation Scenarios

9.1.1 The GENESIS Environment

The �rst scenario is the GENESIS environment whose requirements have been delineated in
Chapter 7. For the evaluation we generate an ENBNF editor and a class interface editor in
such a way that they are integrated a-priori and that they obey consistency constraints that
have been discussed in Chapter 7.

Figure 9.1: Tools of the GENESIS Environment

We evaluate whether GTSL can express the various inter-document consistency constraints
between ENBNFs and class interfaces. In particular, we have required that consistency is
preserved as far as possible in terms of change propagations. We, therefore, evaluate how the
handling of these constraints is supported by the tools and how this is speci�ed in GTSL.

9.1.2 The British Airways SEE

The requirements for the second scenario have been provided by British Airways, an industrial
partner of the GOODSTEP project [GOO94]. British Airways does most of its software
development in-house, with an increasing number of projects using object-oriented techniques.
A department of the IT infrastructure division, with seven developers at present, is supposed
to design, implement and document class libraries for the purpose of corporate reuse. The
second evaluation scenario, which we refer to as BA SEE in the following, is an environment
that supports this class library development and maintenance process.

9.1. EVALUATION SCENARIOS 209

Design documents of class libraries are de�ned in the Booch notation [Boo91]. A Booch class
diagram is structured into categories that serve structuring purposes, like subsystems in our
entity relationship notation. A category may contain a number of classes and nested categories.
The most recent de�nition of the Booch notation is strongly tight towards C++, which is the
programming language used for any object-oriented development at British Airways. Booch
distinguishes between three di�erent kinds of classes. These are template classes, instantiation
classes and plain classes. In addition, Booch diagrams identify di�erent kinds of relationships
between classes, namely inheritance, has- and use-relationships. They have di�erent C++
speci�c adornments. Inheritance may, for instance, be public, protected or private.

The language used for class de�nitions at British Airways is, in fact, only a subset of the
C++ programming language. The subset is determined by British Airways corporate pro-
gramming guidelines. The guidelines exclude C++ statements, such as ellipses, inlines and
friends, whose use would be contrary to accepted software engineering principles. Apart from
a class de�nition, further declarations related to the class, like enumerations, type de�nitions
or constants can be de�ned. Moreover, the dependencies of a class de�nition document to
other class de�nitions are de�ned in terms of #include statements and forward declarations.

An implementation has to be provided for each de�ned class. Therefore, a further document
type includes C++ method implementations. Each method that has been de�ned in a class
interface must be implemented in the respective class implementation document.

Since class libraries are developed for corporate reuse, they must be accompanied by docu-
mentation that enables customers to reuse classes from the library. Apart from the design that
identi�es the di�erent dependencies of classes, customers require a technical documentation of
the functionality provided by the public methods of a class. This technical documentation is
de�ned in the information processing facility (IPF), a mark-up language for online-hypertexts
de�ned by IBM. A hypertext, which can be compiled from an IPF document, is then delivered
to customers to provide an on-line help facility that supports use of the library. For each class
of the library an IPF document must be provided. Besides the signatures of public methods
of the class, it also includes a description of each method and examples illustrating how to use
the methods.

The two scenarios are complementary for several reasons. The Booch diagram editor is a
graphical tool that has been provided by another GOODSTEP partner, whereas the three other
tools have been generated from GTSL speci�cations. Preserving inter-document consistency
constraints between Booch diagrams and the other three document types can thus only be
achieved a-posteriori with tool-speci�c services. In contrast, the two tools of the GENESIS
environment are integrated a-priori. This integration between ENBNF documents and GTSL
class interface de�nitions cannot be achieved with di�erent views of the same real abstract
syntax graph. ENBNFs and class de�nitions are, from a structural point of view, too di�erent.
Instead, integration is de�ned in terms of inter-document reference edges between ENBNF and
class interface abstract syntax graphs. The three textual documents of the BA SEE, however,
are very similar from a structural point of view. There is no reason for tolerating consistency
constraint violations between these documents because the same user is responsible for any
of these documents that have to be de�ned for a class. Moreover, they are always versioned
together. Therefore, tools for these documents can be integrated a-priori based on a common
conceptual database schema. Class de�nitions, implementations and documentations are then
considered as di�erent views that are de�ned on top of this conceptual schema.

210 CHAPTER 9. EVALUATION

9.2 Satisfaction of Functional Requirements

Figure 9.1 on Page 208 displays the user interface of the ENBNF tool and the GTSL class
interface tool. Figure 9.2 displays the user interfaces of tools contained in the BA SEE. A
Booch editor is available for de�ning Booch diagrams. A class de�nition tool is used to edit,
analyse and browse through C++ class de�nitions, a method implementation tool is used for
de�ning method implementations and an IPF tool serves documentation purposes.

Figure 9.2: Tools Contained in the BA SEE

Inter-Document Consistency Constraints: Numerous inter-document consistency con-
straints exist between documents managed by the BA SEE. These are checked and preserved
by the tools contained in the environment. Each class in the Booch diagram must be re�ned in
terms of a class de�nition, an implementation and an IPF documentation. Upon creation of a
class, the Booch editor creates these documents as well. If a class name is changed, the Booch
editor consistently changes the class names in the corresponding documents. Moreover, the
relationships that are de�ned in the Booch diagram must be reected in the class de�nition
and implementation documents. The Booch editor creates, for instance, the corresponding
C++ declarations for an inheritance relationship between two classes in the Booch diagram.
If an adornment of a relationship is changed, the respective declaration is consistently changed
in the class de�nition. For each use-relationship between classes in the Booch diagram, there
must be an #include statement in the respective class de�nition and for each has-relationship
there must be a respective data member declaration. Adornments of has-relationships must

9.2. SATISFACTION OF FUNCTIONAL REQUIREMENTS 211

match names of data members. Similarly, the integration of the three textual tools causes the
insertion of the respective counterparts into the corresponding implementation and IPF doc-
uments, upon creation of a method. Furthermore, the matching of method signatures of the
class de�nition and their corresponding de�nitions in the implementation and IPF documents
is ensured.

The GENESIS environment preserves the inter-document consistency constraints that exist
between ENBNFs and GTSL class interface de�nitions by means of change propagations. If
a tool builder, for instance, creates a new production, a respective class de�nition is auto-
matically created. Moreover, inheritance relationships are introduced depending on the kind
of production. If symbols are inserted on the right-hand side of an ENBNF structure pro-
duction, respective abstract syntax children are inserted into the abstract syntax section of
the non-terminal class interface that is associated with the production. Likewise, the regular
expression section of a terminal increment class interface is automatically generated from the
right-hand side of a terminal production.

Versions and Con�gurations: Version and con�guration management of class de�nitions
in the BA SEE is required because di�erent customers reuse di�erent con�gurations of a class
library. The reuse department must be able to restore any of these con�gurations, for instance
to �x a bug. The Booch diagram determines a con�guration of a class library as follows.
A version label is associated with each class of the Booch diagram. The Booch editor then
provides a command to derive a new version of a class that, in turn, increases the version
label and derives new versions of the class de�nition, implementation and IPF documents.
Moreover, the Booch editor provides a command to open that document version of the class
interface, implementation or IPF document identi�ed by the version label. The version labels,
therefore, determine version selection rules and di�erent versions of the Booch diagram then
de�ne di�erent con�gurations.

Process Sensitivity: The class library development and maintenance is done under control
of a software process de�ned in the SLANG language [BFG93b] and enacted by the SPADE pro-
cess engine [BFGG92]. For a description of the process model we refer to [Rod95]. The Booch
editor is a process-sensitive tool and is integrated in the process model based on the SPADE
communication interface (SCI). Three di�erent roles are identi�ed in the process model. A
librarian is the contact point for all library customers. He schedules bug reports and change
requests to particular developers and decides when to release a new library con�guration. An
implementor modi�es the library and edits Booch diagram, class de�nition, implementation
and IPF documents. Finally, a tester is responsible for the correctness of library updates. The
granularity of documents that is considered by the process model is a library since these are
the units of task assignment. The process de�nition for accessing and modifying the other
document types are implemented by the other tools and their integration with the Booch tool.
Whenever a user starts the Booch tool the user has to declare his or her role. Then the process
model displays the libraries that the user can currently access and the user can load one of
the libraries, in terms of a Booch diagram, into the Booch editor. The user may then use the
Booch editor to browse to versions of class de�nition, implementation and IPF documents. It
is not necessary to control accesses to these document types from the process model because
they do not a�ect the work of other users. A user can then change the state of the library
con�guration in the process model. A tester may de�ne that the library update has been
successful and that the library can now be released by the librarian.

212 CHAPTER 9. EVALUATION

Concurrent Editing: Multiple users may concurrently update the same document version.
The British Airways process model excludes multiple users concurrently opening the same
library. This is enforced by SPADE during the enactment of the process de�nition. Never-
theless, there is a need to support concurrent document version updates because classes of a
library might use classes contained in other libraries. Thus one user might edit a class de�ni-
tion that uses a declaration of a class contained in another library. If this class is concurrently
edited by another user, who then changes the used declaration, the impact of this change needs
to be displayed concurrently. Therefore, the �rst user will receive a message saying that a used
declaration has been concurrently updated and then the impact of this update is concurrently
displayed. In the GENESIS environment there is no process control at all and, therefore, there
is no restriction of concurrent accesses to the same document version. The required concur-
rency control in both environments is implemented on the basis of the transaction mechanism
that is used during command execution.

Syntax-directed Editing: The corporate programming guidelines for C++ have been de-
�ned by the same department that is in charge of library development and maintenance.
Interestingly not even the developers who released the guidelines obeyed them. This problem
has been remedied by the introduction of syntax-directed editing facilities, which enable only
those C++ de�nitions that comply with the programming guidelines to be edited.

Unlike C++, the languages for tool speci�cation purposes are not widely known. By means
of structure-oriented editing, users of the GENESIS environment are, therefore, signi�cantly
supported in the e�cient de�nition of a tool speci�cation without having to go through tedious
edit-compile cycles. The users of the BA SEE, who have already acquired fundamental C++
programming skills, however, tend to use the free textual input facilities that are available in
the various BA SEE editors.

For the BA SEE, a great number of static semantic constraints de�ned for C++ class de�nitions
have been implemented in terms of GTSL semantic rules. The class de�nition tool, therefore,
checks violations of static semantics incrementally and shows them to the user by underlining
erroneous increments. The static semantic analysis is done in a way transparent to users, i.e.
users need not explicitly start a check command nor keep track of the increments that have
been checked already. Moreover, the semantic analysis is done incrementally, i.e. only those
increments that have been changed since the last static semantic analysis are re-analysed.

Analysis and Browsing: A number of cross-reference analysis commands are available in
the C++ class de�nition editor of the BA SEE. These are required because class de�nitions
also have to be understood by those developers who have not developed them. The analysis
commands allow a user, for instance, to identify all the class de�nitions where a particular
class or type declaration is used. The tool also o�ers browsing commands, for instance, to
display the declaration of a used class de�nition. In addition, the tool supports the removal of
errors. If an identi�er is declared twice, the original declaration of the identi�er can be visited
by means of a browsing command.

Persistence and Integrity Any command of the syntax-directed tools for class de�nition,
implementation and documentation of the BA SEE is performed as an ODBS transaction.
This means that the e�ect of a command is immediately persistent and the potential loss of
e�ort in the case of a hardware or software failure is restricted to the last command execution

9.3. TOOL SPECIFICATION 213

that has not been completed. However, integrity may be violated due to the fact that the
Booch editor does not exploit ODBSs to achieve persistence and integrity. Therefore, all
changes made since a Booch diagram has been saved will be lost in case of a failure. Then
the integrity between the saved Booch diagram and the class de�nitions, implementations and
documentations might be violated.

Compilation Support: The BA SEE also supports the compilation of a library. The Booch
editor generates a make-�le from a Booch diagram. According to the programming guidelines,
each class has to be compiled separately. The make-�le, therefore, enumerates the di�erent
classes as compilation units. In addition, the Booch editor then exploits the various rela-
tionships in the Booch diagram to determine dependency rules for the make-�le. The Booch
editor also o�ers a command to dump the contents of a class library into a �le-system. This
dump is incremental in the sense that only modi�ed documents are dumped and, therefore, the
compilation of the library, which is based on the �le-system time stamps is also incremental.
Likewise the GENESIS class de�nition editor is able to dump all GTSL class de�nitions into
the �le-system in order to enable the GTSL compiler to access them.

9.3 Tool Speci�cation

In this section, we demonstrate how GTSL is exploited to construct the ENBNF and class in-
terface tools for the GENESIS environment. For each of the two tools, we discuss the ENBNF
the entity relationship model and the inheritance diagram. Then we present excerpts from
class interface and speci�cation de�nitions that demonstrate the speci�cation of static seman-
tic and inter-document consistency checks and even their preservation by means of change
propagations. While doing so, we indicate how the solutions can be generalised for the con-
struction of other tools. We then outline those strategies for the de�nition of inter-document
consistency constraint handling in the BA SEE that are di�erent from the GENESIS environ-
ment. Finally, we measure the complexity of the tool speci�cations and compare it with the
size of the generated code.

9.3.1 ENBNF Editor

The purpose of the ENBNF editor is to support a tool builder in de�ning the syntax of a
language in terms of a normalised ENBNF, as de�ned in Section 6.2. In particular, the tool
will support hybrid syntax-directed editing of these ENBNFs and check for their static semantic
correctness. In addition, the editor will generate initial GTSL class interface de�nitions and
propagate the tool builder's changes into these class de�nitions. To de�ne this propagation,
the ENBNF editor speci�cation must import classes from the interface editor speci�cation.
We, therefore, postpone the discussion of these change propagations to Subsection 9.3.3 and
discuss the ENBNF and the class interface editor �rst.

9.3.1.1 ENBNF of ENBNF

Figure 9.3 de�nes the ENBNF of the ENBNF language. The de�nition has been derived by
normalising the language de�nition given on Page 122. The extensions de�ned for ENBNFs

214 CHAPTER 9. EVALUATION

ENBNF ::= ProductionList .

ProductionList ::= {Production} .

Production ::= Alternative | Structure | StructureOpt | Regular | RegularOpt .

Alternative ::= DefiningSymbol "::=" SymbolList .

Structure ::= DefiningSymbol "::=" ComponentList .

StructureOpt ::= DefiningSymbol "::=" "|" ComponentList .

Regular ::= DefiningSymbol ":" RegExp .

RegularOpt ::= DefiningSymbol ":" "|" RegExp .

SymbolList ::= {UsingSymbol}("|") .

ComponentList ::= {Component} .

Component ::= ListProd | Keyword | RegExp | UsingSymbol .

ListProd ::= "{" UsingSymbol "}" Delimiter .

Delimiter ::= | "(" KeywordList ")" .

KeywordList ::= {Keyword} .

Keyword : '["][^"]*["]' .

RegExp : '['][^']*[']' .

DefiningSymbol : '[a-zA-Z_][a-zA-Z_0-9]*' .

UsingSymbol : '[a-zA-Z_][a-zA-Z_0-9]*' .

Figure 9.3: ENBNF of ENBNF

enable the language to be de�ned in a more concise way. It, therefore, contains fewer produc-
tions. In particular, list structures such as SymbolList and alternatives can be de�ned more
appropriately.

A further di�erence arises since we anticipate the speci�cation of static semantics. We know
that for each ENBNF production, a GTSL class will be derived. Moreover, we know that
static semantics is de�ned in terms of semantic rules that are attached to class speci�cations.
We, therefore, take the constraint SV2 (c.f. Page 123) into account and distinguish between
using symbols that occur on the right-hand sides of productions and de�ning symbols that
occur on the left-hand side.

The above observation applies in general. It is always the terminal symbols, which are the
smallest unit in the grammar, that carry semantics. Therefore, we must declare di�erent
terminal symbols in the grammar, although they might have the same lexical syntax, if they
play di�erent roles in static semantics. This ensures that the di�erent symbols are translated
into di�erent GTSL terminal increment classes. The di�erent semantic properties are then
de�ned by the semantic rules of these di�erent increment classes.

9.3.1.2 Inheritance Diagram of ENBNF Editor

The inheritance diagram of the ENBNF editor is displayed in Figure 9.4. It identi�es the
di�erent GTSL classes that are derived from the ENBNF and their inheritance relationships to
prede�ned classes. Prede�ned class names are typeset in italics. There are three classes which
have not been derived from ENBNF productions, but are added here. These are ScopingBlock,
NameInST and UsingNameInST. These classes are abstract GTSL classes that will implement
static semantic constraints SV1 and SV2. We could also have de�ned these constraints in
their subclasses, i.e. in ENBNF, DefiningSymbol and UsingSymbol. The constraint for uniqueness
of identi�ers in a particular scope and the constraint that applied identi�ers must be declared
occur in almost any typed language. We, therefore, de�ne these constraints in abstract classes
in such a way that these classes can be reused in other tool speci�cations.

9.3. TOOL SPECIFICATION 215

Production

KeywordListSymbolList

AlternativeComponentList Regular StructureOpt RegularOpt Structure

UsingSymbolRegExpKeywordListProdDelimiter

NameInST

DefiningSymbol

Increment

NonterminalIncrementUsingNameInSTTerminalIncrementComponentDocumentScopingBlockOptionalIncrement

IncrementList

NonterminalIncrementListTerminalIncrementList

ProductionList

ENBNF

Figure 9.4: Class Hierarchy of ENBNF Editor

9.3.1.3 Entity Relationship Model of ENBNF Editor

Figure 9.5 de�nes the top-level entity relationship diagram of the ENBNF editor speci�cation.
The diagram visualises abstract syntax children as aggregation relationships. The names of
these relationships are de�ned by the tool builder here in the entity relationship diagram. In
addition, three semantic relationships that are the baseline for speci�cation of static semantics
are de�ned.

pl Production
List Productions

lhs

Symbol
 List

cl

TheList

sl

re RegExp

Component
 List

ComponentTheList

KeywordList
Prod

Delimiter Keywordkwl

TheList

TheList

symb

Scoping
 Block

 Using
Symbol

Defining
Symbol

NameInST Using
NameInST

DefinedIn/
UsedByBlock/IncludedNames

Block

DefinedNames

ENBNF

Figure 9.5: Entity Relationship View of Syntax View

The �rst semantic relationship connects de�ning occurrences of names with the increment that
de�nes the scoping block. This increment has an attribute DefinedNames which is an instance
of the non-syntactic class DuplicateSymbolTable. It is used to store all declaring occurrences of
names. The explicit link of the �rst semantic relationship is de�ned in NameInST and is called
Block. The corresponding implicit link is de�ned in ScopingBlock and is called IncludedNames.
This link refers to the set of those declaring names that are de�ned within the scope. The
second relationship connects using names with the scoping block. This relationship is required

216 CHAPTER 9. EVALUATION

in semantic rules of class UsingNameInST in order to de�ne name lookups. The last semantic
relationship connects using names with those increments that declare the name. The explicit
link DefinedIn is de�ned in UsingNameInST and used in semantic rules of class UsingNameInSt.
The corresponding implicit link UsedBy is used in NameInST to allow for the propagation of
changes of the name to all using names. The classes ENBNF, DefiningSymbol and UsingSymbol

then inherit these semantic relationships.

The entity relationship diagram in Figure 9.5 contains a subsystem Productions. This sub-
system is re�ned by the entity relationship diagram in Figure 9.6. It de�nes �ve increment
classes that represent the di�erent kinds of production in our normalised EBNF as subclasses of
class Production. The subclass relationship has been derived from the alternative production
Production in the ENBNF. Note that we have simpli�ed the abstract syntax relationship that
was derived from the ENBNF. Any of the subclasses of Production have an abstract syntax
child of class DefiningSymbol. We have simpli�ed that by replacing the �ve abstract syntax
children in each production increment with an abstract syntax child lhs in class Production.
The subclasses now inherit the abstract syntax child from Production.

lhs

Symbol
 List

sl

re
RegExp

Component
 List

Production

cl

AlternativeRegular Structure
 OptStructureRegular

 Opt

cl

re

Defining
Symbol

Figure 9.6: Re�nement of Subsystem Productions

This strategy should be applied in general. The productions that de�ne symbols of an alterna-
tive often have particular child increments in common. In that case these children should be
de�ned in the super class that has been derived from the alternative production rather than in
all classes derived from the alternative symbols. This concern is reinforced when we consider
methods, interactions and semantic rules. They often depend on a single child increment. If
the child is de�ned in the super class methods, semantic rules and interactions can also be
de�ned there and reused in all subclasses.

9.3.1.4 Static Semantics

We now use the attribute and the semantic relationships that have been de�ned in the entity re-
lationship diagram to de�ne the static semantics of the ENBNF. A new symbol table is created
for each new scoping block. This is de�ned in the initialisation section of class ScopingBlock.
For a detailed de�nition of the initialisation section we refer to the Appendix A.3.2, Page 280.
Its purpose is to permit user-de�ned initialisations during increment construction. Note that
class ENBNF inherits this initialisation. The symbol table has to be updated whenever a new
name is de�ned in the scope, an existing name changes or a name is deleted from the scope.
This is de�ned in a semantic rule of class ScopingBlock from which ENBNF inherits.

9.3. TOOL SPECIFICATION 217

INCREMENT SPECIFICATION ScopingBlock;

INITIALIZATION

DefinedNames := NEW DuplicateSymbolTable;

END INITIALIZATION;

SEMANTIC RULES

ON EXISTS(name : NameInST IN SELF.IncludedNames):

CHANGED(name.value) OR DELETED(name)

ACTION

SELF.DefinedNames.associate(name,name.value);

END ACTION;

END SEMANTIC RULES;

END INCREMENT SPECIFICATION ScopingBlock.

If a new name increment is created, the semantic relationship between name and scoping
block increments must be established. This is de�ned in the initialisation section of class
NameInST. As de�ned below, the result of executing method envelopingScope is assigned
to the explicit link Block. The method traverses to father increments until it reaches an
increment of class ScopingBlock or one of its subclasses. Assigning this increment to link
Block implicitly inserts the newly created object into the implicit link IncludedNames of class
ScopingBlock. This, in turn, implies that the newly created increment is now reachable via
the path SELF.IncludedNames and then the semantic rule above is �red. This rule then changes
the attribute DefinedNames and then the semantic rule of class NameInST given below �res.

INCREMENT SPECIFICATION NameInST;

INITIALIZATION

Block := SELF.envelopingScope();

END INITIALIZATION;

SEMANTIC RULES

ON CHANGED(SELF.Block.DefinedNames)

ACTION

IF(SELF.Block.DefinedNames.is_duplicate_incr(SELF)) THEN

SELF.Errors.append_error(SELF.ErrorId());

ELSE

SELF.Errors.clear_error(SELF.ErrorId());

ENDIF

END ACTION;

END SEMANTIC RULES;

METHODS

METHOD envelopingScope():ScopingBlock;

VAR i: Increment;

BEGIN

i:=SELF.father;

WHILE ((i!= NIL) AND (NOT i.IS_KIND_OF("ScopingBlock"))) DO

i := i.father;

ENDDO;

RETURN(<ScopingBlock>i);

END envelopingScope;

END INCREMENT SPECIFICATION NameInST.

The semantic rule investigates whether the name is duplicate or not by invoking the method
is duplicate incr from the symbol table attribute of the scoping block. If it returns TRUE, the
name is not unique and an error descriptor is inserted into attribute Errors, which is inherited
from class Increment, otherwise the error descriptor is deleted from the error set.

218 CHAPTER 9. EVALUATION

Note that the error descriptor to be inserted into the set is tool-speci�c and cannot be de�ned
in this abstract class. We, therefore, invoke a deferred method ErrorId for computing the
error descriptor rather than inserting a constant error descriptor into the set. By exploiting
late binding, we have managed to postpone the decision as to which error descriptor to use to
the de�nition in some tool-speci�c subclass of NameInST.

Class UsingNameInST de�nes the common properties for using names. Therefore, we have
de�ned an explicit link Block of a semantic relationship to the increment of a subclass of
ScopingBlock. This relationship is established upon creation of a using name in the same way
as it was established for de�ning names.

The relationship is exploited in a semantic rule in order to lookup names in the symbol table of
the scoping block. The semantic rule below �res whenever either the symbol table or the lexical
value of the using name is changed. The rule then �rst performs a lookup in the symbol table
by invoking method increment at with the symbol table DefinedNames. This method returns
the unde�ned value NIL if the name is not included, otherwise it returns a reference to the
increment that declares the name. If the reference is de�ned, the semantic rule investigates the
type of the increment using the GTSL operator KIND OF. Again the conformity is tool-speci�c.
Therefore, we again de�ne a deferred method and then determine the type we are looking
for in a subclass. In addition, we must check for conformance of NameInST, since otherwise
we would not be allowed to specialise the found symbol using the type cast <NameInST>. If
the increment that was returned by the lookup is conform to both types, the semantic rule
establishes a semantic relationship between the using and de�ning increments by assigning
the increment to the explicit link DefinedIn. Note again that this assignment also modi�es
the implicit link UsedBy in class NameInST. It now also includes a reference to the increment
for which the semantic rule was �red. The semantic rule then removes the error descriptor
that again is determined by a deferred method. In all other cases the semantic relationship is
deleted and the error descriptor is added to the set of errors.

INCREMENT SPECIFICATION UsingNameInST;

...

SEMANTIC RULES

ON CHANGED(Block.DefinedNames) OR CHANGED(value)

VAR inc: Increment;

ACTION

inc:=SELF.Block.DefinedNames.increment_at(SELF.value);

IF inc != NIL THEN

IF(inc.IS_KIND_OF("NameInST") AND

inc.IS_KIND_OF(SELF.DeclClassName())) THEN

DefinedIn := <NameInST>inc;

Errors.clear_error(SELF.ErrorId());

ELSE

DefinedIn:=NIL;

Errors.append_error(SELF.ErrorId());

ENDIF;

ELSE

DefinedIn:=NIL;

Errors.append_error(SELF.ErrorId());

ENDIF;

END ACTION;

END SEMANTIC RULES;

END INCREMENT SPECIFICATION UsingNameInST.

We required the static semantic constraints in the ENBNF not to be violated. Without
additional means, the ENBNF editor would not help the tool builder to achieve consistency

9.3. TOOL SPECIFICATION 219

as much as it could. In particular upon a change to a de�ning symbol, the using symbols that
were consistent before would become inconsistent. We overcome this de�ciency by propagating
the change from the de�ning symbol to all using symbols. Since this is tool-speci�c, we de�ne
it in a method of DefiningSymbol rather than in NameInST. The method section �rst de�nes
method ErrorId that determines the error descriptor by rede�ning the deferred method of its
super class. Then method change symbol de�nes the change propagation. It iterates over all
elements of the implicit link UsedBy that is inherited from class NameInST and thus refers to
using symbols. It then invokes the method react on change for each element of the implicit
link. Since the base type of the implicit link is UsingNameInST rather than UsingSymbol and
react on change is only exported by UsingSymbol, we have to cast the type here.

INCREMENT SPECIFICATION DefiningSymbol;

METHODS

METHOD ErrorId: ERROR;

RETURN (#SymbolAlreadyDef);

END ErrorId;

METHOD change_symbol(new_symbol:STRING):BOOLEAN;

BEGIN

FOREACH sym:UsingNameInST IN SELF.UsedBy DO

(<UsingSymbol>sym).react_on_change(new_symbol)

ENDDO;

RETURN(SELF.scan(new_symbol));

END

END METHODS;

The interactions that de�ne the tool commands are completely inherited from the prede�ned
classes TerminalIncrement, NonterminalIncrement, IncrementList, TerminalIncrementList and
NonTerminalIncrementList. In particular, TerminalIncrement de�nes an interaction for chang-
ing a terminal increment that has already been expanded. To ensure that the method
change symbol is invoked so as to arrange for change propagation, we must rede�ne the re-
spective interaction and invoke the method change symbol de�ned above. The tool-speci�c
interaction ChangeTerminal de�nes this behaviour.

INTERACTIONS

INTERACTION ChangeTerminal;

NAME "Change Symbol"

SELECTED IS SELF

ON (NOT SELF.is_phylum())

VAR new_name:TEXT;

errors:TEXT_SET;

BEGIN

new_name:= NEW TEXT(SELF.unparse());

IF new_name.LINE_EDIT("Change symbol:") THEN

IF NOT SELF.change_symbol(new_name.CONTENTS()) THEN

errors:=NEW TEXT_SET(SELF.get_set_of_errors());

errors.DISPLAY();

ABORT

ENDIF

ENDIF

END ChangeTheIdentifier;

END INTERACTIONS

END INCREMENT SPECIFICATION DefiningSymbol;

220 CHAPTER 9. EVALUATION

9.3.2 Class Interface Editor

In the last subsection, we de�ned the ENBNF editor, which is a syntax-directed tool for a
rather simple language and we demonstrated the appropriateness of GTSL for de�ning syntax-
directed editing, static semantic checks, and even automatic correction of static semantic
violations in terms of change propagations. In this subsection, we sketch the use of GTSL on a
much higher scale for the de�nition of an interface editor for GTSL classes. The sublanguage
for GTSL class interface de�nitions is far more complex than the ENBNF language. As we
are able to construct a tool for this complex language with GTSL, we provide evidence that
the approach developed in this thesis scales up.

9.3.2.1 ENBNF of Class Interface

Figure 9.7 displays the ENBNF of the class interface editor. It has been derived in a straight-
forward manner from the GTSL grammar that is given in Appendix A. It de�nes the context-
free syntax of the language in terms of 69 ENBNF productions. We have again de�ned symbols
that anticipate the later de�nition of static semantics. In particular, we have de�ned various
terminal symbols for identi�ers. The terminal GTSL classes that are derived from these
terminal symbols will de�ne most of the static semantics and inter-document consistency
constraints for GTSL class interfaces.

9.3.2.2 Inheritance Diagram of Class Interface Editor

We have derived a GTSL class for each production of the ENBNF. The inheritance relationship
among these classes as well as their relationship to prede�ned GTSL classes are displayed
in Figure 9.8. The picture only presents an excerpt because the overall hierarchy is too
complex to �t on a page. We have, therefore, depicted classes NonterminalIncrement and
TerminalIncrement with an underlying shadow. This indicates that there is a hierarchy of
classes below each of them. The terminal increment classes are important for static semantics
and inter-document consistency de�nition. They are, therefore, displayed in Figure 9.91.

We have added abstract classes for the speci�cation of properties that are common to multiple
classes. For the purpose of de�ning the scoping rules of GTSL class interfaces, for instance,
we have reused the three abstract classes ScopingBlock, NameInST and UsingNameInST, which
were introduced in the last subsection. Types in GTSL class interfaces can be declared by
three di�erent means: the class name (ClassName) can be used as a type, any super class
(SuperClass) can be used as a type and any imported class (ImportClass) can be used as a
type. We have, therefore, introduced an abstract class ClassDecl that serves as super class for
the above three increment classes. Moreover, we have added abstract classes to serve as super
classes for the di�erent kind of method de�nitions that can appear in GTSL class interfaces.
In this way we are able to exploit inheritance in GTSL to de�ne the common properties of
GTSL methods in a single class.

1For the non-terminal classes, we refer to Figure C.1 in Appendix C.2.

9.3. TOOL SPECIFICATION 221

Interface ::= AbstractInterface | NonterminalInterface | TerminalInterface | NSCInterface .
AbstractInterface ::= "ABSTRACT" "INCREMENT" "INTERFACE" ClassName ";"
 InheritSection ImportInterface AbstractExpInt
 "END" "ABSTRACT" "INCREMENT" "INTERFACE" ClassName "." .
NonterminalInterface::="NONTERMINAL" "INCREMENT" "INTERFACE" ClassName ";"
 InheritSection ImportInterface NonterminalExpInt
 "END" "NONTERMINAL" "INCREMENT" "INTERFACE" ClassName "." .
TerminalInterface ::= "TERMINAL" "INCREMENT" "INTERFACE" ClassName ";"
 InheritSection ImportInterface TerminalExpInt
 "END" "TERMINAL" "INCREMENT" "INTERFACE" ClassName "." .
NSCInterface ::= "INTERFACE" ClassName ";"
 InheritSection ImportInterface NSCExpInterface
 "END" "INTERFACE" ClassName "." .
InheritSection ::= "INHERIT" SuperClassList .
SuperClassList ::= {SuperClass}(",") ";" .
ImportInterface ::= | "IMPORT" "INTERFACE" ImportList "END" "IMPORT" "INTERFACE" ";" .
ImportList ::= {Import} .
Import ::= "IMPORT" ImportClass ";" .
AbstractExpInt ::= "EXPORT" "INTERFACE"
 AbstractSyntax Attributes SemanticRelations MethodSection
 "END" "EXPORT" "INTERFACE" ";" .
NonterminalExpInt ::= "EXPORT" "INTERFACE"
 AbstractSyntax UnparsingScheme Attributes SemanticRelations NonterminalMethodSection
 "END" "EXPORT" "INTERFACE" ";" .
TerminalExpInt ::= "EXPORT" "INTERFACE"
 RegularExpression Attributes SemanticRelations TerminalMethodSection
 "END" "EXPORT" "INTERFACE" ";" .
NSCExpInterface ::= "EXPORT" "INTERFACE"
 Construction MethodSection
 "END" "EXPORT" "INTERFACE" ";" .
Construction ::= | "CONSTRUCTION" AttributeList "END" "CONSTRUCTION" ";" .
AbstractSyntax ::= "ABSTRACT" "SYNTAX" ChildIncrementList "END" "ABSTRACT" "SYNTAX" ";" .
ChildIncrementList ::= {ChildIncrement}(";") .
ChildIncrement ::= EntityName ":" UsingTypeDecl .
UnparsingScheme ::= "UNPARSING" "SCHEME" UnparsingItemList "END" "UNPARSING" "SCHEME" ";" .
UnparsingItemList ::= {UnparsingItem}(",") .
UnparsingItem ::= PrettyPrinting | RegDef | Format | Component .
Component ::= UsingEntity Delimiter .
Delimiter ::= | "DELIMITED" "BY" DelimiterItemList "END" .
DelimiterItemList ::= {DelimiterItem}(",") .
DelimiterItem ::= PrettyPrinting | RegDef | Format .
RegularExpression ::= "REGULAR" "EXPRESSION" RegExp "END" "REGULAR" "EXPRESSION" ";" .
Attributes ::= | "ATTRIBUTES" AttributeList "END" "ATTRIBUTES" ";" .
AttributeList ::= {AttributeDefinition}(";") .
AttributeDefinition::= AttributeCategory EntityName ":" UsingTypeDecl .
AttributeCategory ::= | "HIDDEN" .
SemanticRelations ::= | "SEMANTIC" "RELATIONSHIPS" SemanticRelList "END" "SEMANTIC" "RELATIONSHIPS" ";" .
SemanticRelList ::= {SemanticRel}(";") .
SemanticRel ::= ExplicitLink | ImplicitLink .
ExplicitLink ::= EntityName ":" LinkType .
ImplicitLink ::= "IMPLICIT" EntityName ":" "SET" "OF" UsingClass "." UsingEntity .
LinkType ::= UsingType | UsingSetType .
MethodSection ::= "METHODS" MethodList "END" "METHODS" ";" .
MethodList ::= {Method} .
Method ::= DeferredMethod | HiddenMethod | ExplicitMethod .
NonterminalMethodSection::="METHODS" NontermMethodList "END" "METHODS" ";" .
NontermMethodList ::= {NonterminalMethod} .
NonterminalMethod ::= NontermImpMethod | HiddenMethod | ExplicitMethod .
NontermImpMethod ::= "IMPLICIT" "METHOD" NontermImpMethName "(" ParameterList ")" ResultType ";" .
TerminalMethodSection:"METHODS" TerminalMethodList "END" "METHODS" ";" .
TerminalMethodList ::= {TerminalMethod} .
TerminalMethod ::= TerminalImpMethod | HiddenMethod | ExplicitMethod .
DeferredMethod ::= "DEFERRED" "METHOD" MethName "(" ParameterList ")" ResultType ";" .
TerminalImpMethod ::= "IMPLICIT" "METHOD" TerminalImpMethName "(" ParameterList ")" ResultType ";" .
HiddenMethod ::= "HIDDEN" "METHOD" MethName "(" ParameterList ")" ResultType ";" .
ExplicitMethod ::= "METHOD" MethName "(" ParameterList ")" ResultType ";" .
ParameterList ::= | {Parameter}(";") .
Parameter ::= ParName ":" UsingTypeDecl .
ResultType ::= | ":" UsingTypeDecl .
UsingTypeDecl ::= MultiValue UsingType .
UsingType : ’[A−Za−z][A−Za−z0−9$_]*’ .
MultiValue : | ’("LIST"|"SET"|"BAG"|"DICTIONARY")[]+"OF"[]+’
Format : ’\"((\\\")|([^"]))*\"’ .
RegExp : ’"{"[^}]*"}"’ .
PrettyPrinting : ’(\(\"[^\\^\"*\+]+"\))|"(NL)"’ .
ClassName : ’[A−Za−z][A−Za−z0−9$_]*’ .
SuperClass : ’[A−Za−z][A−Za−z0−9$_]*’ .
ImportClass : ’[A−Za−z][A−Za−z0−9$_]*’ .
EntityName : ’[A−Za−z][A−Za−z0−9$_]*’ .
ParName : ’[A−Za−z][A−Za−z0−9$_]*’ .
MethName : ’[A−Za−z][A−Za−z0−9$_]*’ .
TerminalImpMethName: ’[A−Za−z][A−Za−z0−9$_]*’ .
NontermImpMethName : ’[A−Za−z][A−Za−z0−9$_]*’ .
UsingEntity : ’[A−Za−z][A−Za−z0−9$_]*’ .
UsingClass : ’[A−Za−z][A−Za−z0−9$_]*’ .

Figure 9.7: ENBNF of the Class Interface Editor

222 CHAPTER 9. EVALUATION

TerminalIncrementTerminalIncrementNonterminalIncrement
NonterminalIncrement UnparsingItem

PrettyPrintingFormatRegDefComponentInterface

NSCInterfaceTerminalInterfaceNonterminalInterfaceNonterminalInterface

Document

ResultTypeSemanticRelationsAttributeCategoryAttributesDelimiterConstructionImportInterface

ScopingBlock

ParameterListInterfacePool

DocumentPool OptionalIncrement

IncrementIncrement

AbstractInterface

OptionalNontermIncrement

Figure 9.8: Top-Level Diagram of Inheritance Diagram

DelimiterItemPrettyPrinting

EntityName

TerminalIncrement

MultiValue

ParNameMethName

ImportClassSuperClassClassName

ClassDecl

Format NameInSTRegDef

UsingType UsingEntity UsingClass

UsingNameInST RegExp

Figure 9.9: Inheritance Hierarchy of Terminal Increment Classes

9.3.2.3 Entity Relationship Model of Class Interface Editor

In order to de�ne the abstract syntax children and semantic relationships we now consider
the entity relationship model of the class interface editor speci�cation2. The entity rela-
tionship model consists of a hierarchy of seven entity relationship diagrams. The top-level
diagram de�nes the classes and relationships for class names, inheritance sections and im-
port interfaces. Moreover, it includes two subsystems Interfaces and ExportInterfaces.
Subsystem Interfaces de�nes the four di�erent root increment classes that can appear in
GTSL. Subsystem ExportInterfaces de�nes the di�erent sections that can appear in export
interfaces of GTSL class interface de�nitions. It contains further subsystems. Subsystem
RelationDefinitions de�nes the structure of semantic relationships, UnparsingItems de�nes
the structure of unparsing schemes and �nally UsingDecls determines the various type de�ni-
tions that can appear as property types, method result types and parameter types. Figure 9.10
displays the top-level diagram.

The top-level diagram de�nes that the newly introduced abstract increment class ClassDecl

is a subclass of the reused class NameInST. ClassDecl thus inherits the semantic relationship
Block/IncludedNames with ScopingBlock from class NameInST. Subclasses of ScopingBlock are
de�ned in subsystems Interfaces and ExportInterfaces. A further semantic relationship
is InheritFrom/PassOnTo, which is de�ned between class SuperClass and ClassName. This
relationship stores the inheritance hierarchy of GTSL class de�nitions. Furthermore, the

2Again, we only sketch an excerpt here and refer to Appendix C.2 for the full de�nition.

9.3. TOOL SPECIFICATION 223

Super
Class

ImportedFrom/
ExportedTo

nameInterfaces Class
Name

Export
Interfaces

Inherit
Section

inh

imp

scl SuperClass
 List

TheList

 Class
 Decl

Import
Interface

Import
 Class

Import
 List Import

TheListil impid

NameInST
Scoping
Block

Block/IncludedNames

exp

DefinedNames

DefinedIn/UsedBy

InheritFrom/PassOnTo

Block

Figure 9.10: Top-Level Diagram of Entity Relationship Model

semantic relationship ImportedFrom/ExportedTo, which is de�ned between class ClassImport

and SuperClass, stores the import/export relationships between classes. Figure 9.11 then
depicts the re�nement of subsystem ExportInterfaces.

This diagram contains as ports all classes from the top-level diagram that are related to the sub-
system. In addition, it contains four ports that stem from the brother diagram Interfaces and
de�ne how the relationship exp from the top-level diagram is re�ned. Moreover, the diagram
de�nes that subsystem MethodDefinitions contains a class that inherits from ScopingBlock.
This class is ParameterList, which de�nes the nesting of scopes in GTSL class interfaces.

The main purpose of the diagram in Figure 9.11 is to de�ne the composition of the di�erent
export interfaces of GTSL classes. It de�nes, for instance, that a terminal export interface
(TermExpInt) has abstract syntax children for the attribute section (Attributes), the regular
expression section (RegularExpression) and the semantic relationship section (SemanticRels),
but does not have an abstract syntax section or an unparsing scheme. Moreover, it de�nes
that attributes, semantic relationships and abstract syntax children have an abstract syntax
component that stores the name (EntityName) of the respective declaration. In addition, all
of them have a component type that is de�ned in the subsystem UsingDecls. This subsystem
also contains a class that has a semantic relationship DefinedIn/UsedBy with the abstract
increment class ClassDecl. Moreover, it contains a class having a semantic relationship with
class ScopingBlock. The re�nement of subsystem UsingDecls is depicted in Figure 9.12.

On the left-hand side, the diagram depicts the di�erent classes as ports that have an abstract
syntax child type of class UsingTypeDecl. A TypeDecl can be single- or multi-valued. This
is determined by class MultiValue. Moreover, UsingTypeDecl has a child of class UsingType.
This is a terminal increment that inherits from the abstract class UsingNameInST. It can access
the symbol table that stores the declared types via the inherited relationship Block. It can
then instantiate the semantic relationship DefinedIn/UsedBy to an instance of a subclass of
ClassDecl. Two further classes are de�ned as subclasses of UsingNameInST. UsingClass is an
abstract syntax child of an implicit link and also has a semantic relationship with a class
declaration. Moreover, UsingEntity is an abstract syntax child of Component, which, in turn,
is a child of an unparsing item list. UsingEntity, therefore, has a semantic relationship with
EntityName to keep track of the declaration of the property.

224 CHAPTER 9. EVALUATION

Nonterminal
 ExpInt

Nonterminal
 Interface

exp

Abstract
 Syntax

Regular
Expression

Semantic
Relations

Attributes Attribute
 List

ChildIncre
mentList

Semantic
RelList

 Relation
Definitions

RegExp
 Method
Definitions

Terminal
 ExpInt

Terminal
 Interface

exp

NameInST

 Unparsing
 Scheme

Unparsing
ItemList

Unparsing
 Items

 NSCExp
 Interface

 NSC
 Interface

exp

Abstract
ExpInt

Abstract
 Interface

exp

Class
Decl

meth

meth

meth

meth

unp

as

sr

att

as

sr
att

att

att

re

sr

re

atts TheList

TheList

TheList

Entity
Name

name

name

name

TheList

type type

type
type

Child
Increment

Attribute
Category

cat

Attribute
Definition

Using
Decls

child

cl
explink

Scoping
Block

DefinedNames

Block

DefinedIn/
UsedBy

DefinedIn/
UsedBy

childlst

uilst

srlst

Figure 9.11: Re�nement of Subsystem ExportInterfaces

Explicit
 Link

 Using
TypeDecl MultiValue

Using
Entity Component

Attribute
Definition

 Child
Increment

Parameter

Abstract
Method

type card

basetype

Class
Decl

Implicit
 LinkUsingClass cl

child

explink

UsingType

 Using
NameInST

Scoping
Block

DefinedNames

Block

type

type

type

type

Entity
Name

DefinedIn/UsedBy

DefinedIn/UsedBy

DefinedIn/
 UsedBy

Figure 9.12: Re�nement of Subsystem UsingDecls

9.3.2.4 Static Semantics

The implementation of scoping rules is inherited from classes ScopingBlock, NameInST and
UsingNameInST. All increments of all subclasses of NameInST represent unique identi�ers in their
respective block. All instances of subclasses of UsingNameInST are checked for the existence of
an increment that matches the de�nition. In these subclasses, we only have to rede�ne the
deferred methods that compute the path to the respective scoping block, compute tool-speci�c

9.3. TOOL SPECIFICATION 225

error descriptors and implement reactions to change propagations.

On the basis of the de�nition of these scoping rules, we can then de�ne typing rules. As
an example consider static semantic Constraint A.21, de�ned in the Appendix A.2.1.1 on
Page 273. It requires component items in unparsing item lists to denote abstract syntax
children. This constraint is implemented in the following semantic rule of class UsingEntity.

INCREMENT SPECIFICATION UsingEntity;

...

SEMANTIC RULES

ON CHANGED(DefinedIn)

ACTION

IF (DefinedIn != NIL) AND

(DefinedIn.father.IS_OF_CLASS("ChildIncrement")) THEN

SELF.clear_error(#NotAnAbstractSyntaxChild) ELSE

SELF.append_error(#NotAnAbstractSyntaxChild)

ENDIF

ENDIF

END ACTION;

END SEMANTIC RULES;

...

END INCREMENT SPECIFICATION UsingEntity.

Note that the previously de�ned entity relationship model is particularly useful for understand-
ing the path expressions that appear in this semantic rule. According to Figure 9.12, DefinedIn
in class UsingEntity denotes the link with an increment of class EntityName. The relationship
is established under control of a semantic rule that is inherited from class UsingNameInST (c.f.
Page 218). The rule performs a symbol table lookup in order to obtain a de�ning name in-
crement that has the same lexical value as the using name. If no such increment exists, the
rule inserts an error descriptor into the set of errors and assigns the unde�ned value of NIL to
the link. If it exists, the target increment DefinedIn could also be the name of an attribute or
a link. This can be seen from the entity relationship diagram in Figure 9.11, since three ag-
gregation relationships lead to EntityName. We, therefore, have to check whether the abstract
syntax father of the target increment of DefinedIn is of class ChildIncrement. In that case,
we remove the respective error descriptor, otherwise we insert it into the set of errors for the
using entity increment.

Similar rules are de�ned for the other constraints. Most of them, however, also require a check
for consistency with increments contained in other class de�nition documents. Checking for
correctness of covariant rede�nition or for the match between implicit and explicit links, for
instance, means establishing inter-document relationships such as InheritFrom/PassOnTo or
ImportFrom/ExportTo. We, therefore, consider inter-document consistency now.

9.3.3 Implementation of Inter-Document Consistency Constraints

9.3.3.1 Inter-Document Consistency to other Class Interfaces

To establish semantic relationships between increments of di�erent documents that are of the
same type, we need an increment that serves as a common root for all existing documents of
that type. We refer to these increments as document pools in the following. The main purpose
of this root increment is to provide access to all documents. GTSL, therefore, contains a pre-
de�ned abstract increment class DocumentPool. Every document has a semantic relationship

226 CHAPTER 9. EVALUATION

docPool/registeredDocuments with a document pool. Upon creation of a document, the rela-
tionship is instantiated by assigning the document pool increment to the explicit link docPool.
The implicit link registeredDocuments then contains references to all documents.

Queries for a particular document in the document pool are most often associative and then
the registeredDocuments link is inappropriate. We would have to iterate over the link with
a FOREACH statement, which is neither concise in speci�cation nor e�cient during execution.
To de�ne these associative queries more appropriately, DocumentPool de�nes a symbol table
attribute definedDocuments. The prede�ned operators includes and increment at may then
be used for associative access to the set of documents. The associative queries are usually
based on a document name, which refers to the lexical value of some increment contained
in the document. Obviously, the name is tool-speci�c and, therefore, cannot be prede�ned.
Instead, tool builders have to de�ne a subclass of DocumentPool, which de�nes semantic rules
for determining the contents of the symbol table. Below, there is an example taken from the
GTSL class editor speci�cation. It de�nes the semantic rules of class InterfacePool, which is
a subclass of DocumentPool.

INCREMENT SPECIFICATION InterfacePool;

...

SEMANTIC RULES

ON EXISTS(doc: Interface IN SELF.registeredDocuments):CHANGED(doc.name.value)

ACTION

SELF.definedDocuments.associate(doc.name.value, doc);

END ACTION;

ON EXISTS(doc: Interface IN SELF.registeredDocuments):DELETED(doc)

ACTION

SELF.definedDocuments.deassociate(doc.name.value);

END ACTION;

END SEMANTIC RULES;

The rules de�ne that the contents of the symbol table definedDocuments are indexed with
lexical values of class names. This is appropriate because we also refer to class names in super
class de�nitions and import statements. The �rst semantic rule is executed whenever a class
interface name is created or changed. To de�ne this dependency, the ON clause contains an
EXISTS predicate that is de�ned via the implicit link registeredDocuments. The body of the
semantic rule associates the document, which was uni�ed with the EXISTS predicate, with the
lexical value of the class name in definedDocuments. Upon deletion of a document, the reverse
operation is performed by the second semantic rule; the association between the class name
and the class document is deleted from symbol table definedDocuments.

The document pool can now be exploited for the de�nition of inter-document consistency
constraints. As an example consider the constraint that each super class included in an inherit
section must be the name of some other class. This constraint is implemented in the semantic
rule of class SuperClass below.

9.3. TOOL SPECIFICATION 227

INCREMENT SPECIFICATION SuperClass;

...

SEMANTIC RULES

ON CHANGED(myDocument.docPool.definedDocuments) OR

CHANGED(SELF.value)

VAR i:Interface;

ACTION

i:=<Interface> myDocument.docPool.definedDocuments.increment_at(value);

IF i!=NIL THEN

InheritFrom:=i.name;

Errors.clear_error(#UnknownClass);

ELSE

InheritFrom:=<ClassName>NIL;

Errors.append_error(#UnknownClass);

ENDIF

END ACTION;

END SEMANTIC RULES;

...

The rule is �red as soon as either the symbol table attribute in the document pool is changed
or the lexical value of the super class name is created or changed. If it is �red, it performs a
symbol table lookup and searches for a class that has the same name as the lexical value of
the super class increment contained in the inherit section. If such a class exists, the semantic
relationship InheritFrom/PassOnTo is established by assigning the class name increment that is
reached from the document via the abstract syntax child name to the explicit link InheritFrom.
In that case, the error descriptor #UnknownClass is removed from the set of errors, otherwise
the semantic relationship is deleted and the error descriptor is added to the error set.

In the same style, a semantic rule in class ImportClass controls the semantic relationship
ImportedFrom/ExportedTo. InheritFrom/PassOnTo and ImportedFrom/ImportedTo are then ex-
ploited during a number of inter-document consistency checks. To check whether a used entity
is inherited from some class, for instance, we can now traverse to the set of inherited classes
along the link InheritFrom.

9.3.3.2 Inter-Document Consistency to other Document Types

In order to check and preserve inter-document consistency with documents of other types, we
have to import the respective document pool into the tool con�guration of the tool that checks
and preserves the constraint. We can then associatively access the document pools that store
documents of other types. In addition, we have to import classes in order to use them as types
of semantic relationship links or in path expressions. Moreover, classes of the imported tool
con�guration must export methods that enable the other tool to perform change propagations,
for instance.

As an example, we now consider the inter-document (type) consistency constraints between
ENBNFs and class interfaces. Consistency constraints that have been discussed in Chap-
ter 7 are implemented in terms of change propagations from the ENBNF editor into the
class de�nition editor. Therefore, class InterfacePool exports method CreateDocument and
DeleteDocument to create and delete class interfaces respectively. These operations are invoked
whenever a symbol on the left-hand side of a production is created or deleted. Moreover, the

228 CHAPTER 9. EVALUATION

interface editor classes export operations to

� modify a class name (ChangeClassName),

� add an inheritance relationship (AddInheritance),

� create an abstract syntax child (CreateChild),

� delete an abstract syntax child (DeleteChild),

� create a regular expression de�nition (CreateRegexp) and

� change a regular expression de�nition (ChangeRegexp).

To actually import these operations into the ENBNF editor con�guration the class interface
editor con�guration must export the classes that export the operations. This is achieved by
the following tool con�guration de�nitions. They represent relationships between subsystems
of the environment's entity relationship diagram.

CONFIGURATION INT CONFIGURATION SV

... ...

EXPORT IMPORT FROM CONFIGURATION INT:

INCREMENT CLASSES: INCREMENT CLASSES

InterfacePool, InterfacePool,

Interface, Interface,

NonterminalInterface, NonterminalInterface,

TerminalInterface, TerminalInterface,

AbstractInterface; AbstractInterface;

END EXPORT; END IMPORT;

...

END CONFIGURATION INT

Then these imported classes can be used in increment classes of the ENBNF editor speci�cation
to check and preserve inter-document consistency. As an example let us revisit the class
DefiningSymbol. It de�ned a method change symbol that was invoked whenever a symbol on
the left-hand side was created. This symbol can now be changed in order to also invoke method
rename class from class Interface to propagate the change of the symbol identi�er to the class
that corresponds to the symbol:

METHOD change_symbol(new_symbol:STRING):BOOLEAN;

VAR depending_int:Interface;

BEGIN

depending_int:=intPool.definedDocuments.increment_at(SELF.value);

IF depending_int!= NIL THEN

depending_int.ChangeClassName(new_symbol);

ENDIF;

FOREACH sym:UsingNameInST IN SELF.UsedBy DO

(<UsingSymbol>sym).react_on_change(new_symbol)

ENDDO;

RETURN(SELF.scan(new_symbol));

END

Method ChangeClassName then, in turn, changes the class name of the GTSL interface class.
Before actually changing it, it exploits the semantic relationships discussed above in order to
propagate the change further to all increments such as imports or inheritance lists which use
the class name. In this way static semantic correctness of GTSL class interfaces is likewise
una�ected by the change.

9.3. TOOL SPECIFICATION 229

9.3.3.3 Inter-Document Consistency Constraints in the BA SEE

Tool-speci�c Services: For the integration of the Booch tool with the class de�nition tool
an integration strategy di�erent from the one in the GENESIS environment has to be chosen.
The reason is that the Booch tool is a \foreign" tool, which does not store its documents as
abstract syntax graphs in O2. Therefore, inter-document reference edges cannot be used as
a basis for tool integration. Instead, we de�ne a number of tool-speci�c services. The Booch
tool will then exploit the message router to send messages to the class de�nition tool. Upon
receipt of such a message, the class de�nition tool will, in turn, translate the message into a
call of a method de�ned in the schema. This means that we have to implement tool-speci�c
services as methods in GTSL, which the GTSL compiler will then translate into methods of
the tool's schema.

INCREMENT SPECIFICATION DataMemberList;

...

METHOD AddAggregation(TheClass : STRING;

MemberName : STRING;

ByPointer : BOOLEAN;

StaticMember : BOOLEAN);

VAR i : DataMember;

s : STRING;

BEGIN

IF (StaticMember) THEN

s := CONC("static ", TheClass);

ELSE

s := TheClass;

ENDIF;

IF (ByPointer) THEN

s := CONC(s, " * ");

ENDIF;

s := CONC(s, " "); s := CONC(s, MemberName); s := CONC(s, ";");

i := NEW DataMember(SELF); i := i.parse(s);

IF (NOT expanded) THEN

SELF.expand();

ENDIF;

TheList.ADD_LAST(i);

END AddAggregation;

Figure 9.13: Method Implementing a Tool-speci�c Service

As an example of such a method, consider method AddAggregation in Figure 9.13. The purpose
of the method is to implement the tool-speci�c service that reacts to the creation of a new
has-relationship in the Booch diagram. It is invoked with a number of parameters that specify
the relationship in detail. The �rst parameter identi�es the target class of the has-relationship
and thus determines the type of the data member that is to be inserted. The next parameter
determines the data member name. Two further parameters are used to pass adornments of
the relationship. They determine whether the instance variable is a pointer and whether it is a
static class member. The body of the method then interprets these parameters and computes
an equivalent string representation. The string is then parsed by means of the implicit method
parse of class DataMember. The parse method returns a reference to the abstract syntax tree
of the data member root node. AddAggregation then checks if the data member list is still a
place holder. If so it is expanded and then the reference to the data member is inserted into
the data member list.

230 CHAPTER 9. EVALUATION

We note that the tool speci�cation languages as we suggested them in this thesis are in-
complete. What is missing is a primitive for de�ning messages, their components and their
synchronisation and routing properties. Therefore, the tool-speci�c message classes of the soft-
ware process communication protocol subsystem (c.f. Page 100) cannot be de�ned in GTSL.
For the implementation of the actual integration we had to hand-code them in C++. Moreover,
we cannot de�ne message interpretation, i.e. the binding of a message to a GTSL method.
The problem is currently being addressed in a Master's thesis [Wag95]. The proposition in
this thesis is to declare messages together with their components, properties and their binding
to methods of the root increment class in the tool con�guration. The root increment class
methods may then use GTSL path expressions to invoke methods of other GTSL classes.

The decision to have, with explicit methods, a low-level, yet exible primitive for de�ning
abstract syntax graph traversals and modi�cations proves to be very appropriate here. Meth-
ods may be substituted if more abstract integration patterns can be found. This, however,
requires more experience in a-posteriori integration. We would not have been able to de�ne
this a-posteriori tool integration without the exibility provided by GTSL methods.

Moreover, the example strongly suggests that message passing between tools, which is classi-
�ed by Wassermann as a control integration primitive can also be used for data integration
purposes. The two terms control integration and data integration [Was89] are, therefore, not
at all orthogonal, but rather two sides of the same coin.

Common Conceptual Schema: To implement tool integration between the class de�ni-
tion, method implementation and IPF documentation tool, we choose yet another strategy.
The syntax graphs for a C++ class de�nition, the method implementation and the IPF docu-
mentation are, from a structural point of view, very similar and, therefore, contain a signi�cant
amount of redundant information. For each class of a library, subgraphs for method signa-
tures, for instance, are included redundantly in all three graphs. The British Airways process
model allows us to avoid this redundancy. Since the same user is responsible for all three
documents, it is most appropriate if a change to a class de�nition is immediately reected
in the method implementation and IPF documentation. We can, therefore, de�ne a common
conceptual schema for all three tools. The schema de�nes the superposition of the di�erent
syntax graphs. The di�erent tools then only use a subset of the de�nitions de�ned by a view
of the conceptual schema.

Here we encounter a further weakness of our tool speci�cation language. It does not yet
include primitives to de�ne common conceptual schemas and views on top of them. These two
primitives are currently being added in a further Master's thesis [Bec95]. We can, nevertheless,
exploit the tool speci�cation languages as they were de�ned in this thesis for the construction
of these tools. We de�ne one tool speci�cation from which the abstract syntax graph structure
of the conceptual schema is generated. Then we de�ne further tool speci�cations as views
for each of the three tools. Compared with the conceptual schema speci�cation, these tool
speci�cations have an identical class hierarchy, the same abstract syntax, regular expression,
attribute, semantic relationship, method and semantic rule sections as the conceptual schema.
We merely modify interactions and unparsing schemes in a tool-speci�c way. Compared with a
full view mechanism as proposed in [Bec95], consistency between views and conceptual schema,
however, has to be checked manually. Moreover, we cannot hide particular de�nitions from
being accessed from one or the other view and a view cannot include speci�c methods for a
tool.

9.3. TOOL SPECIFICATION 231

9.3.4 Quantitative Analysis of the Speci�cation Sizes

We now discuss how much time has to be spent in order to construct a tool using the lan-
guages presented in this thesis. Table 9.1 displays the result of a quantitative analysis that we
performed with the ENBNF, GTSL class interface and C++ class de�nition tool speci�cations.

GTSL GTSL C++
ENBNF Class Class

Interface Interface

Classes 22 74 100
Interactions 1 2 49
Explicit Methods 8 17 45
Semantic Rules 5 14 47
Tool-Speci�c Services 0 0 15
Size of Interfaces (LOC) 665 2,600 3,400
Size of Speci�cations (LOC) 265 806 6,400
Total Size (KBytes) 23 89 273
Generated Code Size (MBytes) 3.7 8.2 16.8
Ratio 160:1 92:1 62:1

Table 9.1: Size of Tool Speci�cations

The number of classes required for a tool speci�cation is dominated by the number of pro-
ductions in the ENBNF of the respective language. In the ENBNF of the ENBNF tool spec-
i�cation there are 18 productions and four further classes were added for the speci�cation of
static semantic properties. Likewise, the ENBNF of the GTSL class interface tool consists of
69 productions, �ve further abstract classes were added to specify static semantic properties.
The C++ ENBNF consists of 87 productions and 13 abstract classes were added to the derived
ones to specify static semantics and inter-document consistency.

The average size of a class speci�cation depends largely on the number of tool-speci�c com-
mands and services that have to be de�ned. Class de�nitions in the ENBNF tool speci�cation
have a size of less than 1,000 Bytes. The reason is that only one command is speci�ed in an
interaction, but any other interaction is inherited from prede�ned classes. In the C++ tool,
however, a number of interactions had to added in order to meet the speci�c requirements
of British Airways, for instance, with respect to browsing. Moreover, a number of methods
had to be added to implement tool-speci�c services. The average size of GTSL classes in that
speci�cation has, therefore, been increased to 2,730 Bytes.

If we assume that the code generated by the GTSL compiler is as compact as hand-coded
code, the ratio between the size of the generated code and the size of the speci�cation gives
evidence of the advantages of using our approach compared with the implementation of tools
with object-oriented programming languages. The ratio merely depends on the size of the
GTSL class speci�cations. The ratio is higher for tools, like the ENBNF tool, that do not
need to have speci�c features than it is for tools with speci�c commands and services. In
reality, a tool builder might not save as much time as indicated by these ratios because he or
she might be able to write code that is twice or three times as compact as the generated code,
but still there is a signi�cant bene�t in using our approach.

232 CHAPTER 9. EVALUATION

9.3.5 Summary

In this section, we have evaluated how the various tool-speci�c concerns can be speci�ed with
the languages that we suggested. We have shown the appropriateness of ENBNFs to de�ne the
abstract and concrete syntax of a language. Then we have indicated how entity relationship
diagrams can be used to de�ne further structural properties, namely semantic relationships
and attributes. We have seen how well they visualise the navigation paths that are then used in
the behavioural speci�cation of static semantics and inter-document consistency constraints.
Finally, we have seen how tool commands and tool-speci�c services can be de�ned in GTSL.

We have exploited the various facilities that the language o�ers for component reuse. Reuse
of properties is mainly based on inheritance. Unlike object-oriented programming languages
where only attributes and methods are inherited, our languages support also inheritance of
semantic relationships, semantic rules and interactions. Reuse is not con�ned to prede�ned
speci�cation components, but tool builders can specify their own components for reuse pur-
poses, like we de�ned class ScopingBlock. Moreover, reuse is supported since arbitrary de�ni-
tions can be customised by rede�ning them in subclasses. We exploited this, for instance to
adapt the de�nition of an interaction that was inherited from a prede�ned class.

The object-oriented paradigm that we used for the language de�nitions not only contributes
to the reusability of speci�cation components, but also guides tool builders to structured
tool speci�cations. A complex tool speci�cation is structured into manageable component
speci�cations in terms of GTSL increment classes. Structuring is not only supported for
GTSL classes, but also on a more coarse-grained level for subsystems in our entity relationship
notation. Due to these structuring facilities tool speci�cations, even for so complex tools as
the C++ class de�nition tool or the GTSL class interface tool, are still manageable. Thus
the fact that we have been able to construct these tools provides evidence that our approach
scales up.

We have also measured the e�ort that is required to construct so complex tools. The e�ort
merely depends on the number of increments in the language grammar, the number of static
semantic constraints and the number of tool-speci�c commands. The e�ort is small compared
to the e�ort that is required when hand-coding the tool with object-oriented schema de�nition
and programming languages.

9.4 Performance of Tool Execution

In order to evaluate the performance of generated tools we conduct an experiment with the
C++ class de�nition tool. Of the tools discussed in this chapter, the C++ class editor is the
most complex. We have chosen this tool as a platform for our experiment because it is also
among the most complex that will occur in practice. Therefore, response times that we evalu-
ate for the C++ class de�nition can be considered as the worst case. During the experiment,
we will execute a number of archetypical commands. They will be used to measure the per-
formance of browsing, template expansion, static semantics and inter-document consistency
checks, change propagations and parsing of freely input text. We �rst present the experiment
in detail, then describe the measurement environment and �nally discuss the results. While
doing so, we focus on how well the response time requirements, outlined in Subsection 2.3.3,
are met and we compare the results with the execution times of the Merlin Benchmark.

9.4. PERFORMANCE OF TOOL EXECUTION 233

The experiment consists of seven actions that we describe below. As was the case with the
benchmark measurements, the times we are interested in are the elapsed real times.

Unparsing: The action that dominates the response time during browsing is the time required
to unparse an ASG representation, i.e. to load it from the database, compute a textual
representation thereof and display it to the user in an editor window. The ASG that
we use in this action represents the largest class de�nition we found in a library that
we obtained from the British Airways reuse department. The textual representation has
220 lines of code and the respective syntax graph consists of 507 nodes.

Dumping: During this action we perform almost the same operation as during unparsing,
but this time we do not present the textual representation in an edit window, but store
it in an operating system �le. We measure the time required for the computation of the
representation and the dump.

Place Holder Expansion: During this action we set out to measure the time for template
insertions that occur when place holders are expanded. These templates are typically
inserted into or appended to list increments. As an archetypical example of this we mea-
sure the time that the tool needs to insert a parameter template into a list of parameters
that currently includes three parameters. The time not only includes the required syntax
graph modi�cation, but also the time taken to insert new syntax graph nodes into the
version unit and the time for redisplaying the contents of the a�ected window.

Static Semantic Check: During this action we explore the performance of commands that
perform static semantic checks. As an example, we expand the name identi�er of a
previously expanded parameter. The time we measure includes checking the lexical
correctness of the identi�er, storing the value in a node attribute, checking the uniqueness
of the identi�er in the parameter list and incrementally redisplaying the a�ected window.

Inter-Document Consistency Check: The purpose of this action is to measure the per-
formance of the creation of a new dependency relation between two documents. For that
purpose we have chosen a forward declaration of a class. The measured time, therefore,
includes the check as to whether the class referenced in the forward declaration exists,
the creation of a semantic relationship between the class name and the forward decla-
ration, the storage of the new dependency for con�guration management purposes and
the incremental redisplay of the a�ected document parts.

Change Propagation: The purpose of this action is to measure the performance of intra-
document change propagations. We change the name of a type that is used within the
document four times. The time required for that includes lexical analysis of the new
type identi�er, analysis of uniqueness, propagation of the change to all using types and
incremental redisplay of the a�ected document parts.

Parsing: The purpose of this action is to measure the performance of the parsing that is
required after free textual input. We chose parameter lists of methods that are, in
C++, reasonably complex. The measured time includes syntactic analysis of a character
string against the C++ grammar for parameter lists, semantic analysis for uniqueness
of parameter names and existence of parameter types, creation of a syntax tree for the
parameter list, creation of semantic relationships between parameter types and their
declaration, inclusion of all nodes of the tree into the version unit and incremental
redisplay of the parameter list. The string to be parsed includes three parameters. It is
syntactically correct and one parameter type is unde�ned.

234 CHAPTER 9. EVALUATION

During the experiment, the tool and the database server were running on the same machine, a
Sun SparcStation 10/40 with 64 MBytes of main memory. The database resided on a local 2
GBytes SCSI-II disk. The page cache of the database server was 3 MBytes and the object cache
of the database engine was 6 MBytes large. The database was in a warm state, i.e. methods
executed during actions had already been executed before. The actions were performed while
no other user was accessing the database.

O2 allows any of the ACID properties for a database server that serves tool sessions to be
given up. As discussed on Page 73 it is unreasonable to give up the atomicity and durability
property. We, therefore, only experimented with di�erent concurrency control schemes. A
database server in mode NC A R, does not perform locking and, therefore, only enables one
session to access and modify a database. A server in C A R performs page-level locking as
a concurrency control scheme. We experimented with several concurrent tool sessions and
this mode proved to be inappropriate. It reveals unnecessary concurrency control conicts
when concurrent transactions access objects that by chance reside on the same page. A server
in OC A R remedies the problem and performs page-level locking but switches to object-level
locking as soon as a conict is detected.

U
np

ar
si

ng

D
um

pi
ng

Pl
ac

eh
ol

de
r

E
xp

an
si

on

St
at

ic
 S

em
an

tic
 C

he
ck

In
te

r-
D

oc
um

en
t

C
on

si
st

en
cy

C
ha

ng
e

Pr
op

ag
at

io
n

Pa
rs

in
g

NC_A_R
C_A_R

OC_A_R

0

1000

2000

3000

4000

5000

Figure 9.14: Response Time of Archetypical Tool Commands

Figure 9.14 displays the measurement results in milliseconds for each of the above actions in
the three di�erent concurrency modes. The front row represents the results without locking.
The middle row represents page-level locking and the back row represents object-level locking.

The dumping of a large class de�nition, place holder expansion, static semantic checks and
inter-document consistency checks perform in any mode in less than one and a half seconds,
which is not as quick as we required but still reasonable. The operations are reasonably fast
because we employed an incremental unparsing algorithm that only redisplays those parts of
a document that were a�ected by a change.

Unparsing a complete document requires in any mode 3.8 seconds, which is too slow. It is
worthwhile to note that the poor performance is not a problem of the database, but rather of

9.4. PERFORMANCE OF TOOL EXECUTION 235

how we used it in the layout computation class. In principle, the algorithm that is performed for
unparsing is the same as that during dumping and the dump performs reasonably fast. There
are two minor di�erences. Firstly, the user interface is not invoked at all during a dump and
the representation is completely computed by O2C methods. Secondly, the Errors attributes
of syntax graph nodes are not accessed since static semantic errors and inter-document in-
consistencies cannot be visualised in �les. Knowledge of these di�erences can be exploited for
the acceleration of unparsing. We did not take the complexity of algorithms executed in user
interface classes into account since we assumed that they would only have a minor inuence
on the overall performance. This assumption now turns out to be wrong. Moreover, we can
accelerate the decision whether to visualise an increment as erroneous. If the Errors attribute
of an increment is clean and does not contain an error, which is the usual case, this could be
stored in a boolean attribute of class Increment. In this case the LayoutComputation can use
this attribute to decide whether to mark an increment as erroneous. The attribute value can
be determined without additional costs during the propagation phase.

During parsing of a parameter list some 60 O2 objects have to be created. They all have to
be included in the version unit. Then local or even global symbol tables have to be queried
six times for declarations and the use of identi�ers. The use of three type identi�ers has
to be materialised in semantic relationships. Users might tolerate the response time of 2.8
seconds that we obtained in the mode without locking, but the performance of more than four
seconds in the case with object-level locking is unreasonable. In the same way a performance
of 2 seconds for change propagation might be tolerated because a user will require more time to
perform this propagation with a conventional text editor, whereas 4.5 seconds with object-level
locking is already on the border-line.

We recognise a signi�cant performance decrease due to locking in all actions except unparsing.
The performance of unparsing is independent of the locking mode in our experiment since all
semantic rules were clean. Therefore, unparsing was performed as a read-only transaction that
does not lock objects. It would also be inuenced by the locking mode if there were dirty error
attributes. To evaluate these, the tool would also have to start a transaction. Commands that
are executed with page-level locking perform on an average about 30-40% slower compared with
the mode that does not lock objects. Object-level locking, in turn, is about 10-25% slower than
page-level locking. Without concurrency control but with atomicity and durability, commands
for template expansion perform in half a second, which is even faster than we required. Static
semantic checks and even inter-document consistency checks perform in about a second, which
is fast enough. As argued on Page 29, isolation of a number of commands in PSDEs might
be guaranteed by the process engine. Then we know from these commands that they cannot
cause concurrency control conicts. Unfortunately, we cannot exploit the NC A R mode. O2

applies the mode to all transactions of a session but those commands that access increments
of other documents must not be executed in this mode. The overhead for locking, in general,
reinforces our concern regarding customisable concurrency control schemes. The concurrency
control scheme should, therefore, be a property of transactions or actions as we required in
Chapter 3 rather than a property of the database server execution.

It is interesting to note the di�erences of the above results from those we obtained with
the Merlin Benchmark. When we executed the Merlin Benchmark with O2, the object-level
concurrency control was not available and the benchmark was executed in mode C A R. In fact,
object-level locking is still a prototype implementation, developed during the GOODSTEP
project, and the performance might be improved in a later product version. Unparsing was
twice as fast during the Merlin Benchmark as dumping in this experiment. The reason is that

236 CHAPTER 9. EVALUATION

in the Merlin Benchmark the syntax graphs were about half the size. Moreover, template
expansion was faster than in our case. The reason here is that �rstly, version management
requires additional time for inserting newly created objects into a version unit and secondly, in
the above experiment, the document representation is recomputed whereas during the Merlin
Benchmark only the expansion was considered. Parsing and change propagations were not
considered during the Merlin Benchmark.

9.5 Summary

In this section we have evaluated our tool construction approach. We assessed two di�erent
environments against the functional requirements that we discussed in Chapter 2. On the
basis of the evaluation of these two scenarios, we revealed that tools constructed on top of an
object database system meet our functional requirements.

The textual tools in the environments were speci�ed with the languages suggested in this thesis
and generated by the GTSL compiler. GTSL, as we presented it in this thesis, is capable of
a-priori tool integration based on semantic relationships between increments of di�erent docu-
ment types. An extension to specify a-posteriori and view-based integration is on its way. We
have indicated the e�ort that is required to specify a tool and have indicated the improvements
compared to using an object-oriented programming language for tool constructions.

Our performance requirements are only partly satis�ed. For template expansion, static seman-
tic checks and inter-document consistency checks the performance is acceptable independent
of the concurrency control protocol used by the database server. Commands that parse texts
after free textual input or perform a change propagation perform only su�ciently fast if the
database does not perform locking. The unparsing required during browsing is not fast enough,
but this might be improved without having to change the O2 database system. The database
system should, however, be changed in order to permit sessions with activities and transac-
tions.

Chapter 10

Summary and Open Problems

Summary

We have developed techniques to simplify the construction of sophisticated syntax-directed
software development tools. In particular, we have de�ned GTSL, a family of languages that
can be used to describe di�erent concerns of a tool at di�erent levels of abstraction. The
languages support the structuring of speci�cations and address speci�cation reuse in terms
of inheritance. To simplify tool construction, we have suggested a library of reusable compo-
nent speci�cations that solve common problems. We have delineated consistency constraints
between the various languages. These consistency constraints were used as guidelines for
integrating the tools of GENESIS, an environment for tool speci�cation.

The languages and tools can now be used to accelerate the construction of integrated software
development tools. The tools, in turn, are signi�cantly improved compared with current state-
of-the-art. We have demonstrated this on the basis of the environments that we constructed
for evaluation purposes. In particular, tools can be de�ned in such a way that they check
inter- and intra-type inter-document consistency constraints. They can even arrange for au-
tomatic constraint preservation in terms of change propagation, if appropriate. Tools ensure
persistence of changes made during a command. This preserves user e�ort against hardware
and software failures. At the same time it makes changes visible to concurrent users as soon
as tool commands have been completed. Tight cooperation among developers is, therefore,
no longer hampered by the isolation inherent to other editors. Tools constructed with our
environment are rather group editors that support cooperative work.

Unlike group editors in CSCW, however, our tools may be driven by the process engine.
Tools, therefore, o�er a set of well-de�ned generic services that the process engine can use to
perform certain interactive or o�-line activities. In particular, the process engine can arrange
for isolation of developers, if required, by means of the version management services o�ered
by our tools.

The e�ective construction of tools o�ering these advances was only made possible by the
database technology that became available recently. Using relational database systems, syn-
tax graphs had to be squeezed into a set of tables with the result that version management
could no longer be supported by the database system. Structurally object-oriented database
systems overcome the problem of modelling graph structures. However, they cannot de�ne
access and modi�cation operations for graphs within their schema. In addition, these sys-

237

238 CHAPTER 10. SUMMARY AND OPEN PROBLEMS

tems su�er from a granularity problem because those that performed e�ciently enough lacked
functionality with respect to distribution and transaction management. Those that provided
transaction management and distribution, however, performed too slowly. Object database
systems solve these problems adequately. Abstract syntax graph structure and behaviour can
be appropriately modelled in terms of classes. The versioning of subgraphs of a project-wide
abstract syntax graph is supported by primitives for version management of composite objects.
Object database systems support the structuring of the schema de�nition. Horizontal structur-
ing is supported by schema-import and -export primitives. Vertical structuring is supported
by views. Both mechanisms are suitable for tool integration purposes in order to develop
tools independently. The schema update facilities of object databases simplify maintenance
of tools because the way in which existing graphs can migrate into a new graph structure
can be de�ned. Object databases o�er ACID transactions, which are used to implement tool
commands. Tool commands are, therefore, performed in isolation from concurrent commands
and their e�ect is persistent as soon as the transaction is completed. To achieve acceptable
tool performance, in particular during concurrent editing, database systems must enable activ-
ities to be performed without locking. Tools can access a set of documents stored in a central
database distributedly. This is achieved by exploiting the multi-level client/server architecture
of current object database systems.

Open Problems

The tool speci�cation languages that we have suggested in this thesis cannot de�ne graphical
tools. In particular, they do not provide language primitives for the concrete syntax and
the unparsing scheme of graphical languages. In [Ges95] a �rst attempt was made to extend
our speci�cation languages, the set of prede�ned classes and the tool architecture to cover
graphical languages, too. The thesis, therefore, suggests a formal model considering graphical
documents as graphs with atomic, expandable and hyper nodes that are connected with atomic
and hyper edges. Atomic nodes only have a shape but are not further structured. They would,
for instance, be used in data ow diagrams to model stores or terminators. Expandable nodes
have a graphical subdiagram enclosed within the node. Examples occur in state charts, where
a state can have enclosing states or in Nassi Shneiderman diagrams where a statement is
enclosed in a statement list. Hyper nodes are re�ned by a sub-diagram. As an example,
consider subsystems in our entity relationship model that are re�ned by a sub-diagram, to
be displayed in a separate window and printed on a separate sheet of paper. Nodes within a
diagram may be connected with atomic edges. A hyper node is connected by a hyper edge with
its re�ning diagram. Then a set of extensions to our speci�cation languages are suggested in
order to de�ne the syntax of graphical documents. A number of prede�ned classes are added
to our class library in order to provide primitives for nodes, expand nodes, hyper nodes, edges
and hyper edges. Finally, the architecture of our tools is extended to provide primitives at
the user interface to deal with graphical documents. The results of [Ges95] remain to be
integrated into the work described in this thesis, i.e. the language extensions suggested in the
thesis must be implemented in our compiler and the class interface tool. The architectural
changes must be merged into our tool architecture. Then we would also be able to bootstrap
tools for inheritance and entity relationship diagrams for the GENESIS environment.

In Chapter 2, we have di�erentiated between generic and tool-speci�c services. The generic
services were implemented within the tool architecture that we discussed in Chapter 5. Tool-
speci�c services, however, need to be speci�ed by the tool builder and our languages do not
yet include all primitives for that purpose. To extend our tool speci�cation language with

239

primitives for messages is the subject of [Wag95], a forthcoming Master's thesis. The im-
plementation of these primitives will then permit the generation of tools that can react to
tool-speci�c service requests of a process engine or other tools.

In a companion PhD project [Jun95b], a set of high-level languages called ESCAPE [Jun95a]
are de�ned for process modelling purposes. ESCAPE supports modelling document types
and their relationships at a coarse granularity during the early stages of process modelling.
Document types and relationships may need to be re�ned in terms of our ENBNF and en-
tity relationship model in order to de�ne the structure of an underlying project-wide abstract
syntax graph. Hence, there is an obvious need to de�ne the coarse-grained process model in
an integrated way with the more �ne-grained tool speci�cation. In order to do so, the pro-
cess modelling languages must be integrated with the tool speci�cation languages in terms of
inter-document consistency constraints. These constraints can then ensure that, for instance,
relationships between document types that were identi�ed in the process model are re�ned
in terms of more �ne-grained relationships between increments in the tool speci�cation. If
tool support is considered, the need arises to integrate the GENESIS and the PROMOTOR
environment, which supports modelling in ESCAPE. This integration, in turn, will be simpli-
�ed signi�cantly by the fact that both environments already store their documents as syntax
graphs in O2.

The prede�ned increment class DocumentVersion provides the means for merging documents in
the version history graph on the basis of primitives o�ered by the database system. We have
not yet tackled the problem of merging the contents of di�erent versions. An algorithm for
merging di�erent versions of an abstract syntax graph is suggested in [Wes91]. It is based on
the assumption that the di�erences between the syntax graph versions to be merged are known.
The O2 database o�ers an operation diff that can be used for computing the di�erence. The
computation is based on a predecessor/successor relationship that the database maintains for
objects that occur in multiple versions.

The implementation of the implicit parse method is not based on incremental parsing tech-
niques. The parser, in a crude way, deletes an existing abstract syntax tree and all reference
edges to nodes not contained in the tree and constructs a new tree. The reference edges
are reestablished by reevaluating semantic rules. Without considering version management
incremental parsing would only be an optimisation. The situation is di�erent when we con-
sider free textual input of documents that are under version control. Here the �ne-grained
predecessor/successor relationship between di�erent nodes of a syntax-tree, managed by the
database system, is lost when the tree is deleted and constructed anew after free textual input.
In fact, the diff operation then returns wrong results. To retain this relationship as far as
possible in order not to hamper version merging requires application of incremental parsing
techniques [GM79]. Then parsing would delete only those nodes that should no longer occur
and create only those nodes that were not included before.

The problem of con�guration management has not been su�ciently addressed in this thesis.
Semantic relationships with other document versions are established during editing as deter-
mined by the semantic rules. They are, however, only created with those other versions of
documents that have either been selected explicitly or are the default version. In that way a
user accesses exactly one con�guration at a time. What is not yet supported is the explicit
construction of a con�guration. To facilitate this, tools would have to compute the set of doc-
ument versions that are consistent with each other. This obviously interferes with evaluation
of semantic rules and it is not clear to us when the required evaluations can best be done.
This will be studied in detail in a future PhD project.

240 CHAPTER 10. SUMMARY AND OPEN PROBLEMS

Bibliography

[AB91] S. Abiteboul and A. Bonner. Objects and Views. ACM SIGMOD Record,
20(2):238{247, 1991. Proc. of the 1991 ACM SIGMOD Conf. on Management of
Data, Denver, Co.

[ABC+76] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray,
P. P. Gri�ths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R.
Putzolu, I. L. Traiger, B. W. Wade, and V. Watson. System R: Relational
Approach to Database Management. ACM Transactions on Database Systems,
1(2):97{137, 1976.

[ABD+90] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The
Object-Oriented Database System Manifesto. In W. Kim, J.-M. Nicholas, and
S. Nishio, editors, Proc. of the 1st Int. Conf. on Deductive and Object-Oriented
Databases, Kyoto, Japan, pages 223{240. North-Holland, 1990.

[ABJ89] R. Agrawal, A. Borgida, and H. V. Jagadish. E�cient Management of transitive
Relationships in Large Data and Knowledge Bases. ACM SIGMOD Record,
18(2):253{262, 1989. Proc. of the 1989 ACM SIGMOD Int. Conf. on Management
of Data, Portland, OR.

[ABM+90] T. L. Anderson, A. J. Berre, M. Mallison, H. H. Porter, and B. Schneider. The
HyperModel Benchmark. In F. Bancilhon, C. Thanos, and D. Tsichritzis, editors,
Proceedings of the International Conference on Extending Database Technology,
volume 416 of Lecture Notes in Computer Science, pages 317{331. Springer, 1990.

[AHS91] T. Andrews, C. Harris, and K. Sinkel. Ontos: A Persistent Database for C++. In
R. Gupta and E. Horowitz, editors, Object-Oriented Databases with Applications
to CASE, Networks, and VLSI CAD, pages 387{406. Prentice-Hall, 1991.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison Wesley, 1974.

[AJPO88] Ada Joint Program O�ce. Common Ada Programming Support Environment
(APSE) Interface Set (CAIS), Revision A. Technical Report DoD-STD-1838A,
U.S. Department of Defense, 1988.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullmann. Compilers { Principles, Techniques
and Tools. Addison Wesley, 1986.

[Bay95] B. Bayard. Konzeption einer objektorientierten Erweiterung der Designsprache
und des Werkzeugs OPUS. Master's thesis, University of Dortmund, Dept. of
Computer Science, Software Technology, 1995.

241

242 BIBLIOGRAPHY

[BCD+88] P. Borras, D. Cl�ement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. CENTAUR: The System. ACM SIGSOFT Software Engineering Notes,
13(5):14{24, 1988. Proc. of the ACM SIGSOFT/SIGPLAN Software Engineer-
ing Symposium on Practical Software Development Environments, Boston, Mass.

[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented
Database System: the Story of O2. Morgan Kaufmann, 1992.

[Bec95] W. Beckmann. Datenintegration in generierten, syntax-gesteuerten Software-
Entwicklungsumgebungen. Master's thesis, University of Dortmund, Dept. of
Computer Science, Software Technology, 1995.

[Ber87] P. A. Bernstein. Database System Support for Software Engineering. In Proc.
of the 9th Int. Conf. on Software Engineering, Monterey, Cal., pages 166{178,
1987.

[Ber92] E. Bertino. A View Mechanism for Object-Oriented Databases. In A. Pirotte,
C. Delobel, and G. Gottlob, editors, Advances in Database Technology |
EDBT'92, 3rd Int. Conf on Extending Database Technology, volume 580 of Lec-
ture Notes in Computer Science, pages 136{151. Springer, 1992.

[BFG93a] S. Bandinelli, A. Fuggetta, and C. Ghezzi. Process Model Evolution in the
SPADE Environment. IEEE Transactions on Software Engineering, 19(12):1128{
1144, 1993.

[BFG93b] S. Bandinelli, A. Fuggetta, and S. Grigolli. Process Modeling-in-the-large with
SLANG. In Proc. of the 2nd Int. Conf. on the Software Process, Berlin, Germany,
pages 75{83. IEEE Computer Society Press, 1993.

[BFGG92] S. Bandinelli, A. Fuggetta, C. Ghezzi, and S. Grigolli. Process Enactment in
SPADE. In J. C. Derniame, editor, Proc. of the 2nd European Workshop on
Software Process Technology, EWSPT '92, Trondheim, Norway, volume 635 of
Lecture Notes in Computer Science, pages 67{83. Springer, 1992.

[BG81] P. A. Bernstein and N. Goodman. Concurrency Control in Distributed Database
Systems. ACM Computing Surveys, 13(2):185{222, 1981.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison Wesley, 1987.

[BK90] N. S. Barghouti and G. E. Kaiser. Modeling Concurrency in Rule-Based Devel-
opment Environments. IEEE Expert, pages 15{27, December 1990.

[BKK85] F. Bancilhon, W. Kim, and H. F. Korth. A model of CAD transactions. In
A. Pirotte and Y. Vassilou, editors, Proc. of the 11th Int. Conf. on Very Large
Databases, Stockholm, Sweden, pages 25{33. Morgan Kaufmann, 1985.

[BL85] T. Brandes and C. Lewerentz. GRAS: A non-standard data base system within a
software development environment. In Proc. of the GTE Workshop on Software
Engineering Environments for Programming in the Large, Harwichport, pages
113{121, 1985.

[Boe88] B. W. Boehm. A Spiral Model of Software Development and Enhancement.
IEEE Computer, pages 61{72, May 1988.

BIBLIOGRAPHY 243

[Boo91] G. Booch. Object Oriented Design with Applications. Benjamin/Cummings,
1991.

[BOSV89] J. Boarder, H. Obbink, M. Schmidt, and A. V�olker. Advanced techniques and
methods of system production in a heterogeneous, extensible, and rigorous envi-
ronment. In N. Madhavji, W. Sch�afer, and H. Weber, editors, Proc. of the 1st Int.
Conf. on System Development Environments and Factories, Berlin, Germany,
pages 199{206, London, 1989. Pitman Publishing.

[BPR88] M. R. Blaha, W. J. Premerlani, and J. E. Rumbaugh. Relational database design
using an object-oriented methodology. Communications of the ACM, 31(4):414{
427, 1988.

[Bru94] J. Brunsmann. Versions- und Kon�gurations-Verwaltung in syntax-gesteuerten
Software-Entwicklungswerkzeugen. Master's thesis, University of Dortmund,
Dept. of Computer Science, Software Technology, 1994.

[BS82] F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. ACM
Transactions on Database Systems, 6(4):557{575, 1982.

[Bud92] F. Buddrus. Generierung von syntaxgesteuerten Werkzeugen auf der Basis eines
objektorientierten Datenbanksystems. Master's thesis, University of Dortmund,
Dept. of Computer Science, June 1992.

[Cag90] M. R. Cagan. The HP SoftBench Environment: An Architecture for a New
Generation of Software Tools. Hewlett-Packard Journal, 41(3):36{47, June 1990.

[Car85] L. Cardelli. Semantics of Multiple Inheritance. Information and Computation,
76:138{164, 1985.

[Cat93] R. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kaufman,
1993.

[CCS94] C. Collet, T. Coupaye, and T. Svensen. NAOS E�cient and modular reactive
capabilities in an Object-Oriented Database System. In Proc. of the 20th Int.
Conf. on Very Large Databases, Santiago, Chile, 1994.

[CDN93] M. Carey, D. DeWitt, and J. Naughton. The OO7 Benchmark. ACM SIGMOD
Record, 22(3):12{21, 1993. Proc. of the 1993 ACM SIGMOD Conf., Washington,
D.C.

[CFGGR91] J. Cramer, W. Fey, M. Goedicke, and M. Gro�e-Rhode. Towards a Formally
Based Component Description Language as a Foundation for Reuse. Structured
Programming, 12(2):91{110, 1991.

[CH74] R. H. Campbell and A. N. Haberman. The Speci�cation of Process Synchroniza-
tion by Path Expressions. In Operating Systems { Proc. of an Int. Symposium,
Rocquencourt, France, volume 16 of Lecture Notes in Computer Science, pages
89{102. Springer, 1974.

[Che76] P. P. Chen. The Entity-Relationship Model { Toward a uni�ed view of data.
ACM Transactions on Database Systems, 1(1):9{36, 1976.

244 BIBLIOGRAPHY

[CLZ94] A. Coen-Porisini, L. Lavazza, and R. Zicari. Assuring Type-Safety of Object Ori-
ented Languages. Journal of object-oriented Programming, 6(9):25{30, February
1994.

[CM84] G. Copeland and D. Maier. Making Smalltalk a Database System. ACM SIG-
MOD Record, 14(2):316{325, 1984. Proc. of the ACM SIGMOD 1984 Int. Conf.
on the Management of Data, Boston, MA.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Com-
munications of the ACM, 13(6):377{387, June 1970.

[CPW87] S. Ceri, B. Pernici, and G. Wiederhold. Distributed Database Design Method-
ologies. Proc. of the IEEE, 75(5):533{546, 1987.

[CS92] R. G. G. Cattell and J. Skeen. Object Operations Benchmark. ACM Transactions
on Database Systems, 17(1):1{31, 1992.

[CW76] H. J. Curnow and B. A. Wichman. A synthetic benchmark. Computer Journal,
19(1):43{49, 1976.

[Dar92] S. A. Dart. The Past, Present, and Future of Con�guration Management. In J.v
Leeuwen, editor, Proc. of the International Federation for Information Processing
(IFIP) World Congress, Vol.1, Spain, pages 244{248, 1992.

[Dat86] C. J. Date. Introduction to Database Systems, Vol. 1. Addison Wesley, 1986.

[Dat89] C. J. Date. A Guide to the SQL standard. Addison Wesley, 1989.

[DEH+91] S. Di�mann, W. Emmerich, B. Holtkamp, K. Lichtinghagen, and L. Sch�ope.
OMSs Comparative Study. Deliverable ESPRIT Project ATMOSPHERE D2.4.3-
rep-1.0-UDO-EL, Commission of the European Communities, DG XIII, 1991.

[DEL92] S. Dewal, W. Emmerich, and K. Lichtinghagen. A Decision Support Method for
the Selection of OMSs. In Proc. of the 2nd Int. Conf. on Systems Integration,
Morristown, N.J., pages 32{40. IEEE Computer Society Press, 1992.

[Des88] T. Despeyroux. TYPOL { A Framework to Implement Natural Semantics. Tech-
nical Report 94, INRIA, Roquencourt, 1988.

[DeW91] D. DeWitt. The Wisconsin Benchmark: Past, Present, & Future. In J. Gray, edi-
tor, The Benchmark Handbook for Database and Transaction processing Systems,
chapter 3, pages 119{166. Morgan Kaufmann, 1991.

[DG90] W. Deiters and V. Gruhn. Managing Software Processes in MELMAC. ACM
SIGSOFT Software Engineering Notes, 15(6):193{205, 1990. Proc. of the 4th

ACM SIGSOFT Symposium on Software Development Environments, Irvine,
Cal.

[DGHKL84] V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang. Programming Environments
based on Structure Editors: The Mentor Experience. In D. R. Barstow, H. E.
Shrobe, and E. Sandewall, editors, Interactive Programming Environments, pages
128{140. McGraw-Hill, 1984.

BIBLIOGRAPHY 245

[DGKLM84] V. Donzeau-Gouge, G. Kahn, B. Lang, and M. M�el�ese. Document structure and
modularity in Mentor. ACM SIGSOFT Software Engineering Notes, 9(3):141{
148, 1984. Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Environments, Pittsburgh, Penn.

[DGL86] K. R. Dittrich, W. Gotthard, and P. C. Lockemann. DAMOKLES { A database
system for software engineering environments. In R. Conradi, T. M. Didriksen,
and D. H. Wanvik, editors, Proc. of an Int. Workshop on Advanced Programming
Environments, volume 244 of Lecture Notes in Computer Science, pages 353{371.
Springer, 1986.

[DHS+91] S. Dewal, H. Hormann, L. Sch�ope, U. Kelter, D. Platz, and M. Roschewski. Bew-
ertung von Objektmanagementsystemen f�ur Software-Entwicklungsumgebungen
(in German). In Proc. of the GI Fachtagung Datenbanksysteme in B�uro, Technik
und Wissenschaft, pages 404{411. Springer, 1991.

[Dit86] K. R. Dittrich. Object-oriented Database Systems: the Notion and the Issues.
In K. Dittrich and U. Dayal, editors, Proc. of the 1986 Int. Workshop on Object-
Oriented Database Systems, pages 2{4. IEEE Computer Society Press, 1986.

[dM78] T. de Marco. Structured Analysis and System Speci�cation. Yourdan, 1978.

[DM93] C. Delobel and J. Madec. Version Management in O2. Technical report, O2-
Technology, 1993.

[dSR95] A. del Soldato and S. Rampichini. From OMT to Beta: An Integrated Environ-
ment. Master's thesis, University of Pisa, Dept. of Mathematics, 1995.

[ECM89] ECMA. Introducing PCTE+. Technical Report ECMA/TC33/89/48, Indepen-
dent European Programme Group { Technical Area 13, 1989.

[EK92] W. Emmerich and M. Kampmann. The Merlin OMS Benchmark { De�nition,
Implementations and Results. Technical Report 65, University of Dortmund,
Dept. of Computer Science, Chair for Software Technology, 1992.

[EKS93] W. Emmerich, P. Kroha, and W. Sch�afer. Object-oriented Database Management
Systems for Construction of CASE Environments. In V. Ma�rik, J. La�zanks�y, and
R. R. Wagner, editors, Database and Expert Systems Applications | Proc. of the
4th Int. Conf. DEXA '93, Prague, Czech Republic, volume 720 of Lecture Notes
in Computer Science, pages 631{642. Springer, 1993.

[ELN+92] G. Engels, C. Lewerentz, M. Nagl, W. Sch�afer, and A. Sch�urr. Building Inte-
grated Software Development Environments | Part 1: Tool Speci�cation. ACM
Transactions on Software Engineering and Methodology, 1(2):135{167, 1992.

[ELS87] G. Engels, C. Lewerentz, and W. Sch�afer. Graph-grammar engineering: A Soft-
ware Speci�cation Method. In Proc. of the 3rd Int. Workshop on Graph Gram-
mars and their Application to Computer Science, volume 291 of Lecture Notes
in Computer Science, pages 186{201. Springer, Berlin, 1987.

[ENS87] G. Engels, M. Nagl, and W. Sch�afer. On the Structure of Structure oriented
Editors for Di�erent Applications. ACM SIGPLAN Notices, 22(1):190{198, 1987.
Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Palo Alto, Cal.

246 BIBLIOGRAPHY

[ES89] G. Engels and W. Sch�afer. Programmentwicklungsumgebungen - Konzepte und
Realisierung. Teubner, 1989.

[ES94] W. Emmerich and W. Sch�afer. Groupie | An Environment supporting Group-
Oriented Architecture Development. Technical Report 71, University of Dort-
mund, Dept. of Computer Science, Chair for Software Technology, 1994. Sub-
mitted for Publication.

[ESW92] W. Emmerich, W. Sch�afer, and J. Welsh. Suitable Databases for Process-centred
Environments Do not yet Exist. In J. C. Derniame, editor, Proc. of the 2nd Euro-
pean Workshop on Software Process Technology, EWSPT '92, Trondheim, Nor-
way, volume 635 of Lecture Notes in Computer Science, pages 94{98. Springer,
1992.

[ESW93] W. Emmerich, W. Sch�afer, and J. Welsh. Databases for Software Engineering
Environments | The Goal has not yet been attained. In I. Sommerville and
M. Paul, editors, Software Engineering ESEC '93 | Proc. of the 4th European
Software Engineering Conference, Garmisch-Partenkirchen, Germany, volume
717 of Lecture Notes in Computer Science, pages 145{162. Springer, 1993.

[Feh93] R. Fehling. A Concept of Hierarchical Petri Nets with Building Blocks. In
G. Rozenberg, editor, Advances in Petri Nets 1993, volume 674 of Lecture Notes
in Computer Science, pages 148{168. Springer, 1993.

[Fei91] Peter H. Feiler. Con�guration Management Models in Commercial Environ-
ments. Technical Report CMU/SEI-91-TR-7, ESD-9-TR-7, 1991.

[Fel79] S. I. Feldman. Make { A Program for Maintaining Computer Programs. Soft-
ware { Practice and Experience, 4(3):255{256, 1979.

[FMZ94a] F. Ferrandina, T. Meyer, and R. Zicari. Correctness of Lazy Database Updates
for an Object Database System. In Proc. of the 6th International Workshop on
Persistent Object Systems, Tarascon, France, Workshops in Computing, pages
284{301. Springer, 1994.

[FMZ94b] F. Ferrandina, T. Meyer, and R. Zicari. Implementing Lazy Database Updates
for an Object Database System. In Proc. of the 20th Int. Conference on Very
Large Databases, Santiago, Chile, pages 261{272, 1994.

[GE90] J. Grosch and H. Emmelmann. A Tool Box for Compiler Construction. Compiler
Generation Report 20, GMD Research Center at University of Karlsruhe, 1990.

[Ger94] S. Gerle. DoBench Communication Server | Ein Werkzeug f�ur den Nachrich-
tenaustausch zwischen Entwicklungsumgebungen. Master's thesis, University of
Dortmund, Dep. of Computer Science, Software-Technology, 1994.

[Ges95] B. Gesell. Generierung von gra�schen syntax-gesteuerten Software-Entwik-
klungswerkzeugen. Master's thesis, University of Dortmund, Dept. of Computer
science, Software Technology, 1995.

[GHJV93] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Abstrac-
tion and Reuse of Object-Oriented Design. In O. Nierstrasz, editor, ECOOP '93
| Proc. of the 7th European Conf. on Object-Oriented Programming, Kaiser-
slautern, Germany, volume 707 of Lecture Notes in Computer Science, pages
406{431. Springer, 1993.

BIBLIOGRAPHY 247

[GHL+92] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite. Eli:
A Complete, Flexible Compiler Construction System. Communications of the
ACM, 35(2):121{131, 1992.

[GL81] H. J. Genrich and K. Lautenbach. System Modelling with High-Level Petri Nets.
Theoretical Computer Science, 13(1):109{136, 1981.

[GL85] W. Gotthard and P. C. Lockemann. Datenbanksysteme f�ur Software-Produk-
tionsumgebungen { Anforderungen und Konzepte (in German). In W. E. Proeb-
ster, R. Remshardt, and H. A. Schmid, editors, Methoden und Werkzeuge zur
Entwicklung von Programmsystemen { Fachberichte und Referate Band 16, pages
185{210. Oldenbourg, 1985.

[GM79] C. Ghezzi and D. Mandrioli. Incremental Parsing. ACM Transactions on Pro-
gramming Languages and Systems, 1:58{70, 1979.

[GM84] D. B. Garlan and P. L. Miller. GNOME: An introductory Programming En-
vironment based on a Family of Structure Editors. ACM SIGSOFT Software
Engineering Notes, 9(3):65{72, 1984.

[GMT87] F. Gallo, R. Minot, and I. Thomas. The Object Management System of PCTE
as a Software Engineering Database Management System. ACM SIGPLAN NO-
TICES, 22(1):12{15, 1987.

[Gol84] A. Goldberg. Smalltalk-80: The Interactive Programming Environment. Addison
Wesley, 1984.

[Gol85] A. Goldberg. Smalltalk 80: The Language and its Implementation. Addison
Wesley, 1985.

[GOO94] GOODSTEP Team. The GOODSTEP Project: General Object-Oriented
Database for Software Engineering Processes. In K. Ohmaki, editor, Proc. of
the Asia-Paci�c Software Engineering Conference, Tokyo, Japan, pages 410{420.
IEEE Computer Society Press, 1994.

[Gor87] K. E. Gorlen. An Object/Oriented Class Library for C++ Programs. Software {
Practice and Experience, 17(12):181{207, 1987.

[GPZ88] G. Gottlob, P. Paolini, and R. Zicari. Properties and Update Semantics of Con-
sistent Views. ACM Transactions on Database Systems, 13(4):486{524, 1988.

[Gra78] J. N. Gray. Notes on Database Operating Systems. In R. Bayer, R. Graham,
and G. Seegm�uller, editors, Operating systems { An advanced course, volume 60
of Lecture Notes in Computer Science, chapter 3.F., pages 393{481. Springer,
1978.

[GRDM90] J. Giavotto, G. Rosuel, A. Devarenne, and A. Mauboussin. Design Decisions for
the Incremental Adage Framework. In Proc. of the 12th Int. Conf. on Software
Engineering, Cannes, France, pages 86{95, 1990.

[HK88] S. E. Hudson and R. King. The Cactis Project: Database Support for Soft-
ware Environments. IEEE Transactions on Software Engineering, 14(6):709{719,
1988.

248 BIBLIOGRAPHY

[HN86] A. N. Habermann and D. Notkin. Gandalf: Software Development Environments.
IEEE Transactions on Software Engineering, 12(12):1117{1127, 1986.

[Hoo87] R. Hoover. Incremental graph evaluation. PhD thesis, Cornell University, Dept.
of Computer Science, Ithaca, NY, 1987. Technical Report No. 87-836.

[HP81] A. N. Habermann and D. E. Perry. System Composition and Version Control
for Ada. In H. H�unke, editor, Proc. of the Symposium on Software Engineering
Environments, Lahnstein, FRG, pages 331{344. North-Holland, 1981.

[Hru87] P. Hruschka. ProMod { in the age 5. In H. K. Nichols and D. Simpson, editors,
Proc. of the 1st European Software Engineering Conference, Strasbourg, France,
volume 289 of Lecture Notes in Computer Science, pages 288{296. Springer, 1987.

[Hud87] S. E. Hudson. Incremental Attribute Evaluation: An Algorithm for Lazy Eval-
uation in Graphs. Technical Report 87-20, University of Arizona, 1987.

[HVZ90] G. Harrus, F. Velez, and R. Zicari. Implementing schema updates in an object-
oriented database system: a cost analysis. Technical report, GIP Altair, 1990.

[HW91] B. Holtkamp and H. Weber. Object-Management Machines: Concept and Im-
plementation. Journal of Systems Integration, 1:367{389, 1991.

[HZ90] S. Heiler and S. B. Zdonik. Object Views: Extending the Vision. In Proc. of
the 6th Int. Conf. on Data Engineering, Los Angeles, CA, pages 86{93. IEEE
Computer Society Press, 1990.

[ISO86] ISO 8879. Information processing { Text and O�ce Systems { Standardised
General Markup Language SGML. Technical report, International Standards
Organisation, 1986.

[Jah94] J.-H. Jahnke. Objekt-orientierte Spezi�kation und Validierung von Kontextbe-
dingungen in der Werkzeugspezi�kations-Sprache GTSL. Master's thesis, Uni-
versity of Dortmund, Dept. of Computer Science, Software Technology, 1994.

[JF82] G. F. Johnson and C. N. Fisher. Non-syntactic attribute ow in language based
editors. In Proc. of the 9th Annual ACM Symposium on Principles of Program-
ming Languages, pages 185{195. ACM Press, 1982.

[JPAR68] W. L. Johnson, J. H. Porter, S. I. Ackley, and D. T. Ross. Automatic Generation
of e�cient lexical processors using �nite state techniques. Communications of
the ACM, 11(12):805{813, 1968.

[JPSW94] G. Junkermann, B. Peuschel, W. Sch�afer, and S. Wolf. MERLIN: Supporting
Cooperation in Software Development through a Knowlege-based Environment.
In A. C. W. Finkelstein, J. Kramer, and B. Nuseibeh, editors, Advances in
Software Process Technology, pages 103{129. Wiley, 1994.

[Jun95a] G. Junkermann. A Dedicated Process Design Language based on EER-Models,
Statecharts and Tables. In Proc. of the 7th Int. Conf. on Software Engineering
and Knowledge Engineering, Rockville, Maryland, pages 487{496. Knowledge
Systems Institute, 1995.

BIBLIOGRAPHY 249

[Jun95b] G. Junkermann. ESCAPE | Eine graphische Sprache zur Spezi�kation von
Software-Proze�modellen. PhD thesis, University of Dortmund, Dept. of Com-
puter Science, 1995. Forthcoming.

[Kas80] U. Kastens. Ordered Attributed Grammars. Acta Informatica, 13(3):229{256,
1980.

[Kas94] U. Kastens. Construction of application generators using Eli. Technical Report
tr-ri-94-143, University of Paderborn, Germany, 1994.

[Kat84] R. H. Katz. Transaction Management in the Design Environment. In E. Gar-
darin and E. Gelenbe, editors, New Applications of Data Bases, pages 259{273.
Academic Press, 1984.

[KBC+89] W. Kim, N. Ballou, H.-T. Chou, J. F. Garza, and D. Woelk. Features of the
ORION Object-Oriented Database. In W. Kim and F. H. Lochovsky, editors,
Object-Oriented Concepts, Databases and Applications, pages 251{282. Addison
Wesley, 1989.

[Kel89] U. Kelter. Implementation of Group Transactions in Structurally Object-
Oriented Database Systems. Technical Report 37, University of Dortmund, Dept.
of Computer Science, Chair for Software Technology, 1989.

[KFP88] G. E. Kaiser, P. H. Feiler, and S. S. Popovich. Intelligent Assistance for Software
Development and Maintenance. IEEE Software, pages 40{49, May 1988.

[KHPW90] G. E. Kaiser, W. Hseush, S. S. Popovich, and S. F. Wu. Multiple Concurrency
Control Policies in an Object-Oriented Programming System. In Proc. of the 2nd

IEEE Symposium on Parallel and Distributed Processing, Dallas, Texas, pages
623{626, 1990.

[KHZ82] U. Kastens, B. Hutt, and E. Zimmermann. GAG: A Practical Compiler Gener-
ator, volume 141 of Lecture Notes in Computer Science. Springer, 1982.

[KLM83] G. Kahn, B. Lang, and B. Melese. Metal: a Formalism to Specify Formalisms.
Science of Computer Programming, 3:151{188, 1983.

[Knu68] D. E. Knuth. Semantics of Context-Free Languages. Mathematical Systems
Theory, 2(2):127{145, 1968.

[KR78] B. W. Kerningham and D. M. Ritchie. Programming in C. Prentice Hall, 1978.

[KSUW85] P. Klahold, G. Schlageter, R. Unland, and W. Wilkes. A transaction model sup-
porting complex applications in integrated information systems. ACM SIGMOD
Record, 14(4):388{401, 1985. Proc. of the ACM SIGMOD 1985 Int. Conf. on the
Management of Data, Austin, Texas.

[KSW92] N. Kiesel, A. Sch�urr, and B. Westfechtel. Design and Evaluation of GRAS, a
Graph-Oriented Database System for Engineering Applications. Technical Re-
port AIB 92-44, Aachen Technical University, Dept. of Computer Science, 1992.

[Lew88] C. Lewerentz. Extended Programming in the Large in a Software Development
Environment. ACM SIGSOFT Software Engineering Notes, 13(5):173{182, 1988.
Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, Boston, Mass.

250 BIBLIOGRAPHY

[Lin84] M. A. Linton. Implementing Relational Views of Programs. ACM SIGSOFT
Software Engineering Notes, 9(3):132{140, 1984. Proc. of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments, Pittsburgh, Penn.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore Database
System. Communications of the ACM, 34(10):51{63, 1991.

[LMN93] O. Lehrmann Madsen, B. M�ller-Pedersen, and K. Nygaard. Object-oriented
Programming in the BETA Programming Language. Addison Wesley, 1993.

[LR89] C. L�ecluse and P. Richard. The O2 Database Programming Language. In Proc.
of the 15th Int. Conf. on Very Large Data Bases, Amsterdam, The Netherlands,
pages 411{422. Morgan Kaufmann, 1989.

[LRV88] C. L�ecluse, P. Richard, and F. Velez. O2, an Object-Oriented Data Model. ACM
SIGMOD Record, 17(3):424{433, 1988. Proc. of the 1989 ACM SIGMOD Int.
Conf. on the Management of Data, Portland, OR.

[LS88] C. Lewerentz and A. Sch�urr. GRAS, a management system for graph-like doc-
uments. In Proc. of the 3rd Int. Conf. on Data and Knowledge Bases, pages
19{31. Morgan Kaufmann, 1988.

[Mai89] D. Maier. Making Database Systems Fast Enough for CAD Applications. In
W. Kim and F. H. Lochovsky, editors, Object-Oriented Concepts, Databases and
Applications, pages 573{582. Addison Wesley, 1989.

[Mey88] B. Meyer. Object-oriented software construction. Prentice Hall, 1988.

[Mey89] B. Meyer. EIFFEL { The Libraries. Interact. Software Engineering, 1989.

[Mey92] B. Meyer. EIFFEL { The Language. Prentice Hall, 1992.

[MF81] R. Medina-Mora and P. H. Feiler. An Incremental Programming Environment.
IEEE Transactions on Software Engineering, 7(5):472{482, 1981.

[Mos85] J. B. Moss. Nested Transactions An Approach to Reliable Distributed Computing.
MIT Press, 1985.

[MS91] N. H. Madhavji and W. Sch�afer. Prism { Methodology and Process-Oriented
Environment. IEEE Transactions on Software Engineering, 17(12):1270{1283,
1991.

[Nag85] M. Nagl. An Incremental and Integrated Software Development Environment.
Computer Physics Communications, 38:245{276, 1985.

[NW94] J. Neuhaus and X. Wu. Implementing a General OMS Benchmark on PCTE
and ECMA PCTE. In T. Lindquist and H. Koehnemann, editors, Proc. of the
PCTE'94 Conference, San Francisco, CA, pages 5{20. PCTE Interface Manage-
ment Board Association, 1994.

[Obe82] R. Obermarck. Deadlock Detection for All Resource Classes. ACM Transactions
on Database Systems, 7(2):187{208, 1982.

[Pea90] P. K. Pearson. Fast Hashing of Variable-Length Text Strings. Communications
of the ACM, 33(6):677{680, 1990.

BIBLIOGRAPHY 251

[Per89] D. E. Perry. The Inscape Environment. In Proc. of the 11th Int. Conf. on Software
Engineering, Pittsburgh, PA, pages 2{12. IEEE Computer Society Press, 1989.

[Plo81] G. Plotkin. A Structural Approach to Operational Semantics. Aarhus Report
DAIMI FN-19, Aarhus University, Denmark, 1981.

[PPT88] M. H. Penedo, E. Ploedereder, and I. Thomas. Object Management Issues
for Software Engineering Environments { Workshop Report. ACM SIGSOFT
Software Engineering Notes, 13(5):226{234, 1988. Proc. of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments, Boston, Mass.

[PS92] B. Peuschel and W. Sch�afer. Concepts and Implementation of a Rule-based Pro-
cess Engine. In Proc. of the 14th Int. Conf. on Software Engineering, Melbourne,
Australia, pages 262{279. IEEE Computer Society Press, 1992.

[PSW92] B. Peuschel, W. Sch�afer, and S. Wolf. A Knowledge-based Software Development
Environment Supporting Cooperative Work. International Journal for Software
Engineering and Knowledge Engineering, 2(1):79{106, 1992.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

[Rei84] S. P. Reiss. PECAN: ProgramDevelopment that Supports Multiple Views. IEEE
Transactions on Software Engineering, 11(3):276{285, 1984.

[Rei90] S. P. Reiss. Interacting with the FIELD environment. Software { Practice and
Experience, 20(S1):S1/89{S1/115, 1990.

[Rod95] R. Rodriguez. A SLANG process model to support development of C++ li-
braries at British Airways. Master's thesis, Politechnico di Milano, Dept. of
Eletrotecnica, 1995.

[Roy70] W. W. Royce. Managing the Development of Large Software Systems. In Proc.
WESCON, 1970.

[RT81] T. W. Reps and T. Teitelbaum. The Cornell Program Synthesizer: A syntax-
directed programming environment. Communications of the ACM, 24(9):449{
477, 1981.

[RT84] T. W. Reps and T. Teitelbaum. The Synthesizer Generator. ACM SIG-
SOFT Software Engineering Notes, 9(3):42{48, 1984. Proc. of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments, Pittsburgh, Penn.

[RT88] T. W. Reps and T. Teitelbaum. The Synthesizer Generator { a system for
constructing language based editors. Springer, 1988.

[RT89] T. W. Reps and T. Teitelbaum. The Synthesizer Generator Reference Manual,
third Edition. Springer, 1989.

[SAD94] C. Santos, S. Abiteboul, and C. Delobel. Virtual Schemas and Bases. In
J. Bubenko M. Jarke and K. Je�erey, editors, Proc. of the 4th Int. Conf. on
Extending Database Technology, Cambridge, UK, volume 779 of Lecture Notes
in Computer Science, pages 81{94. Springer, 1994.

252 BIBLIOGRAPHY

[Sal73] A. Salomaa. Formal Languages. Academic Press, 1973.

[Sch86] W. Sch�afer. Eine integrierte Softwareentwicklungsumgebung: Konzepte, Entwurf
und Implementierung. PhD thesis, University of Osnabr�uck, 1986.

[Sch91a] A. Sch�urr. Operationales Spezi�zieren mit programmierten Graphersetzungssys-
temen. PhD thesis, RWTH Aachen, 1991.

[Sch91b] A. Sch�urr. PROGRES, A VHL-Language Based on Graph Grammars. In
H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proc. of the 4th Int. Work-
shop on Graph Grammars and Their Application to Computer Science, volume
532 of Lecture Notes in Computer Science, pages 151{165. Springer, 1991.

[Sch94] D. Schnorpfeil. E�ziente Verwaltung von Syntaxgraphen in Relationalen Daten-
banksystemen. Master's thesis, University of Dortmund, Dept. of Computer
Science, March 1994.

[SLT91] M. H. Scholl, C. Laasch, and M. Tresch. Updatable Views in Object-Oriented
Databases. In C. Delobel, M. Kifer, and Y. Masunaga, editors, Deductive and
Object-Oriented Databases { Proc. of the 2nd Int. Conf., DOOD '91, Munich,
Germany, volume 566 of Lecture Notes in Computer Science, pages 189{207.
Springer, 1991.

[SP82] H.-J. Schek and P. Pistor. Data Structures for an Integrated Database Manage-
ment and Information Retrieval System. In Proc. of the 12th Int. Conf. on Very
Large Databases, Mexico City, Mexico, pages 197{207. Morgan Kaufmann, 1982.

[Spe92] Special Working Group on Ada Programming Support Environments. Interna-
tional Requirements and Design Criteria for the Portable Common Interface Set.
PCIS Technical Report, PCIS, July 1992.

[Spi88] J. M. Spivey. Understanding Z. Cambridge University Press, 1988.

[SS95] S. Sachweh and W. Sch�afer. Version Management for tightly integrated Software
Engineering Environments. In M. S. Verrall, editor, Proc. of the 7th Interna-
tional Conference on Software Engineering Environments, Nordwijkerhout, The
Netherlands, pages 21{31. IEEE Computer Society Press, 1995.

[Str86] B. Stroustrup. The C++ Programming Language. Addison Wesley, 1986.

[Sun93] SunSoft. ToolTalk 1.1.1 Reference Manual. SunSoft, 2550 Garcia Avenue, Moun-
tain View, CA 94043, USA, Solaris 2.3 edition, 1993.

[SW87] H.-J. Schek and G. Weikum. DASDBS { Concepts and architecture of a novel
database system (in German). Informatik Forschung und Entwicklung, 2(3):105{
121, 1987.

[SW89] W. Sch�afer and H. Weber. European Software Factory Plan { The ESF-Pro�le.
In P. A. Ng and R. T. Yeh, editors, Modern Software Engineering { Foundations
and current perspectives, chapter 22, pages 613{637. Van Nostrand Reinhold,
New York, 1989.

[SWKH76] M. Stonebraker, E. Wong, P. Kreps, and G. Held. The Design and Implementa-
tion of INGRES. ACM Transactions on Database Systems, 1(3):189{222, 1976.

BIBLIOGRAPHY 253

[SY82] G. M. Sacco and S. B. Yao. Query Optimization in Distributed Database Sys-
tems. In M. C. Yovits, editor, Advances in Computers, volume 21, pages 225{273.
Academic Press, 1982.

[Tho89] I. Thomas. Tool Integration in the PACT Environment. In Proc. of the 11th Int.
Conf. on Software Engineering, Pittsburg, Penn., pages 13{22. IEEE Computer
Society Press, 1989.

[Tho93] I. Thomas. Observations on Object Management Systems. In I. Sommerville and
M. Paul, editors, Software Engineering ESEC '93 | Proc. of the 4th European
Software Engineering Conference, Garmisch-Partenkirchen, Germany, volume
717 of Lecture Notes in Computer Science, pages 197{212. Springer, 1993.

[Tic85] W. F. Tichy. RCS { A System for Version Control. Software { Practice and
Experience, 15(7):637{654, 1985.

[Wag95] M.Wagener. Proze�gesteuerte Software-Entwicklungswerkzeuge. Master's thesis,
University of Dortmund, Dept. of Computer Science, Software Technology, 1995.

[Was89] A. I. Wassermann. Tool Integration in Software Engineering Environments. In
F. Long, editor, Proceedings of the International Workshop on Environments,
pages 137{149, Chinon, France, September 1989. Springer-Verlag. Proceedings
published as Lecture Notes in Computer Science, Vol. 467.

[WBK91] J. Welsh, B. Broom, and D. Kiong. A Design Rational for a Language-based
Editor. Software { Practice and Experience, 21(9):923{948, 1991.

[Wei84] R. P. Weicker. Dhrystone: A synthetic systems programming benchmark. Com-
munications of the ACM, 27(10):1013{1030, Oct. 1984.

[Wes89a] B. Westfechtel. Extension of a Graph Storage for Software Documents with
Primitives for Undo/Redo and Revision Control. Technical Report AIB 89-8,
Aachen Technical University, Dept. of Computer Science, 1989.

[Wes89b] B. Westfechtel. Revision Control in an Integrated Software Development Envi-
ronment. ACM SIGSOFT Software Engineering Notes, 17(7):96{105, 1989.

[Wes91] B. Westfechtel. Revisions- und Konsistenzkontrolle in einer integrierten Softwa-
reentwicklungsumgebung. Springer, 1991. Informatik Fachberichte 280.

[WG84] W. B. Waite and G. Goos. Compiler Construction. Springer, 1984.

[Wol94] S. Wolf. Unterst�utzung kooperativer Softwareentwicklung { Ein transaktions-
basierter Ansatz. PhD thesis, University of Dortmund, 1994.

[WP87] A. I. Wassermann and P. A. Pircher. A Graphical, Extensible Integrated En-
vironment for Software Development. ACM SIGPLAN Notices, 22(1):131{142,
1987. Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, Palo Alto, Cal.

[WWFT88] A. L. Wolf, J. C. Wileden, C. D. Fisher, and P. L. Tarr. P Graphite: An
Experiment in Persistent Typed Object Management. ACM SIGSOFT Software
Engineering Notes, 13(5):130{142, 1988. Proc. of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environ-
ments, Boston, Mass.

Index

abstract syntax, 120
abstract syntax graph

project-wide, 20
virtual, 24

abstract syntax section, 137
abstract syntax tree, 19
access mode, 66
access right, 9
action, 151
activity, 8, 29

protected, 73
unprotected, 73

Adage, 64
adornment, 209
agenda, 8
application programming interface, 102
architectural design, 3
attribute, 134, 169

clean, 155
dirty, 154, 197
evaluation, 19
hidden, 141
name, 141
type, 141
unique key, 53

attribute grammar, 158, 192
attribute section, 141

back end, 191
backup, 35
base, 111
benchmark, 37

abstract, 38
application speci�c, 44
Dhrystone, 37
Hypermodel, 39
Merlin, 44
OO7, 41
run, 50
Simple, 39
Sun, 38
Whetstone, 37

Wisconsin, 37
bison, 191
Booch design, 3
box, 138
browsing, 15, 36

Cactis, 64
CAIS, 64
call-back operation, 89, 98
category, 209
Centaur, 164
change propagation, 6
class, 78, 87, 125

DocumentPool, 106
DocumentTable, 106
DocumentVersion, 106
Document, 105
DuplicateSymbolTable, 106
Increment, 105
OptionalIncrement, 105
SymbolTable, 106
UsableIncrement, 106
UsingIncrement, 106
abstract increment, 134
declared, 136
increment, 105, 119
instantiation, 209
interface, 120, 133
non-syntactic, 105, 134
non-terminal increment, 105, 134
prede�ned, 104
reusable, 89
speci�cation, 133
template, 209
terminal increment, 105, 134
tool-speci�c, 89

client/server architecture
client-based, 33, 84
multi-level, 33
server-based, 33, 84

command, 13, 95, 121
command execution, 88, 95

254

INDEX 255

CommandExecution, 93
compiler

DDL/DML, 35
GTSL, 189

component design, 3
component implementation, 3
component test, 3
composite entity, 20, 72
concurrency, 58, 66, 73, 81, 88, 89, 91, 121,

157
constructor, 108
control, 88
conversion function, 80
cooperation, 10
Cornell Program Synthesizer, 117
Cornell Synthesizer Generator, 158
covariant rede�nition, 131
cross-reference analysis, 15
cursor, 63

Damokles, 64
DASDBS, 64
data de�nition language, 22
data ow diagram, 3
data manipulation language, 23
data security, 35
database, 19

virtual, 79
database system, 19

object, 77
relational, 52
structurally object-oriented, 64

deadlock, 29
de�nition table, 192
design pattern, 150
destructor, 108
dialogue, 155

exclusive, 97
non-exclusive, 97

distributed database architecture, 33, 76
distribution, 31
document, 3
document version, 96

ECMA-PCTE, 64
edge

aggregation, 20
multi-valued, 22
reference, 20
type, 22, 169

version-duplicated, 28
version-speci�c, 28
virtual, 24

editing
structure-oriented mode, 13

editor, 92
editor kernel, 88, 90
Eli, 191
ENBNF

syntax, 122
ENBNF editor, 180, 213
encapsulation, 78
entity relationship diagram, 3, 129
entity relationship diagram editor, 183
entity relationship model, 39, 71, 77, 124

hierarchical decomposition, 129
error message, 192
evaluation phase, 197
event, 89
expand, 108

father, 125
Field, 118
attening, 131
ex, 191
free textual input, 14
front end, 191

Gandalf, 117
GemStone, 77, 81, 84
GENESIS, 178
GOODSTEP, 77
graph grammar, 169
graph pool, 65
graph rewriting rule, 169
graph test, 169
GRAS, 64, 117
Groupie, 5, 45, 123, 125, 126, 130, 135, 137,

139{142, 144, 149, 151, 156, 159,
160, 162{164, 166, 167, 170, 189

GTSL, 119

host variable, 63
hypertext, 15

identi�er table, 192
import interface, 136, 147
inconsistent analysis, 12
increment, 6

non-terminal, 134
current, 13

256 INDEX

terminal, 134
information processing facility, 209
inheritance, 78, 96

incorrect multiple, 128
incorrect repeated, 132
multiple, 127, 142, 146, 157
of interactions, 156
of semantic rule, 153
repeated, 128

inheritance diagram, 177
inheritance diagram editor, 185
inheritance section, 135
integration

control, 230
data, 230

integrity, 15
inter-document consistency constraint, 4
inter-document consistency constraints, 121
interaction, 95, 155

ACID, 157
interaction collection, 95
interface editor, 186
IPSEN, 117
isolation, 10
ITASCA, 77

layout computation, 88, 93
lex, 140, 191
lexical value, 107
link

explicit, 142
implicit, 142

linker, 190
lock compatibility, 29
lost update, 12

Mentor, 117, 164
menu, 13, 95
menu construction, 95
message passing, 197
message router, 88
METAL, 164
method, 144

deferred, 146
hidden, 144
implicit, 144
rede�nition, 145

method section, 144, 149
module

abstract data type, 87

deferred operation, 87
exported type, 87
hidden operation, 87

name, 78
node

class, 169
non-terminal, 20
terminal, 20
type, 22, 169
unique identi�er, 36
virtual, 24

normal form, 55

O2, 77, 79{81, 84
object, 38, 78, 134

named, 78
virtual, 79

object factory, 150
object management system, 71
object modelling technique, 3
Objectivity, 79
ObjectStore, 77, 79, 80, 84
Ontos, 77
OPAL, 78, 102
open mode, 9
ordered attribute grammar, 158
Orion, 77, 80

PACT, 71
parse, 31, 108
parser

multiple-entry, 204
recursive descent, 204

path expression, 143, 147, 169, 197
path names, 76
PCIS, 64
PCTE+, 64
PCTE/OMS, 64
performance, 30
persistence, 106

of abstract syntax graphs, 22
of documents, 15

persistent pointer, 102
PGraphite, 64
polymorphism, 78, 126, 145, 195
port, 129
PPML, 165
process engine, 1, 6
production

INDEX 257

alternative, 123
list, 123
optional regular expression, 123
optional structure, 123
regular expression, 123
structure, 123

program, 91
programming interface, 36
PROGRESS, 70, 169
ProMod, 17
propagation identi�er, 197
propagation phase, 197
property, 125

rede�nition, 131
property de�nition language, 193

query
partial match, 70

query language
OQL, 78
SQL, 55

RCS, 117
recovery, 16
reference edge, 107
reference object, 76
re�nement, 129
regular expression section, 140
relation, 53
relationship

call-back, 87
creation, 142
deletion, 142
inheritance, 87
use, 87

requirements analysis, 3
revision, 10
role, 211

scan, 108
SCCS, 117
scheduling information, 197
schema, 22, 104

debugger, 35
de�nition set, 72
generation, 202
prede�ned, 104
root, 79
update, 26
virtual, 79

working, 72
schema update, 79
scoping rule, 191
segment, 93
Selection, 93
semantic relationship, 20

clean, 155
dirty, 154

semantic relationship section, 142
semantic rule, 151

dirty, 197, 201
incremental evaluation, 197

service, 7
asynchronous, 9
generic, 8, 91
synchronous, 9
tool-speci�c, 8, 88, 98

SGML, 3
software development environment, 5

administrator, 35
process-centred, 1, 6

software process, 3
communication protocol, 99

software process modelling, 3
Software through Pictures, 17
speci�cation editor, 186
SSL, 158
start node type, 169
static analysis, 15
static semantics, 15, 121
step, 148
subclass, 87
subsystem, 87, 129
subtype, 141
symbol

non-terminal, 123
terminal, 123

table, 53
technical documentation, 3
tool

command, 11
data integration, 109
horizontal, 110
vertical, 112

generation, 17
performance, 16
process-sensitive, 9, 150
syntax-directed, 13

tool API, 88

258 INDEX

tool con�guration, 189
tool integration

a-posteriori, 7
a-priori, 7

tool schema, 88
transaction

ACID, 81
ACID, 29
advanced, 30
atomic, 22
CAD, 30
design, 30
durable, 22
group, 30
nested, 30, 73
PROGRESS, 169
split/join, 30

trigger, 196
tuple, 53
type

declared, 136
type cast, 148
type data ow analysis, 146
type safety, 78, 131
type system, 78
typing rule, 191
TYPOL, 166

unique key constraint, 54
unparse, 31, 108
unparsing scheme, 121, 138
user, 6
user interface, 88
user manual, 3

value, 140
variable

semantic, 197
variant, 10
Versant, 77, 79, 80
version, 5, 10, 26, 80

current, 10, 27, 80
default, 10, 80
duplication strategy, 28
frozen, 10, 28
merging, 10, 28
predecessor, 10, 27
root, 10, 27
successor, 10, 27

view, 24, 79

VMCS, 72
volume, 76
volume server, 76

widget, 97
window

exclusive, 97
non-exclusive, 97

window manager, 91
window type, 97
working context, 8
wrapper, 150

yacc, 191

Appendix A

Language De�nition of GTSL

The formal de�nition of GTSL serves a number of purposes. In the �rst place, its aim is to
achieve an unambiguous language de�nition. To have a formal, thus unambiguous de�nition of
a tool speci�cation language enables multiple tool builders to cooperate since they can discuss
speci�cations on the basis of well-de�ned language concepts. Moreover, the formal de�nition
serves as a speci�cation for the correctness of our compilers. For that reason, we restrict
ourselves to de�ne the tool con�guration, class interface and class speci�cation languages
formally here, since these are the languages that must be handled by our compiler. In an
informal way, the required preciseness will hardly ever be achieved. Finally, we will have to
thoroughly think about the various language concepts during their formal de�nition. This will
cleanse the language.

A number of di�erent concerns have to be addressed by the formal de�nition of a language.
The context-free syntax of a language needs to be de�ned as a starting point. The de�nition of
static semantics restricts the set of syntactically correct sentences to those that are meaningful.
In our case, we will de�ne the static semantics of GTSL in a way that a high number of
meaningless tool speci�cations are excluded. This is one of the main advantages of de�ning
an application oriented language rather than using a general purpose object-oriented language
such as Ei�el or O2C. Finally, dynamic semantics gives a sentence of the language a meaning.
In our case dynamic semantics will de�ne the impact of a concept on tool execution.

The context free syntax of a language is best de�ned by a context-free grammar [Sal73].
As a language for de�ning the context-free grammar we use the grammar formalism o�ered
by Eli and are then able to generate a parser directly from the de�nition. Furthermore,
we introduce some generic productions in order to simplify the presentation of the grammar.
Optional non-terminal symbols are denoted with the pre�x opt . For each optional production,
another production opt <x>::= | <x> will be de�ned that decides whether or not to expand
the respective symbol. These productions are omitted in the presentation and are considered
being implicitly de�ned. Moreover, we consider list non-terminal symbols. They are all labelled
with the su�x list. For each of these symbols, a production <x> list::=<x>| <x> <x> list

is considered as implicitly de�ned.

There have been various suggestions on how to de�ne static semantics of a language. Attribute
grammars [Knu68, Kas80], rules [Des88] and graph grammars [ENS87] have been de�ned in
a way that a static semantic analyser can automatically be generated from the speci�cation.
Although this looks promising for a language de�nition at �rst glance, it turns out to be

259

260 APPENDIX A. LANGUAGE DEFINITION OF GTSL

inappropriate for the purpose of presenting the static semantics de�nition in an understandable
way. The level of abstraction in these formalisms must be considered too low. In attribute
grammars, for instance a number of auxiliary attributes have to be de�ned that are used in
long-distance attribute propagation and confuse the reader rather than clarifying the language
de�nition. In rule-based formalisms, concepts like mappings or sets that would contribute to
the comprehensible language de�nition have to be implemented in terms of rules and axioms.
The same holds for graph grammars. Here sets have to be represented by sets of nodes and
edges and mappings have to be implemented in terms of node-set operators. These formalisms
rather have to be considered as high-level implementation languages. In fact, we have used
ordered attribute grammars for the implementation of static semantic analysis in the GTSL
compiler (c.f. Section 8.1). For the de�nition here, we use �rst-order logic, since it is purely
declarative. As a language for �rst-order logic we use the standard mathematical notation.
We could have equally well used Z [Spi88] for this purpose, but did not because more readers
will be familiar with the standard notation.

There are several approaches to specify the dynamic semantics of a language. In a denotational
semantic speci�cation a number of functions between syntactic domains are de�ned. Then
functionals are de�ned that map functions to more speci�c functions. The semantics of the
language are then the �xpoints of these functionals, i.e. those functions that do not get
more speci�c when being applied to the functional. In an axiomatic semantic speci�cation,
a number of axioms and inference rules are de�ned. An axiom is true by de�nition. Then
inference rules can be applied to prove a goal from axioms and already proven goals. The
semantics of the language is then the set of provable goals. Finally, an operational semantic
speci�cation is given by the formal de�nition of an abstract machine that interprets sentences
of the language. The problem with denotational and axiomatic semantic de�nitions is that
they cannot appropriately handle persistence. In particular, the transaction semantics of
interactions can hardly be de�ned in a denotational or axiomatic way. The remaining option
is thus an operational semantic speci�cation. Therefore, an abstract GTSL machine must
be de�ned that interprets GTSL speci�cations. The de�nition of this machine can best be
based on the abstract O2 machine that is part of the semantic de�nition of the O2 data
model [BDK92]. This has the additional advantage that GTSL code generation can be directly
deduced from the operational speci�cation. The code generation is correct then, if the following
diagram commutes:

GTSL Tool Specification O2 Schema

O2 Data ModelAbstract GTSL Machine

translated into

interprets
interprets

translated into

Figure A.1: Speci�cation of Dynamic Semantics of GTSL

The de�nition of this abstract GTSL machine, however, will be far too time-consuming to
be performed during the course of this thesis. A technique that is often used to reduce
the complexity of a semantics de�nition is bootstrapping. The idea is to formally de�ne a
small language kernel. Then other language concepts can be expressed in terms of this kernel.
Unfortunately, this technique cannot be applied to our problem, since the language kernel itself
had to include most of the language concepts. This is because GTSL's multiple paradigms can
hardly be expressed by each other. Therefore, we de�ne the dynamic semantics informally.

A.1. CONFIGURATIONS 261

As mentioned above, GTSL is used together with a number of pre-de�ned classes. Most of
these classes will be implemented in GTSL itself. The semantics of these pre-de�ned classes
is, therefore, de�ned by bootstrapping in GTSL.

A.1 Con�gurations

Context-free Syntax We want to allow for incremental compilation of GTSL class de�ni-
tions. Therefore, the set of classes which belong to the speci�cation of a tool must be known.
Otherwise, we could not check in the import part of a class interface whether the imported
class really exists. The tool con�guration, therefore, declares all classes that belong to the
speci�cation of the tool. The declaration of these classes is split into two parts. A manda-
tory section (production conf inc part) de�nes the increment classes and an optional section
(production opt conf nsc part) determines the speci�cation's non-syntactic classes. The next
section determines the root increment type for the tool. Since the root increment is always a
complete document, we use the term document synonymously.

A PSDE contains a number of tools. Typically each tool operates on a di�erent type of doc-
ument whose structure is determined in a tool speci�cation. Semantic relationships between
increments are not con�ned to increments of the same document type. Due to inter-document
consistency constraints, they frequently exist between documents of di�erent types. For the
declaration of these semantic relationships, a class has to use classes from other tool speci�ca-
tions. The dependency between di�erent tool speci�cations, induced by this use relationship,
should not be hidden in the speci�cation part of increment classes, but should be explicitly
de�ned. Therefore, the con�guration de�nition contains an import list that declares those
classes that are imported from other tool speci�cations (production opt conf import list).
A tool con�guration also de�nes the set of exported classes (opt conf export part). Classes
not contained in this export are hidden such that other tool con�gurations cannot import
them. Therefore, con�guration de�nitions play the same role as systems [HP81] or subsys-
tems [ES94] in architecture de�nitions, since they display dependencies between components
on a higher-level of abstraction than classes or modules.

The management of static semantic error messages or messages denoting inter-document con-
sistency constraint violations is merely pre-de�ned. In particular, there are a number of
pre-de�ned error descriptors each of which represents an error message. A tool builder may
want to add tool-speci�c error descriptors and use these in semantic rules (as in the examples
on Pages 152{154). These error messages cannot be de�ned in an increment class. Moreover,
they cannot be de�ned in a tool-speci�c non-syntactic class since they rather extend a set of
pre-de�ned error-descriptors. In order to avoid introducing yet another document for error
messages, we include a section in the con�guration de�nition where the domain of the pre-
de�ned atomic type ERROR can be extended. The tool con�guration is an appropriate location,
since the type ERROR is visible in any GTSL class. The context-free syntax of con�gurations
then looks as follows:

configuration : 'CONFIGURATION' IDENTIFIER ';'

opt_conf_import_list

conf_inc_part

opt_conf_nsc_part

conf_root_part

opt_conf_export_part

opt_conf_errors

'END' 'CONFIGURATION' IDENTIFIER '.' .

262 APPENDIX A. LANGUAGE DEFINITION OF GTSL

Static Semantics For the formal de�nition of import-export relationships between con�g-
urations, we will have to consider the set of all con�gurations that de�ne tools of a PSDE.
Let, therefore, SDE denote the set of all con�gurations of PSDE tools. Moreover, let A be
the set of all characters included in the ASCII character set and A� be the free monoid over
A. We de�ne a mapping name : SDE ! A� with t 7! string that matches the �rst IDENTIFIER
symbol in production con�guration. For a con�guration t 2 SDE, name(t) shall be the name
of the tool. We require uniqueness of tool names in the PSDE, so as to use names for tool
identi�cation purposes: ^

t1;t22SDE

name(t1) = name(t2)) t1 = t2 (A.1)

A.1.1 Classes of a Con�guration

Context-free Syntax The declaration of a class in a con�guration also encompasses the
de�nition of its super classes. The inheritance relationship cannot reasonably be de�ned in
increment class interfaces for two reasons. Firstly, the inheritance relationship must be acyclic.
This can be hardly checked if its de�nition is spread over a number of interface de�nitions that
are incrementally compiled1 . Secondly, the inheritance relationship has to be known completely
in order to check some of the static semantic conditions of class interfaces. Therefore, each
class declaration in a con�guration is accompanied by the declaration of its super classes. If
the con�guration document is compiled before compiling the class interface documents, the
inheritance relationship will be known during interface compilation.

The syntax de�nition of con�gurations forces the tool builder to specify for each class at least
one super class. This assures that all increment classes (transitively) inherit from the pre-
de�ned increment class Increment, the common super-class for all pre-de�ned classes. We can
then de�ne the common properties of any increment in this class.

conf_import : 'IMPORT' 'FROM' 'CONFIGURATION' IDENTIFIER ':'

'INCREMENT' 'CLASSES' ident_list ';'

opt_conf_imp_nsc_part

'END' 'IMPORT' ';'.

ident_list : IDENTIFIER / IDENTIFIER ',' ident_list .

conf_imp_nsc_part : 'NON' 'SYNTACTIC' 'CLASSES' ident_list ';'.

conf_inc_part : 'INCREMENT' 'CLASSES'

conf_increment_id_list

'END' 'INCREMENT' 'CLASSES' ';' .

conf_increment_id : IDENTIFIER 'INHERIT' ident_list ';' .

conf_nsc_part : 'NON' 'SYNTACTIC' 'CLASSES'

conf_nsc_id_list

'END' 'NON' 'SYNTACTIC' 'CLASSES' ';' .

conf_nsc_id : IDENTIFIER 'INHERIT' ident_list ';' .

conf_root_part : 'ROOT' 'INCREMENT' 'IS' IDENTIFIER .

Static Semantics In the sequel, let Ct := INCt[� NSCt denote the set of classes de�ned
in a tool speci�cation t. INCt denotes the set of increment classes and NSCt denotes the

1The Ei�el compilers that are available to date su�er from this problem. Before compiling a single class,
they perform a pass on all classes that belong to a system only for the purpose of computing the inheritance
relationship. A particularly bad performance of the compilers is an immediate consequence.

A.1. CONFIGURATIONS 263

set of non-syntactic classes. If the context is clear, we will omit the index t. Moreover, let
IMPt denote the set of imported classes and LIB the set of classes that are pre-de�ned (c.f.
Appendix B). Then name : C[� IMP[� LIB ! A� denotes the name of the class as given by
the string that matches symbol IDENTIFIER in the respective productions.

In order to enforce that mapping name becomes injective so as to use it for class identi�cation
purposes, we require that class names are unique within the scope of a con�guration de�nition:^

c1;c22C[� IMP[� LIB

name(c1) = name(c2)) c1 = c2 (A.2)

The identi�er lists given after the INHERIT keyword for each class determine the inheritance
relationship. Let, therefore, inherit : C ! P(A�) denote the set of strings that match with
the IDENTIFIER symbols in the ident list of the declaration of a class. We then require that
each of these strings denotes the name of a pre-de�ned class or a class de�ned in the tool
con�guration: ^

c2C

^
id2inherit(c)

_
c02C[� LIB

id = name(c0) (A.3)

Note, that according to this condition a class cannot inherit from an imported class. This
is excluded for the following reason: The inheritance relationship imposes a much stronger
dependency between classes than the import relationship. This is because most properties
of a class are inherited to subclasses. Then a subclass can rede�ne and access them in any
way. This means that information de�ned in a class is not hidden from its subclasses. All sub-
classes will immediately be a�ected whenever an inherited property is changed in a super-class.
Opposed to that, a class can only import methods and properties from some other class. Client
classes are only a�ected if the method signature or the property type is changed. Now, tool
con�gurations play the role of subsystems in module architectures and are, therefore, the unit
for task assignment, i.e. most likely di�erent tool builders work on di�erent con�gurations.
In order to decrease the need for communication between the tool builders involved in a
PSDE construction, we have to minimise the dependencies between di�erent con�gurations.
Therefore, we do not allow inheriting from a class that has been imported from another
con�guration.

To continue the formal de�nition, we have to de�ne the inheritance relationship. The direct
super classes of a class are de�ned by pred : C [LIB ! P(C [LIB), c 7! fci 2 C [
LIB j name(ci) 2 inherit(c)g. Similarly, the direct subclasses of a class are declared as
succ : C [LIB ! P(C [LIB), c 7! fci 2 C [LIB j name(c) 2 inherit(ci)g.

The transitive closure of mappings pred and succ are the formal basis for a number of static
semantic de�nitions. They are used, e.g. to de�ne formally that the inheritance hierarchy
must be acyclic. They are recursively de�ned as follows: pred� : C [LIB ! P(C [LIB),
where

c 7!

(
c; if pred(c) = ;S
ci2pred(c) pred

�(ci); otherwise

and succ� : C [LIB ! P(C [LIB), where

c 7!

(
c if succ(c) = ;S
ci2succ(c) succ

�(ci) otherwise

264 APPENDIX A. LANGUAGE DEFINITION OF GTSL

It is not reasonable to inherit properties such as regular expressions, interactions, unparsing
schemes or abstract syntax children that are de�ned for increment classes to non-syntactic
classes. Vice versa, it is unreasonable to declare increment classes as subclasses of non-syntactic
classes. This is required by the following condition:^

c2INC

succ�(c) \NSC = ;

^
c2NSC

succ�(c) \ INC = ; (A.4)

We then require that a class does not transitively inherit from itself, i.e. that the inheritance
hierarchy is acyclic: ^

c2C

(pred�(c)\ succ�(c)) = c (A.5)

Not requiring this property would prevent us, for instance, from reasonably de�ning the static
semantics of polymorphism, since then a class' super class could at the same time be its
subclass.

Finally, we have to require that the root class is an increment class. Otherwise, the syntax
of the document would not be de�ned, since non-syntactic classes do not have an unparsing
scheme. For the formal de�nition, let id be the string that matches with symbol IDENTIFIER
in production conf root part. We require then:_

c2INC

name(c) = id (A.6)

A.1.2 Con�guration Export

Context-free Syntax We want to be able to exclude particular classes from being imported
by other con�gurations. This will allow us to apply the information hiding paradigm on
an architectural level also to con�gurations. The export part section of a con�guration is,
therefore, used to enumerate those classes that are exported. Any class not included in that
section is considered as being hidden.

conf_export_part : 'EXPORT CLASSES'

ident_list

'END' 'EXPORT' ';'.

Static Semantics Let export : SDE ! P(A�) denote the set of strings that match with
symbol IDENTIFIER in the ident list of production conf export part. We then require that
the export section denotes only classes that have been de�ned in the tool con�guration:^

t2SDE

^
id2export(t)

_
c2Ct

name(c) = id (A.7)

Let CLASSES :=
S
t2SDE Ct be the set of all classes that belong to con�gurations of a PSDE.

exp : SDE ! P(CLASSES); t 7! fc 2 Ct j name(c) 2 export(t)g then computes the set of

classes that are exported from a con�guration. C
nexp(t)
t are the hidden classes.

A.1. CONFIGURATIONS 265

We can now complete the static semantics of the import interface of a con�guration. For its
formal de�nition, we de�ne the set of imports IMPt of a con�guration t. Let name : IMPt !
A� with i 7! string that matches with symbol IDENTIFIER in production conf import. We then
require that the respective imported con�guration exists:^

t2SDE

^
i2IMPt

_
t02SDE

name(i) = name(t0) (A.8)

Let impconf : IMPt ! SDE with i 7! t where name(i) = name(t) compute the imported
con�guration.

Then let imp classes : IMPt ! P(A�) be the set of strings that match with symbol IDENTIFIER
in import list of productions conf import and conf imp nsc part. These strings must denote
exported classes of the imported con�guration:^

t2SDE

^
i2IMPt

^
id2imp classes(i)

_
c2exp(impconf(i))

name(c) = id (A.9)

A.1.3 Error Descriptors

Context-free Syntax The pre-de�ned type ERROR de�nes a number of error messages such
as lexical errors and various kinds of syntax errors that are used in any tool speci�cation. The
error message section of a con�guration de�nition can be used to further extend the doimain of
ERROR with tool-speci�c error messages. Therefore, error descriptors are enumerated together
with a string that represents the error message. The association between error descriptors
and strings is available in a pre-de�ned operation as string that returns the string for a given
error descriptor. The context-free syntax is then as follows:

conf_errors : 'ADDITIONAL' 'ERRORS' conf_err_list 'END' 'ADDITIONAL' 'ERRORS' .

conf_err_list : conf_err / conf_err ';' conf_err_list .

conf_err : conf_const ':' STRING_CONST .

conf_const : '#' IDENTIFIER .

Static Semantics Let pd errors := fOK;LE; IKW;CCP; TFE; ICC;CDg be the set of
pre-de�ned errors. Let moreover, ts errors be the set of errors that have been speci�ed in the
error section of a tool con�guration. We de�ne a mapping name : pd errors[ts errors! A�

by

e 7!

8>>>>>>>>>>>><
>>>>>>>>>>>>:

string that matches IDENTIFIER in conf const if e 2 ts errors

"OK"; if e 2 pd errors ^ e = OK

"LexicalError"; if e 2 pd errors ^ e = LE

"IncorrectKeyword"; if e 2 pd errors ^ e = IKW

"CharsAfterCorrectParse"; if e 2 pd errors ^ e = CCP

"TooFewElementsInList"; if e 2 pd errors ^ e = TFE

"InCompatibleConfiguration"; if e 2 pd errors ^ e = ICC

"CyclicDependency"; if e 2 pd errors ^ e = CD

We then require uniqueness of error descriptor names of a con�guration t 2 SDE in order to
use these names for identi�cation purposes:^

e1;e22pd errors[ts errors

name(e1) = name(e2)) e1 = e2 (A.10)

266 APPENDIX A. LANGUAGE DEFINITION OF GTSL

The domain of the atomic type ERROR is then de�ned as union of pre-de�ned and tool-speci�c
error descriptors: error := pd errors [ts errors.

A.2 Class Interfaces

Context free syntax A GTSL increment class consists of an interface part and a speci�-
cation part. We syntactically distinguish the di�erent kinds of classes in the interface. This
distinction enables detection of speci�cation errors, such as de�nition of a regular expression
for a non-terminal increment class or declaration of a deferred method in a class that is a leaf
class in the inheritance hierarchy. The distinction could be inferred from the actual use of
di�erent concepts. It is rather introduced in the context free syntax in order to force the tool
builder to explicitly think about the concepts he or she is using. The syntax is then de�ned
as follows:

class

: class_interface class_specification .

class_interface

: abstract_increment_interface

/ nonterminal_increment_interface

/ terminal_increment_interface

/ nonsyntactic_interface .

abstract_increment_interface

: 'ABSTRACT' 'INCREMENT' 'INTERFACE' class_name ';'

inherit_section

opt_import_interface_section

abi_export_interface

'END' 'ABSTRACT' 'INCREMENT' 'INTERFACE' class_name '.' .

nonterminal_increment_interface

: 'NONTERMINAL' 'INCREMENT' 'INTERFACE' class_name ';'

inherit_section

opt_import_interface_section

nti_export_interface

'END' 'NONTERMINAL' 'INCREMENT' 'INTERFACE' class_name '.' .

terminal_increment_interface

: 'TERMINAL' 'INCREMENT' 'INTERFACE' class_name ';'

inherit_section

opt_import_interface_section

ti_export_interface

'END' 'TERMINAL' 'INCREMENT' 'INTERFACE' class_name '.' .

nonsyntactic_interface

: 'CLASS' class_name ';'

inherit_section

opt_import_interface_section

nsc_export_interface

'END' 'CLASS' class_name '.' .

class_name : IDENTIFIER .

Hence, a GTSL class consists of a class interface and a class speci�cation. Interfaces are
formally de�ned in this section, while speci�cations are subject of Subsection A.3.

A.2. CLASS INTERFACES 267

Static Semantics Let INT be the set of class interfaces. Let name : INT ! A�, with
i 7! string that matches with symbol IDENTIFIER in production class name, computes the name
of an interface. Moreover, let mapping kind : INT ! fABI;NTI; TI;NSCg de�ne the kind
of increment class according to the choice in production class interface.

Obviously, each class de�ned in a tool con�guration must have an interface de�nition. Vice
versa, each interface de�nition must re�ne a class de�ned in a con�guration. We, therefore,
require that there is an isomorphism int : Ct ! INT for each tool con�guration t 2 SDE that
respects the following condition:^

c2Ct

(name(c) = name(int(c))) ^ (c 2 NSCt , kind(int(c)) = NSC) (A.11)

We then require that terminal and nonterminal increment classes are used as leaf nodes of the
inheritance hierarchy only.^

c2C

kind(int(c)) 2 fTI;NTIg) succ(c) = ; (A.12)

A.2.1 Export Interface

Context Free Syntax The export interfaces of di�erent increment classes contain di�erent
sections. In order to exclude a number of potential speci�cation errors, without having to de�ne
additional static semantic constraints the context-free syntax de�nes the di�erent sections that
may or have to be speci�ed in the di�erent classes.

abi_export_interface : nti_export_interface :

'EXPORT' 'INTERFACE' 'EXPORT' 'INTERFACE'

opt_abs_syntax_section opt_abs_syntax_section

opt_attribute_section unparsing_section

opt_sem_rel_section opt_attribute_section

opt_method_section opt_sem_rel_section

'END' 'EXPORT' 'INTERFACE' ';'. method_section

'END' 'EXPORT' 'INTERFACE' ';'.

ti_export_interface :

'EXPORT' 'INTERFACE' nsc_export_interface :

reg_exp_section 'EXPORT' 'INTERFACE'

opt_attribute_section opt_attribute_section

opt_sem_rel_section opt_method_section

method_section 'END' 'EXPORT' 'INTERFACE' ';'.

'END' 'EXPORT' 'INTERFACE' ';'.

The export interface of abstract increment classes contains a number of optional sections. We
do not enforce any section here, in order to allow for abstract increment classes whose only
purpose is to serve as a common super class of several other increment classes. For all properties
that can be inherited from abstract increment classes, respective sections are provided, namely
an abstract syntax section, an attribute section, a semantic relationship section and a method
section. These sections have to be included in the interface of the abstract increment class
since they contribute to the e�ective export interface of all subclasses.

The export of a non-terminal increment class has twomandatory sections, namely an unparsing
section and a method section. The unparsing section is mandatory in order to enforce de�nition

268 APPENDIX A. LANGUAGE DEFINITION OF GTSL

of the grammar of the tool's language. The method section is mandatory, since at least an
implicit init method must be declared here, in order to be able to create increments of that
class. The other sections are optional because the required property de�nitions could be
inherited from super classes.

The export interfaces of terminal increment classes contain also two mandatory sections,
namely a regular expression section and a method section. The method section is included
for the same reason as for non-terminal increment interfaces. The regular expression section
is required to de�ne the lexical syntax of terminal increments. Again the other sections are
optional, since the required declarations could be inherited from super classes.

The export interface of a non-syntactic class contains two optional sections, namely a con-
struction section and a method section. The construction section de�nes how instances of
the class are constructed from component instances. The method section de�nes the available
methods for the non-syntactic class.

A.2.1.1 Properties

We now discuss the de�nition of properties, i.e. abstract syntax children, semantic relationships
and attributes. Each of them is de�ned in a particular section of the class interface de�nition.
All properties have in common that they have a name and a static type. The name will be
used to uniquely identify the property and the type will be used for checking assignments
against conformance to the polymorphism rule.

Contex-free Syntax We have to support single and multi-valued abstract syntax children.
Single-valued children (production elem decl on the next page) are required to model structure
productions of a normalised EBNF. Multi-valued abstract syntax children are always ordered
(production list decl).

The cardinality of semantic relationships can be 1:n or m:n. GTSL does not include 1:1 se-
mantic relationships, because they are a special case of 1:n relationships. In addition, they
do not occur in practice. Semantic relationships are rather used to model dependencies be-
tween source and target increments such as use/declare, super class/subclass, import/export
or outer/inner. Any target increment of these dependencies may possibly have multiple source
increments: a variable or type may be used in multiple expressions, a class may have multiple
subclasses, an export can be imported from multiple imports and an outer scoping block may
have multiple inner blocks.

Semantic relationships will be speci�ed as links in the semantic relationship section. The
explicit link can be single-valued (symbol elem decl) in order to specify a 1:n relationship or
multi-valued (symbol set decl) for a m:n relationship. If a value is assigned to an explicit
link the relationship is established. The class de�ning a target increment of an explicit link
may declare an implicit link (impl decl). For an instance of the target class, it will contain all
increments that have explicit links with the speci�ed name to the target increment.

GTSL includes a rich variety of language constructs for attribute declarations. Attributes
may be hidden if their existence is of no concern for other classes. Hidden attributes cannot
be imported in client class speci�cations then. Attributes may be single-valued (production
elem decl) or multi-valued. For multi-valued attributes, type constructors for lists (list decl),

A.2. CLASS INTERFACES 269

sets (set decl), bags (bag decl) and dictionaries (dict decl) are o�ered. The context-free
syntax of properties is then de�ned as follows:

abs_syntax_section : attribute_section : sem_rel_section :

'ABSTRACT' 'SYNTAX' 'ATTRIBUTES' 'SEMANTIC' 'RELATIONSHIPS'

child_list att_decl_list sem_rel_list

'END' 'ABSTRACT' 'END' 'ATTRIBUTES' ';' . 'END' 'SEMANTIC'

'SYNTAX' ';' . 'RELATIONSHIPS' ';' .

att_decl : att : sem_rel :

'HIDDEN' att elem_decl elem_decl

/ att . / list_decl / set_decl

child : / set_decl / impl_decl .

elem_decl / bag_decl

/ list_decl . / dict_decl .

elem_decl : IDENTIFIER ':' IDENTIFIER ';' .

list_decl : IDENTIFIER ':' 'LIST' 'OF' IDENTIFIER ';' .

set_decl : IDENTIFIER ':' 'SET' 'OF' IDENTIFIER ';' .

bag_decl : IDENTIFIER ':' 'BAG' 'OF' IDENTIFIER ';' .

dict_decl : IDENTIFIER ':' 'DICTIONARY' 'OF' IDENTIFIER ';' .

impl_decl : 'IMPLICIT' IDENTIFIER ':' 'SET' 'OF' IDENTIFIER '.' IDENTIFIER ';' .

Hidden attributes could have been de�ned in the class speci�cation. Then they would not
only be logically hidden, but really not be seen at all by a tool builder developing a client
class (only interfaces will be shown to him or her). This, however, would severely complicate
the dependencies between classes during incremental class compilation. Consider that an
attribute a was de�ned in the class speci�cation of A. Interfaces of subclasses of A then not
only depend on A's interface, but also on its speci�cation. This is because they also inherit
hidden properties. As a consequence, subclass interfaces could not be compiled, before the
speci�cation of A is complete. Moreover, they had to be compiled whenever the speci�cation
of A is changed. This would then cause a large chain of recompilations, since the speci�cations
of the subclasses depend on its interfaces. In order to avoid these dependencies, we have
for pragmatic reasons decided to support only logical hiding of attributes, but display their
declaration in the interface.

Static Semantics For a class c 2 C, let Ec denote the set of properties that are declared
in the class as children of the abstract syntax, attributes or as links of semantic relationships.
We de�ne a mapping kindc : Ec ! fAS;AT;HID;EL; ILg that keeps track of the section
where a property is de�ned, since this is relevant for some static semantic properties.

e 7!

8>>>>><
>>>>>:

AS; if e is declared in an abstract syntax section
AT; if e is declared in an attribute section and not hidden
HID; if e is declared in an attribute section and hidden
EL; if e is declared in a semantic relationship section as elem decl or set decl

IL; if e is declared as impl decl

An abstract increment class that has declared a child in the abstract syntax cannot reasonably
serve as a super class of a terminal increment class. Otherwise, the terminal increment class
would inherit abstract syntax children which are meaningless. This is formally de�ned by the

270 APPENDIX A. LANGUAGE DEFINITION OF GTSL

following condition:

^
c2C

0
@ _
e2Ec

kind(e) = AS

1
A)

^
ci2succ�(c)

kind(int(ci)) 6= TI (A.13)

We require that a property declared in a class c 2 C is uniquely identi�ed by a name. This
is de�ned by mapping namec : Ec ! A� with e 7! string that matches the �rst occurrence of
symbol IDENTIFIER in the respective declaration production. We are going to omit the index c
if it is clear to which mapping name we refer. Uniqueness of property names is then formally
de�ned for a class c 2 C as follows:^

e1;e22Ec

name(e1) = name(e2)) e1 = e2 (A.14)

As a prerequisite for the formal de�nition of inheritance of properties, we have to introduce the
concepts of types. Atomic types are elements of the set A := fbool; int; char; string; errorg.
The set of types T of a tool speci�cation is then de�ned as

T := A [C [LIB [IMP [
[

t2A[C[LIB[IMP

(list(t)[set(t) [bag(t)[dictionary(t))

The set of types, therefore, includes atomic types, tool-speci�c classes, pre-de�ned classes,
imported classes and multi-valued types that implement collections of elements of a base type.
Note, that T does not include nested types like, list(list(t)). These nested types are not
required, since any of these nested types must itself be a class in order to be able to de�ne
methods encapsulating them. If such a nested structure is to be modelled, a class for the inner
list type is de�ned and then a list type constructor can be applied to that class to obtain the
overall type.

A subtype relationship � � (T � T) is then de�ned as follows.

1. if t 2 T [A, then t � t.

2. if t1; t2 2 C [LIB ^ t2 2 pred�(t1) then elements of the subtype relationship are:

t1�t2;
list(t1)�list(t2);
set(t1)�set(t2);
bag(t1)�bag(t2);

dictionary(t1)�dictionary(t2)

We then de�ne the static type of properties declared in a class as follows: typec : Ec ! T with

e 7!

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

bool; if the second identi�er in elem decl matches 'BOOLEAN'
int; if the second identi�er in elem decl matches 'INTEGER'
char; if the second identi�er in elem decl matches 'CHAR'
string; if the second identi�er in elem decl matches 'STRING'
c0; if the second identi�er in elem decl matches name(c0)
list(c0); if the second identi�er in list decl matches name(c0)
set(c0); if the second identi�er in set decl matches name(c0)
bag(c0); if the second identi�er in bag decl matches name(c0)
dictionary(c0); if the second identi�er in dict decl matches name(c0)
undefined; otherwise

A.2. CLASS INTERFACES 271

Again, we will omit the index c of type if the context is clear.

Abstract syntax children must be increments. Otherwise, the grammar of the language would
not reasonably be de�ned, since neither atomic types nor non-syntactic classes have unparsing
schemes. We, therefore, require:^

e2Ec

(kind(e) = AS))
_
ci2C

ci = type(e) ^ kind(int(ci)) 2 fABI; TI;NTIg (A.15)

Semantic relationships are only reasonable between increment classes. Non-syntactic classes
are excluded since these classes de�ne semantic structures that are used as attributes, i.e. that
are local to an increment. Therefore, we require:^

e2Ec

(kind(e) = EL))
_
ci2C

ci = type(e) ^ kind(int(ci)) 2 fABI; TI;NTIg (A.16)

For implicit links (production impl decl) declared in a class c 2 C, we have to assure that
they correspond to the explicit link given in the declaration. Let cl id denote the string that
matches with the second occurrence in of symbol IDENTIFIER in production impl decl. Let expl
denote the string that matches with the third occurrence of symbol IDENTIFIER in production
impl decl. We then require:^
e2Ec

(kind(e) = IL))
_
ci2C

name(ci) = cl id^
_

eci2Eci

((type(eci) = c) ^ (nameci(eci) = expl))

(A.17)

Properties are inherited from super classes. To formally de�ne this inheritance, we de�ne for
each class c 2 C the set of inherited properties:

E�
c := Ec [fei 2

[
ci2pred(c)

E�
ci
j
^
e2Ec

name(e) 6= name(ei)g

The mappings name; kind and type are continued on the set of inherited properties as follows:

name�:E�
c ! A� e 7! namec0(e); if e 2 Ec0

kind� :E�
c ! fAS;HID;AT;EL; ILg e 7! kindc0(e); if e 2 Ec0

type� :E�
c ! T e 7! typec0(e); if e 2 Ec0

Let ci; c 2 C be classes with ci 2 pred�(c). If there are two properties ei 2 Eci and e 2 Ec with
namec(e) = nameci(ei), e is said to rede�ne ei. The rede�nition is statically correct, if e and
ei are of the same kind and the type of e is a subtype of ei, i.e.:

kindc(e) = kindci(ei) ^ typec(e) � typeci(ei) (A.18)

We are now going to formalise further correctness conditions to avoid incorrect multiple in-
heritance. Let c 2 C be a class. Then the following condition must hold:

^
c1;c22pred�(c)

^
e12Ec1 ;e22Ec2

namec1(e1) = namec2(e2)

)
W
c32pred�(c1)\pred�(c2)

W
e32Ec3

namec3(e3) = namec1(e1)

!

(A.19)

272 APPENDIX A. LANGUAGE DEFINITION OF GTSL

The condition requires that if in two di�erent super classes c1 and c2 of c di�erent properties
with the same names are declared that there must be a common super class c3 of c1 and c2 that
also declares a property with that name. Classes c1 and c2, then only rede�ne the property
and, therefore, have to respect Rule A.18.

A further problem arises from the combination of property rede�nition and multiple inheri-
tance. Suppose there are two super classes c1 and c2 of class c. Assume further that c1 and c2
have a common super class c3. Properties that are declared in c3 are inherited in c via both c1
and c2. This situation is known as repeated inheritance and does not cause further problems.
An ambiguity that must be avoided arises, if some property de�ned in class c3 is rede�ned in
c1 or c2. Then it is ambiguous whether the original declaration of the property from class c3
or the rede�ned property is valid in c. This ambiguity is called incorrect repeated inheritance.
We can only recover from that situation if the property is rede�ned in class c itself. In general,
we require that the following condition holds for all classes c 2 C in order to exclude incorrect
repeated inheritance:

^
cm2

T
ci2pred(c)

pred�(ci)

^
em2Ecm

(
W
ci2pred(c)

W
ei2Eci

namecm(em) = nameci(ei)))W
e2Ec

namec(e) = namecm(em))

!
(A.20)

We require for all properties em in all common super classes cm of the direct super classes ci
of c that if em is rede�ned in some ci it must also be rede�ned in c. Then this rede�nition
resolves the ambiguity. Obviously, this rede�nition must obey also Rules A.18 and A.19.

A.2.1.2 Unparsing Schemes

Context-free Syntax The unparsing schema of a non-terminal increment class de�nes both,
the output representation for unparsing and the input representation for parsing instances of
that class. It consists of a list of unparsing items. An unparsing item can be a pretty printing
item, a simple regular expression, a keyword or a component of the abstract syntax. Pretty
printing items are given in round brackets. They are inserted during unparsing only. Regular
expressions demand mandatory white spaces during both, unparsing and parsing. Keywords
are enclosed in quotation marks. They are considered during parsing and unparsing. Finally,
component items are declared by including the identi�er of the respective abstract syntax
child. If the child is a list increment, an additional delimiter speci�cation can be de�ned. It
allows for speci�cation of items that have to be input or output between elements of the list.

unparsing_section : unparsing_item :

'UNPARSING' 'SCHEME' pretty_printing

unparsing_item_list / regdef

'END' 'UNPARSING' 'SCHEME' ';' . / keyword_item

/ component_item .

unparsing_item_list : unparsing_item / unparsing_item ',' unparsing_item_list .

pretty_printing : "("\"(.)+\"")"| (NL) .

regdef : WS[*\+] .

keyword_item : \"[a-zA-Z0-9.;:,\(\)\[\]]*\" .

component_item : IDENTIFIER opt_delimiter .

delimiter : 'DELIMITED' 'BY' delimiter_item_list 'END' .

delimiter_item : pretty_printing / keyword_item / regdef .

A.2. CLASS INTERFACES 273

Static Semantics The items that can occur as components in an unparsing schema must
be abstract syntax children. We do not allow attributes or links of semantic relationships as
component items for the following reasons: Firstly, attributes and semantic relationships de�ne
static semantic properties whereas the unparsing scheme contributes to the de�nition of the
syntax of the underlying language. Secondly, we do not foresee that attribute values need to
be displayed in-line in documents. Instead increments will be underlined in order to visualise
semantic errors and a dedicated window will be used to display detailed error messages, i.e.
contents of increments' attribute values. Finally, links of semantic relationships may well lead
to enclosing increments and could thus cause a cyclic unparsing that never terminates.

Let child denote the character string that matches symbol IDENTIFIER in a component item

production of class c. Then the following condition must hold:_
e2E�

c

name�(e) = child ^ kind�(e) = AS (A.21)

This condition assures that component items in an unparsing schema denote children of the
abstract syntax. Such a child need not be declared in the class itself, but can be inherited
from a super class as well.

Delimiter are only meaningful, if they are applied to abstract syntax children that have been
constructed with a list type constructor. We, therefore, exclude any other application of delim-
iter items. Let child denote the character string that matches the identi�er in a component item

production of class c. If the optional delimiter after child is provided, the following condition
must hold: _

e2E�
c

0
@name�(e) = child ^

_
c2C

type(e) = list(c)

1
A (A.22)

A.2.1.3 Regular Expressions

Context-free Syntax A regular expression is de�ned for each terminal increment class in
a regular expression section. This regular expression de�nes the lexical syntax of terminal
increments that are instances of this class. The complete syntax de�nition is for reasons of
brevity omitted here. It is identical to the syntax of extended regular expressions used in
UNIX commands such as ed, egrep, or lex.

reg_exp_section: 'REGULAR' 'EXPRESSION'

regular_exp

'END' 'REGULAR' 'EXPRESSION' ';' .

A.2.1.4 Methods

Context-free Syntax The method section of a class export interface de�nes the methods
that can be invoked on instances of that class or its subclasses. Methods are de�ned by a name,
a parameter list and an optional result type. The methods may be implicit. Then their body
is generated by the tool generator based on the de�nitions given in other sections. Methods
can be deferred. Then their body need not be de�ned, but the methods must be rede�ned in
its subclasses. Other methods are called explicit. Their bodies have to be determined in the
speci�cation part. The context-free syntax is then de�ned as follows:

274 APPENDIX A. LANGUAGE DEFINITION OF GTSL

method_section : 'METHODS' method_list 'END' 'METHODS' ';' .

method : opt_category 'METHOD' IDENTIFIER

'(' opt_param_list ')' opt_result_type ';' .

category : 'DEFERRED' / 'IMPLICIT' / 'HIDDEN' .

param_list : parameter / parameter ';' parameter_list .

param : IDENTIFIER ':' type .

result_type : ':' type .

type : IDENTIFIER / list / set / bag / dict .

list : 'LIST' 'OF' IDENTIFIER .

set : 'SET' 'OF' IDENTIFIER .

bag : 'BAG' 'OF' IDENTIFIER .

dict : 'DICTIONARY' 'OF' IDENTIFIER.

Static Semantics For a class c 2 C, let Mc denote the set of methods that have been
declared within the method section of a class.

We de�ne mappings kindc :Mc ! fEXP;HID; IMP;DEFg with

m 7!

8>>><
>>>:

EXP; if no category is de�ned for m
HID; if category of m is 'HIDDEN'
IMP; if category of m is 'IMPLICIT'
DEF; if category of m is 'DEFERRED'

It is unreasonable to de�ne deferred methods in terminal or non-terminal increment classes.
These classes cannot have subclasses due to Rule A.12. Deferred methods could then never
be explicitly de�ned. We, therefore, require for all classes c 2 C:

kind(int(c)) 2 fTI;NTIg)
^

m2Mc

kindc(m) 6= DEF (A.23)

Implicit methods provide a homogeneous speci�cation interface to the various other sections.
Some of these sections are not available in abstract increment classes. Moreover, information
given in available sections is still incomplete and will be completed or rede�ned in the respective
sections of subclasses. We, therefore, do not support the declaration of implicit methods in
abstract increment classes and impose the following condition on all classes c 2 C:

kind(int(c)) = ABI)
^

m2Mc

kindc(m) 6= IMP (A.24)

We require that a method is uniquely identi�ed within the scope of a class by the method
name. This implies that we do not want to support overloading of methods by choosing
di�erent parameter types, like in C++. If the methods have di�erent parameter types, they
will perform di�erent operations and, therefore, should be given di�erent names. To formalise
this requirement, let c 2 C be a class, then names of methods in that class are de�ned by
namec :Mc ! A� with m 7! lexical value that matches with symbol IDENTIFIER in production
method. Uniqueness of method names is then de�ned as:^

m1;m22Mc

name(m1) = name(m2)) m1 = m2 (A.25)

A.2. CLASS INTERFACES 275

A method may have an optional result type. This result type is de�ned by mapping mtype :
Mc ! T with

m 7!

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

bool; if the identi�er in type matches 'BOOLEAN'
int; if the identi�er in type matches 'INTEGER'
char; if the identi�er in type matches 'CHAR'
string; if the identi�er in type matches 'STRING'
c0; if the identi�er in type matches name(c0)
list(c0); if the identi�er in list matches name(c0)
set(c0); if the identi�er in set matches name(c0)
bag(c0); if the identi�er in bag matches name(c0)
dictionary(c0); if the identi�er in dict matches name(c0)
undefined; otherwise

Let Pc denote the set of all parameters of class c 2 C. Let P i
c :=

i timesz }| {
Pc � : : :� Pc denote the set

of all i tuples of parameters. A parameter list of length i is then formally considered as an
element of P i

c . Let P
�
c :=

S
i2IN P i

c be the set of all possible parameter lists. Let jj : P
�
c ! IN

with pl 7! i, if pl 2 P i
c denote the cardinality of a tuple from P �

c . Let further [] : P
�
c � IN ! Pc

with pl[j] 7! pj if pl = hp1; : : : ; pj ; : : : ; pjplji denote the j
th element in a tuple. Each method

of class c 2 C is associated with its parameter list. This is formally de�ned by the mapping
paramsc : Mc ! P �

c with m 7! pl and jplj = number of elements in the parameter list.
Parameters have a name that is de�ned by namec : Pc ! A� with p 7! character string that
matches the IDENTIFIER in production param that generated the respective parameter. We
then require that parameters are uniquely identi�ed by their name within the scope of their
methods: ^

m2Mc

^
pl2params(m)

^
i;j2f1;:::;jpljg

name(pl[i]) = name(pl[j])) i = j (A.26)

A type is associated with a parameter list. Similar to result types of methods, this type is
de�ned by mapping typec : Pc ! T with

p 7!

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

bool; if the identi�er in type matches 'BOOLEAN'
int; if the identi�er in type matches 'INTEGER'
char; if the identi�er in type matches 'CHAR'
string; if the identi�er in type matches 'STRING'
c0; if the identi�er in type matches name(c0)
list(c0); if the identi�er in list matches name(c0)
set(c0); if the identi�er in set matches name(c0)
bag(c0); if the identi�er in bag matches name(c0)
dictionary(c0); if the identi�er in dict matches name(c0)
undefined; otherwise

The implementation of implicit method bodies is generated from the various other sections,
which a tool builder has speci�ed. This implementation must match a particular signature, i.e
method types and parameter types are pre-de�ned. The signature has to be included in the
interfaces of increment classes in order to check correctness of the way implicit methods are
used. These methods cannot be de�ned as deferred methods in e.g. a pre-de�ned increment
class, because the signatures vary from class to class. Since the signature of implicit method
bodies cannot be adapted to the one given in the interfaces (the implementation of the gen-
erator will not be changeable), we will have to force the tool builder to obey in the interface

276 APPENDIX A. LANGUAGE DEFINITION OF GTSL

particular signatures for implicit methods. This is de�ned by a number of static semantic
rules. For all classes c 2 C, implicit methods have to obey particular names:

kind(int(c)) = NTI)
^

m2Mc

kind(m) = IMP)
name(m) 2 f0init0;0 expand0;0 parse0;0 unparse0;0 collapse0g

kind(int(c)) = TI)
^

m2Mc

kind(m) = IMP)
name(m) 2 f0init0;0 scan0;0 unparse0;0 collapse0g

(A.27)

Let inc := cl with name(cl) =0 Increment0 be the pre-de�ned increment class Increment. For
all classes c 2 C and all implicit methods m 2 Mc, the following condition must hold for
parameter list and result types of m:

name(m) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0init0) jparams(m)j = 1 ^ type(params(m)[1]) = inc
0expand0) jparams(m)j = 0
0collapse0) jparams(m)j = 0
0scan0) jparams(m)j = 1 ^ type(params(m)[1]) = string^

type(m) = bool
0parse0) jparams(m)j = 1 ^ type(params(m)[1]) = string^

type(m) = c
0unparse0) jparams(m)j = 0 ^ type(m) = string

(A.28)

Similar to properties, methods are inherited from super classes. The formal de�nition is
straight-forward. For each class c 2 C, the set of inherited methods is

M�
c :=Mc [fmi 2

[
ci2pred(c)

M�ci j
^

m2Mc

namec(m) 6= nameci(mi)g

Similar to properties, mappings namec; kindc; typec and paramsc are continued on M�
c and

denoted as name�; kind�; type� and params� respectively.

As a consequence of being able to rede�ne properties, a tool builder requires rede�nition of
methods as well. In particular, parameter and result types of methods need to be specialised.
Otherwise, a parameter p may not be assignable to a rede�ned property due to the fact that
assignments are restricted to subtypes.

The static semantic condition for rede�nition of methods is slightly more complicated for
methods. Let ci; c 2 C be classes with ci 2 pred�(c). If there are two methods mi 2 Mci

and m 2 Mc with namec(m) = namecimci then m is said to rede�ne mi. This rede�nition is
correct, only if m and mi have parameter lists of the same length, the rede�nition respects the
visibility, the result type of m is a subtype of the respective type in mi and each parameter
type in the parameter list of m is a subtype of the respective parameter type in mi:

jparamsc(m)j = jparams�(mi)j
^ kindc(m) = HID, kindci(mi) = HID

^ typec(m) � typeci(mi)
^

V
j2f1;:::;jparamsc(m)jg typec(paramsc(m)[j])� typeci(params(mi)[j])

(A.29)

Similar to properties, ambiguities of methods can occur due to multiple inheritance. They
have to be either avoided or be resolved by rede�nition for the same reasons as for properties.
The de�nition of the respective two static semantic rules is straight-forward:

A.2. CLASS INTERFACES 277

^
c1 ;c22pred�(c)

^
m12Mc1 ;m22Mc2

namec1(m1) = namec2(m2))W
c32pred�(c1)\pred�(c2)

W
m32Mc3

namec3(m3) = namec1(m1)

!

(A.30)

^
cm2

T
ci2pred(c)

pred�(ci)

^
mm2Mcm

(
W
ci2pred(c)

W
mi2Mci

namecm(mm) = nameci(mi)))W
m2Mc

namec(m) = namecm(mm))

!

(A.31)

If a method is declared as deferred, it must be rede�ned in all subclasses so as to assure that
dynamic binding (c.f. Page 284) will �nd a method implementation. In abstract classes, this
rede�nition can be achieved with yet another deferred method or with an explicit method.
In terminal or non-terminal classes, however, Condition A.23 assures that the rede�nition is
done with an explicit or implicit method. We, therefore, require that for all classes c 2 C the
following condition holds:

^
m2Mc

0
@kindc(m) = DEF)

^
ci2succ�(c)

_
mi2Mci

nameci(mi) = namec(m)

1
A (A.32)

In Condition (A.54), we will de�ne that no instances of abstract classes are created. Under this
assumption, declaring a deferred method, thus assures that the method is e�ectively available
for all instances of all subclasses, without having to specify an arti�cial implementation in the
class where the method was �rst introduced.

Dynamic Semantics Implicit methods have the following semantics: The method init is
executed upon construction of new increments. It initialises all properties of the increment
according to the discussion in Subsection A.3.2. One property, that is inherited from the pre-
de�ned class Increment is the abstract syntax father. Property father stores a reference to
the enclosing increment. The father is initialised upon construction with the parameter that is
passed to the init method. After creation, each increment represents a place holder and child
increments do not yet exist. Method expand changes this and creates all child increments of an
increment. Method collapse performs the reverse operation, i.e. it deletes all child increments
and transforms the increment back to the state where it is a place holder. Method scan is
used to check for lexical correctness of terminal increments. The regular expression section of
the class that contains the method de�nition of scan is transformed into a �nite automaton.
The automaton reads the string that is passed as parameter. Method scan returns true, if the
automaton accepts the string and false otherwise. If the string is accepted it is stored in the
attribute value. Method parse checks whether the string that is passed as an argument can
be generated by the grammar that is induced by abstract syntax de�nitions and unparsing
schemes of the class and its child increment classes. If the string is correct, parse will generate
a tree of increments and return the root increment of that tree. Otherwise parse will return
NIL. Method unparse performs the reverse operation and translates an increment tree into its
textual equivalent according to the unparsing scheme.

278 APPENDIX A. LANGUAGE DEFINITION OF GTSL

A.2.2 Import Interface

Context-free Syntax The dependencies between class interfaces must be explicitly de-
clared. Dependencies exist due to use of other classes in e.g. property types. Considering
reuse of GTSL classes, the declaration of class dependencies eases the identi�cation of other
classes that either have to be replaced or to be reused as well. Regarding con�guration man-
agement, the declaration of dependencies eases the identi�cation of the other classes belonging
to the con�guration. The dependencies could equally well be inferred from the use of types.
Forcing a tool builder to explicitly specify them, however, forces him or her to be aware of the
dependencies. This is the �rst step for minimising them.

import_interface_section : 'IMPORT' 'INTERFACE'

import_list

'END' 'IMPORT' 'INTERFACE' ';'

import : 'IMPORT' IDENTIFIER ';'

Static Semantics Let Ic denote the set of all imports. The mapping namec : Ic ! A�

with i 7! lexical value that matches with terminal IDENTIFIER in production import de�nes the
import name. We then require for all classes c 2 C that the import interface does not include
redundant imports: ^

i1;i22Ic

namec(i1) = namec(i2)) i1 = i2 (A.33)

Moreover, we require that the imported class exists:^
i2Ic

_
c02C[IMP[LIB

namec(i) = name(c0) (A.34)

Ic induces the set of types Tc � T that are valid in the interface of class c 2 C. Let, therefore,
IC := fc 2 C [IMP [LIB j

W
i2Ic name(c) = namec(i)g denote the set of those classes that

have been imported in the interface. Then the set of valid types are the atomic types, the
inherited classes, the imported classes and any class that can be constructed from these using
GTSL's type constructors:

Tc := A [pred�(c) [IC [
[

t2pred�(c)[IC[A

(list(t)[set(t) [bag(t)[dict(t))

We then require that any type used in a property declaration, method or parameter type of
the class interface must be valid:^

c2C

[
e2Ec

type(e) [
[

m2Mc

type(m) [
[
p2Pc

type(p) � Tc (A.35)

A.3 Class Speci�cations

We have now completed the de�nition of those parts of GTSL that express class interface
de�nitions, i.e. the public part of a GTSL class. We are now going to de�ne the language
components for class speci�cations, which are used for specifying the hidden properties of a
GTSL class.

A.3. CLASS SPECIFICATIONS 279

Context-free Syntax There are two di�erent kinds of class speci�cations, namely incre-
ment and non-syntactic classes speci�cations. Some properties have to be speci�ed for incre-
ment classes while they are irrelevant for non-syntactic classes. These properties are semantic
rules, commands and attribute initialisations. Semantic rules are not required in non-syntactic
classes because there are no attributes or semantic relationships whose values had to be deter-
mined. Constructs for attribute initialisations are obsolete for the same reason. Since instances
of non-syntactic classes are not visible at the user-interface, but only used as attributes of in-
crement classes, it is unreasonable to allow a tool builder de�ning commands for non-syntactic
classes. We, therefore, syntactically distinguish speci�cations of non-syntactic classes from in-
crement class speci�cations. We, however, need not distinguish the various kinds of increment
classes, namely abstract, terminal and non-terminal classes, since all increment speci�cation
sections must be available for any of these.

class_specification : increment_spec

/ non-syntactic_spec

increment_spec : 'INCREMENT' 'SPECIFICATION' IDENTIFIER ';'

opt_import_interface_section

opt_attribute_section

opt_semantic_rule_section

opt_method_section

opt_interaction_section

'END' 'INCREMENT' 'SPECIFICATION' IDENTIFIER '.' .

non-syntactic_spec : 'SPECIFICATION' IDENTIFIER ';'

opt_import_interface_section

method_section

'END' 'SPECIFICATION' IDENTIFIER '.' .

Static Semantics A class speci�cation must match with one and only one class interface
de�nition. To de�ne this more precisely, let SPEC be the set of increment class speci�ca-
tions. Let name : SPEC ! A� with sp 7! string that matches with �rst occurrence of symbol
IDENTIFIER in production increment spec and non-syntactic spec, respectively. Let further-
more kind : SPEC ! fINC;NSCg be a mapping that de�nes whether the speci�cation is an
increment speci�cation or the speci�cation of a non-syntactic class according to the choice in
production class specification. We then require an isomorphism spec : C ! SPEC to exist
that satis�es the following condition:

^
c2C

spec name(spec(c)) = name(c)^
kind(spec(c)) = NSC , c 2 NSC

(A.36)

A.3.1 Import Interface

Context-free syntax We include an import interface into class speci�cations for the same
reason as for interfaces. We want to support a tool builder in reusing class speci�cations and
ease con�guration management of classes. Therefore, we have to make the dependencies to
other classes explicit. Opposed to class interface de�nitions that only use classes in property
declarations, we will have to anticipate the use of properties and methods in path expressions
of speci�cations. The speci�cation import interface, therefore, not only imports classes, but
also properties and methods. The context-free syntax is as follows:

280 APPENDIX A. LANGUAGE DEFINITION OF GTSL

spec_import_interface_section : 'IMPORT' 'INTERFACE'

spec_import_list

'END' 'IMPORT' 'INTERFACE' ';' .

spec_import : 'IMPORT' IDENTIFIER opt_including ';' .

including : 'INCLUDING' ident_list .

Static Semantics Let SIc denote the set of all speci�cation imports. Mapping namec :
SIc ! A� with i 7! string that matches symbol IDENTIFIER in production spec import. We do
not want to have redundant imports:^

i1;i22SIc

name(i1) = name(i2)) i1 = i2 (A.37)

Let IEM be the set of imported properties or methods. Mapping incl : SIc ! P(IEM)
associates a set of imported properties and methods with each speci�cation import according
to symbol ident list in production including. Moreover, name : IEM ! A� returns the
string for an imported property or method that matches with symbols IDENTIFIER in produc-
tion ident list. Obviously, imported classes must exist and export the respective imported
properties and methods:

^
i2SIc

_
c02C

name(i) = name(c0) ^V
iem2incl(i)

W
d2E�

c[M
�
c
name(iem) = name�(d)^ kind�(d) 6= HID

(A.38)

The import interface induces the set of types T s
c � T that are visible in a class speci�cation.

Let, therefore, ICs := fc 2 C[IMP[LIB j
W
i2SIc name(i) = name(c)g be the set of imported

classes of a speci�cation. Similar to interfaces, the set of valid types of a speci�cation is then:

T s
c := A [pred�(c)[ICs [

[
t2pred�(c)[ICs[A

(list(t) [set(t) [bag(t)[dictionary(t))

We de�ne a mapping decl : IEM !
S
c2C[IMP[LIBE

�
c [M

�
c with

em 7!

(
m if em 2 incl(i)^ name(i) = name(c)^m 2M�

c ^ name
�(m) = name(em)

e if em 2 incl(i)^ name(i) = name(c)^ e 2 E�
c ^ name

�(e) = name(em)

This mapping associates imported properties or methods with their corresponding exports. It
is now used to de�ne the set of properties and methods that are visible in a class c 2 C. This
set EMc �

S
c2Cs E

�
c [M

�
c is then de�ned as:

EMc :=
[

iem2
S

i2SIc
incl(i)

decl(iem)

A.3.2 Property Initialisation

Upon creation of increments, the properties declared in the increment's class will be initialised.
Properties of atomic types will be initialised as follows: BOOLEAN ; FALSE, INTEGER ; 0, CHAR
; ' ', STRING ; "" and ERRORS ; #OK. A property whose type is multi-valued is initialised

A.3. CLASS SPECIFICATIONS 281

with the respective empty collection. A property whose type is a class is initialised with the
unde�ned value NIL.

There may be situations, where a tool builder wants to de�ne an initial value for a property
that di�ers from the default. To anticipate these situations, we include an initialisation section
into the speci�cation of an increment class.

Context-free Syntax The initialisation section syntactically consists of a list of assign-
ments. The left-hand-side of the assignment operator has to be a property of the class, the
right-hand-side can either be an expression or the creation of a new increment or attribute.

attribute_section : 'INITIALIZATION'

attribute_init_list

'END' 'INITIALIZATION' ';' .

attribute_init : assignment .

Static Semantics For the de�nition of static semantics of assignments as well as for the
other statements, we have to formalise the concept of scope. We consider the scope of a state-
ment to be the set of those declarations that are visible for the statement. These declarations
could be properties of the class in which the statement is contained, parameters of a method
if the statement is contained in a method body, quantor variables if the statement is part of a
semantic rule, cursors of iteration statements, or local variables that are declared in an interac-
tion, method or semantic rule. We, therefore, de�ne a mapping scope : STMT ! P(DECL)
where STMT := ASS[� LOOP[� IT[� BRA[� CAS[� PE[� RET is the disjoint union of the var-
ious sets of statements and DECL := PAR[� VAR[� QV AR[� CU[�

S
c2C Ec is the set of dec-

larations. Furthermore, we de�ne two mappings name : DECL! A� and type : DECL! T
that associate names and types with declarations. For all statements contained in a class c 2 C
and all properties e 2 Ec these mappings are de�ned as follows:

name(e) := namec(e)

type(e) := typec(e)

As we go along with the de�nition of static semantics of the various sections, we will incre-
mentally complete mappings scope, name and type. For assignments ass 2 ASS contained in
the initialisation section of a class c 2 C; scope(ass) := E�

c .

Dynamic Semantics Upon creation of an increment, the initialisations de�ned in this sec-
tion are executed. In addition, initialisation sections de�ned in super classes are executed in
order to initialise inherited properties. These inherited initialisations are executed in the order
down the class hierarchy, i.e. before the execution of an initialisation section of a class, all
initialisations de�ned in super classes are executed. This enables a tool builder to rede�ne an
initialisation of an inherited property in a subclass.

To complete the static semantics of initialisations, we have to de�ne the polymorphism rule
for assignments. This is not possible for the moment, because we have not yet introduced
expressions and their types. We will, therefore, postpone the de�nition to the discussion of
statements and consider expressions �rst. The de�nition of expressions, in turn, requires the
introduction of path expressions and we now continue with these.

282 APPENDIX A. LANGUAGE DEFINITION OF GTSL

A.3.3 Path Expressions

The purpose of path expressions in an increment class is to statically determine navigation
paths to other increments that are possibly contained even in other documents. This is re-
quired, in particular, for instantiating semantic relationships, e.g. in semantic rules. A path
expression consists of a sequence of steps, which are delimited by a dot. A step, in turn,
can be a navigation to an abstract syntax child, to the abstract syntax father or along a
link of a semantic relationship. A step can also be a method call. This supports structuring
path expressions, since subpaths can then be de�ned in methods. As methods can be called
recursively, path expressions can be recursive as well.

Path expressions may be method calls. A method call is always resolved like in Ei�el or O2C

using dynamic binding. This means that the choice which method is invoked depends on the
dynamic class of the increment that is referenced by the proceeding subpath. If no method is
found in that class, the direct super classes are considered and so on. Sometimes, a tool builder
wants to inuence this search strategy and start at a particular class. As an example consider
that a method is rede�ned in a subclass. The implementation of the rede�nition often can
rely on the original de�nition as it is often a specialisation. In Smalltalk, the super directive
is o�ered for this purpose [Gol85]. We take the approach of O2C, which is more general. We
allow a tool builder to explicitly address the class in which the method search is to be started.
Therefore, method names may be followed by an @ sign and a class name.

Context-free Syntax The context-free syntax of path expressions is then de�ned as follows:

path_expr : '<' IDENTIFIER '>' uncasted_path_expr

/ uncasted_path_expr .

uncasted_path_expr : step

/ uncasted_path_expr '.' step

/ '(' '<' IDENTIFIER '>' uncasted_path_expr ')' '.' step .

step : IDENTIFIER

/ method_name '(' opt_actual_parameter_list ')' .

method_name : IDENTIFIER

/ IDENTIFIER '@' IDENTIFIER .

actual_parameter_list : actual_parameter

/ actual_parameter ',' actual_parameter_list .

actual_parameter : expression

Static Semantics Let S denote the set of all steps that occur in paths. A step has a name
that is de�ned by name : S ! A� with s 7!lexical value that matches the �rst IDENTIFIER in
productions step or method name. A path expression is then considered as a tuple of steps, i.e.
as an element of PE � S�. Similar to parameter lists, the mappings [] : S� � IN ! S and
jj : S� ! IN denote projection and path lengths.

The �rst step in a path then has to denote a valid variable or property declaration. In addition,
it can denote the pre-de�ned variable self that always refers to the increment for which
currently a method, interaction or semantic rule is executed. This variable is in particular

A.3. CLASS SPECIFICATIONS 283

required to facilitate recursive method calls. To formalise these concerns, we require:^
pe2PE

name(pe[1]) =0 SELF 0 _
_

e2scope(pe)

name(e) = name(pe[1]) (A.39)

We then require that successive steps in path expressions are properly imported. This re-
quirement not only assures that the import interface reects the actual use of other classes'
properties and methods, but also, that the property or method referenced in a step is exported
by the respective class (due to Condition A.38).^

pe2PE

^
i2f2;:::;jpejg

_
em2EMc

name(em) = name(pe[i]) (A.40)

The type of a path expressions is de�ned in three steps. Mapping stype de�nes the type of
steps contained in a path expression without considering the existence of type casts. Mapping
stype0 then considers the existence of casts and �nally, petype de�nes the type of a path
expression based on the type of the result that stype0 returns when applied to the last step.

Mapping stype : PE � IN 7! T recursively de�nes the type of a step without considering type
casts:

(pe; i) 7!

8><
>:

type(d); if i = 1 ^ d 2 scope(pe)^ name(d) = name(pe[1])
typestype0(pe[i�1])(e) if e 2 E�

stype0(pe[i�1]) ^ namec(e) = name(pe[i])

typestype0(pe[i�1])(m) if m 2M�
stype0(pe[i�1]) ^ namec(m) = name(pe[i])

The type of the �rst step is determined by the type of the declaration referenced by the name of
the �rst step. Successive steps are considered as references to exported properties or methods
of the class that is identi�ed by the type of the proceeding step (with considering casts). Their
type is thus the type of the referenced property or method.

To assure well-de�nedness of stype, we have to assure that the type of any but the last step is a
class. Otherwise the indexes of sets E and M in the de�nition of stype would be meaningless.
We, therefore, require: ^

pe2PE

^
i2f1;:::;jpej�1g

_
c2C

stype(pe; i) = c (A.41)

Let s be a step in a path expression pe at position i. If s is a method call applied with an @

sign followed by an identi�er whose lexical value is the string id, we have to assure that id is
the name of a super class of the step before s. To enforce safe use of this concept, we have
furthermore to require that the method is imported, i.e.:

_
c2C

0
@name(c) = id ^ c 2 pred�(stype(s; i� 1))^

_
m2EMc

name(s) = name(m)

1
A (A.42)

We now formally de�ne type casts and continue the de�nition of stype in stype0. Let, therefore,
TC be the set of type casts. Mapping name : TC ! A� with tc 7! lexical value of the identi�er
that matches the IDENTIFIER symbol between the pointed brackets. We require that type casts
denote imported classes only: ^

tc2TC

_
c2C\T s

c

name(tc) = name(c) (A.43)

284 APPENDIX A. LANGUAGE DEFINITION OF GTSL

Let class : TC ! C with tc 7! c where name(tc) = name(c) denote the class identi�ed by a
cast. A type cast belongs to exactly one path. The path that includes the cast is identi�ed
by inpath : TC ! PE with tc 7! the path expression that syntactically includes the path.
A cast is applied to one step of a path. This is reected by mapping pos : TC ! IN with
tc 7! the position of the last step in the subpath to which tc is applied. We can then formally
determine the type of a step that takes casts into account as stype0 : PE � IN ! T with

(pe; i) 7!

(
class(tc) if inpath(tc) = pe ^ pos(tc) = i

stype(pe; i) otherwise

In order to restrict the applicability of type casts to those cases where they are really required
and thus support their safe use, we require that casts can only be performed down the class
hierarchy, i.e. casts to brother or sister classes are inhibited:^

tc2TC

class(tc) � stype(inpath(tc); pos(tc)) (A.44)

The type of a path expression is then de�ned as petype : PE ! T with pe 7! stype0(pe; jpej).

Dynamic Semantics Static semantics Condition A.39 requires that the �rst step in a path
expression is a property or a variable. During execution, the value of that property or variable
becomes the �rst execution context. Note, that according to static semantic Condition A.41,
the execution context is always an instance of an increment class. Due to Condition A.54 it
will always be a terminal or non-terminal increment. The next execution context of a path
expression is determined by interpreting the next step. If the step is a property, the value
of that property becomes the execution context. Otherwise, the step denotes a method of
an increment class. Then the method is invoked for the execution context. Dynamic binding
is used for searching the method body. During dynamic binding, search starts at the class
speci�ed after the @ sign, if any. Otherwise it begins at the dynamic class of the current
execution context. In case no method body is found there, the super classes are considered.
Note, that the static semantic de�nition for method declarations assures that there will be
one and only one method found. Opposed to Smalltalk, where run-time errors can occur due
to unbound methods, GTSL is safe to this respect. The next execution context will then
be the increment that is returned by the method. Determining the next execution context
thus navigates from one increment to some other one. The dynamic semantics of a complete
path expression, in turn, is the interpretation of the last step in the last execution context.
Note, that this can be also an instance of a non-syntactic class or an atomic value due to
Condition A.41.

Elements of actual parameter lists that can follow method calls in path expressions are con-
sidered as expressions. To complete the formal de�nition of path expressions we, therefore,
have to de�ne expressions.

A.3.4 Expressions

Context-free Syntax The context-free syntax is as follows:

A.3. CLASS SPECIFICATIONS 285

expr : bool_expr / int_expr / path_expr / constant / '(' expr ')' .

bool_expr : expr 'OR' expr / expr 'AND' expr / 'NOT' expr /

expr rel_op expr / expr eq_op expr .

int_expr : expr add_op expr / unary_op expr .

eq_op : '=' / '!=' / '==' / '!==' .

rel_op : '<' / '>' / '<=' / '>=' .

add_op : '+' / '-' .

unary_op : '-' / '+' .

constant : BOOL_CONST / STRING_CONST / INT_CONST / CHAR_CONST / '#' IDENTIFIER .

Static Semantics Let EX denote the set of all expressions. Let CO � EX be the set of
constant expressions. The type of a constant expression is de�ned as mapping cotype : CO!
T based on the alternative of production constant the respective constant is matched with:

co 7!

8>>>>><
>>>>>:

bool if constant is a BOOL CONST

string if constant is a STRING CONST

int if constant is a INT CONST

char if constant is a CHAR CONST

error if constant is matched with #IDENTIFIER

The type of expressions is then recursively de�ned by mapping type : EX ! T with:

ex 7!

8>>>>><
>>>>>:

bool if expression is a bool expr

int if expression is an int expr

type(e) if expression matches production '(' e ')'

cotype(co) if expression matches constant co
petype(pe) if expression matches path expression pe

Let e be an expression. We then require the following obvious typing rules:

e matches

8>>>>><
>>>>>:

e1 'AND' e2)type(e1) = type(e2) = bool

e1 'OR' e2)type(e1) = type(e2) = bool

'NOT' e1)type(e1) = bool

e1 eq op e2)type(e1) = type(e2) = int

e1 rel op e2)type(e1) = type(e2)

(A.45)

Having �nished the formal de�nition of expressions, we can now complete the de�nition of
path expressions by de�ning the static semantics of actual parameter lists. Let, therefore, AP
be the set of actual parameters. An actual parameter list is considered as a tuple of elements
from AP , i.e. as an element of AP �. Projection [] : AP ��IN ! AP and length jj : AP � ! IN

are de�ned as usual. We then associate parameter lists to steps of a path expressions by the
partial mapping act params : S ! AP � with

s 7!

(
element of AP � that matches opt parameter list in step

unde�ned, if IDENTIFIER is matched in production step

Furthermore, we de�ne the type of an actual parameter to be the type of the respective
expression, i.e. type : AP ! T with ap 7! type(e) where e is the expression ap is matched
with.

286 APPENDIX A. LANGUAGE DEFINITION OF GTSL

We then require the actual parameter list to be conform to the respective method declaration.
This means that the number of actual parameters must be equal to the number of formal
parameters. We do not want to allow variable length parameter lists or parameters with
default values like in C++ since we consider these as inherent sources of speci�cation errors.
Furthermore, the types of the actual parameters must be subtypes of the formal parameter
types. This is the formal de�nition of the polymorphism rule for parameters. We hence require
for all path expressions pe 2 PE and for all steps at positions i 2 f2; : : : ; jpejg:

act params(pe[i]) 6= undefined)
_
c2C

c = stype0(pe; i� 1) (A.46)

W
m2M�

c

0
B@ name�(m) = name(pe[i])^

jparamsc(m)j = jact params(pe)j^V
j2f1;:::;jparamsc(m)jg type(act params(pe)[j])� typec(paramsc(m)[j])

1
CA

A.3.5 Methods

Context-free Syntax The method section of a class contains the body speci�cations of
methods de�ned in the interface part of a class de�nition. Each method speci�cation again
includes the method head for the purpose of better readability. Then variables may be declared
that can be used to store intermediate results locally in the method body. Finally, the method
body is given as a list of statements. The precise syntax de�nition is as follows:

method_section : 'METHODS' method_body_list 'END' 'METHODS' ';' .

method_body : 'METHOD' IDENTIFIER '(' opt_parameter_list ')'

opt_result_type ';'

opt_var_decl

'BEGIN' statement_list 'END' IDENTIFIER ';' .

parameter_list : parameter

/ parameter ';' parameter_list .

parameter : IDENTIFIER ':' type_declaration .

result_type : ':' type_declaration .

var_decl : 'VAR' var_decl_item_list .

var_decl_item : IDENTIFIER ':' type_declaration ';' .

type_declaration : IDENTIFIER

/ 'LIST' 'OF' IDENTIFIER

/ 'SET' 'OF' IDENTIFIER

/ 'BAG' 'OF' IDENTIFIER

/ 'DICTIONARY' 'OF' IDENTIFIER ';'

Static Semantics LetMBc be the set of method bodies that are included in the speci�cation
of a class c 2 C. Each of them is associated with a name by name : MBc ! A� with m 7!
string that matches IDENTIFIER in production method body. We require a body to be included
for each explicit or hidden method de�ned in the interface:^

c2C

^
m2Mc

kind(m) 2 fEXP;HIDg)
_

mb2MBc

name(mb) = name(m) (A.47)

A.3. CLASS SPECIFICATIONS 287

Vice versa, we do not want to have method bodies that are not declared in the interface since
due to Condition A.38 these method bodies could never be invoked:

^
mb2MBc

_
m2Mc

name(mb) = name(m) ^ kind(m) 2 fEXP;HIDg (A.48)

Together with the uniqueness condition on method names (A.25), we can, therefore, de�ne a
bijective mapping between method interfaces and bodies for each class c 2 C: bodyc : fm 2
Mc j kind(m) 2 fEXP;HIDgg!MBc with m 7! mb if namec(m) = spec name(mb).

We then require parameter lists and result types of methods to match their counterparts in
the body speci�cations. Let, therefore, PAR be the set of parameters with name : PAR! A�

and type : PAR! T de�ned as usual. PAR� represents parameter lists with mappings jj and
[] as usual. spec paramsc : MBc ! PAR� associates a tuple of parameters with a method
body and spec type :MBc ! T associates a type with the method body in the same way as
de�ned for the class interface. We then require for all classes c 2 C and all methods m 2Mc:

jparamsc(m)j = jspec paramsc(body(m))j^V
i2f1:::jparamsc(m)jg

name(paramsc(m)[i]) = name(spec paramsc(body(m))[i])
type(paramsc(m)[i]) = type(spec paramsc(body(m))[i])

!
^

mtypec(m) = spec type(body(m))
(A.49)

We now have to de�ne the declarations that are valid in statements of a method bodies state-
ment list. Let, therefore, VAR be the set of variable declarations. Mappings name : V AR!
A� and type : V AR ! T de�ne name and type of a variable analogously to parameters. We
then associate a set of variables to each method body by mapping vars :MBc ! P(VAR) with
mb 7! fv 2 V AR j v matches symbol var decl item in production var decl item list of mbg.
Likewise, we associate parameters with methods by params : MBc ! P(PAR) with mb 7!
fp 2 PAR j _i2f1;:::jspec paramsc(mb)jgp = spec paramsc(mb)[i]g. We require types of each
variable and parameter to be visible, i.e. to be imported:^

c2C

^
m2Mc

^
v2varsc(body(m))

type(v) 2 T s
c (A.50)

^
c2C

^
m2Mc

^
p2spec paramsc(body(m))

type(p) 2 T s
c (A.51)

The scope for method bodies is then de�ned as follows. Let st 2 STMT be a statement that
is included in the statement list of a method m. The set of declarations valid for st is then
de�ned as scope(st) := fselfg [E�

c [params(body(m))[vars(body(m)). We have to require
that local variables and parameters are unique within their scope:

^
c2C

^
m2Mc

^
v1;v22vars(body(m))[params(body(m))[E�

c

name(v1) = name(v2)) v1 = v2 (A.52)

We will have to de�ne a static semantic condition that assures that return statements are
only contained in statements that belong to method bodies. To prepare this, we have to
associate statements to method bodies. Let, therefore, stmts : MBc ! P(STMT) with
mb 7! fs 2 STMT j s belongs to statement list of mbg.

288 APPENDIX A. LANGUAGE DEFINITION OF GTSL

Dynamic Semantics The parameter passing mechanism applied upon method invocation
is call by value similar as in Ei�el or O2C. Local variables are initialised with their default
values and then the statement list is executed sequentially.

A.3.6 Statements

Statements occur in various places in GTSL class speci�cations such as bodies of explicit
methods, interactions or semantic rules. Assignment statements are used to assign values that
are identi�ed by e.g. path expressions to properties such as a link in order to establish a
semantic relationship. Method calls are used to invoke operations that modify increments of
other classes or traverse along paths. Loops and iterations are required to repeatedly execute
a list of statements. In a loop statement, the tool builder can specify an explicit termination
condition. Iteration statements are introduced in order to perform a sequence of statements
for all elements of a multi-valued property. Branches provide a means to specify alternative
statement lists depending on a particular condition. Finally, return statements terminate a
method execution and determine its returned result.

Context-free syntax

statement_list : statement

/ statement ';' statement_list .

statement : assignment / method_call / loop / iteration

/ branch / case / return / empty .

assignment : IDENTIFIER ':=' initialisation ';' .

initialisation : creation / expression .

creation : 'NEW' IDENTIFIER '(' opt_actual_parameter_list ')' .

method_call : path_expr .

loop : 'WHILE' expr 'DO' statement_list 'ENDDO' .

iteration : 'FOREACH' IDENTIFIER ':' IDENTIFIER 'IN' expr 'DO'

statement_list

'ENDDO' .

branch : 'IF' expr 'THEN'

statement_list

opt_else_part

'ENDIF'

else_part : 'ELSE' statement_list .

return : 'RETURN' '(' expr ')' .

empty : .

Static Semantics We now de�ne the static semantics of the various kinds of statements in
the same order as they are given in the grammar.

Let ASS be the set of assignment statements. Furthermore, let assname : ASS ! A�

with ass 7! lexical value of the string that maches with symbol IDENTIFIER in production
assignment, return the identi�er of the assignment's left-hand-side. Moreover, let assexp :
ASS ! EXP with ass 7! expression that matches symbol expr in production assignment,

A.3. CLASS SPECIFICATIONS 289

return the expression of a the right-hand-side. We then require that the identi�er is de�ned
within the scope of the statement. It must not be de�ned as an implicit link. Implicit links are
read-only, since they are created as soon as an assignment to an explicit link is performed and
they are deleted as soon as an existing link is overwritten. We then require for each assignment
ass 2 ASS: _

e2scope(ass)

name(e) = assname(ass) ^ e 62fl 2 Ec j kind(l) = ILg (A.53)

For the creation of a new attribute or increment, we have to require that the identi�er following
the keyword NEW matches with some class c 2 C. Class c must not be abstract for the following
reason. The dynamic type of the newly created instance will be C. For late binding of methods,
resolution will start at c. If c was abstract, it could have deferred methods whose bodies are
not de�ned. Then late binding would be unsafe, since invoking a deferred method could
not be resolved. To formalise these concerns, let CRE be the set of creation directives and
crename : CRE ! A� associate a name with a creation directive by cre 7! string that matches
symbol IDENTIFIER in production creation. We then require^

cre2CRE

_
c2C

crename(cre) = name(c)^ kind(int(c)) 6= ABI (A.54)

Moreover, we require that the polymorphism rule holds for assignments, i.e. the type of
the expression or creation must be a subtype of the static type of the left-hand-side of the
assignment. Therefore, we de�ne a mapping asstype : ASS ! T with

ass 7!

(
type(e); if initialisation matches expression e

c; if initialisation matches creation cre ^ crename(cre) = name(c)

that associates a type with an assignment. We then require the polymorphism rule to hold for
each assignment ass 2 ASS:_

e2scope(ass)

name(e) = assname(ass) ^ asstype(ass) � type(e) (A.55)

Let LOOP be the set of loop statements and loopexpr : LOOP ! EXP with l 7! expression
that matches symbol expr in production loop. We then have to require that the expression's
type is BOOLEAN: ^

l2LOOP

type(loopexpr(l)) = bool (A.56)

The static semantic conditions for iterations are more complicated. First of all the type of the
expressions must be a multi-valued type. The name of the cursor de�ned after the FOREACH

keyword has to be unique and its type must be a super type of the base type of the multi-
valued type. Then elements of the multi-valued expression can iteratively be assigned to the
cursor according to the polymorphism rule. In addition, the cursor is a declared property for
all statements within the iteration's statement list, i.e it may be used within expressions. To
formalise this, let IT be the set of iteration statements and CU be the set of cursor declarations.
Mapping itexpr : IT ! EXP with it 7! expression that matches symbol expr in production
iteration associates an expression with the iteration. Moreover, cursor : IT ! CU associates
a cursor to each iteration. The cursor name is de�ned by mapping cuname : CU ! A� with

290 APPENDIX A. LANGUAGE DEFINITION OF GTSL

cu 7! string that matches the �rst IDENTIFIER symbol in production iteration. The type of a
cursor is de�ned by mapping cutype : CU ! T with

cu 7!

8>>>>><
>>>>>:

bool; if the second identi�er in iteration matches 'BOOLEAN'
int; if the second identi�er in iteration matches 'INTEGER'
char; if the second identi�er in iteration matches 'CHAR'
string; if the second identi�er in iteration matches 'STRING'
c; if the second identi�er in iteration matches name(c)

We then require that elements of the multi-valued property identi�ed by the expression are
subtypes of the cursor's type:

^
it2IT

_
t2T

type(itexpr(it)) 2 flist(t); set(t); bag(t); dictionary(t)g^

t � cutype(cursor(it))

!
(A.57)

The cursor of an iteration extends the scope of the iteration's statement list. More precisely,
the scope of any statement s contained in the statement list of an iteration it is scope(s) :=
scope(it)[� fcursor(it)g. Mappings name and type are de�ned as name : CU ! A� with
cu 7! cuname(cursor(it)) and type : CU ! T with cu 7! cutype(cursor(it))

We then require that the cursor name is unique within the scope of statements contained in
the iteration's statement list:^

e1;e22scope(it)[� fcursor(it)g
name(e1) = name(e2)) e1 = e2 (A.58)

Let BRA be the set of all branch statements. Mapping braexp : BRA ! EXP with bra 7!
expression that matches symbol expr in production branch attaches an expression to a branch.
Obviously, the branch expression's type must be BOOLEAN:^

b2BRA

type(braexp(b)) = bool (A.59)

As interactions and semantic rules cannot have result types, this implies that return statements
must not occur within interactions or semantic rules. This could have been de�ned in the
context-free grammar, but would have complicated the grammar signi�cantly. Therefore, we
require the following static semantic condition:^

ret2RET

_
c2C

_
m2Mc

ret 2 stmts(body(m)) (A.60)

The type of a return statement has to be compatible to the result type as de�ned for the
method whose body contains the return statement. Compatibility here again means that
according to the polymorphism rule, the actual type of the returned expression is a subtype
of the formal result type. To de�ne this formally, let type : RET ! T with r 7! type(e) if
e matches symbol expression in production return be the type of the returned expression.
Furthermore, let incl meth : RET !Mc with r 7! m if r 2 stmts(body(m)). We then require^

ret2RET

type(ret) � type(incl meth(ret)) (A.61)

A.3. CLASS SPECIFICATIONS 291

Dynamic Semantics The semantics of assignments to local variables, quantors and cursors
is similar to Ei�el. The e�ect of the assignment is lost as soon as the scope of the declaration
of these assignments is left. The semantics of assignments to attributes and abstract syntax
children, di�ers from Ei�el in that they are persistent. That is, as soon as the interaction,
which has caused an assignment has successfully been completed with a commit, the e�ect of
the assignment survives termination of the tool (irrespective whether the tool was terminated
properly or by a hardware or software failure). To that respect the semantics of an assignment
has the same e�ect as an assignment to an instance variable in O2C. Assignments to links
of semantic relationships even di�er from O2C. The expression that is assigned to an explicit
link is a subclass of an increment class (A.16). This class has an implicit link whose type is
multi-valued (A.17). Its base type is a super type of the class of the assignment's right-hand
side (A.55, A.17). If the explicit link has a value, the current increment is removed from
the implicit link of the class identi�ed by that explicit value. Then the assignment to the
explicit link is performed. After that the current increment is inserted into the implicit link
of the new value of the explicit link. Thus it is assured that the contents of implicit links
always correspond to explicit links and path expression interpretation can always traverse
relationships in both directions using the respective explicit and implicit links.

The semantics of a method call is to start interpretation of the path expression that represents
the method call. Path expressions have been de�ned on Page 284.

The dynamic semantics of loops is equal to WHILE statements in most imperative and object-
oriented languages: The statement list is executed until the expression of type BOOLEAN (A.56)
evaluates to FALSE.

If the multi-valued property identi�ed by the expression of an iteration is empty, execution will
continue with the statement after the iteration. Otherwise, the cursor is assigned to the �rst
element of the multi-valued property. This is possible since the dynamic types of elements in
the collection are subtypes of the cursor (A.57). If the property is a list, the cursor refers to the
�rst list element. Otherwise, an element is chosen non-deterministically. Then the statement
list is executed. After that, the next element is assigned to the cursor. Again the order is
respected for lists and a non-deterministic choice is taken for other multi-valued properties. If
there is no next element, execution is continued after the iteration statement, otherwise the
statement list is executed for the current value of the cursor again.

The dynamic semantics of branches is equal to IF statements in most imperative and object-
oriented languages: The statement list that follows the THEN keyword will be executed, if the
boolean expression (A.59) evaluates to TRUE. If it is FALSE and there is an ELSE keyword, the
statement list following this keyword is executed. Otherwise the statement that follows the
branch statement will be executed.

The return statement terminates execution of a method body. Its argument expression deter-
mines the return value of the method.

A.3.7 Commands

Context-free Syntax Each interaction includes a mandatory selection clause that is intro-
duced with the keywords SELECTED IS. This clause speci�es the increment that must have been
selected at the user interface in order to consider the interaction for inclusion into the menu
of applicable commands. In principle, the clause would not be required. Then, however, the

292 APPENDIX A. LANGUAGE DEFINITION OF GTSL

tool had to check all interactions of all increment classes whenever a context-sensitive menu
is constructed. Including the clause into the language enables the generator to signi�cantly
optimise the menu construction procedure. Moreover, the selection clause as de�ned here en-
forces structuring of interactions according to the abstract syntax de�nition. The clause will
allow specifying the class itself, a child of its abstract syntax, or an element of a multi-valued
abstract syntax child. Hence, a command that applies to an increment of class A can only be
de�ned as an interaction of class A itself or the father classes that declare an abstract syntax
child of class A.

The syntax of the interaction section is then de�ned as follows:

interaction_section : 'INTERACTIONS' interaction_list 'END' 'INTERACTIONS' ';' .

interaction : 'INTERACTION' IDENTIFIER ';'

'NAME' STRING_CONST

'SELECTED' 'IS' selection

'ON' expression

opt_variable_declaration

'BEGIN'

interaction_statement_list

'END' IDENTIFIER ';' .

selection : IDENTIFIER / 'ELEMENT' 'IN' IDENTIFIER .

interaction_statement : statement / COMMIT / ABORT

Static Semantics Let IACTc be the set of interactions de�ned for a class c 2 C. Interaction
names are captured by mapping namec : IACTc ! A� with i 7! string that matches the �rst
occurrence of symbol IDENTIFIER in production interaction. Interaction names must be unique
so as to use the names for identi�cation purposes. Therefore, we require:^

c2C

^
i1;i22IACTc

namec(i1) = namec(i2)) i1 = i2 (A.62)

Interactions are inherited from super classes. Let, therefore, IACT �
c be the set of inherited

interactions of a class with:

IACT �
c := IACTc [

[
c02pred(c)

IACT �
c0

Mapping name is continued canonically in name�c : IACT
�
c ! A�. An interaction i de�ned in

class c is said to be rede�ned if there is another class c0 2 succ�(c) with another interaction
i0 and namec(i) = name�c0(i

0). Note, that we do not have to demand additional correctness
criteria regarding rede�nition like the covariant rede�nition rule, since interactions are neither
parametrised nor return a result.

Only increments can be selected at the user interface of a tool. Therefore, we must exclude
that the selection clause identi�es attributes or links of semantic relationships. Let, therefore,
selc : IACTc ! A�, with i 7! string that matches symbol IDENTIFIER in production selection.
If the �rst alternative is chosen in that production, we require that sel denotes an abstract
syntax child or the class itself:

^
c2C

^
i2IACTc

sel(i) =0 SELF 0_W

e2E�
c
name�(e) = sel(i) ^ kind�(e) = AS

!
(A.63)

A.3. CLASS SPECIFICATIONS 293

Otherwise, the selection must be an element of a multi-valued abstract syntax child:

^
c2C

^
i2IACTc

_
e2E�

c

_
t2T

0
B@ sel(i) = name�(e) ^

kind�(e) = AS ^
type�(e) = list(t)

1
CA (A.64)

obviously, the type of the expression that follows keyword ON must be bool. Let, therefore,
inttypec : IACTc ! T , with int 7! type(e) if e matches symbol expression in production
interaction, denote the type of the ON clause. We then require:^

c2C

^
i2IACTc

inttypec(i) = bool (A.65)

We �nally have to de�ne the declarations that are valid in interaction statement lists. Obvi-
ously, all inherited properties and the local variables are valid. In addition, a tool builder
might want to have access to the currently selected increment, in order to e.g. deter-
mine the list position of a new increment relative to the position of the current increment.
Therefore, we introduce a pre-de�ned variable CURSOR. This variable is valid in interaction
statement lists only. The type of the variable is inferred from the type given in the se-
lection clause. For the formal de�nition of these concerns, let varsc : intc ! P(VAR)
denote the set of local variables for an interaction of class c 2 C with i 7! fv 2 VAR j
v matches symbol var decl item list of interaction ig. Moreover, seltypec : IACTc ! T
identi�es the type of the selection clause through:

i 7!

8><
>:

c; if sel(i) =0 SELF 0

type�(e); if sel(i) = name�(e) ^ type�(e) 2 C
t if sel(i) = name�(e) ^ type�(e) = list(t)

We then de�ne that V AR includes for each class c 2 C and each interaction i 2 IACTc a vari-
able that is identi�ed by mapping cursorc : IACTc ! VAR. We de�ne the following properties
for these variables: name(cursorc(i)) := "CURSOR" and type(cursorc(i)) := seltypec(i). The
declarations that are valid for a statement s included in the statement list of an interaction
i 2 IACTc of class c 2 C are then scope(s) := E�

c [varsc(i)[fcursor(i)g. Again we have to
require that local variable names are unique and do not interfere with property names:^

c2C

^
i2IACTc

^
v1;v22E�

c[varsc(i)[fcursor(i)g

name(v1) = name(v2)) v1 = v2: (A.66)

We have to require that local variable's types are included in the set of visible types, i.e. have
been properly imported: ^

c2C

^
i2IACTc

^
v2varsc(i)

type(v) 2 T s
c (A.67)

Dynamic Semantics The user of a tool speci�ed in GTSL can select increments by click-
ing into a region of the screen with the selection mouse button (usually the left). Selected
becomes the increment to which the region belongs according to the unparsing scheme. The
user can then demand a menu of applicable commands by pushing the menu mouse button.
During the successive menu construction phase, the tool will consider all interactions whose
selection clauses match with the currently selected increment. For all (inherited) interactions

294 APPENDIX A. LANGUAGE DEFINITION OF GTSL

of the current increment the clause matches if it equals SELF. It matches also in (inherited)
interactions of the father increment if the selection clause demands the current increment as
child increment or as element of a child increment. From these interactions, the tool selects the
subset of those interactions whose ON expressions evaluate to TRUE. Then the external names
of interactions are listed in a pop-up menu.

After the user menu has been created, the user can choose a command. Then an ACID
transaction is started and the statement list included in the interaction speci�cation is executed
in isolation to interactions executed by concurrently running tools. If the execution of the
statement list is completed, the ACID transaction is completed with an implicit commit. The
tool may perform an implicit abort operation in case the interaction is involved in a deadlock.
The interaction may be explicitly terminated with a COMMIT or ABORT statement. Explicit and
implicit commits have the same e�ect: They achieve that the e�ect of the command execution
is persistent and durable. Implicit and explicit aborts terminate the current interaction and
undo all changes that have been performed since the interaction started.

A.3.8 Semantic Rules

Context-free Syntax The context-free syntax of semantic rules is as follows:

semantic_rule_section : 'SEMANTIC' 'RULES'

semantic_rule_list

'END' 'SEMANTIC' 'RULES' ';' .

semantic_rule : 'ON' sr_condition opt_var_decl action ';' .

sr_condition : predicate / '(' compound_expr ')' .

compound_expr : changed_expr / changed_expr 'OR' compound_expr

predicate : changed_expr / collapses_expr / exists_expr .

changed_expr : 'CHANGED' '(' path_expr ')' .

collapses_expr : 'DELETED' '(' path_expr ')' .

exists_expr : 'EXISTS' '(' IDENTIFIER ':' IDENTIFIER 'IN' path_expr ')' ':'

sr_condition .

action : 'ACTION' statement_list 'END' 'ACTION' .

Static Semantics We have to exclude method calls from path expressions contained in
semantic rule conditions to avoid side-e�ects during rule evaluation. For the formal de�nition
of this condition, let PPE � PE be the set of path expressions that are used within conditions
of semantic rules. We then require steps to be properties rather than methods:^

pe2PPE

^
i2f2;:::;jpejg

_
e2E�

stype0(pe;i�1)

name�(e) = name(pe[i]): (A.68)

Dynamic Semantics Semantic rules are used to determine attribute values and instantiate
semantic relationships depending on other increment's attributes and relationships. Hence
semantic rules have to declare dependencies between attributes and relationships of di�erent
classes and possibly even di�erent documents. The condition that follows after the ON keyword
serves this purpose. It is called pre-condition of the rule. Three di�erent kinds of primitives
may be used to de�ne these dependencies: CHANGED, DELETED and EXISTS predicates. A CHANGED

predicate evaluates to true, i� the attribute or semantic relationship speci�ed by the given

A.3. CLASS SPECIFICATIONS 295

path expression has been created, has become reachable or was changed otherwise. The
DELETE predicate becomes true, i� the attribute or semantic relationship that is identi�ed by
the path expression is about to be no longer be reachable by the path expression. This could
be because the increment the attribute or relationship belongs to is deleted or because the
path no longer exists since an intermediate step was deleted. EXISTS predicates may be used
to specify dependencies between the semantic rule and elements of a multi-valued semantic
relationship. If the pre-condition becomes true, the statement list that belongs to the will be
executed before any attribute or relationship modi�ed in the statement list is accessed from
elsewhere.

The �rst IDENTIFIER symbol in production exists expr denotes the name of a variable and the
second IDENTIFIER symbol denotes the variable's type. The type of the path expression must
be multi-valued, otherwise it would useless to apply an EXISTS predicate. As an element of
the multi-valued collection will during run-time be assigned to the variable, the variable's type
must be a super type of the base type of the collection. Otherwise the polymorphism rule would
be violated. Moreover, the type must be visible. To formalise these concerns, let EXIST be
the set of exist predicates and QV AR be the set of variable declarations in these predicates. Let
vars : EXIST ! QVAR be the association of variables to exist predicates according to the
matches in production exists expr. Mappings name : QVAR ! A� and type : QVAR ! T
are de�ned as usual. Let moreover ex path : EXIST ! PPE denote the association between
exists predicates and path expressions according to production exists expr. We then require:

^
ex2EXIST

_
c2C

0
BBB@

c 2 T s
c^

kind(int(c)) 2 fNTI;ABI; TIg^
c � type(vars(ex))^

petype(ex path(ex)) 2 flist(c); set(c); bag(c); dictionary(c)g

1
CCCA (A.69)

Let SRc be the set of semantic rules in a class c 2 C. We then assume that mapping ex prec :
SRc ! P(EXIST) de�nes the set of EXISTS predicates contained in the condition of a semantic
rule according to productions sr condition and exists expr. Furthermore, let varsc : SRc !
P(VAR) return the set of variables that are declared in the optional variable list of a semantic
rule similarly mapping varsc on interactions. Then the valid declarations for a statement st
contained in the statement list of a semantic rule sr 2 SRc in class c 2 C are the local variables
and the variables declared in the EXISTS predicates:

scope(st) := E�
c [varsc(sr)[

[
ex2ex prec(sr)

vars(ex)

Again, we have to require uniqueness of variable names so as to use name for variable identi-
�cation purposes:^

c2C

^
sr2SRc

^
v1;v22E�

c[varsc(sr)[
S

ex2ex prec(sr)
vars(ex)

name(v1) = name(v2)) v1 = v2 (A.70)

Similar to local variables of interactions, the type of a local variable of a semantic rule has to
be visible. Condition A.67 is, therefore, applied accordingly:^

c2C

^
i2SRc

^
v2varsc(i)

type(v) 2 T s
c (A.71)

296 APPENDIX A. LANGUAGE DEFINITION OF GTSL

Variables that are declared in EXISTS predicates may be used in inner predicates as well.
Let, therefore, ex prec : PRE ! P(EXIST) reect the containment hierarchy of exists
predicates, i.e. a predicate is mapped to the set of EXISTS predicates that it is contained in
according to production exists predicate. For a path expression pe, contained in a predicate
p 2 PRE := EXIST[� CHGD[� DEL, the set of valid declarations is then:

scope(pe) := E�
c [

[
ex2ex prec(p)

vars(ex)

Note, that we do not have to require uniqueness of variable names declared in EXISTS predicates,
since uniqueness is covered by (A.70) already.

Rule based speci�cations tend to become unstructured and hard to comprehend. In order to
help a tool builder de�ning the static semantics and inter-document consistency constraints in
a well-structured and comprehensible way, we enforce some restrictions on method invocations
in statements of semantic rules. These restrictions will force a tool builder to specify semantic
properties in those classes where they belong. Together with the visibility rules de�ned for
properties, this will lead to well-structured speci�cations. To de�ne these conditions we need
to de�ne an additional concept for methods. A method m 2 Mc de�ned in a class c 2 C is
said to be modifying, i�

W
a2ASS\stmts(body(m))

W
e2E�

c
assname(a) = name�(e) _W

p2PE\stmts(body(m))

W
i2f2;:::;jpjg

W
m2M�

stype0(p;i�1)
name(p[i]) = name�(m) ^

m is modifying

We then require that modifying methods in semantic rules are invoked only for properties of
the class the semantic rule belongs to. Hence modi�cations during static semantics or inter-
document consistency constraint checks are speci�ed in the semantic rule of the class that
declares the changed property. We, therefore, require for all classes c 2 C and all semantic
rules sr 2 SRc:^

p2PE\stmts(sr)

^
i2f2;:::;jpjg

_
m2M�

stype0(p;i�1)

name(p[i]) = name�(m) ^ m is modifying)

W
e2E�

c
name(p[i� 1]) = name�(e) (A.72)

Moreover, semantic rules are meant to change attribute values and create or delete semantic
relationships, which are used to store semantic properties. We do not want that rules are
abused for performing arbitrary increment modi�cations. Increment methods should be in-
voked from interactions for these purposes. We, therefore, further restrict method invocations
in semantic rules. As semantic relationships are created by assigning a value to a link, the
only remaining reason for invoking a method is to access or modify an attribute. This is done
using methods de�ned in non-syntactic classes. We, therefore, exclude any other method calls
and require for each class c 2 C and each semantic rule sr 2 SRc:^

p2PE\stmts(sr)

^
i2f2;:::;jpjg

_
m2M�

stype0(p;i�1)

name(p[i]) = name�(m))

stype0(p; i� 1) 2 NSC (A.73)

Appendix B

The Library of Pre-de�ned Classes

B.1 Increment

Class Increment is the most general abstract increment class. Here, we de�ne the properties
that every increment has. First of all, any increment must have a reference to its abstract
syntax father. Otherwise, navigations could only be performed from parents to children, but
not in the opposite direction. Therefore the attribute father maintains this reference. The
value of this attribute is determined by the parameter that is passed to the init method
of Increment. Class Increment also de�nes a boolean attribute expanded that is FALSE, i�
the increment is still a place holder. The attribute is modi�ed by implicit methods such as
scan, parse or expand, which replace a place holder with child increments and collapse that
transforms an increment into a place holder. Moreover, class Increment de�nes an attribute
Errors of type SET OF Errors. It stores a set of error descriptors that are inserted to or deleted
from the set by semantic rules de�ned in subclasses. If the attribute Errors of an increment
is not empty, the textual representation of the increment will be marked as erroneous at the
user interface (by underlining). Then the user may obtain a textual representation of the
error descriptors in a separate window. Increment exports a number of methods, such as
includes error, append error and clear error in order to query and modify the set. Finally,
class Increment de�nes a path expression to the root increment of the document it is contained
in. This path expression is declared as method get doc. It simpli�es access to information
that is shared by arbitrary increments, because this information is usually stored at the root
increment.

ABSTRACT INCREMENT INTERFACE Increment;

IMPORT INTERFACE

IMPORT Document;

IMPORT Error;

END IMPORT INTERFACE;

EXPORT INTERFACE

ATTRIBUTES

father: Increment; // reference to parent of abstract syntax

expanded: BOOLEAN; // FALSE if increment is a place holder

Errors: SET OF Error; // set of errors that are found at the increment

HIDDEN myDocument: Document; // reference to the root node of document

END ATTRIBUTES;

297

298 APPENDIX B. THE LIBRARY OF PRE-DEFINED CLASSES

METHODS

DEFERRED METHOD collapse:STRING;// any increment class will have

DEFERRED METHOD unparse:STRING; // these implicit methods

METHOD is_phylum():BOOLEAN; // returns true if increment is a place holder

METHOD get_father():Increment; // returns reference to the father

METHOD get_doc():Document; // returns referende to the root node of document

// Error management in increment

METHOD has_error():BOOLEAN;

METHOD get_errors():SET OF STRING;

METHOD includes_error(errType : ERROR_TYPE) : BOOLEAN;

METHOD append_error(errType : ERROR_TYPE) : BOOLEAN;

METHOD clear_error(errType : ERROR_TYPE) : BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE Increment.

B.2 Document

Class Document is the common superclass for all increments that represent root increments
of documents (w.r.t the abstract syntax). As such, it de�nes a set of attributes for data
that all increments of a document have in common. Then this data need not be stored in
each separate increment of a document. One of these attributes is definedDocuments that is
a reference to the common root of all documents. This common root is an instance of class
DocumentPool. The reference is needed, e.g. to see whether some other document exists. A fur-
ther attribute, Owner, is a string that identi�es the owner of the document. Methods GetOwner
and ChangeOwner are de�ned that are used to query and set this attribute. Furthermore, the
attribute LastModificationDate stores the date and time of the last document modi�cation.
The attribute is implicitly updated by a tool, whenever an increment interaction is success-
fully completed with a commit. A method GetDate is provided that is used to return the last
modi�cation date of a document.

ABSTRACT INCREMENT INTERFACE Document;

INHERIT Increment;

IMPORT INTERFACE

IMPORT DocumentPool;

IMPORT Date;

END IMPORT INTERFACE;

EXPORT INTERFACE

ATTRIBUTES

definedDocuments: DocumentPool;

HIDDEN Owner: STRING;

HIDDEN LastModificationDate : Date;

END ATTRIBUTES;

SEMANTIC RELATIONSHIP

docPool: DocumentPool;

END SEMANTIC RELATIONSHIP;

METHODS

B.3. DOCUMENTVERSION 299

METHOD init(name:STRING);

METHOD ChangeOwner(new_owner:STRING);

METHOD GetOwner():STRING;

METHOD GetDate:Date;

METHOD Touch();

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE Document.

B.3 DocumentVersion

A subclass of Document is class DocumentVersion. It is the common super class for all root
increments of documents that are versionable. As such it maintains attributes for managing
the version history graph of a document. It then contains methods in order to set a ver-
sion of a document as a default version (SetDefaultVersion), to select a particular version
(SelectVersion), to freeze versions in order to declare them as stable (FreezeVersion), to
derive a version from the selected version (DeriveVersion), to navigate through the version
history graph (GetParents, GetChildren) and to delete a particular version from the graph
(DeleteVersion). These methods are then used for declaring version management commands
in the class speci�cation of DocumentVersion. They are therefore hidden. By declaring the
root increment class of a tool con�guration as a subclass of DocumentVersion, a tool is then
automatically equipped with all required commands for version management.

DocumentVersion has an instance variable AllUsingIncrements of type SET OF UsingIncrement

that maintains references to all instances of subclasses of UsingIncrement contained in the
document. Before displaying a document at the user-interface, the editor kernel consults this
set and selects the document versions identi�ed by the attributes UsedDoc and UsedVer of the
set elements. This assures that all successive commands are performed in the context of the
right con�guration.

ABSTRACT INCREMENT INTERFACE DocumentVersion;

INHERIT Document;

IMPORT INTERFACE

IMPORT DocumentTable;

IMPORT VersionVectorTable;

IMPORT UsingIncrement;

IMPORT UseableIncrement;

END IMPORT INTERFACE;

EXPORT INTERFACE

ATTRIBUTES

HIDDEN RootVersionName : STRING;

HIDDEN Stable : BOOLEAN;

HIDDEN NameOfCurrentVersion : STRING;

HIDDEN DefaultVersionName : STRING;

HIDDEN AllVersions : SET OF STRING;

HIDDEN OutgoingConsistentVersions : VersionVectorTable;

HIDDEN IncomingConsistentVersions : VersionVectorTable;

HIDDEN AllUsingIncrements : SET OF UsingIncrement;

HIDDEN AllUseableIncrements : SET OF UseableIncrement;

END ATTRIBUTES;

300 APPENDIX B. THE LIBRARY OF PRE-DEFINED CLASSES

METHODS

METHOD Init(f:Increment; DocName : STRING; InitialVersionName : STRING);

// Methods to modify derivation graph

HIDDEN METHOD DeleteVersion(name : STRING) : BOOLEAN;

HIDDEN METHOD SetDefaultVersion(name : STRING);

HIDDEN METHOD SetDefaultVersionName(name : STRING);

HIDDEN METHOD SelectVersion(name : STRING);

HIDDEN METHOD SelectDefaultVersion();

HIDDEN METHOD DeriveVersion(name : STRING);

HIDDEN METHOD FreezeVersion();

// methods for enquiries on derivation graph

METHOD GetChildren(name : STRING) : SET OF STRING;

METHOD GetParents(name : STRING) : SET OF STRING;

METHOD GetRootVersionName() : STRING;

METHOD GetVersionName() : STRING;

METHOD GetDefaultVersionName() : STRING;

METHOD AllVersions() : SET OF STRING;

METHOD IsVersionStable(name : STRING):BOOLEAN;

METHOD IsStable():BOOLEAN;

METHOD GetChildrenClosure(name : STRING): SET OF STRING;

METHOD GetParentsClosure(name : STRING): SET OF STRING;

METHOD AreOnDifferentPaths(v1 : STRING; v2 : STRING) : BOOLEAN;

METHOD RealizeNewVersion(v:Version; newName : STRING);

// methods for enquiries on current configuration

METHOD IsReferencingDifferentVersions() : BOOLEAN;

METHOD GetUsedVer(docName:STRING) : STRING;

METHOD GetUsingVers(docName:STRING) : SET OF STRING;

METHOD UsedDocs():SET OF STRING;

METHOD UsingDocs():SET OF STRING;

METHOD UsedDocClosure():SET OF STRING;

METHOD UsingDocClosure():SET OF STRING;

METHOD IsCyclic () : BOOLEAN;

METHOD IsCompatibleConfiguration () : BOOLEAN;

// methods for defining inter-document relationships

// will be used by UseableIncrement and UsingIncrement

METHOD RealizeOutgoingUsingIncrement(inc : UsingIncrement);

METHOD UnRealizeOutgoingUsingIncrement(inc : UsingIncrement);

METHOD RealizeUseableIncrement(i:UseableIncrement);

METHOD UnRealizeUseableIncrement(i:UseableIncrement);

// methods for configuration management

// will be used by CM tool commands

HIDDEN METHOD SelectReferencedVersions();

HIDDEN METHOD ChangeVersionDependency(aDoc:STRING; aVer:STRING);

HIDDEN METHOD IsVersionUsed():BOOLEAN;

HIDDEN METHOD EstablishConsistencyRelation();

HIDDEN METHOD RealizeOutgoingConsVer(doc:STRING; VER:STRING);

HIDDEN METHOD RealizeIncomingConsVer(doc:STRING; VER:STRING);

HIDDEN METHOD OutgoingConsistentDocs() : SET OF STRING;

HIDDEN METHOD IncomingConsistentDocs() : SET OF STRING;

HIDDEN METHOD OutgoingConsistentVers(doc:STRING): SET OF STRING;

HIDDEN METHOD IncomingConsistentVers(doc:STRING) : SET OF STRING;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE DocumentVersion.

B.4. OPTIONALINCREMENT 301

B.4 OptionalIncrement

Class OptionalIncrement serves as a super class for all increment classes that trace back to
optional productions of the syntax view. It de�nes a hidden attribute removed of type BOOLEAN

that is TRUE, i� the increment is associated with the empty string. Otherwise the increment
is visible. OptionalIncrement also de�nes two methods remove and unremove that modify the
removed attribute in order to remove an increment or to expand it again. These methods
are used by the implicit parse, expand and unparse methods of father increments. The parse

method invokes remove or unremove of an optional abstract syntax child depending on whether
the empty string is chosen or a match with a non-emtpy string is found. The expand method
changes removed to FALSE for any removed optional child increment. The unparse method
in turn only invokes an unparse on an optional child increment, if removed is FALSE. Class
OptionalIncrement then de�nes an interaction for removing a selected increment. The in-
teraction is only available if the increment has not yet been removed. Thus any subclass
of OptionalIncrement is equipped with a command to remove the increment. A command
to expand the child increment again cannot be de�ned in OptionalIncrement, because a re-
moved child increment can no longer be selected at the user interface. It is de�ned in class
NonterminalIncrement instead.

ABSTRACT INCREMENT INTERFACE OptionalIncrement;

INHERIT Increment;

EXPORT INTERFACE

ATTRIBUTES

HIDDEN removed:BOOLEAN;

END ATTRIBUTES;

METHODS

METHOD remove();

METHOD is_removed() : BOOLEAN;

METHOD unremove();

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE OptionalIncrement.

B.5 NonterminalIncrement

Class NonterminalIncrement serves as an abstract super class for all increment classes that
trace back to productions of a normalised EBNF that create further terminal and non-terminal
symbols. It declares two deferred methods that will be rede�ned by implicit methods of non-
terminal increment classes, namely parse, expand. Moreover, it de�nes an interaction that
implements a command to expand an increment that is still a place holder or has removed
optional child increments.

ABSTRACT INCREMENT INTERFACE NonterminalIncrement;

INHERIT Increment;

EXPORT INTERFACE

METHODS

302 APPENDIX B. THE LIBRARY OF PRE-DEFINED CLASSES

DEFERRED METHOD parse(Str:STRING):NonterminalIncrement;

DEFERRED METHOD expand();

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE NonterminalIncrement.

B.6 TerminalIncrement

Class TerminalIncrement is the counterpart to NonterminalIncrement for all increment classes
that trace back to terminal symbols of a normalised EBNF. It de�nes two deferred methods
and two explicit methods. The deferred method scan will be rede�ned by implicit methods of
terminal increment classes. The two explicit methods expand terminal and change terminal

use the deferred methods. With late binding, the respective implicit methods of subclasses
will be invoked at run-time then. Moreover, TerminalIncrement de�nes two interactions that
implement commands to expand or change the terminal increment.

ABSTRACT INCREMENT INTERFACE TerminalIncrement;

INHERIT Increment;

EXPORT INTERFACE

METHODS

DEFERRED METHOD scan(Str:STRING):BOOLEAN;

METHOD ExpandTerminal(Str:STRING):BOOLEAN;

METHOD ChangeTerminal(Str:STRING):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE TerminalIncrement.

B.7 IncrementList

Class IncrementList serves as an abstract increment class for lists of increments. As such it
de�nes an abstract syntax child elems whose type is LIST OF Increment1. Hence, arbitrary
increments can be inserted into the list. It then de�nes a deferred method expand. Again,
expand will be rede�ned by implicit methods of non-terminal increment classes. Moreover,
IncrementList de�nes methods to expand the increment list with an element, to insert an
element before the current element, to add an element after the current increment and to
delete an element. These methods are then used by interactions that de�ne all structure-
oriented commands that are required to edit list increments.

The interactions that are o�ered for increment lists then investigate the static base type of
the multi-valued abstract syntax child elems. They then compute the names of all terminal
and non-terminal increment classes that are subclasses of this base type. Abstract increment
classes are not included, because these must not be instantiated (A.54). We only consider the
subclasses, because the subclasses of the base type represent all alternatives in the grammar
and the polymorphism rule allows us only to insert these. If there are more than one subclass,

1This assures that only abstract and non-terminal increment classes can be de�ned as subclasses of
IncrementList (A.13)

B.8. TERMINALINCREMENTLIST 303

the interactions o�er the class names in a submenu to the user. After the user has determined
a name, the respective methods of this class are invoked with the user-de�ned class name as
string parameter.

Note, that the bodies of these methods cannot be speci�ed in GTSL. This is because GTSL
intentionally does not include a concept for meta-classes. Meta-classes are required here since
the class of the increment to be included in the list is determined at run-time by name, i.e. as
a string. A meta-class is then required that knows about all classes and can lookup the class
with the given name in order to instantiate an increment from the class. As this is inherently
unsafe (there need not be a class of the given name and this cannot be checked statically)
and we do not foresee that a tool builder might want to use meta-classes, we did not include
them into GTSL. We rather only use the meta-class provided by the O2 meta schema

2 in the
implementation of this pre-de�ned class library and hide the mechanism from tool builders.

ABSTRACT INCREMENT INTERFACE IncrementList;

INHERIT Increment;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheList : LIST OF Increment;

END ABSTRACT SYNTAX;

METHODS

DEFERRED METHOD expand();

METHOD ExpandListWithIncrement(TheClass:STRING):SET OF STRING;

METHOD AddElement(TheClass:STRING; cursor:Increment):SET OF STRING;

METHOD InsertElement(TheClass:STRING; cursor:Increment):SET OF STRING;

METHOD DeleteElement(i:Increment);

METHOD CreateIncrement(TheClass:STRING):Increment;

METHOD BaseSubClasses():SET OF STRING;

METHOD BaseClass():STRING;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE IncrementList.

B.8 TerminalIncrementList

Class TerminalIncrementList specialises IncrementList in a way that only terminal increments
can be included into elems. Therefore TerminalIncrementList rede�nes the type of elems to
become LIST OF TerminalIncrement. Then it can apply method ExpandTerminal to list elements
in order to de�ne two further interactions for free textual input of new terminal increments to
be inserted or added into the list.

ABSTRACT INCREMENT INTERFACE TerminalIncrementList;

INHERIT IncrementList;

IMPORT INTERFACE

2Note also, that this class could not be implemented in Ei�el, C++ or any of the C++ based ODBSs due to
the lack of meta-classes. In these systems each increment class with a multi-valued abstract syntax child had
to duplicate the implementation of the respective methods.

304 APPENDIX B. THE LIBRARY OF PRE-DEFINED CLASSES

IMPORT TerminalIncrement;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheList : LIST OF TerminalIncrement;

END ABSTRACT SYNTAX;

METHODS

METHOD ScanAndAddElement(TheClass:STRING; str:STRING;

cursor:TerminalIncrement):SET OF STRING;

METHOD ScanAndInsertElement(TheClass:STRING; str:STRING;

cursor:TerminalIncrement):SET OF STRING;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE TerminalIncrementList.

B.9 NonterminalIncrementList

Class NonterminalIncrementList is declared as subclass of IncrementList in order to restrict the
list elements to non-terminal increments into the list. It therefore rede�nes the type of elems
to LIST OF NonterminalIncrement. Then it can import the deferred methods unparse, parse
and expand from NonterminalIncrement in order to de�ne various interactions for inserting or
adding freely edited non-terminal increments into the list.

ABSTRACT INCREMENT INTERFACE NonterminalIncrementList;

INHERIT IncrementList;

IMPORT INTERFACE

IMPORT NonterminalIncrement;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheList : LIST OF NonterminalIncrement;

END ABSTRACT SYNTAX;

METHODS

METHOD ExpandListWithIncrement(TheClass:STRING):SET OF STRING;

METHOD AddElement(TheClass:STRING;

cursor:NonterminalIncrement) : SET OF STRING;

METHOD InsertElement(TheClass:STRING;

cursor:NonterminalIncrement) : SET OF STRING;

METHOD ParseAndAddElement(TheClass:STRING;str:STRING;

cursor:NonterminalIncrement):SET OF STRING;

METHOD ParseAndInsertElement(TheClass:STRING;str:STRING;

cursor:NonterminalIncrement):SET OF STRING;

METHOD ParseAndExpandElement(str:STRING;

cursor:NonterminalIncrement):SET OF STRING;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE NonterminalIncrementList.

B.10. USINGINCREMENT AND USABLEINCREMENT 305

B.10 UsingIncrement and UsableIncrement

Class DocumentVersion supports version management of documents. In order to support also
management of di�erent con�gurations of these versioned documents, we have to consider se-
mantic relationships between documents. Classes UsingIncrement and UsableIncrement serve
this purpose. UsingIncrement declares a semantic relationship with an explicit link to class
UsableIncrement. UsableIncrement in turn declares the corresponding implicit link. In addi-
tion, UsingIncrement declares two attributes of type STRING, namely UsedDoc and UsedVer that
uniquely identify the particular version that is is currently used. The attributes are used e.g.
to traverse through the current con�guration. Similarly, UsableIncrement stores the identi�ca-
tions of all documents and all versions that use the increment. Since this information is more
complex, a particular class VersionVectorTable is used for this purpose (see below).

Classes UsingIncrement, UsableIncrement and DocumentVersion then de�ne a number of in-
teractions in order to implement con�guration management commands. UsingIncrement has
an interaction that displays the name and version of the currently used document. Like-
wise, UsableIncrement de�nes an interaction that displays the document and version names of
documents that contain increments using the selected increment. On a more coarse grained
level, DocumentVersion de�nes an interaction that implements a command for changing the
currently used document version for all using increments contained in the current version of
the document.

A tool builder might now exploit these con�guration management mechanisms, by de�ning
tool speci�c subclasses of UsingIncrement and UsableIncrement. In particular all con�guration
management commands will be available in the tool then. In these classes, the type of the links
need to be restricted to the tool-speci�c increment classes by covariant rede�nition. Moreover,
semantic rules must be de�ned for the tool-speci�c subclasses of UsingIncrement that establish
the inter-document semantic relationship in a tool-speci�c way. This is done by assigning a
particular value to the explicit link UsedIncrement.

ABSTRACT INCREMENT INTERFACE UsingIncrement;

INHERIT Increment;

IMPORT INTERFACE

IMPORT UsableIncrement;

END IMPORT INTERFACE;

EXPORT INTERFACE

ATTRIBUTES

HIDDEN UsedDoc : STRING;

HIDDEN UsedVer : STRING;

HIDDEN OwnerVersion : STRING;

END ATTRIBUTES;

SEMANTIC RELATIONSHIPS

UsedIncrement: UsableIncrement;

END SEMANTIC RELATIONSHIPS;

METHODS

METHOD Init(f:Increment);

METHOD Collapse();

METHOD GetUsedDoc() : STRING;

METHOD GetUsedVer() : STRING;

306 APPENDIX B. THE LIBRARY OF PRE-DEFINED CLASSES

METHOD GetAlreadyCreatedClientInc(CheckInc : UsingIncrement) : UsingIncrement;

METHOD SetOwnerVersion(name:STRING);

METHOD GetOwnerVersion() : STRING;

METHOD RealizeVersionDependency(doc:STRING;ver:STRING);

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE UsingIncrement.

ABSTRACT INCREMENT INTERFACE UsableIncrement;

INHERIT Increment;

IMPORT INTERFACE

IMPORT UsingIncrement;

IMPORT VersionVectorTable;

END IMPORT INTERFACE;

EXPORT INTERFACE

ATTRIBUTES

HIDDEN UsingVersions : VersionVectorTable;

END ATTRIBUTES;

METHODS

METHOD Isolate();

METHOD Init(f:Increment);

METHOD RealizeIncomingUsingIncrement(inc:UsingIncrement);

METHOD UnRealizeIncomingUsingIncrement(inc:UsingIncrement);

METHOD RealizeDerivedVersion(ver:STRING);

METHOD UsingDocs() : SET OF STRING;

METHOD appendVersion(doc:STRING; ver:STRING);

METHOD removeVersion(doc:STRING; ver:STRING);

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE UsableIncrement.

B.11 DocumentPool

The class DocumentPool serves as a super class for classes that de�ne persistent roots for
documents. It de�nes an attribute definedDocuments of class DocumentTable. All documents
that are associated with a name in this table will be persistent. The keys for entries in this
table, however, are document names which are tool speci�c. They might correspond to module
names, section titles, names of methods and the like. Therefore subclasses of DocumentPool
de�ne semantic rules that control associations in the symbol table based on changes of these
document type speci�c name increments.

ABSTRACT INCREMENT INTERFACE DocumentPool;

INHERIT Increment;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Document;

IMPORT DocumentTable;

END IMPORT INTERFACE;

EXPORT INTERFACE

B.12. ATTRIBUTE 307

ATTRIBUTES

definedDocuments: DocumentTable;

END ATTRIBUTES;

SEMANTIC RELATIONSHIPS

IMPLICIT registeredDocuments: SET OF Document.docPool;

END SEMANTIC RELATIONSHIPS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE DocumentPool.

B.12 Attribute

The only purpose of class Attribute is to serve as a super class of all non-syntactic classes.
It only declares a deferred init methods in order to enforce de�nition of a method that is
executed whenever an attribute is created.

INTERFACE Attribute;

EXPORT INTERFACE

METHODS

DEFERRED METHOD init();

END METHODS;

END EXPORT INTERFACE;

END INTERFACE Attribute.

B.13 Error

Error descriptors are instances of class Error. Error has an integer attribute that stores the
error codes and a method get string that returns a formatted error message. This method is
used by get set of errors in ErrorSet in order to format its set of errors.

INTERFACE Error;

INHERIT Attribute;

EXPORT INTERFACE

CONSTRUCTION

error: ERROR_TYPE;

END CONSTRUCTION;

METHODS

METHOD init(e: ERROR_TYPE);

METHOD get_string():STRING;

END METHODS;

END EXPORT INTERFACE;

END INTERFACE Error.

308 APPENDIX B. THE LIBRARY OF PRE-DEFINED CLASSES

B.14 SyntaxError

Syntax errors are more special error descriptors. They add an attribute pos that is used to
store two-dimensional coordinates. These coordinates identify where syntax errors occurred in
a source text. The method get string is rede�ned in order to also include the error position
into the formatted error message.

INTERFACE SyntaxError;

INHERIT Error;

EXPORT INTERFACE

CONSTRUCTION

column, row: INTEGER;

END CONSTRUCTION;

METHODS

METHOD init(e: ERROR_TYPE; x: INTEGER; y:INTEGER);

METHOD get_string():STRING;

// get_string uses get_string of the father class and

// adds the position

METHOD set_position(x: INTEGER; y: INTEGER);

END METHODS;

END EXPORT INTERFACE;

END INTERFACE SyntaxError.

{\footnotesize \begin{verbatim}

B.15 SymbolTable

Class SymbolTable e�ciently manages a set of associations between symbols (represented as
character strings) and increments. It exports methods associate to enter a new association,
deassociate to delete an association and increment at to search for the increment that is
associated with a symbol.

An increment class where a new scope starts (such as a function in Pascal or a block in Algol)
may then declare an attribute of class SymbolTable. It can then de�ne semantic rules for all
child increments that declare symbols in the scope. Then semantic rules may be de�ned for
child increments that query the symbol table for uniqueness of symbols.

INTERFACE SymbolTable;

INHERIT Attribute;

IMPORT INTERFACE

IMPORT Increment;

END IMPORT INTERFACE;

EXPORT INTERFACE

CONSTRUCTION

st : DICTIONARY OF (KEY:STRING; VALUE:Increment)

END CONSTRUCTION;

METHODS

B.16. DOCUMENTTABLE 309

METHOD associate(k:STRING; v:Increment);

METHOD deassociate(k:STRING);

METHOD includes(k:STRING) : BOOLEAN;

METHOD increment_at(k:STRING) : Increment;

METHOD size() : INTEGER;

END METHODS;

END EXPORT INTERFACE;

END INTERFACE SymbolTable.

B.16 DocumentTable

Class DocumentPool has an attribute that provides e�cient access to all documents. This
attribute is a symbol table, but all entries in this table are documents. In order to avoid type
casts, we de�ne a subclass of SymbolTable, which is DocumentTable. It rede�nes all methods
that return entries to return documents rather than increments. In that way, we can access in
DocumentPool and other classes documents from the table without having to type cast them.

INTERFACE DocumentTable;

INHERIT SymbolTable;

IMPORT INTERFACE

IMPORT Document;

END IMPORT INTERFACE;

EXPORT INTERFACE

METHODS

METHOD associate(k:STRING; v:Document);

METHOD increment_at(k:STRING) : Document;

END METHODS;

END EXPORT INTERFACE;

END INTERFACE DocumentTable.

B.17 DocumentVersionTable

INTERFACE DocumentTable;

INHERIT TableTable;

IMPORT INTERFACE

IMPORT DocumentVersion;

END IMPORT INTERFACE;

EXPORT INTERFACE

METHODS

METHOD associate(k:STRING; v:DocumentVersion);

METHOD increment_at(k:STRING) : DocumentVersion;

END METHODS;

END EXPORT INTERFACE;

END INTERFACE DocumentVersionTable.

310 APPENDIX B. THE LIBRARY OF PRE-DEFINED CLASSES

B.18 VersionVector and VersionVectorTable

A usable Increment may be used in more than one version of a document. For con�guration
management purposes, it is important to keep track of all these usages. Otherwise, we could
not not support queries like \Which versions of a document use this increment". Therefore we
need to associate additional information with implicit links of semantic relationships. Class
VersionVector serves this purpose. It can store a list of version names in a hidden attribute
and it provides access operation to enter or delete version names. Each entry in this vector
then represents a version of the document that uses the increment.

As an increment may in fact be used from more than one document, we have to de�ne a
data structure that can e�ciently manage a set of version vectors: one for each using docu-
ment. Class VersionVectorTable is de�ned for that purpose. It has an attribute whose type
is DICTIONARY OF VersionVector. Keys in this dictionary are considered as document names.
They correspond to entries that are the version vectors of version names of that document
that uses the increment.

The use of version vectors and version vector tables is completely transparent for a tool builder.
These two classes are used in UsableIncrement. Entries are created or deleted, whenever a se-
mantic relationship to a versioned usable increment is established. Its version vector table
is queried during execution of a command that displays all documents and their respec-
tive versions that use the increment. This command is then inherited by all subclasses of
UsableIncrement.

INTERFACE VersionVector;

INHERIT Attribute;

EXPORT INTERFACE

CONSTRUCTION

verList : LIST OF STRING

END CONSTRUCTION;

METHODS

METHOD appendVersion(name: STRING);

METHOD removeVersion(name: STRING);

METHOD GetVersionVector() : SET OF STRING;

END METHODS;

END EXPORT INTERFACE;

END INTERFACE VersionVector.

INTERFACE VersionVectorTable;

INHERIT Attribute;

IMPORT INTERFACE

IMPORT VersionVector;

IMPORT Increment;

END IMPORT INTERFACE;

EXPORT INTERFACE

CONSTRUCTION

TheVersions : DICTIONARY OF (KEY:STRING;VALUE:VersionVector)

END CONSTRUCTION;

B.19. SUMMARY 311

METHODS

METHOD GetVersions(docName : STRING) : SET OF STRING;

METHOD appendVersion(docName : STRING; verName : STRING);

METHOD removeVersion(docName : STRING; verName : STRING);

END METHODS;

END EXPORT INTERFACE;

END INTERFACE VersionVectorTable.

B.19 Summary

We have suggested a carefully designed library of pre-de�ned GTSL classes. This library
ful�lls three purposes. First of all, it de�nes the properties that are required from increments
by the editor kernel. Most of them such as attribute errors in class Increment are explicitly
de�ned in the library. Few, however, are de�ned as deferred (such as GetDocName). Second, it
de�nes properties that are common to a high number of increment classes. Tool speci�cation
is signi�cantly eased since these properties can be inherited by tool speci�c classes from library
classes. Note, that we have allowed reuse by inheritance here although we do not want to have
tool builders inheriting from other con�gurations. This is because in this way we can safely
assure that all properties required by the editor kernel are available. Moreover, the library
has been applied in a number of tool speci�cations and will quite unlikely have to be changed.
Therefore, the rationale for not allowing inheritance among con�gurations does not hold here.
Third, we have de�ned a number of classes (such as SymbolTable) that tool-builders may
import and then reuse. This also demonstrates the way reuse is supported between di�erent
con�gurations.

312 APPENDIX B. THE LIBRARY OF PRE-DEFINED CLASSES

Appendix C

GTSL Speci�cation of GENESIS

Tools

C.1 ENBNF Tool

C.1.1 Tool Con�guration

CONFIGURATION ENBNF

CONSISTS OF

IMPORT FROM CONFIGURATION INT:

INCREMENT CLASSES

InterfacePool,

Interface,

TerminalInterface,

ToolRootClass;

END IMPORT;

INCREMENT CLASSES

ScopingBlock INHERIT Increment;

NameInST INHERIT Increment;

UsingNameInST INHERIT Increment;

TerminalIncrement INHERIT Increment;

NonterminalIncrement INHERIT Increment;

IncrementList INHERIT NonterminalIncrement;

TerminalIncrementList INHERIT IncrementList;

NonterminalIncrementList INHERIT IncrementList;

ENBNFPool INHERIT DocumentPool;

ENBNF INHERIT Document, ScopingBlock;

ProductionList INHERIT NonterminalIncrementList;

Production INHERIT NonterminalIncrement;

Alternative INHERIT Production;

SymbolList INHERIT TerminalIncrementList;

Regular INHERIT Production;

StructureOpt INHERIT Production;

RegularOpt INHERIT Production;

Structure INHERIT Production;

ComponentList INHERIT IncrementList;

Component INHERIT Increment;

ListProd INHERIT Component;

313

314 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

Delimiter INHERIT OptionalIncrement;

KeywordList INHERIT TerminalIncrementList;

Keyword INHERIT Component,TerminalIncrement;

RegExp INHERIT TerminalIncrement;

DefiningSymbol INHERIT NameInST, TerminalIncrement;

UsingSymbol INHERIT UsingNameInST, Component, TerminalIncrement;

END INCREMENT CLASSES;

ROOT INCREMENT IS ENBNF

ADDITIONAL ERRORS

#SymbAlreadyDef : "The given Symbol has already been defined";

#SymbolNotDef : "The given Symbol has not yet been defined";

#TooManyNts : "Too many nonterminals in the component list"

END ADDITIONAL ERRORS

END CONFIGURATION ENBNF.

C.1.2 GTSL Class De�nitions

C.1.2.1 Increment Class ScopingBlock

ABSTRACT INCREMENT INTERFACE ScopingBlock;

INHERIT Increment;

IMPORT INTERFACE

IMPORT Increment;

IMPORT DuplicateSymbolTable;

IMPORT NameInST;

END IMPORT INTERFACE;

EXPORT INTERFACE

ATTRIBUTES

DefinedNames: DuplicateSymbolTable;

END ATTRIBUTES;

SEMANTIC RELATIONSHIPS

IMPLICIT envelopedNames: SET OF NameInST.envelopingScope;

END SEMANTIC RELATIONSHIPS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE ScopingBlock.

INCREMENT SPECIFICATION ScopingBlock;

IMPORT INTERFACE

IMPORT Increment;

IMPORT NameInST INCLUDING envelopingScope,value;

IMPORT DuplicateSymbolTable INCLUDING associate,deassociate;

END IMPORT INTERFACE;

INITIALIZATION

DefinedNames := NEW DuplicateSymbolTable;

END INITIALIZATION;

SEMANTIC RULES

// Associate/deassociate NameInST in Symboltable

ON EXISTS(name : NameInST IN SELF.envelopedNames):

C.1. ENBNF TOOL 315

CHANGED(name.value)

ACTION

SELF.DefinedNames.associate(name,name.value);

END ACTION;

ON EXISTS(name : NameInST IN SELF.envelopedNames):

DELETED(name)

ACTION

SELF.DefinedNames.deassociate(name);

END ACTION;

END SEMANTIC RULES;

END INCREMENT SPECIFICATION ScopingBlock.

C.1.2.2 Increment Class NameInST

ABSTRACT INCREMENT INTERFACE NameInST;

INHERIT Increment;

IMPORT INTERFACE

IMPORT Increment;

IMPORT ScopingBlock;

IMPORT UsingNameInST;

END IMPORT INTERFACE;

EXPORT INTERFACE

ATTRIBUTES

value: STRING;

notDefined_error : ERROR_TYPE;

END ATTRIBUTES;

SEMANTIC RELATIONSHIPS

envelopingScope: ScopingBlock;

IMPLICIT UsedBy : SET OF UsingNameInST.DefinedIn;

END SEMANTIC RELATIONSHIPS;

METHODS

DEFERRED METHOD unparse():STRING;

DEFERRED METHOD ErrorId():ERROR_TYPE;

METHOD compute_envelopingScope():ScopingBlock;

END METHODS;

END EXPORT INTERFACE;

INCREMENT SPECIFICATION NameInST;

IMPORT INTERFACE

IMPORT Increment;

IMPORT ScopingBlock INCLUDING DefinedNames;

IMPORT DuplicateSymbolTable INCLUDING is_duplicate_incr;

IMPORT UsingNameInST;

END IMPORT INTERFACE;

INITIALIZATION

envelopingScope := SELF.compute_envelopingScope();

notDefined_error := SELF.ErrorId();

END INITIALIZATION;

316 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

SEMANTIC RULES

ON CHANGED(SELF.envelopingScope.DefinedNames)

ACTION

IF(SELF.envelopingScope.DefinedNames.is_duplicate_incr(SELF)) THEN

SELF.Errors.append_error(notDefined_error);

ELSE

SELF.Errors.clear_error(notDefined_error);

ENDIF

END ACTION;

END SEMANTIC RULES;

METHODS

METHOD compute_envelopingScope():ScopingBlock;

VAR i: Increment;

BEGIN

i:=SELF.father;

WHILE ((i!= NIL) AND (NOT i.IS_KIND_OF("ScopingBlock"))) DO

i := i.father;

ENDDO;

RETURN(<ScopingBlock>i);

END compute_envelopingScope;

END METHODS;

END INCREMENT SPECIFICATION NameInST.

C.1.2.3 Increment Class UsingNameInST

ABSTRACT INCREMENT INTERFACE UsingNameInST;

INHERIT Increment;

IMPORT INTERFACE

IMPORT Increment;

IMPORT ScopingBlock;

IMPORT NameInST;

END IMPORT INTERFACE;

EXPORT INTERFACE

ATTRIBUTES

value : STRING;

usedClass : STRING;

notDefined_error : ERROR_TYPE;

END ATTRIBUTES;

SEMANTIC RELATIONSHIPS

envelopingScope : ScopingBlock;

DefinedIn : NameInST;

END SEMANTIC RELATIONSHIPS;

METHODS

DEFERRED METHOD unparse():STRING;

DEFERRED METHOD EnvelopingScope():ScopingBlock;

DEFERRED METHOD DeclClassName(): STRING;

DEFERRED METHOD ErrorId():ERROR_TYPE;

DEFERRED METHOD react_on_change(Str:STRING);

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE UsingNameInST.

C.1. ENBNF TOOL 317

INCREMENT SPECIFICATION UsingNameInST;

IMPORT INTERFACE

IMPORT Increment;

IMPORT ScopingBlock INCLUDING DefinedNames;

IMPORT DuplicateSymbolTable INCLUDING increment_at;

IMPORT NameInST;

END IMPORT INTERFACE;

INITIALIZATION

envelopingScope := SELF.EnvelopingScope();

usedClass := SELF.DeclClassName();

notDefined_error := SELF.ErrorId();

END INITIALIZATION;

SEMANTIC RULES

ON CHANGED(SELF.envelopingScope.DefinedNames)

VAR inc: Increment;

ACTION

inc:=SELF.envelopingScope.DefinedNames.increment_at(SELF.value);

IF inc != NIL THEN

IF(inc.IS_KIND_OF(SELF.usedClass)) THEN

DefinedIn := <NameInST>inc;

Errors.clear_error(SELF.notDefined_error);

ELSE

DefinedIn:=<NameInST>NIL;

Errors.append_error(SELF.notDefined_error);

ENDIF;

ELSE

DefinedIn:=<NameInST>NIL;

Errors.append_error(SELF.notDefined_error);

ENDIF;

END ACTION;

ON CHANGED(SELF.value)

VAR inc: Increment;

ACTION

inc:=SELF.envelopingScope.DefinedNames.increment_at(SELF.value);

IF inc != NIL THEN

IF(inc.IS_KIND_OF(SELF.usedClass)) THEN

DefinedIn := <NameInST>inc;

Errors.clear_error(SELF.notDefined_error);

ELSE

DefinedIn:=<NameInST>NIL;

Errors.append_error(SELF.notDefined_error);

ENDIF;

ELSE

DefinedIn:=<NameInST>NIL;

Errors.append_error(SELF.notDefined_error);

ENDIF;

END ACTION;

END SEMANTIC RULES;

END INCREMENT SPECIFICATION UsingNameInST.

C.1.2.4 Increment Class ENBNFPool

TERMINAL INCREMENT INTERFACE ENBNFPool;

INHERIT DocumentPool;

318 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

IMPORT INTERFACE

IMPORT ENBNF;

IMPORT Increment;

IMPORT DocumentPool;

END IMPORT INTERFACE;

EXPORT INTERFACE

SEMANTIC RELATIONSHIPS

IMPLICIT registeredDocuments: SET OF ENBNF.docPool;

END SEMANTIC RELATIONSHIPS;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD collapse();

IMPLICIT METHOD scan(Str:STRING):BOOLEAN;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END TERMINAL INCREMENT INTERFACE ENBNFPool.

INCREMENT SPECIFICATION ENBNFPool;

IMPORT INTERFACE

IMPORT Increment;

IMPORT ENBNF;

IMPORT DocumentTable;

IMPORT DocumentPool;

END IMPORT INTERFACE;

INITIALIZATION

definedDocuments := NEW DocumentTable(SELF);

END INITIALIZATION;

END INCREMENT SPECIFICATION ENBNFPool.

C.1.2.5 Increment Class ENBNF

NONTERMINAL INCREMENT INTERFACE ENBNF;

INHERIT Document,ScopingBlock;

IMPORT INTERFACE

IMPORT Increment;

IMPORT ProductionList;

IMPORT ENBNFPool;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

pl: ProductionList;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

pl, (NL)

END UNPARSING SCHEME;

C.1. ENBNF TOOL 319

SEMANTIC RELATIONSHIPS

docPool: ENBNFPool;

END SEMANTIC RELATIONSHIPS;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):ENBNF;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE ENBNF.

INCREMENT SPECIFICATION ENBNF;

END INCREMENT SPECIFICATION ENBNF.

C.1.2.6 Increment Class ProductionList

NONTERMINAL INCREMENT INTERFACE ProductionList;

INHERIT NonterminalIncrementList;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Production;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheList : LIST OF Production;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

TheList DELIMITED BY (NL), (NL) END

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):ProductionList;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE ProductionList.

INCREMENT SPECIFICATION ProductionList;

END INCREMENT SPECIFICATION ProductionList.

320 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

C.1.2.7 Increment Class Production

ABSTRACT INCREMENT INTERFACE Production;

INHERIT NonterminalIncrement;

IMPORT INTERFACE

IMPORT Increment;

IMPORT DefiningSymbol;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

lhs : DefiningSymbol;

END ABSTRACT SYNTAX;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE Production.

INCREMENT SPECIFICATION Production;

END INCREMENT SPECIFICATION Production.

C.1.2.8 Increment Class Alternative

NONTERMINAL INCREMENT INTERFACE Alternative;

INHERIT Production;

IMPORT INTERFACE

IMPORT Increment;

IMPORT SymbolList;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

sl : SymbolList;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

lhs, (" "), "::=", (" ") , sl, (" "), "."

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):Alternative;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE Alternative.

INCREMENT SPECIFICATION Alternative;

END INCREMENT SPECIFICATION Alternative.

C.1. ENBNF TOOL 321

C.1.2.9 Increment Class SymbolList

NONTERMINAL INCREMENT INTERFACE SymbolList;

INHERIT TerminalIncrementList;

IMPORT INTERFACE

IMPORT Increment;

IMPORT TerminalIncrement;

IMPORT UsingSymbol;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheList : LIST OF UsingSymbol;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

TheList DELIMITED BY (" "), "|", (" ") END

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):SymbolList;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// redefine two methods inherited from TerminalIncrementList

// so as to propagate the insertion of an symbol into an alternative

// production into the class interface tool and adjust the

// inheritance hierarchy accordingly there

METHOD ScanAndAddElement(TheClass:STRING;

str:STRING;

cursor:TerminalIncrement):SET OF STRING;

METHOD ScanAndInsertElement(TheClass:STRING;

str:STRING;

cursor:TerminalIncrement):SET OF STRING;

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE SymbolList.

INCREMENT SPECIFICATION SymbolList;

IMPORT INTERFACE

IMPORT Increment;

IMPORT TerminalIncrement;

IMPORT UsingSymbol;

IMPORT UsingSymbol INCLUDING scan, has_error;

IMPORT DefiningSymbol INCLUDING Class, unparse;

IMPORT Interface INCLUDING AddInheritance;

IMPORT Production INCLUDING lhs;

IMPORT ENBNF INCLUDING DefinedNames;

IMPORT DuplicateSymbolTable INCLUDING increment_at;

END IMPORT INTERFACE;

METHODS

METHOD ScanAndAddElement(TheClass:STRING;

str:STRING;

322 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

cursor:TerminalIncrement):SET OF STRING;

VAR anInc : UsingSymbol;

Definition : DefiningSymbol;

BEGIN

anInc := NEW UsingSymbol(SELF);

anInc.scan(str);

IF (NOT anInc.has_error()) THEN

// anInc has not yet been defined or

// has a lexical error

RETURN(anInc.get_set_of_errors());

ELSE

TheList.ADD_AFTER((<UsingSymbol> cursor), anInc);

Definition:=<DefiningSymbol>(<ENBNF>myDocument).DefinedNames.increment_at(str);

Definition.Class.AddInheritance((<Production>father).lhs.unparse());

RETURN(anInc.get_set_of_errors());

ENDIF;

END ScanAndAddElement;

METHOD ScanAndInsertElement(TheClass:STRING;

str:STRING;

cursor:TerminalIncrement):SET OF STRING;

VAR anInc : UsingSymbol;

Definition : DefiningSymbol;

BEGIN

anInc := NEW UsingSymbol(SELF);

anInc.scan(str);

IF (NOT anInc.has_error()) THEN

RETURN(anInc.get_set_of_errors());

ELSE

TheList.ADD_BEFORE((<UsingSymbol> cursor), anInc);

Definition:=<DefiningSymbol>(<ENBNF>myDocument).DefinedNames.increment_at(str);

Definition.Class.AddInheritance((<Production>father).lhs.unparse());

RETURN(anInc.get_set_of_errors());

ENDIF;

END ScanAndInsertElement;

END METHODS;

END INCREMENT SPECIFICATION SymbolList.

C.1.2.10 Increment Class Regular

NONTERMINAL INCREMENT INTERFACE Regular;

INHERIT Production;

IMPORT INTERFACE

IMPORT Increment;

IMPORT RegExp;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

re : RegExp;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

lhs, (" "), "::=" , (" "), re, (" "), "."

END UNPARSING SCHEME;

METHODS

C.1. ENBNF TOOL 323

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):Regular;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE Regular.

INCREMENT SPECIFICATION Regular;

END INCREMENT SPECIFICATION Regular.

C.1.2.11 Increment Class StructureOpt

NONTERMINAL INCREMENT INTERFACE StructureOpt;

INHERIT Production;

IMPORT INTERFACE

IMPORT Increment;

IMPORT ComponentList;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

cl : ComponentList;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

lhs, (" "), "::=", (" "),

"|",(" "),

cl, (" "), "."

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):StructureOpt;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE StructureOpt.

INCREMENT SPECIFICATION StructureOpt;

END INCREMENT SPECIFICATION StructureOpt.

C.1.2.12 Increment Class RegularOpt

324 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

NONTERMINAL INCREMENT INTERFACE RegularOpt;

INHERIT Production;

IMPORT INTERFACE

IMPORT Increment;

IMPORT RegExp;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

re : RegExp;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

lhs, (" "), "::=", (" "),

"|",

re, "."

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):RegularOpt;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE RegularOpt.

INCREMENT SPECIFICATION RegularOpt;

END INCREMENT SPECIFICATION RegularOpt.

C.1.2.13 Increment Class Structure

NONTERMINAL INCREMENT INTERFACE Structure;

INHERIT Production;

IMPORT INTERFACE

IMPORT Increment;

IMPORT ComponentList;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

cl : ComponentList;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

lhs, (" "), "::=", (" "), cl, (" "), "."

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

C.1. ENBNF TOOL 325

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):Structure;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE Structure.

INCREMENT SPECIFICATION Structure;

END INCREMENT SPECIFICATION Structure.

C.1.2.14 Increment Class ComponentList

NONTERMINAL INCREMENT INTERFACE ComponentList;

INHERIT IncrementList;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Component;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheList : LIST OF Component;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

TheList DELIMITED BY (" ") END

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):ComponentList;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE ComponentList.

INCREMENT SPECIFICATION ComponentList;

END INCREMENT SPECIFICATION ComponentList.

C.1.2.15 Increment Class Component

326 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

ABSTRACT INCREMENT INTERFACE Component;

INHERIT Increment;

IMPORT INTERFACE

IMPORT Increment;

END IMPORT INTERFACE;

EXPORT INTERFACE

METHODS

DEFERRED METHOD isolate();

DEFERRED METHOD collapse();

DEFERRED METHOD unparse():STRING;

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE Component.

INCREMENT SPECIFICATION Component;

END INCREMENT SPECIFICATION Component.

C.1.2.16 Increment Class ListProd

NONTERMINAL INCREMENT INTERFACE ListProd;

INHERIT Component;

IMPORT INTERFACE

IMPORT Increment;

IMPORT UsingSymbol;

IMPORT Delimiter;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheSymbol : UsingSymbol;

TheDelimiter : Delimiter;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

"{", (" "),

TheSymbol, (" "),

"}",

TheDelimiter

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):ListProd;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE ListProd.

C.1. ENBNF TOOL 327

INCREMENT SPECIFICATION ListProd;

END INCREMENT SPECIFICATION ListProd.

C.1.2.17 Increment Class Delimiter

NONTERMINAL INCREMENT INTERFACE Delimiter;

INHERIT OptionalIncrement;

IMPORT INTERFACE

IMPORT Increment;

IMPORT KeywordList;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheList : KeywordList;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

"(",

TheList,

")"

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):Delimiter;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE Delimiter.

INCREMENT SPECIFICATION Delimiter;

END INCREMENT SPECIFICATION Delimiter.

C.1.2.18 Increment Class KeywordList

NONTERMINAL INCREMENT INTERFACE KeywordList;

INHERIT TerminalIncrementList;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Keyword;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

TheList : LIST OF Keyword;

328 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

END ABSTRACT SYNTAX;

UNPARSING SCHEME

TheList DELIMITED BY (" ") END

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):KeywordList;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE KeywordList.

INCREMENT SPECIFICATION KeywordList;

END INCREMENT SPECIFICATION KeywordList.

C.1.2.19 Increment Class Keyword

TERMINAL INCREMENT INTERFACE Keyword;

INHERIT Component,TerminalIncrement;

IMPORT INTERFACE

IMPORT Increment;

END IMPORT INTERFACE;

EXPORT INTERFACE

REGULAR EXPRESSION

{["][^"]*["]}

END REGULAR EXPRESSION;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD collapse();

IMPLICIT METHOD isolate();

IMPLICIT METHOD scan(Str:STRING):BOOLEAN;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END TERMINAL INCREMENT INTERFACE Keyword.

INCREMENT SPECIFICATION Keyword;

END INCREMENT SPECIFICATION Keyword.

C.1.2.20 Increment Class RegExp

C.1. ENBNF TOOL 329

TERMINAL INCREMENT INTERFACE RegExp;

INHERIT TerminalIncrement;

IMPORT INTERFACE

IMPORT Increment;

END IMPORT INTERFACE;

EXPORT INTERFACE

REGULAR EXPRESSION

{['][^']*[']}

END REGULAR EXPRESSION;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD scan(Str:STRING):BOOLEAN;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

// Redefine the two methods inherited from TerminalIncrement

// so as to inform the terminal increment interface that corresponds

// to the definition about the regular expression as well.

METHOD ExpandIdentifier(Str:STRING):BOOLEAN;

METHOD ChangeIdentifier(Str:STRING):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END TERMINAL INCREMENT INTERFACE RegExp.

INCREMENT SPECIFICATION RegExp;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Production INCLUDING lhs;

IMPORT TerminalInterface INCLUDING CreateRegexp, ChangeRegexp;

IMPORT DefiningSymbol INCLUDING Class;

END IMPORT INTERFACE;

METHODS

METHOD ExpandIdentifier(Str:STRING):BOOLEAN;

BEGIN

IF SELF.scan(Str) THEN

(<TerminalInterface>(<Production>father).lhs.Class).CreateRegexp(Str);

RETURN(TRUE);

ELSE

RETURN(FALSE);

ENDIF

END ExpandIdentifier;

METHOD ChangeIdentifier(Str:STRING):BOOLEAN;

BEGIN

IF SELF.scan(Str) THEN

(<TerminalInterface>(<Production>father).lhs.Class).ChangeRegexp(Str);

RETURN(TRUE);

ELSE

RETURN(FALSE);

ENDIF

END ChangeIdentifier;

END METHODS;

330 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

END INCREMENT SPECIFICATION RegExp.

C.1.2.21 Increment Class DefiningSymbol

TERMINAL INCREMENT INTERFACE DefiningSymbol;

INHERIT NameInST,TerminalIncrement;

IMPORT INTERFACE

IMPORT Increment;

IMPORT Interface;

END IMPORT INTERFACE;

EXPORT INTERFACE

REGULAR EXPRESSION

{[A-Za-z][A-Za-z0-9$_-]*}

END REGULAR EXPRESSION;

SEMANTIC RELATIONSHIPS

Class: Interface;

// This is an inter-document reference edge to the GTSL class

// interface document that corresponds to the production that has

// this defining symbol on the left hand side

// The reference is established by methods expand_symbol and

// change symbol.

END SEMANTIC RELATIONSHIPS;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD collapse();

IMPLICIT METHOD isolate();

IMPLICIT METHOD scan(Str:STRING):BOOLEAN;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

METHOD ErrorId(): ERROR_TYPE;

METHOD expand_symbol(new_symbol:STRING):BOOLEAN;

METHOD change_symbol(new_symbol:STRING):BOOLEAN;

END METHODS;

END EXPORT INTERFACE;

END TERMINAL INCREMENT INTERFACE DefiningSymbol.

INCREMENT SPECIFICATION DefiningSymbol;

IMPORT INTERFACE

IMPORT UsingNameInST;

IMPORT Increment;

IMPORT UsingSymbol INCLUDING react_on_change;

IMPORT Interface INCLUDING AddInheritance, ChangeClassName;

IMPORT ToolRootClass INCLUDING create_document;

END IMPORT INTERFACE;

METHODS

METHOD ErrorId(): ERROR_TYPE;

BEGIN

RETURN (#SymbAlreadyDef);

C.1. ENBNF TOOL 331

END ErrorId;

METHOD expand_symbol(new:STRING):BOOLEAN;

BEGIN

IF (SELF.scan(new)) THEN

IF father.IS_OF_CLASS("Alternative") THEN

Class:=<Interface> INT.create_document("AbstractInterface",new,"RootVersion");

Class.AddInheritance("Increment");

ENDIF;

IF father.IS_OF_CLASS("Structure") THEN

Class:=<Interface> INT.create_document("NonterminalInterface",new,"RootVersion");

Class.AddInheritance("NonterminalIncrement");

ENDIF;

IF father.IS_OF_CLASS("Regular") THEN

Class:=<Interface> INT.create_document("TerminalInterface",new,"RootVersion");

Class.AddInheritance("TerminalIncrement");

ENDIF;

IF father.IS_OF_CLASS("StructureOpt") THEN

Class:=<Interface> INT.create_document("NonterminalInterface",new,"RootVersion");

Class.AddInheritance("OptionalIncrement");

Class.AddInheritance("NonterminalIncrement");

ENDIF;

IF father.IS_OF_CLASS("RegularOpt") THEN

Class:=<Interface> INT.create_document("TerminalInterface",new,"RootVersion");

Class.AddInheritance("OptionalIncrement");

Class.AddInheritance("TerminalIncrement");

ENDIF;

RETURN(TRUE);

ELSE

RETURN(FALSE);

ENDIF

END expand_symbol;

METHOD change_symbol(new:STRING):BOOLEAN;

BEGIN

FOREACH sym:UsingNameInST IN SELF.UsedBy DO

(<UsingSymbol>sym).react_on_change(new)

ENDDO;

IF SELF.scan(new) THEN

Class.ChangeClassName(new);

RETURN(TRUE);

ELSE

RETURN(FALSE);

ENDIF;

END change_symbol;

END METHODS;

INTERACTIONS

INTERACTION ExpandTheIdentifier;

NAME "Expand Symbol"

SELECTED IS SELF

ON (NOT SELF.is_phylum())

VAR new_name:TEXT;

errors:TEXT_SET;

BEGIN

new_name:= NEW TEXT(SELF.unparse());

IF new_name.LINE_EDIT("Change symbol:") THEN

IF NOT SELF.expand_symbol(new_name.CONTENTS()) THEN

errors:=NEW TEXT_SET(SELF.get_set_of_errors());

errors.DISPLAY();

ABORT

332 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

ENDIF

ENDIF

END ExpandTheIdentifier;

INTERACTION ChangeTheIdentifier;

NAME "Change Symbol"

SELECTED IS SELF

ON (NOT SELF.is_phylum())

VAR new_name:TEXT;

errors:TEXT_SET;

BEGIN

new_name:= NEW TEXT(SELF.unparse());

IF new_name.LINE_EDIT("Change symbol:") THEN

IF NOT SELF.change_symbol(new_name.CONTENTS()) THEN

errors:=NEW TEXT_SET(SELF.get_set_of_errors());

errors.DISPLAY();

ABORT

ENDIF

ENDIF

END ChangeTheIdentifier;

END INTERACTIONS;

END INCREMENT SPECIFICATION DefiningSymbol.

C.1.2.22 Increment Class UsingSymbol

TERMINAL INCREMENT INTERFACE UsingSymbol;

INHERIT UsingNameInST, Component, TerminalIncrement;

IMPORT INTERFACE

IMPORT Increment;

IMPORT ScopingBlock;

END IMPORT INTERFACE;

EXPORT INTERFACE

REGULAR EXPRESSION

{[A-Za-z][A-Za-z0-9$_-]*}

END REGULAR EXPRESSION;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD collapse();

IMPLICIT METHOD isolate();

IMPLICIT METHOD scan(Str:STRING):BOOLEAN;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

METHOD EnvelopingScope():ScopingBlock;

METHOD ErrorId():ERROR_TYPE;

METHOD DeclClassName():STRING;

METHOD react_on_change(Str:STRING);

END METHODS;

END EXPORT INTERFACE;

END TERMINAL INCREMENT INTERFACE UsingSymbol.

INCREMENT SPECIFICATION UsingSymbol;

IMPORT INTERFACE

IMPORT ScopingBlock;

IMPORT Increment;

C.2. CLASS INTERFACE TOOL 333

END IMPORT INTERFACE;

METHODS

METHOD ErrorId(): ERROR_TYPE;

BEGIN

RETURN (#SymbolNotDef);

END ErrorId;

METHOD DeclClassName():STRING;

BEGIN

RETURN ("DefiningSymbol");

END DeclClassName;

METHOD react_on_change(Str:STRING);

BEGIN

SELF.scan(Str);

END react_on_change;

METHOD EnvelopingScope():ScopingBlock;

VAR i: Increment;

BEGIN

i:=SELF.father;

WHILE ((i!= NIL) AND (NOT i.IS_KIND_OF("ScopingBlock"))) DO

i := i.father;

ENDDO;

RETURN(<ScopingBlock>i);

END EnvelopingScope;

END METHODS;

END INCREMENT SPECIFICATION UsingSymbol.

C.2 Class Interface Tool

C.2.1 Inheritance Diagram

Figure C.1 depicts the inheritance hierarchy of the subclasses of NonterminalIncrement in the
class interface editor speci�cation. The inheritance hierarchy of the other classes that are
contained in the class interface editor speci�cation were depicted on Page 222.

334 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

N
o
n
t
e
r
m
i
n
a
l
I
n
c
r
e
m
e
n
t

I
n
h
e
r
i
t
S
e
c
t
i
o
n

I
m
p
o
r
t

A
b
s
t
r
a
c
t
E
x
p
I
n
t

N
o
n
t
e
r
m
i
n
a
l
E
x
p
I
n
t

T
e
r
m
i
n
a
l
E
x
p
I
n
t

C
o
m
p
o
n
e
n
t

I
n
c
r
e
m
e
n
t
L
i
s
t

A
b
s
t
r
a
c
t
S
y
n
t
a
x

C
h
i
l
d
I
n
c
r
e
m
e
n
t

D
e
l
i
m
i
t
e
r
I
t
e
m
L
i
s
t

C
h
i
l
d
I
n
c
r
e
m
e
n
t
L
i
s
t

A
t
t
r
i
b
u
t
e
L
i
s
t

S
e
m
a
n
t
i
c
R
e
l
L
i
s
t

A
b
s
t
r
a
c
t
M
e
t
h
o
d
L
i
s
t

I
m
p
o
r
t
L
i
s
t

M
e
t
h
o
d
L
i
s
t

N
o
n
t
e
r
m
M
e
t
h
o
d
L
i
s
t

T
e
r
m
i
n
a
l
M
e
t
h
o
d
L
i
s
t

S
e
m
a
n
t
i
c
R
e
l

U
n
p
a
r
s
i
n
g
S
c
h
e
m
e

A
b
s
t
r
a
c
t
M
e
t
h
o
d
S
e
c
t
i
o
n

R
e
g
u
l
a
r
E
x
p
r
e
s
s
i
o
n

A
b
s
t
r
a
c
t
M
e
t
h
o
d

T
e
r
m
i
n
a
l
I
n
c
r
e
m
e
n
t
L
i
s
t

N
o
n
t
e
r
m
i
n
a
l
I
n
c
r
e
m
e
n
t
L
i
s
t

U
n
p
a
r
s
i
n
g
I
t
e
m
L
i
s
t

E
x
p
l
i
c
i
t
L
i
n
k

I
m
p
l
i
c
i
t
L
i
n
k

M
e
t
h
o
d
S
e
c
t
i
o
n

N
o
n
t
e
r
m
i
n
a
l
M
e
t
h
o
d
S
e
c
t
i
o
n

T
e
r
m
i
n
a
l
M
e
t
h
o
d
S
e
c
t
i
o
n

N
S
C
E
x
p
I
n
t
e
r
f
a
c
e

A
t
t
r
i
b
u
t
e
D
e
f
i
n
i
t
i
o
n

P
a
r
a
m
e
t
e
r

M
e
t
h
o
d

N
o
n
t
e
r
m
i
n
a
l
M
e
t
h
o
d

T
e
r
m
i
n
a
l
M
e
t
h
o
d

D
e
f
e
r
r
e
d
M
e
t
h
o
d

H
i
d
d
e
n
M
e
t
h
o
d

E
x
p
l
i
c
i
t
M
e
t
h
o
d

N
o
n
t
e
r
m
I
m
p
M
e
t
h
o
d

T
e
r
m
i
n
a
l
I
m
p
M
e
t
h
o
d

S
u
p
e
r
C
l
a
s
s
L
i
s
t

U
s
i
n
g
T
y
p
e
D
e
c
l

Figure C.1: Inheritance Hierarchy of Non-Terminal Increment Classes

C.2. CLASS INTERFACE TOOL 335

C.2.2 Entity Relationship Diagrams

Figure C.2 displays the re�nement of the subsystem Interfaces of the top-level entity relation
diagram displayed in Figure 9.10 on Page 223.

name Class
Name

Inherit
Section

inh

imp

Import
Interface

 Interface

Terminal
 Interface

Nonterminal
 Interface

Abstract
 Interface

 NSC
 Interface

 NSCExp
 Interface

Abstract
ExpInt

Nonterminal
 ExpInt

Terminal
 ExpInt

exp

exp

exp

exp

Scoping
Block

DefinedNames

 Interface
 Pool

docPool/
registeredDocuments

Figure C.2: Entity-Relationship Diagram Interfaces

Figures C.3-C.5 include the re�nements of subsystems RelationDefinitions,UnparsingItems
and MethodDefinitions that were included in the entity relationship diagram displayed in
Figure 9.11 on Page 224.

Semantic
RelList

TheList Entity
Name

nameSemantic
 Rel

Explicit
 Link

Implicit
 Link

 Using
TypeDecl

type

Using
Class

Using
Entity

cl

explink

Figure C.3: Entity-Relationship Diagram RelationDefinitions

336 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

TheList

Using
Entity

Unparsing
 Item

Unparsing
ItemList

ComponentRegDefFormatPretty
Printing

child

TheListDelimiter
 Item Delimiter

del

Figure C.4: Entity-Relationship Diagram UnparsingItems

Terminal
 ExpInt

 NSCExp
 Interface

Abstract
ExpInt

Nonterminal
 ExpInt

Abstract
MethodList

MethodList

 Terminal
MethodList

 Nonterm
MethodList

Deferred
Method

Hidden
Method

Explicit
Method

 Nonterm
ImpMethod

 Terminal
ImpMethod

Abstract
Method

Parameter
 List

Result
Type

NameInST

Parameter ParName

 Using
TypeDecl

TheList

meth

meth

meth

meth

Nonterm
Method

Terminal
Method

Method

TheList

TheList

TheList name

Method
 Name

type

name

type

param_list

res

Scoping
Block

DefinedNames

Figure C.5: Entity-Relationship Diagram MethodDefinitions

C.2.3 Tool Con�guration

CONFIGURATION INT

CONSISTS OF

INCREMENT CLASSES

ScopingBlock INHERIT Increment;

TerminalIncrement INHERIT Increment;

NameInST INHERIT TerminalIncrement;

UsingNameInST INHERIT TerminalIncrement;

NonterminalIncrement INHERIT Increment;

OptionalNontermIncrement INHERIT OptionalIncrement,NonterminalIncrement;

IncrementList INHERIT NonterminalIncrement;

TerminalIncrementList INHERIT IncrementList;

NonterminalIncrementList INHERIT IncrementList;

InterfacePool INHERIT DocumentPool;

C.2. CLASS INTERFACE TOOL 337

Interface INHERIT DocumentVersion, ScopingBlock;

AbstractInterface INHERIT Interface;

NonterminalInterface INHERIT Interface;

TerminalInterface INHERIT Interface;

NSCInterface INHERIT Interface;

InheritSection INHERIT NonterminalIncrement;

SuperClassList INHERIT TerminalIncrementList;

ImportInterface INHERIT OptionalNontermIncrement;

ImportList INHERIT NonterminalIncrementList;

Import INHERIT NonterminalIncrement;

AbstractExpInt INHERIT NonterminalIncrement;

NonterminalExpInt INHERIT NonterminalIncrement;

TerminalExpInt INHERIT NonterminalIncrement;

NSCExpInterface INHERIT NonterminalIncrement;

Construction INHERIT OptionalNontermIncrement;

AbstractSyntax INHERIT OptionalNontermIncrement;

ChildIncrementList INHERIT NonterminalIncrementList;

ChildIncrement INHERIT NonterminalIncrement;

UnparsingScheme INHERIT NonterminalIncrement;

UnparsingItemList INHERIT IncrementList;

UnparsingItem INHERIT Increment;

Component INHERIT UnparsingItem,NonterminalIncrement;

DelimiterItem INHERIT TerminalIncrement;

RegDef INHERIT UnparsingItem,DelimiterItem;

Format INHERIT UnparsingItem,DelimiterItem;

PrettyPrinting INHERIT UnparsingItem,DelimiterItem;

Delimiter INHERIT OptionalNontermIncrement;

DelimiterItemList INHERIT TerminalIncrementList;

RegularExpression INHERIT NonterminalIncrement;

Attributes INHERIT OptionalNontermIncrement;

AttributeList INHERIT NonterminalIncrementList;

AttributeDefinition INHERIT NonterminalIncrement;

AttributeCategory INHERIT OptionalNontermIncrement;

SemanticRelations INHERIT OptionalNontermIncrement;

SemanticRelList INHERIT NonterminalIncrementList;

SemanticRel INHERIT NonterminalIncrement;

ExplicitLink INHERIT SemanticRel;

ImplicitLink INHERIT SemanticRel;

AbstractMethodSection INHERIT NonterminalIncrement;

MethodSection INHERIT AbstractMethodSection;

NonterminalMethodSection INHERIT AbstractMethodSection;

TerminalMethodSection INHERIT AbstractMethodSection;

AbstractMethodList INHERIT NonterminalIncrementList;

MethodList INHERIT AbstractMethodList;

NontermMethodList INHERIT AbstractMethodList;

TerminalMethodList INHERIT AbstractMethodList;

AbstractMethod INHERIT NonterminalIncrement;

Method INHERIT AbstractMethod;

NonterminalMethod INHERIT AbstractMethod;

TerminalMethod INHERIT AbstractMethod;

NontermImpMethod INHERIT NonterminalMethod;

DeferredMethod INHERIT Method;

TerminalImpMethod INHERIT TerminalMethod;

HiddenMethod INHERIT Method, NonterminalMethod, TerminalMethod;

ExplicitMethod INHERIT Method, NonterminalMethod, TerminalMethod;

ParameterList INHERIT ScopingBlock, OptionalIncrement, NonterminalIncrementList;

Parameter INHERIT NonterminalIncrement;

ResultType INHERIT OptionalNontermIncrement;

UsingTypeDecl INHERIT NonterminalIncrement;

MultiValue INHERIT OptionalIncrement, TerminalIncrement;

UsingType INHERIT UsingNameInST;

338 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

RegExp INHERIT TerminalIncrement;

ClassDecl INHERIT NameInST;

ClassName INHERIT ClassDecl;

SuperClass INHERIT ClassDecl;

ImportClass INHERIT ClassDecl;

EntityName INHERIT NameInST;

ParName INHERIT NameInST;

MethName INHERIT NameInST;

UsingEntity INHERIT UsingNameInST;

UsingClass INHERIT UsingNameInST;

END INCREMENT CLASSES;

ROOT INCREMENT IS Interface

EXPORT INCREMENT CLASSES:

InterfacePool,

Interface,

TerminalInterface,

NonterminalInterface,

AbstractInterface;

END EXPORT;

ADDITIONAL ERRORS

#IdAlreadyDefined : "The given name has already been defined";

#NotAnAbstractSyntaxChild : "Component must denote abstract syntax child";

#UnknownType : "The given type is not known";

#UnknownClass : "The given class is not known";

#CyclicInheritance : "The inheritance relationship is cyclic";

#IncorrectMultipleInh : "Incorrect multiple inheritance";

#IncorrectRepeatedInh : "Incorrect repeated inheritance"

END ADDITIONAL ERRORS

END CONFIGURATION INT.

C.2.4 GTSL Class De�nitions

In this section, we list the GTSL class interface and speci�cation de�nitions of the three classes
that model GTSL increment classes, namely AbstractInterface, NonterminalInterface and
TerminalInterface. They inherit from class Interface which is also included. These classes
are used by the ENBNF Editor. Interface is the target class of a semantic relationship de�ned
in the ENBNF class DefiningSymbols. It is exploited for propagating changes of a production
to the respective GTSL class interface. They are executed with methods that are de�ned in
these classes and that were discussed in Subsection 9.3.3. For reasons of brevity, the other
70 classes have been omitted.

C.2.4.1 Increment Class Interface

ABSTRACT INCREMENT INTERFACE Interface;

INHERIT DocumentVersion, ScopingBlock;

IMPORT INTERFACE

IMPORT ClassName;

IMPORT InheritSection;

IMPORT DuplicateSymbolTable;

IMPORT InterfacePool;

C.2. CLASS INTERFACE TOOL 339

IMPORT ImportInterface;

IMPORT Increment;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

name:ClassName;

inh:InheritSection;

imp:ImportInterface;

END ABSTRACT SYNTAX;

SEMANTIC RELATIONSHIPS

docPool: InterfacePool;

END SEMANTIC RELATIONSHIPS;

METHODS

DEFERRED METHOD isolate();

DEFERRED METHOD collapse();

DEFERRED METHOD parse(Str:STRING):Interface;

DEFERRED METHOD check();

DEFERRED METHOD unparse():STRING;

METHOD AddInheritance(Str:STRING):BOOLEAN;

// Adds <Str> to the inheritance section

METHOD ExpandClassName(Str:STRING):BOOLEAN;

// expands the class name to <Str>

METHOD ChangeClassName(Str:STRING):BOOLEAN;

// changes the class name to <Str> and propagates change

// to all using increments

METHOD CreateAtomicTypes():DuplicateSymbolTable;

// creates a new symbol table with all pre-defined atomic types.

END METHODS;

END EXPORT INTERFACE;

END ABSTRACT INCREMENT INTERFACE Interface.

INCREMENT SPECIFICATION Interface;

IMPORT INTERFACE

IMPORT ClassName;

IMPORT InheritSection;

IMPORT InterfacePool;

IMPORT ImportInterface;

IMPORT Increment;

IMPORT DuplicateSymbolTable INCLUDING associate;

IMPORT EntityName INCLUDING scan;

IMPORT UsingNameInST INCLUDING react_on_change;

IMPORT InheritSection INCLUDING scl, is_phylum, expand;

IMPORT SuperClassList INCLUDING expand, TheList;

IMPORT SuperClass INCLUDING scan, collapse;

IMPORT ClassName INCLUDING is_phylum, scan, UsedBy;

END IMPORT INTERFACE;

INITIALIZATION

DefinedNames:=SELF.CreateAtomicTypes();

END INITIALIZATION;

METHODS

METHOD AddInheritance(Str:STRING):BOOLEAN;

VAR sc:SuperClass;

BEGIN

IF inh.is_phylum() THEN

inh.expand();

340 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

ENDIF;

IF inh.scl.is_phylum() THEN

inh.scl.expand();

ENDIF;

sc:=NEW SuperClass(inh.scl);

IF sc.scan(Str) THEN

inh.scl.TheList.ADD_LAST(sc);

RETURN(TRUE);

ELSE

sc.collapse();

RETURN(FALSE);

ENDIF;

END AddInheritance;

METHOD ExpandClassName(Str:STRING):BOOLEAN;

BEGIN

IF name.is_phylum() THEN

RETURN(name.scan(Str));

ENDIF;

END ExpandClassName;

METHOD ChangeClassName(Str:STRING):BOOLEAN;

BEGIN

FOREACH i:UsingNameInST IN name.UsedBy DO

i.react_on_change(Str);

ENDDO;

RETURN(name.scan(Str));

END ChangeClassName;

METHOD CreateAtomicTypes():DuplicateSymbolTable;

VAR i:EntityName;

st:DuplicateSymbolTable;

BEGIN

st:=NEW DuplicateSymbolTable;

st.associate(SELF,"BOOLEAN");

st.associate(SELF,"INTEGER");

st.associate(SELF,"STRING");

st.associate(SELF,"TEXT");

st.associate(SELF,"TEXT_SET");

RETURN(st);

END CreateAtomicTypes;

END METHODS;

END INCREMENT SPECIFICATION Interface.

C.2.4.2 Increment Class AbstractInterface

NONTERMINAL INCREMENT INTERFACE AbstractInterface;

INHERIT Interface;

IMPORT INTERFACE

IMPORT Increment;

IMPORT AbstractExpInt;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

C.2. CLASS INTERFACE TOOL 341

exp : AbstractExpInt;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

"ABSTRACT", WS, "INCREMENT", WS, "INTERFACE", WS, name, ";", (NL),(NL),

(" "), inh, (NL),

(" "), imp, (NL),

(" "), exp, (NL),

"END", WS, "ABSTRACT", WS, "INCREMENT", WS, "INTERFACE", WS, name, ".", (NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):AbstractInterface;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE AbstractInterface.

INCREMENT SPECIFICATION AbstractInterface;

END INCREMENT SPECIFICATION AbstractInterface.

C.2.4.3 Increment Class NonterminalInterface

NONTERMINAL INCREMENT INTERFACE NonterminalInterface;

INHERIT Interface;

IMPORT INTERFACE

IMPORT Increment;

IMPORT NonterminalExpInt;

END IMPORT INTERFACE;

EXPORT INTERFACE

ABSTRACT SYNTAX

exp : NonterminalExpInt;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

"NONTERMINAL", WS, "INCREMENT", WS, "INTERFACE", WS, name, ";",(NL),(NL),

(" "), inh, (NL),

(" "), imp, (NL),

(" "), exp, (NL),

"END", WS, "NONTERMINAL", WS, "INCREMENT", WS, "INTERFACE", WS, name, ".", (NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):NonterminalInterface;

IMPLICIT METHOD unparse():STRING;

342 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

IMPLICIT METHOD unparse_to_file(filename:STRING);

METHOD CreateChild(After:STRING;Str:STRING; IsList:BOOLEAN):BOOLEAN;

// Adds child increment after child increment of class <After>

// If After is emtpy string child becomes last string

// expands list elements in unparsing scheme if <IsList>=TRUE

METHOD DeleteChild(Str:STRING):BOOLEAN;

// Deletes Child <Str>

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE NonterminalInterface.

INCREMENT SPECIFICATION NonterminalInterface;

IMPORT INTERFACE

IMPORT Increment;

IMPORT NonterminalExpInt INCLUDING as, unp;

IMPORT AbstractSyntax INCLUDING childlst, expand;

IMPORT ChildIncrementList INCLUDING expand,TheList;

IMPORT UnparsingScheme INCLUDING uilst, expand;

IMPORT UnparsingItemList INCLUDING TheList, expand;

IMPORT UnparsingItem INCLUDING collapse;

IMPORT ChildIncrement INCLUDING name,expand,unparse,collapse;

IMPORT EntityName INCLUDING scan;

IMPORT Component INCLUDING child,del,expand,unparse,collapse;

IMPORT Delimiter INCLUDING expand, remove;

IMPORT UsingEntity INCLUDING scan, unparse;

END IMPORT INTERFACE;

METHODS

METHOD CreateChild(After:STRING;Str:STRING; IsList:BOOLEAN):BOOLEAN;

VAR ci, cicursor:ChildIncrement;

ui: Component;

cd: Interface;

BEGIN

IF exp.is_phylum() THEN // ExporInterface is still placeholder

exp.expand();

ENDIF;

IF exp.as.is_phylum() THEN // abstract syntax section is still placeholder

exp.as.expand();

ENDIF;

IF exp.as.childlst.is_phylum() THEN // childlst is still placeholder

exp.as.childlst.expand();

ENDIF;

ci:=NEW ChildIncrement(exp.as.childlst); // create new child increment

ci.expand();

IF exp.unp.is_phylum() THEN // unparsing section is still placeholder

exp.unp.expand();

ENDIF;

IF exp.unp.uilst.is_phylum() THEN // unparsing item list still placeholder

exp.unp.uilst.expand()

ENDIF;

IF (ci.name.scan(Str)) THEN // Str is lexically correct

ui:=NEW Component(exp.unp.uilst); // create a new unparsing

ui.expand(); // item for component

ui.child.scan(Str); // store the value as well

IF IsList THEN // if component is a list

ui.del.expand(); // expand list place holder

ELSE // otherwise

ui.del.remove(); // remove it

ENDIF;

IF After="" THEN // append elements to list

C.2. CLASS INTERFACE TOOL 343

exp.as.childlst.TheList.ADD_LAST(ci);

exp.unp.uilst.TheList.ADD_LAST(ui);

ELSE // search for insertion position

cicursor:=<ChildIncrement>DefinedNames.increment_at(After);

exp.as.childlst.TheList.ADD_AFTER(cicursor,ci);

FOREACH cur:UnparsingItem IN exp.unp.uilst.TheList DO

IF cur.IS_OF_CLASS("Component") THEN

IF NOT cur.is_phylum() AND

(<Component>cur).child.unparse()=After THEN

exp.unp.uilst.TheList.ADD_AFTER(cur,ui);

ENDIF

ENDIF

ENDDO;

ENDIF;

RETURN(TRUE);

ELSE

ci.collapse();

RETURN(FALSE);

ENDIF;

END CreateChild;

METHOD DeleteChild(Str:STRING):BOOLEAN;

BEGIN

// search for component in unparsing item list to delete

FOREACH cur:UnparsingItem IN exp.unp.uilst.TheList DO

IF cur.IS_OF_CLASS("Component") THEN

IF NOT cur.is_phylum() AND

(<Component>cur).child.unparse()=Str THEN

exp.unp.uilst.TheList.DELETE(cur);

cur.collapse();

ENDIF

ENDIF

ENDDO;

// search for abstract syntax child to delete

FOREACH cur:ChildIncrement IN exp.as.childlst.TheList DO

IF cur.unparse()=Str THEN

exp.as.childlst.TheList.DELETE(cur);

cur.collapse();

ENDIF

ENDDO;

RETURN(TRUE);

END DeleteChild;

END METHODS;

END INCREMENT SPECIFICATION NonterminalInterface.

C.2.4.4 Increment Class TerminalInterface

NONTERMINAL INCREMENT INTERFACE TerminalInterface;

INHERIT Interface;

IMPORT INTERFACE

IMPORT Increment;

IMPORT TerminalExpInt;

END IMPORT INTERFACE;

EXPORT INTERFACE

344 APPENDIX C. GTSL SPECIFICATION OF GENESIS TOOLS

ABSTRACT SYNTAX

exp : TerminalExpInt;

END ABSTRACT SYNTAX;

UNPARSING SCHEME

"TERMINAL", WS, "INCREMENT", WS, "INTERFACE", WS, name, ";",(NL), (NL),

(" "), inh, (NL),

(" "), imp, (NL),

(" "),exp, (NL),

"END", WS, "TERMINAL", WS, "INCREMENT", WS, "INTERFACE", WS, name, ".", (NL)

END UNPARSING SCHEME;

METHODS

IMPLICIT METHOD init(f:Increment);

IMPLICIT METHOD expand();

IMPLICIT METHOD isolate();

IMPLICIT METHOD collapse();

IMPLICIT METHOD parse(Str:STRING):TerminalInterface;

IMPLICIT METHOD unparse():STRING;

IMPLICIT METHOD unparse_to_file(filename:STRING);

METHOD CreateRegexp(Str:STRING):BOOLEAN;

// expands regular expression of regular expression section to <Str>

// returns false if <Str> is not a correct regular expression or

// if it has already been expanded, otherwise it returns TRUE

METHOD ChangeRegexp(Str:STRING):BOOLEAN;

// changes regular expression of regular expression section to <Str>

// returns false if <Str> is not a correct regular expression or

// has not yet been expnaded, otherwise it returns TRUE

END METHODS;

END EXPORT INTERFACE;

END NONTERMINAL INCREMENT INTERFACE TerminalInterface.

INCREMENT SPECIFICATION TerminalInterface;

IMPORT INTERFACE

IMPORT Increment;

IMPORT TerminalExpInt INCLUDING is_phylum, expand, re, is_phylum;

IMPORT RegularExpression INCLUDING is_phylum, expand, re, is_phylum;

IMPORT RegExp INCLUDING scan, is_phylum;

END IMPORT INTERFACE;

METHODS

METHOD CreateRegexp(Str:STRING):BOOLEAN;

BEGIN

IF exp.is_phylum() THEN

exp.expand();

ENDIF;

IF exp.re.is_phylum() THEN

exp.re.expand();

ENDIF;

IF exp.re.re.is_phylum() THEN

RETURN(exp.re.re.scan(Str));

ELSE

RETURN(FALSE);

ENDIF;

END CreateRegexp;

METHOD ChangeRegexp(Str:STRING):BOOLEAN;

BEGIN

IF NOT exp.is_phylum() AND

NOT exp.re.is_phylum() AND

C.2. CLASS INTERFACE TOOL 345

NOT exp.re.re.is_phylum() THEN

RETURN(exp.re.re.scan(Str))

ELSE

RETURN(FALSE);

ENDIF

END ChangeRegexp;

END METHODS;

END INCREMENT SPECIFICATION TerminalInterface.

