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Abstract. Distributed systems are increasingly built using distributed
object or component middleware. The dynamic behaviour of those dis-
tributed systems is influenced by the particular combination of middle-
ware synchronisation and threading primitives used for communication
amongst distributed objects. A designer may accidentally choose combi-
nations that cause a distributed application to enter undesirable states
or violate liveness properties. We exploit the fact that modern object and
component middleware offer only a small number of underlying synchro-
nisation primitives and threading policies. For each of these we define a
UML stereotype and a formal process algebra specification of the stereo-
type semantics. We devise a means to specify safety and liveness proper-
ties in UML and again map those to process algebra safety and liveness
properties. We can thus apply model checking techniques to verify that
a given design does indeed meet the desired properties. We propose how
to reduce the state space that needs to be model checked by exploiting
middleware characteristics. We finally show how model checking results
can be related back to the input UML models. In this way we can hide
the formalism and the model checking process entirely from UML de-
signers, which we regard as critical for the industrial exploitation of this
research.

1 Introduction

Distributed software architectures prescribe the composition of software compo-
nents intended to be deployed on a distributed system. There is an increasing
trend of developing software applications based on distributed architectures.
Increased overall system availability through better fault tolerance, parallel ex-
ecution of an application and a simplification of scalability are some of the key
motivators behind the popularisation of distributed architectures.

The direct use of networking primitives or proprietary technologies for the
development of distributed applications is no longer a viable option. Such ap-
proaches stifle application maintainability and ease of interoperability with other
applications developed with proprietary technologies. Instead, open object and
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component middleware technologies, such as CORBA [26] and Enterprise Java
Beans [22], are rapidly becoming the preferred approach for the development of
distributed systems.

These middleware approaches attempt to hide the complexity of distribu-
tion and aspire to provide developers with the ability to invoke operations on
remote hosts in the same way as they would invoke local methods. While they
succeed in many respects, there are some fundamental differences between local
and remote method invocations [2]. One such difference is the inherent parallel
execution of objects or components that reside on different machines. A local
method call can recursively call itself, possibly indirectly via some other meth-
ods, and will not cause any problems as long as the recursion terminates at
some stage. Recursion of distributed objects may however cause deadlocks. Due
to the non-determinism introduced by components that execute in parallel, it
is considerably more complicated to develop safe distributed applications than
centralised applications.

Software engineers can now use these powerful middleware technologies for
the implementation of distributed systems. The implementation support, how-
ever, needs to be complemented with appropriate architecture and design meth-
ods that address the new challenges that are introduced by the use of distributed
object and component middleware. In particular, software engineers need sup-
port for reasoning about the correctness of a distributed object design that goes
beyond the diagram drawing capabilities offered by current CASE tools.

In this paper we show that the use of particular combinations of client-side
synchronisation primitives and server-side threading policies provided by most
distributed object middleware may cause deadlocks as well as safety and liveness
problems. We discuss a method to support the software engineer in detecting
violations of desired system properties in their distributed object designs. We
exploit the fact that object and component middleware standards and imple-
mentations only offer a fixed number of client-side synchronisation primitives
and server-side threading policies. We suggest the use of UML stereotypes to
represent each of these primitives in distributed object designs. We define the
semantics of the stereotypes using a process algebra. We use that semantics to
translate UML models and properties into behaviourally equivalent process al-
gebra representations and can then use model checking techniques to detect any
violations of the properties. Finally, we demonstrate how model checking results
can be related back to the original UML design model. We present the tools
that we have built in support of this method and evaluate the scalability of our
validation technique.

In the next section, we discuss a scenario that we use throughout this paper
to exemplify the problems that we address, as well as our solutions. Section 3
gives details of how UML stereotypes are used to model the identified synchroni-
sation characteristics of a given system and includes UML models of the example
scenario. Section 4 shows how designers can express desired safety and liveness
properties in UML for the design models to adhere to. Sections 5 and 6 use a pro-
cess algebra to define the semantics for the identified synchronisation primitives



and threading policies as well as user-defined safety and progress properties. In
Section 7, we demonstrate the importance of tackling the state explosion prob-
lem and outline our efforts in that area. In Section 8, we show how deadlocks and
safety property violations can be detected using reachability analysis as well as
the use of efficient graph algorithms on the underlying state space for the detec-
tion of a restricted form of liveness properties. Section 9 shows the mechanism
by which designers receive feedback from the verification process. We discuss the
scalability of our approach in Section 10. Section 11 introduces the tool that we
have built to support our approach, with focus on its design and architecture.
Section 12 puts our work in context with related research in the field. Finally,
we conclude in Section 13 and present future goals for this research.

2 Motivating Scenario

To aid the demonstration of this work, we discuss an example of a distributed
software architecture, which we assume is implemented using object middleware
technology. We refer to this scenario throughout the paper to demonstrate the
key steps of our approach.

The example that we use is a stock trading system, which in practice is often
distributed as different market participants interact from different locations with
servers that are hosted by a stock exchange. In particular, traders need to interact
with a component that executes orders when a transaction is completed. Every
completed transaction at the same time determines a new price for a stock that
needs to be communicated to all interested market participants.

Trader A Update

Trader B Update

Trader C Update

Notification
Server

Trader C

Trader B
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EquityServer

Fig. 1. Market Trading Scenario



Fig. 1 depicts the main components of the stock trading system and the
communication channels between them. To keep the scenario simple, we only
concentrate on the three types of entities responsible for communicating trade
information, since it is these entities that determine the dynamic synchronisa-
tion behaviour of the application. We do not make any assumption about the
infrastructure of the system, except that their hosts are connected by a network
and that they communicate via object-oriented middleware.

Market traders carry out transactions and monitor fluctuations in various
stock prices. Triggered by changes in prices or external requests from customers
to deal in particular stock, a Trader will enter a new transaction and send its
results to the EquityServer. Fig. 1 shows three traders sending updates to the
EquityServer. Note that the Trader entity could in reality consist of multiple
components but for all intents and purposes of this scenario it is viewed as a
simple entity that can send and receive information.

Upon receipt of trading information the EquityServer will carry out specific
computations based on the received data and other sources, such as stock pro-
files stored in a database. At a certain point the EquityServer will complete
processing the transaction results and use this data to feed new price informa-
tion to all traders. To do so, the EquityServer sends an updated price to the
NotificationServer, which, in turn, publishes the price to registered traders.
The delegation of the task to the notification server simplifies the EquityServer

and minimises coupling. We assume that all traders have registered with the
NotificationServer during initialisation and that communication channels are
already established.

Communication between all entities in the system follows the push model. In
this model information flows in one direction and is initiated by the source. In
our example the sink end always reacts by forwarding information to the next
entity. This creates recursion, whereby a Trader component calls an operation
from the EquityServer, which calls an operation from the NotificationServer

and this, in turn eventually calls back the Trader to notify it of a new price. If
all these operations are called in a synchronous manner and servers are single
threaded, we will reach a situation where all the components are blocked waiting
the reception of information from one another, thus entering a deadlock.

Additionally, there are several domain specific properties that the designer
may want the trading system to adhere to for the successful execution of the
application. If we consider a closed market, prices are not changed in any other
way than traders completing a transaction. This means that prior to any new
prices being sent by the NotificationServer, traders need to send trade results to
the EquityServer entity. Another desirable property is the guarantee that traders
will be able to deal in stocks, no matter what the state of other components.
Devising a means of representing these properties in a suitable notation and
being able to verify a design model for such properties is the main theme of this
paper.



3 Distributed Object Design

We use the Unified Modelling Language [29] for designing the static export inter-
faces of distributed object types and their dynamic object interactions. UML is
widely accepted and deployed in industry and we hope to leverage its popularity
to bring our research results into industrial practice. UML is a self-descriptive
notation, in that its entities are defined via meta-model expressed in UML. The
consequence of this approach is a lack of formal semantics for the notation,
which is needed for rigorous verification of a design model. The UML standard
also provides extension-mechanisms by which new semantics can be introduced
into a model, whilst still remaining within the UML framework. This section
describes how our approach uses the stereotype extension mechanism for em-
bodying middleware specific information into UML design models.

Initially we chose UML class and interaction diagrams to model a given
system [16]. This resulted in the system being represented at a type level of
abstraction through class diagrams and an instance level of abstraction through
interaction diagrams. The use of interaction diagrams limited us in obtaining
only one specific interleaving of interactions between objects. This clearly did not
take full advantage of the exhaustive search powers of model checking techniques.
In this paper, we use UML state diagrams [10] rather than interaction diagrams
to model the dynamic behaviour of distributed objects. Statecharts maintain
the ability to model dynamic behaviour but because they model the behaviour
at a type-level of abstraction they also hold all possible interleaving of object
interactions in a given system.

The behaviour of distributed object interactions is governed by synchronisa-
tion and threading policies. We note that current distributed object and com-
ponent middleware systems support a fixed number of such synchronisation and
threading primitives. OMG’s CORBA, Microsoft’s Component Object Model
(COM) and Java Remote Method Invocation (RMI) all support synchronous in-
vocations, which block the client until the server returns the result. CORBA also
supports deferred synchronous, oneway and asynchronous invocations. Server
objects, similarly, only support a small number of threading models. CORBA’s
Portable Object Adapter defines single-threaded behaviour, which would force a
client to wait while a server object is busy processing another request and multi-
threaded behaviour, which is often implemented by spawning new threads for
requests or by selecting a thread from a thread pool. RMI only directly supports
single threaded behaviour, but server programmers can use Java’s threading
primitives to construct multi-threaded behaviour on top of this.

As the synchronisation and threading behaviour is of great importance for
the overall design of a distributed object system, we believe that they should be
captured in static and dynamic design diagrams. CORBA provides a superset
of the synchronisation primitives and threading policies of COM and RMI. We
subsequently define stereotypes for all the primitives that CORBA provides.
These primitives can then be used during the design of applications based on
other distributed object and component technologies too. Our approach therefore



caters for design and property violation detection of all applications based on
mainstream object and component middleware.

Recent advances in middleware technology have brought about component
middleware technologies such as Enterprise Java Beans and the CORBA Com-
ponent Model (CCM). Components representing business logic are hosted in the
middleware’s container. Component middleware technologies use existing object
middlewares for establishing communication between components. For exam-
ple EJB communication is achieved via RMI and CCM communication is done
through CORBA. Therefore by providing semantics for the primitives of the un-
derlying object middleware technologies we cater for the component middleware
technologies as well.

The 〈〈synchronous〉〉 stereotype represents a synchronous request primitive,
while the 〈〈deferredsynchronous〉〉 stereotype is used to indicate a deferred-
synchronous request being made on a server object. The 〈〈asynchronous〉〉 stereo-
type is used to indicate an asynchronous client request, and a 〈〈oneway〉〉
stereotype represents a oneway request. Similarly on the server-side, we de-
fine the 〈〈singleThreaded〉〉 stereotype to indicate that a particular server object
uses a single threaded policy to deal with incoming service requests and the
〈〈multiThreaded〉〉 stereotype shows that the server object handles multiple con-
current service requests by using multiple threads. We will specify the semantics
of these stereotypes formally in Section 5.

NotificationServer
<<progress>> receiveEquityData()
addTrader()
removeTrader()

<<singleThreaded>>

Trader
<<progress>> receiveServerUpdates()

<<singleThreaded>>  myUpdateServer

subscribers

EquityServer
<<progress>> receiveTraderUpdate()

<<singleThreaded>>

notifier

equityServer
 myEquityServer

traders

Fig. 2. Class diagram of Market Trading Scenario

Server-side threading policies are defined statically for object types. We there-
fore model those in the class diagrams that capture the export interfaces of object
types. As an example, Fig. 2 shows a class diagram of the equity trading system.
Each of the classes correspond to one of the three entities in the example scenario
of Section 2. Each class is annotated with the 〈〈singleThreaded〉〉 stereotype, indi-
cating that they handle one incoming request at a time. As previously mentioned,
this is the default threading policy in all mainstream middleware. Each class has
a method responsible for receiving stock related information. This method is re-
motely invoked by an object of another class in order to push information to the
recipient. Method receiveTraderUpdate() in the EquityServer class, for instance,
is invoked remotely by an instance of the Trader class in order to pass any trading



activity reports. Likewise, method receiveServerUpdates() of Trader is invoked
by an object of type NotificationServer to pass the EquityServer updates.

Synchronisation of remote operation invocations is a dynamic aspect and
as such we define them in state diagrams. We use the synchronisation stereo-
types mentioned above in those transitions of statecharts whose actions cor-
respond to remote operation invocations. The statechart of the EquityServer

in Fig. 3 initially starts in the idle state. After receiving a request for its
exported receiveTraderUpdate method, it moves to state update. The action
notifier.receiveEquityData that takes place whilst moving from update to
updates completed is marked with a 〈〈synchronous〉〉 stereotype. This corre-
sponds to a request invocation upon the receiveEquityData method of the
NotificationServer class in Fig. 2. Notice that the action name contains the
name of the association-end used in the class diagram. From this information
we can deduct that an EquityServer object requests a remote synchronous op-
eration from a single-threaded NotificationServer server object. Finally, the
EquityServer goes back to the idle state causing a reply to be sent back to the
Trader instance who sent the updates. If a state diagram contains actions indi-
cating receiving an operation request then the designer must also indicate the
point at which a reply is sent back to the client object. An example of this is
the receiveEquityData and receiveEquityData reply actions in Fig. 3.

idle

update

updates 
completed

  notifier.receiveEquityData()
<<synchronous>>

 

 receiveTraderUpdate_reply

receiveTraderUpdate
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Fig. 3. EquityServer Statechart

Fig. 4 shows how the NotificationServer can register and unregister
traders whilst in the idle state. Requests to be added or removed from
the subscription list is replied to immediately via the addTrader reply and
removeTrader reply methods respectively. Upon reception of update instructions
from the EquityServer it moves into the sending state. It then continually sends
updates via the traders.receiveServerUpdates action, until all traders have been
notified. This action is marked with the 〈〈synchronous〉〉 stereotype. Similarly to
the EquityServer case, we can deduce that instances of the NotificationServer

class invoke the remote synchronous method receiveServerUpdates on Trader

objects. The object re-enters the idle state upon updating all traders.
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addTrader - addTrader_reply
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Fig. 4. NotificationServer Statechart

Fig. 5 shows the statechart for the Trader class. A trader processes a new
transactions whilst in the trading state. It then sends the results of the trade
to the EquityServer using the myEquityServer.receiveTraderUpdate action. This
action is marked with a 〈〈synchronous〉〉 stereotype, indicating that invocations
made to instances of type EquityServer are synchronous. After replying to the
receiveTraderUpdate event the object returns to state idle.
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Fig. 5. Trader Statechart

Although class diagrams and state diagrams depict the static and dynamic
characteristics of a system respectively, they both operate at a type-level of ab-
straction. In the case of distributed software architecture, it is often necessary
to include instance-level designs as well. This is because the wide ranging dy-
namic behaviour of a distributed system depends on deployment configuration
of an application and its environment. This also explains the need for component
instantiation primitives in popular Architecture Description Languages such as
Darwin [19].

Our initial solution for the inclusion of instance-level information was to
derive it from the cardinality of association ends in class diagrams. This method



was found to be infeasible for two main reasons. Firstly, the derived instance-
level information depicts all potential instances of a class being connected to all
other instances of its associated classes. We found that this is rarely the case
in real applications. Secondly, cardinalities with an infinite nature such as one-
to-many and many-to-many cannot be mapped to the category of finite-natured
formal specifications that we would like to use. Moreover at run-time there will
only exist a finite number of instances in a distributed system and by specifying
this at design time one captures a more accurate description of the system.

Our revised solution replaces the class diagram cardinality information with
UML object diagrams. These characterise component instances and their connec-
tors in the deployed distributed software architecture. This approach addresses
the two mentioned problems and has some additional advantages: UML object
diagrams allow designers to model different run-time configurations of an ap-
plication, which can be automatically verified against a given set of safety and
liveness properties. Moreover, designers gain flexibility as they can verify differ-
ent run-time configurations of an application without any modifications to the
state or class diagrams. Deployment diagrams were not considered for this pur-
pose as they force designers to indicate matters such as location and different
types of resources, which are of no use to our approach and furthermore break
some of the transparencies that middleware technologies aim to provide.

equityServer1:EquityServer notifier1:NotificationServer

trader1:Trader

trader2:Trader

notifier
equityServer

myEquityServer

myUpdateServermyEquityServer

myUpdateServer

subscribers subscriberstraders traders

Fig. 6. Distributed Equity Trading System

Fig. 6 shows the deployment of the Distributed Equity Trading System Archi-
tecture using an object diagram. The run-time configuration of the application
consists of two distributed Trader objects and one distributed EquityServer and
NotificationServer object. The connectors are shown as links in the object dia-
gram and reflect the association instances that exist between objects. Each link
holds the names of the association-ends of its respective association. This is done
to prevent any ambiguities in the case of having multiple associations between
classes. In distributed object programs, these connectors would be implemented
using distributed object references, which a client needs to request a remote
operation execution.

In order to reconfigure the architecture to reflect, for example, that two
equity markets work in conjunction with each other, we could reconfigure this
architecture by sharing the same NotificationServer object but include a second
EquityServer object. This would then be achieved by connecting notifier1 in



Fig. 6 with the new EquityServer object (equityServer2) and having new Trader

objects linked to the equityServer2 instance.

4 Property Specification

Our prior work in the area of reasoning about distributed object architectures
concentrated on the detection of potential deadlocks [17]. Deadlocks are a com-
mon source of errors in distributed applications. The absence of deadlocks is a
necessary, but not sufficient criterion for the behavioural correctness of a dis-
tributed software architecture. Designers might want to specify more general
safety and liveness properties. A safety property defines that no undesirable be-
haviour will be exhibited during the execution of a system, while a liveness
property determines the desirable actions that will eventually be executed.

Unlike for absence of deadlocks, designers need to provide the assertions for
safety and liveness properties, as they are specific to a particular distributed
application. Traditionally notations such as Linear Temporal Logic [28] have
been used to express these properties. The main drawback of this logic is the
high level of expertise and fluency in formal notations that is required from a
designer. Thus, such an option would break the formal specification transparency
that our approach offers to designers. For these reasons we provide the designer
with a technique of expressing desired properties in UML notation. There has
been some research [23] carried out in order to create new categorisations of
properties. However, for the purposes of our approach and the properties that we
would like to offer the traditional safety and liveness classifications are sufficient
and as we cannot benefit from different categorisation, we have based our work
on well-understood conceptual foundations.

4.1 Safety Properties

We support the specification of safety properties for distributed object designs
based on action orderings as these are more intuitive for the distributed system
designer than the reachability of states. This is because the parallel execution
of objects and components causes a large number of potential states many of
which are implicit and not directly evident to designers. Moreover the notion of
actions map nicely to operation invocations, which are the means of interaction
in object middleware.

As was discussed above, the designer provides a UML state diagram for
each object type in order to model the behaviour of instances of that type.
Thus the order and occurrence of actions within a single UML state diagram
govern the behaviour of individual instances. Using safety properties, we can
determine whether the behaviour that is modelled locally in objects respects
global correctness criteria.

We define safety properties by asserting global constraints on the order in
which remote operation invocations may occur. We propose the use of state
diagrams to determine these action ordering. We refer to these diagrams as



safety state diagrams in order to distinguish them from those that determine
object behaviour.

In order to define the intuitive meaning of these safety statecharts, we need to
introduce the notion of traces and alphabets. A trace is a sequence of distributed
operation invocations that is permitted by the state diagrams that govern the
behaviour of individual distributed objects. A single element of a trace is an
action, which we label with the name of the invoked operation. The set of op-
eration names used in the union of all possible traces is called the alphabet of
the distributed object system. Given a subset S of a distributed object system’s
alphabet A, we may restrict a trace of the system with S by deleting any actions
that denote operations that are not in S.

The union of operation names that annotate transitions in a safety state
diagram will be a subset of the system’s alphabet. When checking for a safety
property, we would like to ascertain that any trace of the distributed system
restricted to the alphabet used in the safety state diagram is identical to the one
described in the safety state diagram.

1

2

EquityServer.receiveTraderUpdate

0

Trader.receiveServerUpdates

NotificationServer.receiveEquityData

Fig. 7. Safety Property with Types

Fig. 7 shows a safety property for the scenario example discussed in Sec-
tion 2. The purpose of the property is to ensure that trade activity is generated
before any updates are sent to the traders. This property states that all possible
execution traces of the application should respect the below recurring pattern
in the given order:

1. An instance of the EquityServer class must receive a receiveTraderUpdate

request
2. Next an instance of the NotificationServer class must receive a

receiveEquityData request
3. Next an instance of the Trader class must receive a receiveServerUpdates

request. Back to step 1.



The alphabet of the Trading system is the union of traces obtained from the
interaction between all instances of the EquityServer, NotificationServer and
Trader classes. In the case of the above safety property we have introduced a
subset of the alphabet which needs to be matched by all traces obtained from
any interaction. This safety alphabet consists of the actions shown in Fig. 7
enumerated over the instances of the corresponding types, obtained from the
object diagram of Fig. 6.

In Fig. 7, the operation names are preceded by class names. The meaning
of that construct is that we offer a non-deterministic choice of any objects that
are instances of that class. There may be situations, however, where designers
want to express safety properties for particular objects. Thus, we also support
the enumeration of sets of object names from the object diagram that describes
the distributed system architecture.

Fig. 8 demonstrates this by specialising the safety property in Fig. 7 by
only including the trader1 object. In general, designers simply wrap a comma
separated list of objects in curly braces to indicate that the property targets
certain instances instead of all instances associated with a class.

1

2

EquityServer.receiveTraderUpdate0

NotificationServer.receiveEquityData

{trader1}.receiveServerUpdates

Fig. 8. Safety Property with Objects

By supporting the safety properties using action ordering we enable designers
to express various higher level properties specific to a distributed application,
such as mutual exclusion.

4.2 Liveness Properties

The focus of liveness properties is on the continuity of the execution of an appli-
cation i.e. that a specific set of actions eventually happen. We currently support
the progress property as defined by Magee and Kramer [20]. Intuitively, progress
means that that it is always the case that an action from a given set will even-
tually be executed. Progress evaluates to the temporal logic property of ”always



eventually” Using progress properties, we can detect livelocks in application de-
signs.

NotificationServer
<<progress>> receiveEquityData()
addTrader()
removeTrader()

<<singleThreaded>>

Trader
<<progress>> receiveServerUpdates()

<<singleThreaded>>  myUpdateServer

subscribers

EquityServer
<<progress>> receiveTraderUpdate()

<<singleThreaded>>

notifier

equityServer
 myEquityServer

traders

Fig. 9. Trading Order Liveness Property

We support the specification of progress properties by defining a 〈〈progress〉〉
stereotype that can be attached to operations of classes crucial to the progress
of the application. Fig. 9 depicts an example that adds progress properties to
the example scenario discussed in Section 2. In this case, we have identified that
the respective methods of each class responsible for circulating new and update
trade information are vital for the continuity of our application.

5 Formal Semantics of Stereotypes

Section 3 demonstrated our approach in producing annotated UML models of
a distributed application. In order to make firm and accurate deductions about
the dynamic behaviour of such an application, our approach prescribes a map-
ping of the design model into a formal specification. The formal specification is
a description of when and in what way do parallel executing objects synchro-
nise with one another. The point of synchronisation is found by analysing the
state diagram of each object type. The method of synchronisation is derived by
detecting the client-side synchronisation primitive and the server-side threading
policy stereotypes specified for each interaction.

Process algebras represent mathematically rigorous frameworks for modelling
concurrent systems of interacting processes. We have chosen process algebras for
defining a formal semantics of our stereotypes over alternatives such as denota-
tional and axiomatic models due to their more powerful model of concurrency.
Process algebras allow for hierarchical description of processes, a valuable fea-
ture for compositional reasoning, verification and analysis. The particular alge-
bra that we have chosen for defining the semantics of the stereotypes are Finite
State Processes [20] (FSP). We chose FSP because it is well-supported by a
model checking tool.

In our approach we have derived FSP specifications for all combinations of
client-side synchronisation primitives and server-side threading policies discussed
in Section 3. By analysing the input annotated UML model we obtain the specific



combination of synchronisation primitives and threading policies specified by
the designer. By mapping each detected combination with its corresponding
formal semantic and by finally composing all the formal specification fragments
together, we obtain a formal specification of the overall application design.

There are two concepts that we commonly use across specifications of prim-
itives and threading policies. Firstly we insert into the system specification,
middleware-specific actions relating to the mediation of requests and results be-
tween a client and a server object. This is required for the correct modelling of
the system’s synchronisation behaviour. Secondly we directly support the notion
of instance-level modelling in the formal domain by reflecting the specification
from the object diagrams discussed in Section 3.

At a notation level there are two techniques that we use for the generation of
FSP specifications, namely synchronised actions and parallel composition. Each
FSP process is composed of a set of actions that occur in a specified and fixed
order. Parallel composition is used to describe a system with multiple concur-
rent processes, whereby the actions of the processes are interleaved. Therefore,
whilst the actions of individual processes still occur in a fixed order, we obtain
many different execution traces of the composite process. Note, that this di-
rectly reflects the concept of concurrent states in UML statecharts. Processes
can be forced to perform actions simultaneously in a lock-step fashion via syn-
chronised/shared actions. Actions with the same name are executed at the same
time; this achieves synchronisation between concurrent processes. Actions with
different names can be synchronised using the FSP relabelling mechanism. This
Section discusses these specifications in detail.

5.1 Synchronisation Primitives

A synchronous request blocks the client object until the server object processes
the request and returns the results of the requested operation. This is the de-
fault synchronisation primitive not only in CORBA, but also in RMI and COM.
Fig. 10 shows the FSP specification for a synchronous call. A central compo-
nent of any object middleware system is an Object Adapter(OA). The Object
Adapter is the key entity in middleware technology, in terms of orchestrating
the synchronisation between server objects and client requests. It is possible for
an object adaptor to be responsible for handling more than one server object.
However since there is no way of knowing this, our formalisation assumes the
extreme case of appointing an object adapter for each server object. The role of
an object adapter is directly mapped to the OA FSP process, which forms the
synchronisation between Client and Server processes. The OA process receives
requests sent by the Client process and relays them onto the Server process.
SynchInvocation is a composite process made up of the parallel composition of
the Client, Server and OA processes. It uses relabelling to synchronise the four ac-
tions of the OA process with the relevant actions in the Client and Server process.
For example the sendRequest action of the Client process is synchronised with
OA’s receiveRequest action, similarly the OA’s relayReply is synchronised with
the Server’s sendReply action. This simply indicates that a client must have sent



a request before the server sends back a reply. The overall execution of the com-
posite process follows the order set in the OA process, therefore implementing a
synchronous call.

Client=(sendRequest-> receiveReply-> Client).

OA=(receiveRequest->relayRequest->

receiveReply->relayReply->OA).

Server=(receiveRequest->processRequest->

sendReply->Server).

||SynchInvocation=(client:Client || serverOA:OA

||server:Server)

/{client.sendRequest/serverOA.receiveRequest,

client.receiveReply/serverOA.relayReply,

server.receiveRequest/serverOA.relayRequest,

server.sendReply/serverOA.receiveReply}.

Fig. 10. Synchronous Stereotype Semantics

With an asynchronous request control is returned to the client as soon as the
invocation has been sent. Results of the invocation are returned to the client by a
call-back mechanism invoked by the server. This means that the onus of directing
the results to the client is now on the server. Fig. 11 shows the FSP specification
for the asynchronous invocation method. Similarly to the previous case the OA

process mediates the synchronisation of the Client and Server actions. However,
in this case the client can engage in other actions infinitely often before it receives
a call-back invocation from the server, via the OA. This is indicated by the “...” in
the process, otherExecutions. This is made possible by the FSP choice operator
“|”, which introduces a non-deterministic method of executing alternate actions.

A oneway method invocation does not block because there is no reply by the
server. This offers an inexpensive way of invoking methods but offers no guar-
antees or indications as to whether the request has been received or processed
by the server.

5.2 Threading Policies

The primitives described in Section 5.1 were demonstrated in combination
with a single threaded policy. The multi-threaded policy, expressed using the
<<multiThreaded>> stereotype, allows for handling multiple requests simultane-
ously. There are several different methods of implementing this policy but all use
the common principle of delegating the request handling to threads. Threadpools
are a common implementation method, whereby new requests are delegated to
threads drawn from a threadpool. Once the request has been processed the



Client=(sendRequest->OtherExecutions),

OtherExecutions=(...->OtherExecutions |

callBack->receiveReply->Client).

OA=(receiveRequest->relayRequest->

receiveReply->relayReply->OA).

Server=(receiveRequest->processRequest->

sendReply->Server).

||ASyncInvocation=(client:Client || serverOA:OA

||server:Server)

/{client.sendRequest/serverOA.receiveRequest,

client.callBack/serverOA.relayReply,

server.receiveRequest/serverOA.relayRequest,

server.sendReply/serverOA.receiveReply}.

Fig. 11. Asynchronous Stereotype Semantics

thread is returned to the threadpool and is declared available again. If all threads
are busy at the time of a request arrival the request is put into a queue. In the
situation where the queue is also full the request is discarded. If the client is
expecting a reply from its operation request it will receive a generated system-
level exception. Fig. 12 defines the semantics of a server that uses a thread
pool policy. The total number of slave threads and queue slots are specified as
constants at the beginning. The server-side is composed of four processes, rep-
resenting the thread, threadpool, queue and the server. All server-side processes
are composed with the same label so as to synchronise their action. The Server

process uses two variables to keep track of the current size of the queue and the
number of threads currently in use. The server ReceiveRequest action indicates
the arrival of a client request. If there are any available threads the synchronised
action getFreeThread is taken which starts the ThreadPool process. This further
causes the Thread process to be initiated using the shared delegateTask action.
Once the request has been serviced the responsible Thread process engages in a
ReceiveReply. If the number of used threads has not reached the maximum the
server attempts to add the message to the queue. This addToQueue succeeds if
there are free queue slots left, otherwise the message is being rejected.

6 Formal Semantics of Properties

In order to automatically verify the generated formal specification of a system
against user-provided properties, we need to translate the expressed safety and
liveness properties into the process algebra domain. The property specifications
need to be in the same notation as the system specification. In this section we
discuss the generation and integration of property specifications expressed in
Section 4.



const PoolSize=16

const QueueSize = 10

range T=0..PoolSize

range Q=0..QueueSize

OA=(receiveRequest->relayRequest->

receiveReply->sendReply->OA).

Thread=(delegateTask->taskExecuted->sendBackReply->Thread).

ThreadPool = ThreadPool[0],

ThreadPool[i:T]=

if (i<PoolSize) then

(getFreeThread->delegateTask->ThreadPool[i+1]

| taskExecuted -> ThreadPool[i-1])

else (noFreeThreads -> ThreadPool[i]).

Queue = Queue[0],

Queue[j:Q]=

if(j<QueueSize)then(inspectQueue->

if(j>0) then (dequeueMessage->Queue[j-1]

| addToQueue[j]->Queue[j+1])

else(addToQueue[j]->Queue[j+1]))

else (rejectMessage -> Queue[j]).

Server = Server[0][0],

Server[i:T][j:Q]=(receiveNewRequest->

if(i<PoolSize) then

(getFreeThread->Server[i+1][j])

else (noFreeThreads->

if(j<QueueSize)then

(addToQueue[j]->Server[i][j+1])

else (rejectMessage->Server[i][j]))).

||MTSystem=(oa:OA||server:Server||

server:ThreadPool||server:Thread||

server:Queue)

/{server.receiveNewRequest/oa.relayRequest,

server.sendBackReply/oa.receiveReply}.

Fig. 12. Semantics of Multi-Threaded Stereotype



6.1 Safety Property Semantics

In order to generate FSP to model the system at an object level of granularity
we must refer to the object diagram. Fig. 13 shows the corresponding generated
FSP process algebra for the safety property specified in Fig. 7. The class names
in the transitions are replaced by a list of instance names obtained from the
object diagram.

For example the server class name on the first transition is EquityServer.
Consulting the object diagram shows that the list of instances of this class con-
tains only one element, equityServer1. By further consulting the state and object
diagrams we determine the list of client objects that are linked to and invoke
operations from equityServer1 – trader1 and trader2. We can now construct the
FSP action by combining the names of the clients, the server and the operation.

property SFY= ({trader1,trader2}.equityServer1.receivetraderupdate->S1),

S1=({equityServer1}.notifier1.receiveequitydata->S2),

S2=({notifier1}.trader1.receiveserverupdates->SFY

|{notifier1}.trader2.receiveserverupdates->SFY).

Fig. 13. Safety Property Semantics Example

The above specification is composed of three sections, each section corre-
sponding to each transition action of Fig. 7. As introduced in Section 4.1, the
complete set of traces generated from the formal specification of the Trading sce-
nario need to comply with the traces generated from the above safety property.

6.2 Liveness Property Semantics

Fig. 14 shows the generated FSP specification for the progress property example
of Fig. 9. Similarly to the safety property example discussed in previous subsec-
tion, we make use of the object diagram to generate object-level specifications.
Each annotated method is prefixed with the object names of the class type and
further prefixed with the object name of instances linked to them in the object
diagram. For example the progress property EQUITYSERVER PROGRESS0 addresses
the source instance equityServer1 as well as instances that can potentially invoke
the operation receiveTraderUpdate, namely trader1 and trader2.

7 Minimisation

The main challenge of verification of system properties using model checking
techniques is the potential for state explosion [11]. There has been a growing
trend of applying model checking techniques to more complex fields, such as
software engineering, than its original field of use, hardware and protocol de-
sign. This growing complexity has turned this problem into a pivotal factor for



progress EQUITYSERVER_PROGRESS0=

{ trader1.equityServer1.receivetraderupdate,

trader2.equityServer1.receivetraderupdate }

progress NOTIFICATIONSERVER_PROGRESS0 =

{ equityServer1.notifier1.receiveequitydata }

progress TRADER_PROGRESS0 =

{ notifier1.trader1.receiveserverupdates,

notifier1.trader2.receiveserverupdates }

Fig. 14. Progress Property Semantics Example

deploying finite-state verification techniques. Attempting to verify distributed
object systems amplifies this problem. This is due to the high degree of auton-
omy present between objects executing in parallel, giving way to a very large
number of possible execution traces. As a consequence, the model’s state space
grows exponentially with respect to the number of objects involved, rendering
naive brute force approaches unusable.

We tackle the state space explosion problem from a number of different an-
gles. Our work concentrates on exploiting middleware characteristics for state
reduction and the generated process algebra only takes into account a small
finite number of synchronisation primitives and threading policies.

The insight of knowing our problem domain is further reflected in the un-
derlying process algebra specification that we generate. The behaviour of each
distributed object is described in one FSP process. However, only the actions that
deal with making or receiving remote method requests, as described in the UML
state diagram, are exposed. The execution of local method calls, the interaction
between a possibly large number of local objects, as well as the operation pa-
rameter and return values have no implications on the emergent synchronisation
behaviour of a distributed application and can therefore be ignored. Abstracting
from these details reduces the state space significantly. We can achieve further
reductions by considering the way in which middleware implements distributed
interactions.

In all object and component-oriented middleware systems there is a mid-
dleware component that is responsible for receiving all incoming requests for a
server objects and for delivering them to the appropriate object implementation
for servicing. In CORBA, this component is called the Object Adapter, COM
provides a Service Control Module that has this function and Java/RMI uses
the activation interfaces that are contained in the RMI daemon. We subsume
these components under the notion of object adapters below.

An object adapter decouples client from server objects. All operation invo-
cation requests are initially received by the object adapter on the server object’s
hosts and the adapter then forwards them to the server objects as exemplified in
Fig. 15. Likewise any reply of the server object will be transmitted via the object



adapter. Since the object adapter has a fixed interface of only two actions – for
receiving and replying to requests – and the client objects can only interact with
server objects through these two actions, we can achieve further minimisation of
the state space: In a scenario of n clients invoking m different server methods,
we can reduce the combination of interactions from n×m to n× 2. This means
that the final state space will be independent of the number of methods that
a server object type exports. As the final state space is the product of the size
of the component states during parallel composition, this reduction will greatly
reduce the final state space.

addTrader

removeTrader

receiveEquityData

receiveRequest

relayReply
Notifier1 Notifier1_OA

Fig. 15. Middleware Aware Minimisation

8 Model Checking

Model checking provides a means of automatically verifying input process al-
gebra for a given set of properties. This is achieved by building a state space
representation of the specification and exhaustively searching this space to ensure
that all states are valid with respect to the desired properties. Model checking
tools vary in features such as the data structures they use to hold the state space
and the algorithm they use for searching the state space. Whilst such features
may affect the performance of the model checking performance by a given factor,
they are quite similar in the way they approach the problem.

The FSP process algebra is provided with the Labelled Transition System
Analyser(LTSA) model checker. The LTSA model checker generates a Labelled
Transition System(LTS) for each of the generated FSP processes and applies our
minimisation methods. These LTSs are then composed together into one large
LTS, taking into account the required synchronisation between the objects as
specified in the FSP processes. This final LTS represents the state space of the
application model. Subsequently the LTSA carries out an exhaustive search of
the state space for verification purposes. It is the exhaustive nature of the search
that gives formal verification methods their rigorous powers and high reliability
in finding the most subtle of errors. In case of a property violation detected the
LTSA outputs the shortest trace of actions that causing the violation.

A deadlock situation is detected when a state with no outgoing transition is
found. This indicates that there is no further states that the modelled application
can enter, causing the system to halt and deadlock. Fig. 16 shows the trace of
actions leading to a potential deadlock in the Trading scenario we have been



discussing. The trace shows how initially trader1 sends the results of an equity
transaction to the equitysever1 instance. The instance equityserver1 receives
this and successfully requests the object notifier1 to send equity price updates
to the traders. The deadlock occurs when trader1 again sends new transaction
information to equityserver1, but notifier1 immediately follows this up by
sending another update to trader1. At this stage both trader1 and notifier1

are blocked and any further synchronous invocations to these two objects would
block the caller for ever. Thus when this does happen the system enter a deadlock
status.

Trace to DEADLOCK:

trader1.equityServer1.receivetraderupdate

equityServer1.receivetraderupdate

equityServer1.notifier1.receiveequitydata

notifier1.receiveequitydata

notifier1.trader1.receiveserverupdate

trader1.receiveserverupdate

trader1.receiveserverupdates_reply

notifier1.receiveequitydata_reply

equityServer1.receivetraderupdate_reply

trader1.equityServer1.receivetraderupdate

equityServer1.receivetraderupdate

notifier1.trader1.receiveserverupdate

equityServer1.notifier1.receiveequitydata

trader2.equityServer1.receivetraderupdate

Fig. 16. LTSA Deadlock Trace

A safety property violations is detected when the model checker finds a trace
of actions containing one or more actions of the safety property, where the safety
property’s action ordering is not followed. Fig. 17 shows an example of the safety
property violation depicted in Fig. 8. This safety property stated that out of
all active traders only the instance, trader1 should be informed of new equity
updates via instances of the NotificationServer class. The property is violated
in our distributed object model as the NotificationServer object might send
notifications to both trader objects (refer to Fig. 6). In this case an update was
sent to the instance trader2.

Progress violations are detected by looking for any set of actions that form an
infinite cycle in which one or more of the progress actions are not included. Such
set of actions are referred to as a terminal set. The LTSA reports this violation
by showing a trace of actions to the terminal set and the terminal set itself.



Trace to property violation in SFY:

trader1.equityServer1.receivetraderupdate

equityServer1.receivetraderupdate

equityServer1.receivetraderupdate_reply

trader1.equityServer1.receiveInvocationReply

equityServer1.notifier1.receiveequitydata

notifier1.receiveequitydata

notifier1.trader2.receiveserverupdates

Fig. 17. LTSA Safety Violation Trace

9 Relating Results

A key requirement of this research is to enable designers to reason about dis-
tributed object designs entirely using the UML notation. To attain this goal,
we translate the traces of actions generated due to safety and liveness property
violations into UML Sequence Diagrams. Sequence Diagrams offer a comprehen-
sive and intuitive manner of showing a designer counter-examples of how their
properties can be potentially violated.

trader1 : Trader trader2 : Trader equityserver1 : 
EquityServer

notifier1 : 
NotificationServer

receiveTraderUpdate receiveEquityData

receiveServerUpdates

Fig. 18. Violation of Safety Property depicted in Fig. 8

Fig. 18 shows the sequence diagram generated for the safety property viola-
tion shown in Fig. 17. The sequence diagram shows how the application design
allows a potential execution where by the instance notifier1 could send updates
to the trader2 object, thus violating the safety property.

We envisage the process of design verification to be iterative. So at this stage
the user should make any required modifications, to make their design rid of the
potential problem and repeat the verification on the new modified design model.

10 Evaluation

In order to analyse the effectiveness of the suggested minimisation methods we
have carried out an evaluation using the equity trading scenario introduced in



Section 2. The experiment is based on the configuration shown in Fig. 6 and
carried out on a x86 architecture machine with dual 1.7GHz Xeon processors
and 1GB of memory. The variant was the number of Trader instances executing
in parallel along with the instances, notifier1 and equityServer1. The main
point of interest was the size of the state space gained by using the different
approaches.

Fig. 19 shows the results of the evaluation. Not shown in the chart is the size
of the maximum state space which ranged from 231-271 for the set of traders
shown on the x-axis. The line on the left hand side in the chart plots the state
space gained by using the Compositional Reachability Analysis (CRA) [1] of
the LTSA model checker without applying any minimisation. The line on the
right hand side shows the performance of our minimisation technique. The CRA
line is discontinued for all values above 7 traders since the model checker runs
out of memory after generating 5300000 states. Whilst both techniques exhibit
exponential growth, our minimisation approach has a lower growth factor and
supports the validation of larger systems. In this case our minimisation approach
was able to almost double the performance of the CRA method. Moreover our
early evaluation was carried out on a relatively modest machine. We envisage
designers to operate the MUDV tool on a stronger machine, thus yielding even
better results.

When interpreting absolute state space size, the reader should bear in mind
that in realistic distributed applications the total number of distributed objects
is fairly low. The distributed object architecture that we discussed in [4], for
example, deployed 10 distributed objects for the trading system integration of
the sixth largest German bank. The reason for this small number of objects is
that while application may be composed of a large number of objects and compo-
nents, developers typically choose to only make a small portion of them available
for distributed interactions and the rest execute locally or are deactivated. This
is to minimise the resources required by the distributed application which in-
clude network bandwidth and memory for holding the stubs and skeletons of
distributed objects.

11 MUDV Tool

Our “Modelchecking UML Design Verifier (MUDV)” is the tool that we have
built in order to apply and evaluate our approach. The core task of the MUDV
tool is to generate process algebra specification from input annotated UML mod-
els. An overview architecture of the tool is shown in Fig. 20. Designers use off-
the-shelf UML CASE tools to create their system design. Most of these tools
now support export into the Object Management Group’s XML Metadata In-
terchange [27] (XMI) format. XMI is a standard for encoding UML models in
XML. The wide support of XMI in UML CASE tools and the intuitive meth-
ods of information extraction from XML documents makes it a suitable input
notation for the MUDV.
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The MUDV tool generates the process algebra specification of the input
design model. We then use the Labelled Transition System Analyser (LTSA), a
model checker for FSP, to verify the conformance of all possible execution traces
with the provided properties. This architecture gives designers the flexibility of
using any UML design application with XMI support as well as decoupling it
from the model checking tool. This allows us to create mappings to different
formal specifications and integrate them into the overall architecture seamlessly.

Fig. 21 shows the design of the MUDV tool. The main feature of this design is
the use of the Visitor pattern [7], which accommodates the seamless integration
of new formal specification mappings. The three UML diagram types that we
use in our approach are represented by the three classes which realise the general
MUDVElement interface. All classes of type MUDVElement support the method
accept which takes as input-parameter a reference to an instance of the general
type Visitor. Instances of this type hold the functionality for producing specific
types of formal specification. Once a MUDVElement has been passed a Visitor
instance, via the MUDVTool class, it invokes the appropriate method for it to
be analysed and mapped to a specification. This design makes the MUDV tool
flexible and with low cohesion between its components. We have implemented
the plug-in for the generation of FSP specifications and are currently creating a
SPIN [13] plug-in to demonstrate the general applicability of our approach.
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FSPVisitorMUDVClass MUDVStateMachine MUDVObject

MUDVElement
accept(vis : Visitor)

<<Interface>>
Visitor

visitClassElement()
visitStateMachineElement()
visitObjectElement()

<<Interface>>

MUDV

SPINVisitor

Fig. 21. MUDV Core Design

12 Related Work

The notion of accelerating the development life-cycle of software methodologies
through automation is an appealing idea with a long history. This originally
started with the introduction of Computer Aided Software Engineering(CASE)
tools in the 80s. The OMG’s Model Driven Architecture [6] is the most recent
attempt at standardising the automation of deployment design and substantial
implementation tasks.

The work done in [18] is similar to our approach in that a formal specification
is generated from UML design models. One of the assumptions made, however,
is that each instance of the modelled class runs in a separate process. This is
not the case for object middleware as many server objects can run in the same
process. In [15] automatic deadlock free synthesis of COM/DCOM architecture
connectors is achieved from the dynamic behaviour specification of the compo-
nents, but no general safety or liveness properties are enforced. The work of the
same authors reported in [14] is related in that the authors also translate UML
designs into SPIN models. The most important difference is that we explicitly



use stereotypes to express the synchronisation and threading policies and that
we aim to hide the complexity of using a model checker completely.

In [30], FSP specifications are generated from an extended version of Message
Sequence Charts (MSC) for the synthesis of system behaviour models. Whilst
scenario-based specification is a suitable method for checking and communicating
the key scenarios of a system it cannot be applied to detailed design models for
the purposes of thorough validation and verification. The large number of key
scenarios in a typical industrial case are too large to make this a scalable solution
for design verification.

The pUML [5] research attempts to give formal semantics of UML diagrams
using the Z notation, allowing them to verify UML models. The approach taken
in the Hydra project [21] is provide a mapping from the UML metamodel to
formal language metamodels. This mapping leads to a set of rules which govern
the automation of a particular formal specification. This mapping does not cover
the whole of the UML diagrams set, specifically UML stereotypes which is the
basis of conveying middleware related information in our approach.

13 Summary and Conclusion

It is our belief that the advances in distributed object and component technolo-
gies need to be complemented by new software engineering methods and tools
to guide developers in increasingly complex situations [3]. The work presented
in this paper focuses on automatically verifying the non-deterministic synchro-
nisation behaviour of object middleware applications, caused by the interaction
between distributed objects executing in parallel.

This paper reports on a number of new contributions. By extending the se-
mantics of UML state diagrams and the introduction of new stereotypes, we
provide designers with the ability to express safety and liveness properties in
the UML notation. Formal specifications of the properties are automatically
generated and composed with the process algebra specification of the system.
Feedback on any property violations is done via UML sequence diagrams, main-
taining transparency of the heavy formal specification to designers. Traditional
property specification techniques, such as those using temporal logic, offer a
more expressive power than our approach. However, this comes at a cost of be-
ing user-unfriendly and difficult to master, which we have often found to be a
stumbling block for the industrial adoption of these techniques. Taking into con-
sideration the fact that this research is aimed at supporting general industrial
practitioners with little or no experience of formal techniques, we feel that our
approach maintains a suitable balance in this trade off.

Our second contribution is the integration of models for the deployment
of distributed components and their interconnection via the use of UML object
diagrams. This enables designers to experiment with and verify different run-time
configurations of a distributed object system without any modification required
to other models. The analysis of an application at an instance level is further
reflected in the generated process algebra and the feedback sequence diagrams.



Furthermore, by solely modelling object interactions where indicated in an object
diagram we reduce the complexity, and thus the state space, of the formal model,
leading to more efficient model checking.

We also presented and evaluated the methods we employ to tackle the state
explosion problem. By exploiting domain specific (object middleware) knowledge
of the nature of the applications being modelled, we build further minimisation
methods on top of what is typically offered by model checkers, with the goal of
reducing a model’s state space. Only actions that correspond to remote object
interactions, making up the synchronisation behaviour of an application, are
model checked. By modelling the entity responsible for receiving and delivering
requests in a distributed system we also gain incremental minimisation.

Even though the minimisation techniques we presented above greatly im-
prove the usability of our approach and facilitate verification of medium-sized
industrial models, we are aware that they do not yet scale up to large scale dis-
tributed systems with several hundred distributed objects. In order to achieve
this scalability, we need to take advantage of the fact that these objects are
often isolated from each other and partitioned into federations of distributed ob-
jects. Fortunately, the federations of objects that do interact with each other are
rarely larger than the ones that we can model check. We can then analyse these
federations in isolation from each other and in that way achieve the scalability
required in practice.

We are currently developing a new semantic mapping of UML models into
Promela specifications, the input notation for the SPIN model checker. This will
demonstrate the general applicability of our approach to various formal seman-
tics as well as benefiting from the advantages of the SPIN model checker, such
as support for timeouts, assertions and optional compact searches as opposed to
an exhaustive one. We plan to further evaluate our approach by carrying out a
case-study obtained from our industrial collaborators.

The techniques that we have outlined in this paper are providing feedback on
qualitative properties of distributed object design. We have started investigating
reasoning techniques for quantitative properties, such as scalability, performance
and reliability of distributed object and component designs. It would be highly
desirable to avoid costly risk mitigation iterations during a development pro-
cess and address the question of whether an architecture scales and performs
efficiently and reliably by analytic means. The performance modelling literature
includes a large body of work on stochastic process algebras, which use distri-
bution functions with which transitions are executed [12, 9, 8]. It seems natural
to extend the research that we presented here to performance, scalability and
reliability properties of UML models that can then be expressed and analysed
with stochastic process algebras.

In [24, 25], we have described xlinkit, a consistency checker that can be used to
validate the static consistency of software engineering documents represented in
XML. That research is largely complementary to the techniques for establishing
behavioural consistency that we have presented in this paper. A combination of
the two approaches would enable us to statically validate the correctness of the



various relationships between the different diagrams, such as that for each object
in an object diagram, there is a class in a class diagram whose name is identical
to the type of the object and would therefore enhance the usability of our our
model checker. We therefore plan to address this integration in the immediate
future.
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