Do Process-Centred Environments
Deserve Process-Centred Tools?

Wolfgang Emmerich and Anthony Finkelstein

Dept. of Computer Science, The City University,
Northampton Square, London EC1V 0HB, UK

{emmerich|acwf}@cs.city.ac.uk

Abstract. Process-centred software development environments inte-
grate a process engine, which enacts a process program, with tools that
automate particular tasks or provide facilities for document production.
Previous papers in this workshop series have focussed on process au-
tomation from a process programming point of view and have discussed
language primitives and techniques for their enactment. They assumed
implicitly that off-the-shelf tools were to be integrated into these environ-
ments. The degree of support that can be achieved, however, is limited
by the integration facilities offered by these tools. We consider the prob-
lem from a different point of view and investigate the implications of
fine-grain process support for tool construction.

1 Process-Centred Software Development Environments

Process programming languages provide primitives for expressing communica-
tion and coordination of tasks that are to be performed by multiple developers
cooperating in a software process [3]. Process programming languages are used
to formalise processes into process programs. Process-centred software develop-
ment environments (PSDEs) have one or multiple process engines that enact
these process programs. Process engines have either been compiled from a pro-
cess program and been linked with a run-time environment (e.g. APPL/A [16])
or they interpret process programming languages (e.g. Merlin [11], Marvel [12]
and SPADE [2]). In both cases, process engines perform single process automa-
tion steps by means of services, they request from tools, to be integrated into the
PSDE. An example of such a service request is the creation of a new document.
Furthermore, process engines have to update the state of a process program on
the basis of process-sensitive events, that can often only be detected by tools.
An example of such a process-sensitive event is the change of a document that
requires the creation or deletion of some other document.

Some coarse-grained service requests may be implemented by starting a black
boz tool, that performs a particular computation and returns the result to the
process engine upon termination. A compiler is a classical example of this. As
suggested in [17], enveloping techniques can be used to hide the details of tool in-
vocation from the process program. To improve the degree of process automation
and user guidance the process environment provides, however, coarse grained ser-
vices, as they are provided by enveloped black box tools, are not appropriate.

The process engine has to use more information than just the return code, in
particular from interactive tools such as editors and browsers. The engine also
has to be able to invoke more specific services than starting a tool. This means
that a sequence of fine-grained services need to be performed between start-up
and termination of a tool and during its course of execution, a sequence of event
occurrences have to be communicated to the process engine.

As an example, consider access rights. As they will have to be changed fairly
frequently, access rights should be maintained by process programs. Now assume
a KAOS requirement specification [5], which consists of different documents for
goals, constraints, actors, entities and relationships. These documents are as-
sociated with each other through various relationships, but owned by different
requirement engineers. The process program might define a strategy for access
rights that grants owners the right to modify their documents and all other engi-
neers working on the project the right to read their contents. A PSDE including
tools for all these documents will have to support developers in browsing through
the various relationships to understand the relationship of a document to associ-
ated documents. While doing so, tools must respect the access rights defined in
the process program. This means that browsing has to be implemented jointly by
process engine and tools. There are several ways of achieving that. Quite often
access rights are checked using facilities of the database system that is used to
store documents. Communicating access rights via a database, however, would
require the process program to have intimate knowledge about the schema cho-
sen for the persistent representations of all the documents since the access rights
to any part of the document have to be changed. This is not desirable. A more
favourable option, is to control access with a communication protocol between
process engine and tools. In this protocol tools would issue an open event to the
process engine as soon as they recognise that a developer is browsing through
a relationship that leads to another document. The engine would then reason
about the developer’s current access rights and respond either by requesting an
edit service from the respective tool if the developer is allowed to modify the
document or else by requesting a view service, which will open the document
but prevent the developer from changing it.

2 Architectures for Fine-grained Process Guidance

Hardly any off-the-shelf tool offers facilities for such a communication protocol,
let alone a proper interface to its internal document representation. This obser-
vation is particularly true for tools in CASE environments that use proprietary
databases, such as Teamwork or Maestro II. More sophisticated environments,
such as Software through Pictures [18], offer an application programming in-
terface on the basis of a tool integration framework, such as Hewlett Packard’s
Softbench [4] or Sun’s ToolTalk [15], through which services can be invoked. It is,
however, fairly common that the particular services needed by a process program
are not offered at the programming interface.

We see four different architectural options for how more fine-grained process

guidance can be achieved. They all require to drop the assumption that off-the-
shelf tools are to be integrated. The first option is to break down complex tools
into a “grey soup” of very simple tools that perform the services desired and
can be either invoked from a common user interface or from the process engine.
The second option are process-centred tools, which have been constructed or
customised with a generation facility so that they support the set of those services
and events required in a particular process program. Rather than starting them
up and awaiting their termination, the process engine would communicate with
these tools via some distributed computing framework. With these first two
options, the process engine would remain in complete control of the process. If
we also drop this assumption, the third option is process delegation, where a
process program would down-load a fragment of the overall process into tools.
These would then enact the fragment and provide the fine-grained guidance
desired. The last option is to decentralise process models completely and execute
them within tools rather than in a dedicated process engine.

An assessment of these four options is complicated by the fact that they
have been explored at very different levels of detail. The approach of process-
centred tools was pursued in the GOODSTEP project and is discussed below. An
experiment with completely decentralised process models was conducted in the
Viewpoint framework [10] and an account on this experiment is given in [13]. To
the best of our knowledge, process delegation and the integration of very small
tools have not yet been explored.

The advantage that we see for the use of very small tools is that, from a
process programming point of view, all established techniques remain applicable
and tool invocation, e.g. through envelopes, can be handled in the same way as if
it were more coarse-grained tools. The trade-off, however, is that tool integration
becomes much more complex since a much greater number of tools have to be
integrated. Also, we have doubts whether an acceptable tool performance is
achievable in this approach.

This disadvantage is resolved if tools remain coarse-grain, but offer fine-
grain services and notify events. However, invocation of services can no longer
be achieved with enveloping, but more complicated techniques have to be used
to achieve inter-process communication between tools and process engine. This
complicates both the architecture of the tool and that of the process engine,
since both have to be multi-threaded. Moreover appropriate language primitives
for invoking services and receiving events have to be available in the process pro-
gramming language. A further disadvantage, which holds for both fine-grained
and process-centred tools, is that a centralised process engine does not scale to
big software processes. It will become a performance bottleneck as soon as a
large number of tools have to be controlled.

Completely decentralised process enactment, as in Viewpoints, solves this
problem. In addition, developers can model and change their own process in
a complete autonomous fashion. A major disadvantage of this approach, how-
ever, is that the overall progress of a process is neither modelled nor can it be
monitored during enactment.

Process delegation seems very promising to us, because it overcomes this
problem. A central process engine could remain in control to take care of the
overall process progress, though also a certain degree of decentralisation and
autonomy is achieved if fragments of the process are delegated to the process
engine. However, a number of challenges arise, which to date we do not know
how to meet. Process engine and tools need to agree on a protocol for down-
loading process fragments. Moreover the implications for process dynamics are
unclear.

3 Process-Centred Tools

A way ahead that has been investigated in detail is the systematic construc-
tion of process-centred tools [6]. A process-centred tool offers all the services that
are required by a particular process program and informs the program about the
occurrence of relevant events. The rapid construction of these tools and their cus-
tomisation towards particular process programs is accomplished by the GOOD-
STEP tool specification language (GTSL) [7] and GENESIS, a compiler for this
language that generates the desired process-centred tools. GTSL was used in
a case study to generate a number of process-centred tools for use within the
British Airways PSDE [8]. These process-centred tools were integrated with the
SPADE environment using the SPADE Communication Interface [1]. A process
program, defined in SLANG, implemented the C++ class library development
and maintenance process of British Airways and invoked services from BA PSDE
tools, which notified the process model of relevant events. An evaluation of this
approach is given in [9].

GTSL is an object-oriented language, centred around a pre-defined library
of classes. This library defines generic and reusable concepts to be supported
by all tools. The language can then be used to add tool-specific concepts. This
paradigm is also applied to services and events. GTSL supports a number of
generic services, such as create (create a document with a root version), edit
(open a particular version of a document for editing), view (open a document
version for viewing), derive (derive a new version of a document) and numerous
others. Likewise, generic events, such as modify (a document version has been
modified by a particular user), are defined. Any tool specified in GTSL supports
these generic services and events.

A number of dedicated language primitives are available to define tool-specific
services and tool-specific events. They are declared in a tool configuration that
serves as an interface definition for the specific services and events supported by
a tool. An excerpt of such a tool configuration is displayed below:

CONFIGURATION ENTITY
FROM CONFIGURATION GOAL IMPORT Goal;
RELATIONSHIPS
UsedIn:SET OF Goal;
END RELATIONSHIPS
SERVICES
SERVICE $DefineName(n:STRING); // change name to ’n’
END SERVICES;
EVENTS
EVENT $0penGoal(g:Goal); // Open goal g
END EVENTS;
END CONFIGURATION ENTITY.

The tool could be part of an environment for goal-oriented KAOS require-
ment specifications [5]. Tool configurations declares relationships between docu-
ments, an example of which is the UsedIn relationship that relates an entity to
the set of goals that use the entity. A service DefineName is defined that enables
the process program to change the entity’s name. The program may request the
service to establish the name after a new entity definition document has been
created. The event OpenGoal notifies the process engine that the user seeks to
browse through relationship UsedIn to goal g.

The GOODSTEP case study at British Airways has demonstrated that it is
feasible to construct and customise environments in a relatively short period of
time. We believe that flexible tool construction facilities will become part of the
CASE market. In fact, the different variants of the StP environment for OMT and
Structured Analysis that have recently become available are customised versions
of a common kernel, called StP/Core. StP/Core has an interpreter for QRL,
a query and reporting language that facilitates queries and updates in StP’s
document repository. StP/Core and QRL also provide facilities for an integration
with Sun ToolTalk so that tool builders can customise an StP environment for
a specific process by adding tool specific fine-grained services in QRL. QRL,
however, is a rather low-level language and is quite difficult to use by comparison
with the high-level concepts available in GTSL.

4 Summary and Further Work

We have argued the need for process engines and tools to interface at a finer
level of granularity. With currently available off-the-self tools this can only be
achieved with difficulty. We have presented four architectural patterns for how
fine-grained process guidance can be achieved, and have assessed these patterns.
Of these the construction or customisation of process-sensitive tools with a tool
specification language was discussed in detail.

A lesson that we have learned from the experiment in GOODSTEP is that
there is a bounding problem: should a process fragment be implemented by a
process program or a process-centred tool? In the above example, determining
access rights could also be achieved by tools. The process engine would then have
to inform tools whenever owners of documents were changed. Tools could then

store up-to-date ownership information of documents. To determine the access
rights of a particular user to a document the tool could then check whether he
or she was the owner and only then provide the full tool functionality, otherwise
it might restrict the applicable functionality to read-only operations. A general
solution to this bounding problem, however, is not clear to us at present.

The implementation of services in GOODSTEP was achieved on the basis of
the message-based communication mechanism offered by Sun ToolTalk. It seems
that, with OMG/CORBA [14] implementations becoming widely available now,
there are better options than ToolTalk. CORBA seems preferable because it
allows for a heterogeneous implementation and supports synchronous communi-
cation more naturally than ToolTalk. The way in which an object request broker
can be incorporated into the tool architecture that we suggested in [6], however,
needs further exploration.

Acknowledgements We are indebted to Mike Wagner who contributed the
implementation of events and services to GTSL. Moreover we thank Sergio
Bandinelli, Luigi Lavazza and Alfonso Fuggetta for the fruitful discussions and
cooperation we had on the matter of integrating process-centred tools into the
BA PSDE. The comments from Olly Gotel helped to improve the presentation
of this paper.

References

1. S. Bandinelli, M. Braga, A. Fuggetta, and L. Lavazza. The Architecture of the
SPADE-1 PSEE. In B. Warboys, editor, Proc. of the 3" European Workshop on
Software Process Technology, Villard de Lans, France, volume 772 of Lecture Notes
in Computer Science, pages 15-30. Springer, 1994.

2. S. Bandinelli, A. Fuggetta, and C. Ghezzi. Process Model Evolution in the SPADE
Environment. [EEE Transactions on Software Engineering, 19(12):1128-1144,
1993.

3. S. Bandinelli, E. Di Nitto, and A. Fugetta. Supporting cooperation in software de-
velopment. Technical Report 32-95, Dipartimento di Elettronica ed Informazione,
Politecnico di Milano, June 1995. Submitted for Publication.

4. M. R. Cagan. The HP SoftBench Environment: An Architecture for a New Gen-
eration of Software Tools. Hewlett-Packard Journal, 41(3):36-47, June 1990.

5. A. Dardenne, A. van Lamswerde, and S. Fickas. Goal-directed Requirements Ac-
quisition. Science of Computer Programming, 20:3-50, 1993.

6. W. Emmerich. Tool Construction for process-centred Software Development Envi-
ronments based on Object Database Systems. PhD thesis, University of Paderborn,
Germany, 1995.

7. W. Emmerich. Tool Specification with GTSL. In Proc. of the 8" Int. Workshop
on Software Specification and Design, Schloss Velen, Germany, pages 26-35. IEEE
Computer Society Press, 1996.

8. W. Emmerich, J. Arlow, J. Madec, and M. Phoenix. Tool Construction for the
British Airways SEE with the Oy ODBMS. Technical report, City University
London, Dept. of Computer Science, 1996. Submitted for Publication.

10.

11.

12.

13.

14.

15.

16.

17.

18.

W. Emmerich, S. Bandinelli, L. Lavazza, and J. Arlow. Fine grained Process Mod-
elling: An Experiment at British Airways. In Proc. of the 4" Int. Conf. on the
Software Process, Brighton, United Kingdom. IEEE Computer Society Press, 1996.
To appear.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. View-
points: a framework for integrating multiple perspectives in system development.
Int. Journal of Software Engineering and Knowledge Engineering, 2(1):21-58, 1992.
G. Junkermann, B. Peuschel, W. Schifer, and S. Wolf. MERLIN: Supporting Co-
operation in Software Development through a Knowlege-based Environment. In
A. C. W. Finkelstein, J. Kramer, and B. Nuseibeh, editors, Advances in Software
Process Technology, pages 103-129. Wiley, 1994.

G. E. Kaiser, P. H. Feiler, and S. S. Popovich. Intelligent Assistance for Software
Development and Maintenance. IEEE Software, pages 40-49, May 1988.

B. Nuseibeh, A. Finkelstein, and J. Kramer. Fine-Grain Process Modelling. In
Proc. of the T Int. Workshop on Software Specification and Design, Redondo
Beach, California, pages 42-46. IEEE Computer Society Press, 1993.

R. M Soley, editor. Object Management Architecture Guide. Technical report,
Object Management Group, 492 Old Connecticut Path, Framingham, MA 01701,
USA, 1992.

SunSoft. ToolTalk 1.1.1 Reference Manual. SunSoft, 2550 Garcia Avenue, Moun-
tain View, CA 94043, USA, Solaris 2.3 edition, 1993.

S. M. Sutton, D. Heimbigner, and L. Osterweil. Language Constructs for Man-
aging Change in Process-Centred Environments. ACM SIGSOFT Software Engi-
neering Notes, 15(6):206-217, 1990. Proc. of the 4* ACM SIGSOFT Symposium
on Software Development Environments, Irvine, Cal.

G. Valetto and G. Kaiser. Enveloping ”Persistent” Tools for a Process-Centred
Environment. In W. Schéfer, editor, Proc. of the 4th European Workshop on Soft-
ware Process Technology, Nordwijkerhout, The Netherlands, volume 913 of Lecture
Notes in Computer Science, pages 200-204. Springer, 1995.

A. 1. Wassermann and P. A. Pircher. A Graphical, Extensible Integrated En-
vironment for Software Development. ACM SIGPLAN Notices, 22(1):131-142,
1987. Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, Palo Alto, Cal.

This article was processed using the IATRX macro package with LLNCS style

