
 Version 2.0 Draft 30/7/97

Chapter 2 Software Process - Standards,
Assessments and Improvement

(1) Chapter Editor : Wolfgang Emmerich (WE)

(2) Participants: AF, CM, JCD

(3) Software engineering and software process improvement standards are gaining more and
more attention. Why is this? First, standards are recognised by the software industry as a
way for transferring good practice into industrial use. Agencies procuring software are
focussing on standards as they want to be sure that a certain level of quality, associated with
the standard, has been followed during the development of the software and hence has
improved the quality of the software itself. Moreover, standards are used as the basis against
which organisations and/or software products are certified. Finally, if two organisations that
enter a cooperation for the development of a software product follow the same standards,
the cooperation will be considerably simplified.

(4) In the last few years there have been a number of standardisation initiatives from which
software development organisations benefit. Three different directions can be distin-
guished:-

a) Definition of standard processes. These focus on the key points to be addressed
to provide an effective and well defined quality manual. ISO 9000 [ISO91], the
ESA process standard PSS-05 [MFM+94], and ISO 12207 [ISO95] are some
examples.

b) Definition of assessment method. These provide guidelines to evaluate the matu-
rity of the process carried out by an organisation. The Software Engineering Insti-
tute’s Capability Maturity Model (CMM) [Hum89], the European Bootstrap
Method [KSK+94], and ISO 15504 [ISO97b] are examples of these. They are all
based on some model of maturity. These models identify different maturity levels,
and an assessment method, which collocates an organisation in one of the matu-
rity levels.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Page 2 of 12 Chapter 2 Software Process - Standards, Assessments and Improvement

Version 2.0 Draft 30/7/97

c) Definition of methods supporting the improvement of an existing process. For
instance, the Quality Improvement Paradigm [Bas93] is based on the idea that
process improvement can be accomplished only if the organisation is able to learn
from previous experiences. During the execution of a project some suitable mea-
sures are performed, and the collected data are analysed and packaged for future
uses. Some assessment methods also provide improvement guidelines.

2.1 Standard processes

2.1.1 ISO 9000-3

(5) ISO 9000 [ISO91] supplies a set of standards for quality management of production activ-
ities. Organisations are supposed to set up a quality system in order to supervise all phases
of a production and delivery process. Some of the activities carried out by the quality sys-
tem are:-

a) auditing the projects to ensure that quality controls are respected,

b) improving the quality system itself, and

c) providing input to the development group, such as new notations, procedures, and
standards; producing reports to the high-level management.

(6) The details of the quality system are contained in a quality manual. It contains standards
for the quality and the development activities.

(7) When a new project is planned, the project manager identifies the quality issues relevant for
the project and extracts them. All procedures and standards need to ensure that the defined
quality levels are extracted from the quality manual and that a quality plan is written that
identifies the means for quality control.

(8) ISO 9000 has been specialised for software production because it has been recognised as
different from general purpose production processes. The result of this customisation is
ISO 9000-3 [ISO91]. The basic ideas are the following:-

a) Quality control should be performed during all phases of software production,
procurement and maintenance.

b) The purchaser should strictly cooperate with the software product supplier.

c) The supplier should define its quality system and ensure its entire organisation
understands and implements the system.

(9) ISO 9000-3 does not impose a specific life-cycle model. It also does not provide specific
methods for the evaluation of quality ensurance capabilities of organisation. It, therefore,
can be coupled with more specific approaches, such as Boehm's Spiral model [Boe88].

(10) ISO 9000-3 can be used in contractual situations, when the purchaser and the supplier
establish that some quality elements will be part of the suppliers quality system, and the
supplier commits to follow the quality principles defined in the standard. Moreover, it can
be exploited in non-contractual situations, when the supplier voluntarily applies the quality
standard in order to be competitive and to ensure a good quality of its products.

2.1 Standard processes Page 3 of 12

Version 2.0 Draft 30/7/97

2.1.2 PSS-05

(11) The European Space Agency (ESA) adopted PSS-05 [MFM+94] as a software engineering
standard that is binding for all software that is either procured or developed in-house by
ESA. The standard takes two different perspectives; it contains standards, guidelines and
recommendations concerning the software to be defined, implemented, operated and main-
tained; it also determines procedures that are to be used to manage a software project.

(12) The standard is based on the concept of practices. Practices in PSS-05 are either mandatory,
recommended or guiding. A mandatory practice must be followed without exception in all
software projects. Recommended practices may or may not be followed. However, a justi-
fication has to provided if a recommended practice is abandoned. Guideline practices are
less crucial; no justification is needed if they are not followed.

(13) PSS-05 does not prescribe a particular lifecycle model. However, any lifecycle model
adopted for a project must be defined in a software project management plan and must
include the following mandatory phases:-

a) definition of user requirements,

b) definition of software requirements,

c) definition of architectural design,

d) detailed design and production of code,

e) transfer of the software to operations, and

f) operations and maintenance.

(14) Practices related to products detail the products that are developed in these stages and how
that development should be performed. The degree of abstraction of these product practices
varies to a large extend. Some practices are very high-level, an example of which is: ‘‘all
known user requirements shall be included in the user requirements document´´. Others are
fairly concrete, such as ‘‘for incremental delivery, each user requirement shall include a
measure of priority so that the developer can decide the production schedule´´.

(15) Practices related to management procedures are of concern throughout the different phases
identified earlier. The purpose of these is to ensure that projects are managed in such a way
that the product is built within budget, according to schedule and with the required quality.
The standard recommends the mandatory definition of plans for:-

a) software project management,

b) software configuration management,

c) software verification and validation, and

d) software quality assurance.

(16) To date, the use of PSS-05 is not confined to ESA and its contractors. It is being used in the
automobile industry and for procurements in various European defense projects. Currently,
PSS-05 is being used as one basis for the ISO 15288, a new system engineering standard
[ISO97a].

2.1 Standard processes Page 4 of 12

Version 2.0 Draft 30/7/97

2.1.3 ISO-12207

(17) ISO 9000 is a standard for quality management and improvement, but it provides little con-
crete guidance as to how software engineering processes should be performed. The ISO
standard 12207 “software life cycle processes” [ISO95] is more concrete in that it identifies
mandatory processes, tasks and activities for software life cycles. Unlike PSS-05, which
has been explicitly defined for one particular domain, ISO-12207 is intended to be applica-
ble to software development in a broad range of application domains and a variety of dif-
ferent software systems.

(18) Any ISO standard contains a normative and an informative component. The normative
component in ISO-12207 determines mandatory practices that ought to be followed for a
particular development effort to be compliant to the standard. The informative component
of the standard identifies rationales for the practices required by the standard and explains
their application.

(19) ISO-12207 covers the entire lifecycle from “conceptualization of ideas through retire-
ment”. It considers the software life cycle from different levels of abstraction. At the highest
level, it identifies a number of processes. Three different categories of processes are iden-
tified:

a) primary life cycle processes are conducted by prime parties, i.e. those that initiate
or perform the development, operation or maintenance,

b) supporting life cycle processes, for instance configuration management, support
primary processes in order to contribute to the success and quality of the project,
and

c) organizational life cycle processes that are employed by an organisation to estab-
lish and implement the underlying structure of the life cycle, such as management
and process improvement.

(20) Processes are decomposed into activities. The acquisition process, for instance, is decom-
posed into activities for initiation, request for tender, contract preparation, supplier moni-
toring, and acceptance and completion. Activities are further decomposed into tasks. The
request for tender preparation activity, for instance encompasses tasks determining system
requirements, scope of the system, instructions for bidders, list of software products, terms
and conditions, control of subconstracts and technical constraints.

(21) As the standard is meant to be applicable in many different domains it covers a variety of
processes, activities and tasks. In order to define customisations of the standard to a partic-
ular domain, organisation or individual project, the normative part of the standard includes
a ’tailoring process’. It defines how the standard is to be adapted and indicates those pro-
cesses, activities and tasks that might be omitted. Moreover, it allows processes, activities
and tasks to be added, provided that they are specified in a way compliant to the standard.
The ability to tailor the standard allows its application in a number of different settings,
such as waterfall, evolutionary, incremental and spiral process models.

(22) Hence, the overall process model defined by ISO-12207 is decomposed in a functional way
into a three level hierarchy consisting of processes, activities and tasks. A weakness of the
process definition is that it only implicitly identifies the products that are to be produced

2.2 Assessment Methods Page 5 of 12

Version 2.0 Draft 30/7/97

during processes, activities and tasks. Moreover, coordination and dependencies between
tasks are only implicitly defined. Finally, tasks, such as systems requirements, that are con-
sidered as atomic in the decomposition are still rather coarse-grained.

2.2 Assessment Methods

2.2.1 The Capability Maturity Model

(23) In the late 80s, the Software Engineering Institute has started to work on software process
assessment. The work is motivated by the observation that the first step for consolidating
and improving processes is to assess them [Hum89]. The SEI supplies two different pro-
grams [PWCC95]

a) Software-process Assessment Program. It is directed to those organisations that
want to evaluate their process in order to improve it.

b) Software Capability Evaluation Program. It can be used by customers (in partic-
ular, US government agencies) to assess the processes and maturity levels of their
contractors.

(24) These two programs share, to a great extent, the same assessment method. In the first case,
the result of the assessment program is a document that provides the organisation with
some suggestions on how to conduct process improvement. In the second case, a grade
ranging on an ordinal scale from 1 to 5 is calculated. This grade quantifies the maturity level
of the organisation. In general, in the first case the assessment is self-performed by the
organisation, possibly under the assistance of the SEI, while in the second case, the assess-
ment is performed by an external independent team from the government or the customer.

(25) In order to assess the maturity of the organisation and to identify the issues to be addressed
for improving the process, the SEI defined a maturity model, called the Capability Matu-
rity Model (CMM). This model defines five levels of maturity for the software industries.
It then identifies a set of characteristics organisations at each level are considered to have.
Moreover, a set of goals is defined that organisations should pursue for reaching the next
level.

a) The lowest level is the initial level. Success of organisations at this maturity level
depends on the skills and individual efforts of developers rather than on properly
defined and managed processes.

b) At the second level processes are repeatable. At this level of maturity, organisa-
tions establish project management policies and procedures to carry out a project.
A quality assurance function controls that the policies and the procedures are
being practised. This discipline ensures repeatability of earlier success on similar
projects.

c) At the third level (the defined level) a standard software process is defined. It
defines project management and software engineering processes, and it is tailored
to each project. An organisation adopting and tailoring, for instance PSS-05 or
ISO 12207, would be at this level.

2.2 Assessment Methods Page 6 of 12

Version 2.0 Draft 30/7/97

d) At the fourth level (the managed level) the process and product quality is mea-
sured, predictable and quantifiable. By using these measures, the managers can
identify the causes of exceptional events and can correct the situation.

e) At the fifth level (the optimizing level) the process is continously improved on the
basis of quantitative feedback from earlier instantiations of the process. Process
improvement is obtained by introducing new methods and new technologies, and
it is planned like the ordinary management activities.

(26) The Software-process Assessment Program starts with training the assessment team. After
that, the assessment team selects some representative project of the organisation to be
assessed. The members of the selected projects will complete the SEI questionnaire, and
will be interviewed by the assessment team. The team uses the questionaire and the inter-
view to prepare a report, which identifies weaknesses of the organisation. The solution and
guidelines for its implementation are traced. To obtain a good result from the assessment,
high-level management needs to endorse the assessment. In this way, people participating
in the assessment will be encouraged by the fact that their suggestions will be taken into
account and will influence the actual improvement of the development process.

(27) The main drawback of the Software Capability Evaluation program is that it tends to over-
simplify an organisation by constraining it into a five level classification. The classification
itself is based on common sense, but does not have a scientific foundation. The algorithm
used to evaluate the scores is based on the idea that an organisation, which holds some char-
acteristics of an higher level, cannot profit from these characteristics if it does not have all
the characteristics of the lower levels. However, even in its simplicity, the CMM constitutes
the most interesting attempt to analyse software processes that has been developed so far.

2.2.2 Bootstrap

(28) The European Union funded Bootstrap project started in 1989. Its mission was to fertilize
the grounds for introducing modern Software Technology into industry [KSK+94].

(29) The project was devoted to defining a framework for assessing European industries in dif-
ferent sectors, such as banking, insurance and administration, and for promoting process
improvement. The basic idea (that is also found in the SEI approach) is that technological
innovation is not effective if it is not coupled with a careful definition of the methods used
for building solutions, and if it is not carried out within a well organised process. Basically,
Bootstrap is an improvement of the SEI approach to process assessment and improvement,
which takes some ideas from the ISO 9000-3 standard into account. In particular, Bootstrap
supplies:

a) A detailed hierarchy of process quality attributes, based on the ISO 9000-3 guide-
lines on quality management.

b) An enhanced version of the SEI questionnaire.

c) A method, refined from the CMM, for assessing the maturity level of an organi-
sation.

(30) While the SEI questionnaire offers only yes/no answers, the Bootstrap approach provides
four different choices: absent/weak, basic/present, significant/fair, and extensive/com-

2.2 Assessment Methods Page 7 of 12

Version 2.0 Draft 30/7/97

plete.1 Moreover, the Bootstrap questionnaire is based on the defined hierarchy of quality
attributes. The Bootstrap method for obtaining the score of an organisation is more flexible
than the SEI method. It is based on the same five maturity levels, but its goal is not to com-
pute a unique score for the organization, instead, it allows to evaluate a level of maturity for
each quality attribute. This way, organisations can identify the weaknesses of their process
and can concentrate in fixing them.

(31) The Bootstrap assessment method can be used also to evaluate if an organization is ready
to obtain the ISO 9000 certification. There is not a specific maturity level that is a good
point to be certified. ISO 9000, in fact, requires that organizations use some statistical tech-
niques that are for level 4. On the other hand, it does not require the use of specific meth-
odologies, nor specifies how efficient they have to be. Organisations only have to prove that
they have some methodologies and use them. For these reasons, an organisation that is
between levels two and three could obtain the certification.

2.2.3 SPICE

(32) SPICE (Software Process Improvement and Capability dEtermination) [Rou95] is a project
granted by the International Committee on Software Engineering Standards ISO/IEC JTC
1/SC7. Its goal is to build an international standard for software process assessment, cov-
ering development, acquisition, management, customer support and quality, and also
human concerns and technology transfer. It is based on knowledge acquired using existing
assessment methods, like CMM, Bootstrap, ISO 9000-3. The result of the project is the new
ISO 15504 [ISO97b] standard. It comprises a set of documents that will guide the :-

a) high level definition of goals and fundamental activities that characterise good
software engineering, graded according to levels of capability,

b) training of the assessors, e.g .by establishing the procedures for assessors’ qual-
ification,

c) process assessment and improvement phases,

d) determination of the capability of an organisation, based on the results of the
assessment,

e) understanding of business risks considering the development of a new software
product or service, and

f) generation of target profiles and maturity models for process improvement.

2.2.4 Summary

(33) The approaches we have discussed here are used for assessing the capabilities and maturity
of individual engineers or organisations. The assessments are intended to provide feedback
as to how to improve processes. Kellner et. al. suggest in [KBO96] that process improve-
ment processes are cyclic in itself and that they have their foundation in the Shewhart cycle
[She39], further developed by Deming [Dem94].

1. This idea has been partially taken into account in the new version of the SEI questionnaire,
in which answers like: “I do not know”, and “the question is not applicable” are allowed.

2.3 Improvement methods Page 8 of 12

Version 2.0 Draft 30/7/97

(34) The SEI has developed an organisational reference model for cyclic software process
improvement initiatives [McF96]. This model consists of five phases: Initiating, Diagnos-
ing, Establishing, Acting and Leveraging and is referred to as the IDEAL model. The
IDEAL model can express the assessment orientated methods we have discussed in this
subsection as well as the improvement methods that we discuss in the next section.

2.3 Improvement methods

2.3.1 Quality Improvement Paradigm

(35) The Quality Improvement Paradigm [BCM+92, Bas93] has been proposed by the SEL
(Software Engineering Laboratory) of The University of Maryland to perform process
improvement. The basic idea is that improvement is a continuous process, that is composed
of the following steps:-

a) characterisation of the project and its environment ,

b) planninga set of goals and the appropriate process models, methods, and tools for
achieving these goals,

c) execution of the process according to the defined goals, development of the prod-
uct , and collection and analysis of data for feedback purposes.

d) analysis and packaging of data collected at the end of the project for use in future
projects.

(36) Two tools are used for performing the steps described above: the Goal/Question/Metric
(GQM), and the Experience Factory Organization. GQM is during the planning phase. It
facilitates the definition of goals and suitable metrics for each of them. These will guide
the execution of the process. The Experience Factory Organization is an organizational
structure that supports the packaging activities.

(37) The quality improvement paradigm teaches how to set-up a continuous improvement pro-
cess, taking into account previous experiences. It is based on the assumption that the
organisation is able to define a process model, is confident with tools and procedures for
collecting metrics, manages a repository of data from previous project, and so on. There-
fore, the quality improvement paradigm can be profitably used by mature organisations,
which are already aware of their process, in order to become more sensitive to the lessons
learnt on the way.

2.3.2 The Personal Software Process

(38) The Capability Maturity Model evaluates and rates the maturity of software processes at an
organisational level. However, an important factor, which determines the productivity and
quality of products, is the maturity and capability of the individual developer. Motivated by
the success of the CMM, the SEI has recently started to work on the Personal Software Pro-
cess (PSP) [Hum95,Hum96,Hum97]. The PSP is aimed at guiding individual engineers to
improve their productivity and quality of the overall processes they contribute to. Engineers
are introduced to the PSP by means of developing ten small exercise programs.

2.3 Improvement methods Page 9 of 12

Version 2.0 Draft 30/7/97

(39) The PSP defines four levels of maturity and identifies the steps needed for reaching the next
higher maturity level:-

a) PSP0 - Personal Measurement

b) PSP1 - Personal Planning

c) PSP2 - Personal Quality

d) PSP3 - Cyclic Process

(40) Many considerations of the CMM also apply to the PSP. In order to improve the maturity
of individual developers, their performance has to be assessed in the first place. During
PSP0, engineers are taught how to measure their development time and the defects they
have injected and removed. Moreover, in PSP0 engineers are introduced to coding stan-
dards, size measurements and a form for proposing improvements to their personal process.

(41) At level PSP1, engineers learn techniques for estimating size and development time on the
basis of data they have gathered during PSP0. Moreover, they learn how to plan tasks and
schedules.

(42) PSP2 introduces the management of defects. At lower levels, engineers will have gathered
defect data. In PSP2, engineers use this data to construct checklists in order to identify those
defects they are likely to make. Engineers then use the checklist to consciously review their
designs and their code against them. Engineers, therefore, learn that an individual focus on
quality is important. By using these checklists, their skills will improve.

(43) In order to scale the approach from the small examples used in the exercises to real projects,
the PSP has to be applied in a cyclic manner. A constant monitoring of injected and
removed defects and constant reviews of the defect checklist is supposed to lead to
improvements of personal quality.

(44) The PSP has been applied on a number of undergraduate, graduate and industrial courses.
The results below have been obtained by 104 engineers, half of which from industrial soft-
ware organisations. The overall average in productivity improvement (measured in lines of
code per hour) is reported in [Hum96] to be about 20%. However, a notable variance was
observed in these productivity improvements, in particular between undergraduates and
more experienced engineers. While some undergraduates improved their productivity by as
much as 420%, some mature engineers experienced performance degradations due to the
additional overheads of estimations and reporting introduced through the PSP.

(45) Humphrey reports that quality, measured in terms of the number of defects injected,
improved irregardless of the experience levels of engineers. On average, the total numbers
of defects during his PSP trials decreased from 140 defects per KLOC in the first program-
ming exercise to 49 defects/KLOC. Defects found during compiling decreased from 80 to
12 defects/KLOC. The decrease rates, were higher for students without industrial experi-
ence, but even for engineers with 20 years of experience quality improved.

(46) To summarise, the PSP is an interesting approach for improving quality and productivity of
students and young engineers. This improvement is achieved through teaching the explicit
focus on the process that is used for developing software. The SEI has provided imperical

2.4 Standards and Software Process Technology Page 10 of 12

Version 2.0 Draft 30/7/97

evidence that the PSP improves both productivity and quality, which justifies teaching the
PSP to students in both academia and industry.

2.3.3 Total Quality Management

(47) Total Quality Management is not a specific and pre-defined methodology for process
improvement. It is a paradigm that guides organisations in focusing on quality [Fei91]. Its
tenets are that quality is not only related to the product, but also to the organisation, to the
production process that is carried out. Moreover, it argues that quality achievement is
obtained if all the people involved in an organisation work to obtain it: quality is excellence
in all the aspects of an organisation. The management of quality causes a continuous and
never-ending process of improvement. Process improvement can be carried out by perform-
ing big improvement steps followed by long periods in which no change is done, or by per-
forming many little steps. The first approach is known as the Western approach. American
managers, in fact, tend to achieve dramatic jumps by introducing new technologies, and
employing big amounts of money in research and development. The latter approach is the
Japanese approach, or kaizen. Japanese people try to achieve little daily improvements, by
using common sense and simple technology.

(48) TQM can be pursued using both approaches. However, a powerful approach can be
obtained combining these two. So, big jumps are done through innovations, and between
two consecutive jumps incremental changes are performed.

2.4 Standards and Software Process Technology

(49) Software engineering standards, such as ISO-12207 and the ESA PSS-05 standard are
rather general. They are written in a way that they can be customised towards the need of a
particular organisation or project. ISO-12207 even explictly defines the process with which
it is supposed to be customised. This refinement and customisation of a standard can well
be considered as a process modelling activity and we believe that the process modelling
principles, methods and techniques discussed in the following chapters of this book are
applicable to the problem of refining standards.

(50) Software engineering standards only provides normative references. These are not directly
applicable in a software engineering process. In order to guide software engineers in fol-
lowing standards they have to, at least partly, be automated. This automation should help
engineers to comply to the standards, check whether the documents are structured in a way
prescribed by the standards and enable the cooperation between different engineers in a
way as it is prescribed by the standard. The architecture of an environment needed for such
an automation will be very similar to those discussed for process-centred environments
later in this book.

(51) The standards we have looked at are all defined in natural language. Often the standard is
defined following a rigid structure and practices to be followed are explicitly highlighted.
However, as one would expect from a natrual language text, the standards mentioned in this
chapter are all rather informal, ambigous and inherently inconsistent. We believe that any
attempt to automate the handling of standards in software engineering environments
demands the formalisation of these standards. Again, the process modelling languages dis-

2.4 Standards and Software Process Technology Page 11 of 12

Version 2.0 Draft 30/7/97

cussed in this book, and also the previous Promoter book, are highly applicable to this for-
malisation problem.

