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Asfare and data collection technology has developed, the resolution of
collected data hasreached thelevel of theindividual traveler in investi-
gationsof transit passenger behavior. Thispaper investigatesthe use of
these data to estimate passenger originsand destinations at the level of
individual stops. Because of a lack of information from the fare collec-
tion system, resear chers still need some estimate of passengers' alight-
ing stops to complete each passenger trip chain on a specific day.
Automated farecollection (AFC) and automated vehiclelocation (AVL)
systems are the inputs to the estimation. Instead of typical AVL data,
the paper proposestwo modelsto estimate the alighting stop; both con-
sider passenger trip chaining by using AFC data, transit schedule data
(Google's General Transit Feed Specification), and automated passen-
ger counter (APC) data. The paper validates the model by comparing
the output to APC data with vehicle location data (APC-VL) and per-
formssensitivity analyseson several parametersin themodels. To detect
transfer trips, the new models propose a submodel that takes into
account the effect of service headway in addition to sometypical trans-
fer time thresholds. Another contribution of this study is the relative
relaxation of thesearch in finding the boar ding stops, which enablesthe
alternative algorithm to detect and fix possible errorsin identification
of the boarding stop for a transaction. As a result, the paper provides
algorithmsfor the proposed models and sensitivity analysisfor several
predefined scenarios. The results are based on data and observed bus
passenger behavior in the Minneapolis-Saint Paul, Minnesota, area.

Transit automated data collection (ADC) systems have allowed esti-
mation of valuable behavioral patterns, especially for multimodal
transit and with consideration of the sequence of passenger trips.
Mainly, the interplay with data from the ADC systems—automatic
fare collection (AFC), automated vehicle location (AVL), and other
geographic information systems—provides more access to individual
passenger’ strip chain beyond that imagined at amore-aggregate level.
Studiestoidentify passengers' trip sequences have been expanded to
include multimodal transit networksaswell asmuch larger networks
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(1-6). These studies have used this new technology with various
methodol ogies to capture the individual trips.

Inanalysisof anindividual’stravel behavior by using ADC, gen-
erally, the main objectiveisto find the sequence of the passenger’s
trip from the origin stop to the destination stop (or origin to destina-
tion). But the information from AFC systems is still limited in its
ability to infer the passenger’ sfull sequence of trips. Thislimitation
derivesfrom thetype of fare collection system, either closed or open
(2). For example, arail transit system may have aclosed system that
requires the use of afare card at the origin and the destination but
that may not requireitsusefor internal transfers. In contrast, an open
bus fare collection system may require the passenger to use afare
card only at boarding, not at alighting. Typically, open systemshave
been the main research interest in the devel opment of atraveler’ strip
chain because the closed system providesboth origin and destination
(O-D) information of atrip.

To complete an individual’s sequence of trips, the given ADC
information requires the use of appropriate inferences. The main
research using AVL and AFC data has been in estimating a passen-
ger's reasonable alighting stop. In an open system, the principal
inference comes in generating the connections for a sequence of
trips by each card holder. If one assumes an inconvenience to walk-
ing, a frequent approach is to estimate the nearest alighting stop
fromthe next AFC (boarding) transaction point on atrip (1, 4, 6-10).
Thisestimate requires someinferencesin the passengers' trip chain-
ing, although ADC does not usually provide information on the
cardholder’ stravel purposes, preferences, or attitudes (11). In addi-
tion, to generate the alighting stop alternatives, various thresholds
for walking distancesor travel timesare used. In particular, Trépanier
et a. introduced a methodol ogy to approximate the nearest alighting
point within the threshold of a2-km (1.24-mi) Euclidean distance
(10). Others (7-9) estimate the nearest alighting stop by considering
the proximity of the arrival time of the transit vehicle (or run) to
the next boarding time as well as the Euclidean distance to the
nearest stop.

Another possible method is to conjecture whether an activity
happens between two successive fare transactions. Several works
(7-9) examine the relationship between the passenger’s trip and
activity occurrence by using AFC and AVL data. Because many fare
collection systems allow different restrictions on the time available
for atransfer, it ispossible to have some simple, but relatively long,
activity occur within the allowed transfer time. The easy way to



Nassir, Khani, Lee, Noh, and Hickman

determine such an activity is to set up a transfer time boundary.
Seaborn et al. examinethe threshold of transfer time compared with
an activity time for multimodal travel (rail and bus) in London (3).
This decision of whether atime gap isatransfer or asimple activ-
ity isimportant because it directly affects the inferred O-D of the
passenger trip.

To estimate a consistent alighting stop in a passenger’ s sequence
of boarding transactions, two models are proposed. These models
and previous ones are different in three major ways. First, for their
inputs, the new models use Google's General Transit Feed Specifi-
cation (GTFS), AFC, and automated passenger counter with vehicle
location (APC-VL) data for the metro transit bus system in the
Minneapolis-Saint Paul, Minnesota, area. This method uses GTFS
and APC-VL datainstead of AVL data. Today, it isrelatively easy
to obtain transit schedules because many transit agencies provide
publicly available scheduleinformation through GTFS. Second, this
method enhances the ability of the decision process to understand
AFC transactions, which consist of two types (called use types
here): initial (beginning the first leg of the trip) and transfer. For
understanding of the use type, a transfer time threshold has been
appliedin previous studies, such asa40-min transfer time. However,
the threshold could also be affected by the frequency of service (or
headway) on the connecting route. By modeling the relationship
between the transfer time threshold and headway, it is possible to
provide a better inference for deciding whether an activity occurs.
Third, another possible inferenceis applied as an aternative model
in this study. In thismodel, areliable alighting stop is estimated by
relaxing the spatial search for boarding stops, to include the stopsin
the opposite direction, and then by trying to match the alighting stop
from this alternative boarding stop.

The remaining sections of this paper are organized as follows.
First comesadescription of thedataand preparation for analysis, by
using AFC, APC-VL, and GTFS data. Then, the methodology by
which the boarding and alighting stops areinferred is presented, and
the use type for each transaction is estimated. In addition, an alter-
native algorithm is presented that considers the direction of service
in matching boarding and alighting stops. Subsequently, detailed
results of sensitivity analyses on model parameters are provided.
Finally, concluding remarks and suggestionsfor future research are
provided.
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DATA: MINNEAPOLIS-SAINT PAUL
METROPOLITAN TRANSIT

Data Description

The datain this research were obtained from Metro Transit oper-
ating in the Minneapolis-Saint Paul (Twin Cities) area and were
excerpted from one month of data (November 2008). At the time,
Metro Transit operated afleet of 1,010 buses over 186 routes. The
majority of bus headwaysranged from 15 to 60 min. Lessthan 10%
(18) of the routes had the minimum headways, ranging between 5
and 10 min, only during peak hours. The proportion of fare card
users among all transit passengers is roughly 50%; this proportion
was determine by comparing AFC records with boarding counts
from the APC-VL data. Figure 1 shows the hourly distribution of
total transactions on the basis of transaction date and timefrom AFC
data. This graph manifests a conventional peaking pattern, with a
huge percentage of the total transactions made during the morning
(6:00 to 9:00 a.m.) and afternoon peak (4:00 to 7:00 p.m.) periods.

Table 1 presents the data recorded in the AFC, APC, and GTFS
data sets. A more detailed description of the datafollows.

AFC Data: Go-To Card

In the AFC system, arecord is generated every time a user boards
abus. Each record has basic operational information, likethetrans-
action date and time, route number, use type, fare type, bus identi-
fication (ID), run ID, and current location. In November 2008, the
AFC transactions (2.17 million records) were made by 79,775 fare
cards[identified by special serial number (SSN)]. Each SSN is con-
sidered an individual traveler because it is uniquely assigned to
each Go-To card.

APC-VL Data

Stop-level boarding and alighting counts were collected from about
30% of operated buses, which were equipped with passenger counters.
APC data (3.4 million records) aso provided vehiclelocation infor-
mation with the stop ID when boarding—alighting activities were

——10-Nov (MON)
——11-Nov (TUE)
12-Nov (WED)
——13-Nov (THU)
——14-Nov (FRI)

15 17 19 21 28 1

Time (Hour)

FIGURE 1 Hourly transaction distribution, week of November 10, 2008.
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TABLE 1 Description of Each Data Set
Information Description
AFC data

Special serial number
Transaction date
Transaction time

Unique number of each go-to card
Boarding date
Boarding time

Route number Given number of every busroute

Usetype Status of boarding (entry, refund, transfer)

BusID Given number of every operated bus

LAT LONG data L atitude-longitude of boarding location
APC datawith vehicle

location

VehicleID Given number of every operated bus (bus ID)

Time bracket start

Time bracket end

Scheduled departure time at the first stop
of trip
Scheduled arrival time at the last stop of trip

Trip number Given number of any given trip
LinelD Given number of every bus route
(route number)
Linedirection Directional information of any given trip
Stop sequence number Given number of stop sequence for any
giventrip

SitelD Given number of bus stop (stop ID)

Sitelatitude L atitude of bus stop from vehicle location

Sitelongitude Longitude of bus stop from vehicle location
Stops

Stop ID Given number of bus stop (site ID)

Stop name Name of bus stop

Stop description Direction and location of bus stop

Stop latitude L atitude of bus stop

Stop longitude Longitude of bus stop
Trips

Route number Given number of every busroute

TripID Given number of every trip
Routes

Route ID Given number of every busroute
Calendar

Service D Days of week when serviceisavailable
Stop times (schedule)

TripID Given number of every trip

Arrival time Scheduled arrival time

Departure time Scheduled departure time

Stop ID Given number of bus stop (site ID)

Stop sequence number Given stop sequence of bustrip

observed. In addition, the scheduled time and actual arrival—departure

times at an individua stop were recorded in the APC data.

GTFS Data

GTFSisan open-sourcetransit service package (12, 13) produced by
hundreds of transit agenciesin the United States. GTFS istypically
presented as a series of text files (stops, stop times, routes, calendar,
trips, etc.) with comma-separated values. The main advantage of
using GTFSisto accessthe detailed schedul e (stop time.txt) of each
trip ID. Thisinformation can be matched with the AFC and APC-VL
datain relation to the time of specific transactions.

Data Preparation

Monday, November 10, 2008, was used as a typical day in the
analysis. In detail, the 24-h time span from 3 am. on Monday to
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3 am. on Tuesday was considered because many buses end their
tripsafter midnight, and few tripsare overnight. All AFC, APC-VL,
and GTFSdatawereloaded into Microsoft SQL Server 2008. Several
conditions were considered in preparing the data. The fare cards
(SSNs) had to have at least two transactions on the given day in
the AFC datafor them to be applied to the trip-chaining model. An
inner join wasthen computed to retrieve all transactions (90,154 for
November 10) of each unique SSN because multiple records may
have been detected and each SSN may have had a different number
of transactions. To clean and validate the retrieved data, several
additional filterswere applied (discussed in the following section on
methodol ogy).

The AFC dataitself do not provide either any passenger alighting
information or directional information for the route. Asaresult, the
boarding location of the next transaction must be considered to infer
the alighting stop of each passenger trip. Although APC-VL data
support more accurate identification of boarding stops, these data
are only a sample (about 30%), so all the passenger O-D estimates
cannot be validated.

Figure 2 showsthe kind of data used for this study aswell ashow
they are connected. Each data set can beintegrated with one another
by using various data relationships to overcome the limitations of
each separate data set. The data attribute route number can be used
to link the data sets.

AFC data are used to identify the boarding stop. In addition, the
nearest stop is found from the APC-VL datafor verification pur-
poses. To identify the boarding stop by using APC-VL, the vehicle
1D and route number are matched between the AFC and APC-VL
data, and the trip number (trip 1D) whose scheduled time interval
covers the transaction time recorded in the AFC data is found.
Finaly, distancesfor all stops having the same trip number are cal-
culated, and the stop with the minimum distance is assigned as the
nearest stop.

METHODOLOGY
Assumptions

The approach in this study is mainly based on a trip-chaining
model. Therefore, the pertinent assumptions for the trip-chaining
model are the most important ones. These, along with some other
assumptions made, are discussed below.

Trip-Chaining Model Assumptions

Typical assumptions of trip chaining are made in this study as well
assevera other studies (3, 4, 9). For instance, it isassumed that trav-
elerswho use the transit system do not use any other modes within
the given sequence of daily transit trips. The major assumption of
the trip-chaining model is that the destination of each trip can be
inferred from the origin of the next trip. In addition, the destination
of thelast transaction of apersoninagiven day isassumed to bethe
boarding point of that person’ sfirst transaction that day.

Once the alighting stop for each transaction is inferred, some
proximity checks should also be applied. These checks exclude
many of thetransactionsfor which the trip-chaining assumptionsare
not true. For the geographical check in this paper’s algorithm, that
theinferred alighting stop waslocated within walking distance of the
next boarding point had to be ensured. For temporal checking, that
the inferred alighting time was not later than the next transaction
time had to be ensured.
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FIGURE 2 Relational schema.

Assumptions of Estimation of Stop-Level 0-D

For each person, the origin of thetrip is assumed to be the boarding
bus stop and the destination is assumed to be the alighting bus stop.
It isalso assumed that, for the trips that contain transfers, the origin
isthe boarding stop of thefirst leg of the trip and the destination is
the alighting stop of the last leg of the trip.

Other Assumptions

It is assumed that the required time for an individual to participate
inan activity isat least 30 min. It isalso assumed that the maximum
waiting time for a person to transfer cannot exceed 90 min. Later,
this paper explains that the transaction status (transfer or initial trip
or use type) of auser isunderstood by having these criteria consid-
ered aong with the schedul e of the busroute that the user hasboarded.
For calculation of thewalking distance between two successiverides,
the Euclidean distance (ED) between the two points was used. To
account for nonstraight paths between thetwo points, ED wasmultiplied

by V2 , which gavethe diagonal of aright-angle metric between the
two points. The average walking speed of 3 mph (4.8 km/h) was
assumed for estimating the walking time between two points.

Model
Primary Data Refining

The chosen day (Monday, November 10, 2008) began with 90,154
transactions, including both initial and transfer transactions. How-

ever, evidence showed that in some casesthe AFC transaction data
set might have had some wrong or missing entries or might have
even been missing one whole transaction in the set of a person’s
trips. Many of these missing transactions were detected on the
basis of transaction status (original use type). For example, if, in
the first transaction of a person, the use type was recorded as a
transfer, it was inferred that at least one transaction of that person
was missing. Eliminated were all transactions of the individual for
which it was detected that some transactions might be missing. Of
the total 90,154 transactions, 1,970 had such problems, and after
all transactions from these fare cards were eliminated, the total
number of transactions decreased from 90,154 to 84,413 on the
chosen day.

Main Algorithm

The main algorithm proposed for determining passenger O-D stops
isshownin Figure 3. Each step in thisa gorithm is discussed below.

Search Lists

An issue in the algorithm was that a search needed to be done
through all the GTFS schedul e data (488,105 records) multipletimes.
Considering the number of transactions (84,413), and to expeditethe
search process, asearch list for each route based on GTFS schedule
list was created. After the required GTFS files were combined, the
schedule data of the routeswerekept in separatelists. Then, for each
transaction, it was necessary just to search through the schedule of
the specific route to find the boarding and alighting stops.
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FIGURE 3 Main algorithm for estimating transit O-D from AFC data and schedule.
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Finding Boarding Stop and Alighting Stop

Thefirst part of the main algorithm (upper dotted box of the Figure 3)
isrelated to finding the boarding stop, trip ID, and alighting stop for
each transaction. In this part, for each transaction in the AFC data,
the GTFS schedule was searched to find the best-fitting trip ID and
boarding and alighting stops.

After the data structure was created, the algorithm found the
nearest stop on the specific route to the transaction point and con-
sidered this the boarding stop. If the distance between the transac-
tion point and the stop was more than a predefined threshold [due to
the nature of Global Positioning System (GPS) accuracy or any
other errors], the transaction was labeled excluded. The spatial (or
geographical) threshold for checking the boarding stops (D,) was
considered to be 0.1 mi in thisstudy. (In thefollowing section, asen-
sitivity analysisis performed for D, and other parameters.) The next
step for theinferred boarding stop wasto find the best-fit trip ID. To
find it, a statistical analysis was performed to define an appropriate
criterion (with Parameter C) by which the most probabletrip ID in
the schedule could be inferred from the actual time of transaction at
the boarding stop.

All transactions were distributed between the actual arrival and
departure times of their associated bus run. Then, to find the most
probabletrip ID in the schedule, the scheduled arrival timefrom the
transaction time at the specific boarding stop was inferred. So an
estimate of the average time shift between the transaction time and
the scheduled bus arrival time. Thisaverage shift (C) isbounded by
(a) theaverage del ay between the actua arrival timeand the scheduled
time and (b) the average delay of the departure from the sched-
uled time. From the available sample with 18,398 records from APC-
VL data, the actud arrival and departure times of buseswerefound to
have an average delay of 26 and 83 s, respectively (Figure4). Then, a
reasonable estimate for C (the time between the scheduled arrival and
the transaction time) would be the average of 26 and 83 s, or C=54s.
In the next section, further sensitivity analysisis also performed for
Parameter C. With C = 54 s, to find the most probable trip ID for the
transactions, a search is conducted for the scheduled departure time
closest to (TrT — C), where TrT isthe transaction time (Figure 5).

In the process of searching for the most probable trip 1D, to
increase the algorithm speed, a search time interval is considered
instead of searching through the whole daily schedule. Under the
assumption of anormal distribution for the actual arrival and depar-
ture times, the time interval that covers the correct trip ID with a
probability of .99 was chosen. Thistimeinterva is(TrT — o, TrT — )
where

0L = Hpep + 20 pep,
B = uArr - 20Arra

Distribution of arrival delays

Distribution of departure delays

B Harr Upep «

Schedule

Delay compared to schedule

FIGURE 4 Schematic distribution of bus arrival and departure
delays and transactions.
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FIGURE 5 Time shift for transactions from schedule, Parameter C.

Hper = average delay of bus departures,

Uarr = average delay of busarrivals,
Opep = Standard deviation of delay of bus departures, and
Oar = Standard deviation of delay of bus arrivals.

The calculated values for oo and B from the data set are 383 and
—302 s, respectively. Application of these temporal boundaries
narrowsthe search areato the busrunsat theinferred stop and helps
improve the accuracy of the inference as well as increasing the
search speed. Nonetheless, when GPS accuracy is considered, in
some cases it is possible that the wrong stop is selected for the
boarding stop, although this possibility cannot be verified with the
given data.

Once the best-fit trip ID is found for a boarding stop, the next
step is finding the alighting stop for each transaction. To do so, the
schedule of the found trip ID is geographically tracked and the stop
nearest the next transaction point islocated. That stop can beinferred
asthe alighting stop if the distance between it and the next transac-
tion point isless than a predefined boundary (D,, whichis0.5mi in
this study). An “excluded” label is placed on the transactionsiif the
suggested alighting stop lies outside this geographical boundary.

Detecting Transfer Trips

Oncethe boarding stop, alighting stop, and thetrip ID areinferred for
thetransactionsin thefirst part of themain algorithm, thetransfer trips
among d| thetransactions haveto be detected. The procedureisshown
in the dotted rectangle at the bottom of the flowchart in Figure 3.
The original use type attribute for each transaction in the AFC
data set specifieswhether each transactionisan initial transaction or
atransfer, but this specification isnot consistent with what is needed
to estimate O-Ds. In O-D estimation, thetransactions must be grouped
inaway that al thetransactionsin each group form aunique O-D trip
(i.e., aso-called linked trip). Under this condition, aunique O-D can
be linked to all the transactions in each group. In that case, the first
transaction of each groupisan Initial oneand all theremaining trans-
actions are transfers. But the logic behind the transactions in the
Metro Transit data set is not consistent with this purpose. Rather, in
the AFC data set, the transactions are grouped into 2.5-h intervals.
It can be assumed that this grouping isrelated to Metro Transit fare
policy: because each fareisvalid for 2.5 h, once a passenger paysfor
aninitia transaction, he or shecan usethe system (i.e., maketransfers)
free of chargefor thenext 2.5 h. So, inthat grouping method, thefirst
transaction of apersonisspecified asinitial and al other transactions
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that take place within 2.5 h are specified astransfers, regardless of the
actual passenger trip purpose.

In this section, to modify the use typein away to servethe purpose
of this study, an attempt is made to scan the spatial and temporal
attributes of the travelersin their successive transactions. With con-
sideration of these attributes, an attempt ismadeto infer the usetype
for each transaction. Figure 6 shows how the use type for atransac-
tion is modified on the basis of spatial and temporal characteristics
of the current transaction and the previous one.

As Figure 6 shows, the geographical and temporal coordination
of each transaction in relation to the previous transaction is studied.
With the alighting stop for the previous transaction and the board-
ing stop for the current transaction inferred in the first part of the
algorithm, the time—space relationship between the alighting and
boarding is now determined. Bus run times are also extracted from
the GTFS schedule data, and the departures on each route are consid-
ered astime-space pointsin Figure 6. Then, on the basis of spacing
between the previous alighting stop and the next boarding stop, a
walking time (W) for the traveler to reach the boarding location is
calculated. Also considered isapossible delay (D) dueto any setback
in alighting or walking or from minor activitieslike buying anews-
paper, coffee, or thelike. From astart at the alighting time, and with
addition of the walking time and the estimated delay, atime point,
txc (the time from which the boarding stop becomes accessible for
the passenger), isinferred. Thecriteriafor understanding usetypefor
the transactions are based on (a) the number of busrunsin thetime
interval from t, to the actual boarding (transaction) time and (b) the
time between the estimated arrival time at the boarding stop and
the actual boarding time (L).

Similar to the way transfer time criteriawere applied by Hofman
and O’ Mahony (14), an upper bound (L,,) of 90 min on L for the
transfer transaction have been chosen. In addition, under the assump-
tion of aminimum duration of 30 minfor an activity, alower bound
(Low) of 30 minonL for theinitial transactions has been considered.
These criteriamean that onetransaction will beinterpreted asinitial
when the calculated L is greater than 90 min and as transfer when
the calculated L is less than the minimum expected time for an
activity (30 min). When the calculated L for atransaction isbetween
30 and 90 min, the number of opportunities Nop» availableto the pas-
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senger for boarding between the estimated arrival time (t,) and the
actual boarding time determines the use type. If Nope < 1, the use
typeisinferred to be transfer; otherwise, it isinferred to be initial.
In other words, an Nope > 1 meansthat the passenger did not board the
first accessible bus and implies that an activity has likely occurred
before boarding. Through application of these criteria, in the model
output with 33,514 transactions, atotal of 2,415 transactions previ-
ously (in AFC) recorded astransfers were inferred to beinitial, and
118 transactions previously recorded as initial were inferred to be
transfer.

The combination of the criteriaon L with the criterion on Nggpisa
major contribution of thisstudy that hel psin the consideration of the
bus schedule along with the transfer time thresholdsin understanding
the use type.

Final Refining and Outputs

Oncetheusetypefor all thetransactionsis determined, the transac-
tionsof anindividual can bedivided into different groups. Each group
will represent aunique (linked) trip and will haveaunique O-D. Each
group consists of aninitial trip and the dependent transfers (if any).
In the output of the algorithm, some transactions exist for which no
trip ID, boarding stop, or alighting stop isfound. These transactions
arelabeled excluded in the algorithm. Inthefinal refining step, these
transactions are excluded, as are all transactions in the same group
with them.

A typical assumption about the AFC system isthat thefareiscol-
lected from passengerswhen they board. But for some routes (mostly
in express routes originating from the central business district or
park-and-ride centers), thefareis collected when passengers alight.
Because no information about the bus routes with this characteristic
was accessi ble, suspicious records were eliminated from the output
of themodel on the basis of thefollowing criteria. Thesetransactions
show up in the output with extremely short in-vehicle travel times
and with the inferred destinationsin the same geographical location
astheorigins. Inthefina refining, thetransactionsusing expressroutes
for which theinferred alighting was just one stop from the boarding
stop were eliminated.

VW Scheduled Bus Departures

FIGURE 6 Understanding use type.
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The total number of the transactions for which the boarding and
the alighting stops were found was 51,273, and the total remaining
after the final refining was 33,514, which represent 28,260 groups
(linked trips). In the output for each of these 28,260 linked tripswas
an estimated O-D stop pair, which was inferred from the boarding
stop on the first leg of the trip and the alighting stop on the last leg
of thetrip.

Verification of Outputs by Joining AFC
with APC-VL Data

After the algorithm was applied and the boarding and aighting stops
for each transaction were found, the results were compared with a
sampledataset consisting of joined AFC-APC-VL data. By usingthe
sampledata, it was possibleto find thetrip that each person had taken,
that person’s boarding stop, and the correct route direction. In this
case, the inferred boarding stop from the algorithm was compared
with the boarding stop (if any) found in the merged AFC-APC-VL
data, and any possible mismatch could be detected. For the data
from Metro Transit, the algorithm resulted in 51,273 transactions,
and the rest of them were labeled excluded. The number of records
inthematching APC-VL samplewas 10,886, which was21.2% of the
available AFC transactions. For 1.6% of the sample data, the direction
was inferred incorrectly. These cases were considered the wrong
output because the alighting stop would also beinferred incorrectly.
The most likely reason for the mismatch was that another mode
might have been used between two successive transactions, and the
transaction point of the second transaction led to selection of the
wrong direction and awrong alighting point for thefirst transaction.
In 2.9% of sampletransactions, although the inferred direction was
correct, the inferred boarding stop was not correct (there was no
boarding record in the APC-VL datafor that stop). The point here
isthat, for these transactions, the correct direction was selected and
it led to the correct aighting stop. For most of these cases (298 of
325 transactions), it was observed that the algorithm’ s selected stop
wasthe neighboring stop to the correct one, as noted inthe APC-VL
data. Theresultsof the verification analysisarerepresentedin Table 2.
In conclusion, though, the algorithm gave reliable output (correct
boarding stop and correct direction) for more than 98% of transactions.

Output Summary

To provideabrief summary of the algorithm’ soutput, the estimated
O-D were aggregated for the geographical anaysis. Figure 7 presents
the O-Dsfor themorning (6 to 9 am.), midday (9 am. to4 p.m.), and
afternoon (4 to 7 p.m.) periods. The origins (morning) and destina-
tions (afternoon) seem to be symmetric, which suggeststhat fare card

TABLE 2 Verification of Model Output in Comparison
with APC-VL Sample

Number of

Transactions Percent Description

10,886 100.0 Matching sample available

10,388 95.4 Verified

325 29 Direction is verified, boarding stop is not
298 2.7 Neighboring stop

7 0.2 Not neighboring stop

173 16 Direction is not correct
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holders' trips begin and end at the same locations. During midday,
many internal trips within downtown were observed.

Alternative Submodel for Finding Stops
and Trip ID

In the proposed model, once the nearest stop to the location of the
transaction is chosen asthe boarding stop, the most probabletrip ID
istaken and the alighting stop isinferred afterwards. But some cases
may exist in which, because of thelevel of GPSaccuracy inthe AFC
data, the nearest stop is not where the transaction has actually hap-
pened. Especially when the stop in the opposite direction of the bus
route isright across the street from the presumed boarding stop, the
GPS may lead to awrong inference of the stop for boarding in the
opposite direction. Such casesin the base algorithm, in the process of
distance check, automatically get excluded from the output regardliess
of whether the boarding stop might be incorrectly inferred.

To manage these cases better and increase the number of trips
identified, an alternative algorithmis proposed. If thefirst algorithm
does not output the boarding and alighting stops for a transaction
(i.e, the proximity checks do not hold for the inferred stops), before
the transaction gets excluded, the alternative algorithm relaxesthe
search among the stops in the other direction and finds the stop
nearest the transaction location. Then, thetrip ID for this transaction
is chosen and the alighting stop inferred. If the inferred alighting
stop isin an acceptable vicinity of the passenger’ s next transaction,
the inferred boarding and alighting stops are confirmed.

After this alternative algorithm was applied to the data set, the
total number of inferred transactionsincreased from 51,2730 55,714.
The difference between the output of the alternative algorithm and
the base algorithm is due to consideration of the opposite direction
in the procedure for inferring the boarding and alighting stops. This
consideration is another contribution in this study.

The main advantages of this alternative algorithm are that it
(a) increasesthe size of output, (b) detectsthe casesin which the use
of GPS would otherwise lead to an incorrect boarding stop, and
(c) eliminates any possible biasresulting from the exclusion of these
cases from the output.

This model was also applied to the AFC data, and the outputs
were generated. However, verification of the outputs, based on their
being compared with APC-V L data, was not encouraging versusthe
baseagorithm. Thetotal not-correctly-inferred transactions, for which
the direction of the inferred trip ID does not match the direction in
the matching sample, increased from 1.6% in the base algorithm to
about 4.3% in the alternative algorithm.

SENSITIVITY ANALYSES

Some assumptionswere made for the parameters of themodel inthe
previous section. In this section, asensitivity analysisisdoneon the
parameters for the proposed model. This analysis consists of two
parts. First, achangeis madein the parametersin thefirst part of the
algorithm including the boundaries for the maximum boarding dis-
tance and alighting distance, D, and D, respectively, and the average
time shift, C, between the transactionstimes and the scheduled arrival
times. For these parameters, the results can be compared with the
merged AFC-APC-VL sample data to decide which values give
better results. Second, the second part of the algorithm that deals
with the use type inference is analyzed. For parameters of this part,
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FIGURE 7 Geographical analysis of (a) morning origins, (b) morning destinations, (c) midday origins, (d) midday
destinations, (e) afternoon origins, and (f) afternoon destinations.
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TABLE 3 Sensitivity Analysis on Parameters in First Part of Proposed Model

C(s

39 54 69
D, (miles) 0.25 0.1 0.1 0.25 0.1 0.1 0.25 0.1 0.1
D, (miles) 0.5 0.5 0.25 0.5 0.5 0.25 0.5 0.5 0.25
Number of transactions with inferred boarding and 51,940 51,264 46,417 51946 51,273 46410 51,943 51,269 46,398

alighting stops

Percentage of transactions with wrong inferred direction 17 16 11 17 16 11 17 17 1.2

including the lower bound of the initial trip waiting time, L., the
upper bound of transfer waiting time, L,,,, and the possible access
delay, D, there is no source for verification. So the objective of the
analysis for these parametersis to see whether the proposed model
is sensitive to these parameters.

Different values for parameters of thefirst part of the algorithm,
including D4, D,, and C, are chosen, and the model is run for each
combination. Then, a verification analysis (like that shown in the
section on methodology) is done, and the percentage of unaccept-
ableresultsis calculated (see Table 3). Results show that the model
isnot sensitive to Parameter C, and the output does not change sig-
nificantly with slight changesin this parameter. Thisinsensitivity is
mostly dueto thelarge headwaysin thetransit system. But changing
Parameters D; and D, slightly affects the outputs. The best results
are gained by using 0.1 and 0.25 mi for D, and D, respectively, on
the basis of the number of transactions with an incorrectly inferred
direction. But these values decrease the total number of accepted
transactions by 5%. In conclusion, because the model isnot extremely
sensitiveto these parameters, the chosen valuesfor D, and D, (0.1 and
0.5 mi, respectively) seem to be reasonable.

The second part of the sensitivity analysis is on the parameters
affecting the use type inference, including Lo, L., and D. Different
values were chosen for the parameters, and the percentage of trans-
actions inferred as initial over all remaining transactions, after the
final refinement was applied, was calculated. Investigated were val -
ues of (@) Loy from 20 to 40 min in 10-min increments, (b) L, from
60 to 120 min in 30-min increments, and (c) D from 0to 20 minin
5-min increments. Results showed that the model was not sensitive
to these parameters because, over al the combinations, the percentage
of transactionsinferred asinitial ranged from 84.5% to 86.2%.

CONCLUSIONS AND FUTURE WORK

By using AFC, GTFS, and APC-VL, amodel was created to infer
boarding and alighting stops as the route direction was considered.
Application of the model to the data set found appropriate boarding
and alighting stops for 51,273 of 84,413 transactions (gleaned from
an initial 90,154). Then by application of some criteria to detect
transfers, the use type of each transaction was understood. In the
final refining process, thefinal output size decreased to 33,514 trans-
actions, which belong to 28,260 (linked) trips. By comparison with
an AFC-APC-VL matching sample of 10,886 transactions, the output
of the main model was verified in more than 98% of transactions.
An alternative model was also established during this study, and
it improved the algorithm by increasing the number of outputs; the
improvement resulted from consideration of both directions of each
route. But on the basis of the accuracy of the inference, the main
model was preferred. Although at issue is exclusion of the transac-

tionsthat have been guessed to beincorrectly inferred by the proposed
model, which decreasesthe output size, atrade-off existsbetweenthe
output size (quantity) and itsaccuracy (quality). The choice depends
ontheresearcher’ s perspective of how to approach thisissue because
(a) itisdifficult to capture al travelers’ behaviors accurately and
(b) the data may have some inconsistencies with the trip-chaining
assumptions. Finally, a sensitivity analysis was performed for the
parameters used in both parts (finding the stops and understanding
the use type) of the model, and this analysis showed that the model
isnot sensitive to any of the parameters.

The outcome from this research can lead to related work. First,
the O-D estimation can be extended to include accessibility by using
walking distance-time to the boarding and alighting stops. This
stop-level O-D estimation should be expanded to azone- or parcel-
level O-D estimation because the activities do not originate from a
stop but from home or attraction points. Second, asthe stop-level O-D
and its possible paths between O-D stops are secured, it is possible
to set up autility model and empirically estimate apath choice model.
Third, threshold estimation, especially for transfers, is another
promising future research areathat considerstrip length—travel time
distribution. In the main model, 30- and 90-min thresholds were
applied for detecting transfer behavior. It should be possibleto adjust
the static boundary in accordance with network configuration and
transit passenger behavior. Fourth, a comparison with other cities
that usethe smart card system isanother areafor additional research.
Asmore ADC systemsare put into service globally, comparisons of
different ones can provide interesting work.
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