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Abstract

Clustering of variables is as a way to arrange variables into homogeneous clusters,
i.e., groups of variables which are strongly related to each other and thus bring the same
information. These approaches can then be useful for dimension reduction and variable
selection. Several specific methods have been developed for the clustering of numerical
variables. However concerning qualitative variables or mixtures of quantitative and qual-
itative variables, far fewer methods have been proposed. The R package ClustOfVar was
specifically developed for this purpose. The homogeneity criterion of a cluster is defined
as the sum of correlation ratios (for qualitative variables) and squared correlations (for
quantitative variables) to a synthetic quantitative variable, summarizing “as good as pos-
sible” the variables in the cluster. This synthetic variable is the first principal component
obtained with the PCAMIX method. Two clustering algorithms are proposed to optimize
the homogeneity criterion: iterative relocation algorithm and ascendant hierarchical clus-
tering. We also propose a bootstrap approach in order to determine suitable numbers of
clusters. We illustrate the methodologies and the associated package on small datasets.

Keywords: dimension reduction, hierarchical clustering of variables, k-means clustering of
variables, mixture of quantitative and qualitative variables, stability.

1. Introduction

Principal component analysis (PCA) and multiple correspondence analysis (MCA) are ap-
pealing statistical tools for multivariate description of respectively numerical and categorical
data. Rotated principal components fulfill the need to get more interpretable components.
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Clustering of variables is an alternative since it makes possible to arrange variables into ho-
mogeneous clusters and thus to obtain meaningful structures. From a general point of view,
variable clustering lumps together variables which are strongly related to each other and thus
bring the same information. Once the variables are clustered into groups such that attributes
in each group reflect the same aspect, the practitioner may be spurred on to select one variable
from each group. One may also want to construct a synthetic variable. For instance in the
case of quantitative variables, a solution is to realize a PCA in each cluster and to retain the
first principal component as the synthetic variable of the cluster.

A simple and frequently used approach for clustering a set of variables is to calculate the
dissimilarities between these variables and to apply a classical cluster analysis method to this
dissimilarity matrix. We can cite the functions hclust of the R package stats (R Development
Core Team 2012) and agnes of the package cluster (Maechler, Rousseeuw, Struyf, Hubert, and
Hornik 2012) which can be used for single, complete, average linkage hierarchical clustering.
The functions diana and pam of the package cluster can also be used for respectively divi-
sive hierarchical clustering and partitioning around medoids (Kaufman and Rousseeuw 1990).
But the dissimilarity matrix has to be calculated first. For quantitative variables many dis-
similarity measures can be used: correlation coefficients (parametric or nonparametric) can
be converted to different dissimilarities depending if the aim is to lump together correlated
variables regardless of the sign of the correlation or if a negative correlation coeffcient between
two variables shows disagreement between them. For categorical variables, many association
measures can be used as χ2, Rand, Belson, Jaccard, Sokal and Jordan among others. Many
strategies can then be applied and it can be difficult for the user to choose one of them.
Moreover, no synthetic variables of the clusters are directly provided with this approach.

Besides these classical methods devoted to the clustering of observations, there exists methods
specifically devoted to the clustering of variables. The most famous one is the VARCLUS

procedure of the SAS software (SAS Institute Inc. 2011). Recently specific methods based on
PCA were proposed by Vigneau and Qannari (2003) with the name clustering around latent
variables (CLV) and by Dhillon, Marcotte, and Roshan (2003) with the name Diametrical
Clustering. But all these specific approaches work only with quantitative data and as far as
we know, they are not implemented in R.

The aim of the package ClustOfVar – available from the Comprehensive R Archive Network
at http://CRAN.R-project.org/package=ClustOfVar – is then to propose in R, methods
specifically devoted to the clustering of variables with no restriction on the type (quantitative
or qualitative) of the variables. The clustering methods developed in the package work with
a mixture of quantitative and qualitative variables and also work for a set exclusively con-
taining quantitative (or qualitative) variables. Two methods are proposed for the clustering
of variables: a hierarchical clustering algorithm and a k-means type partitioning algorithm.
They are implemented in the functions hclustvar and kmeansvar. These two methods are
based on PCAMIX, a principal component method for a mixture of qualitative and quanti-
tative variables (Kiers 1991). This method includes the ordinary PCA and MCA as special
cases. Here we use a Singular Value Decomposition (SVD) approach of PCAMIX (Chavent,
Kuentz-Simonet, and Saracco 2012). Both clustering algorithms aim at maximizing the same
homogeneity criterion: a cluster of variables is defined as homogeneous when the variables
in the cluster are strongly linked to a central quantitative synthetic variable. This link is
measured by the squared Pearson correlation for the quantitative variables and by the cor-
relation ratio for the qualitative variables. The quantitative central synthetic variable of a

http://CRAN.R-project.org/package=ClustOfVar
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cluster is the first principal component of PCAMIX applied to all the variables in the cluster.
Note that the synthetic variables of the clusters can be used for dimension reduction or for
recoding purpose. Moreover a method based on a bootstrap approach is also proposed to
evaluate the stability of the partitions of variables and can be used to determine a suitable
number of clusters. It is implemented in the function stability.

In addition note that missing data are allowed: they are replaced by means for quantitative
variables and by zeros in the indicator matrix for qualitative variables.

The rest of this paper is organized as follows. Section 2 contains a detailed description of the
homogeneity criterion and a description of the PCAMIX procedure for the determination of
the central synthetic variable. Section 3 describes the clustering algorithms and the bootstrap
procedure. Section 4 provides two data-driven examples in order to illustrate the use of
the functions and objects of the package ClustOfVar. It also provides computational time
examples for simulated data. Finally, Section 5 gives concluding remarks.

2. The homogeneity criterion

Let {x1, . . . ,xp1} be a set of p1 quantitative variables and {y1, . . . ,yp2} a set of p2 qualitative
variables. Let X and Y be the corresponding quantitative and qualitative data matrices of
dimensions n× p1 and n× p2, where n is the number of observations. For seek of simplicity,
we denote xj ∈ Rn the j-th column of X and yj ∈Mn

j the j-th column of Y withMj the set
of categories of yj . Let PK = (C1, . . . , CK) be a partition into K clusters of the p = p1 + p2
variables.

Synthetic variable of a cluster Ck. It is defined as the quantitative variable ck ∈ Rn the
“most linked” to all the variables in Ck:

ck = arg max
u∈Rn

 ∑
xj∈Ck

r2u,xj
+

∑
yj∈Ck

η2u|yj

 ,

where r2 denotes the squared Pearson correlation and η2 denotes the correlation ratio. More
precisely, the correlation ratio η2u|yj

∈ [0, 1] measures the part of the variance of u explained

by the categories of yj :

η2u|yj
=

∑
s∈Mj

ns(ūs − ū)2∑n
i=1(ui − ū)2

,

where ns is the frequency of category s, ūs is the mean value of u calculated on the observations
belonging to category s and ū is the mean of u.

We have the following important results (Escofier (1979), Saporta (1990), Pagès (2004)):

� ck is the first principal component of PCAMIX applied to Xk and Yk, the matrices
made up of the columns of X and Y corresponding to the variables in Ck;

� the empirical variance of ck is equal to: VAR(ck) =
∑

xj∈Ck

r2xj ,ck
+

∑
yj∈Ck

η2ck|yj
.

The determination of ck using PCAMIX is carried on according to the following steps:
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1. Recoding of Xk and Yk:

(a) X̃k is the standardized version of the quantitative matrix Xk,

(b) Ỹk = JGD−1/2 is the standardized version of the indicator matrix G of the qual-
itative matrix Yk, where D is the diagonal matrix of frequencies of the categories.
J = I − 1>1/n is the centering operator where I denotes the identity matrix and
1 the vector with unit entries.

2. Concatenation of the two recoded matrices: Mk = 1√
n

(X̃k|Ỹk).

3. Singular Value Decomposition of Mk: Mk = UkΛkV
′
k.

4. Extraction/calculus of useful outputs:

�

√
nUkΛk is the matrix of the principal component scores of PCAMIX;

� ck =
√
nu1

kλ
1
Ck

where u1
k is the first eigenvector in Uk and λ1Ck

is the first eigenvalue
in Λk;

� VAR(ck) = λ1Ck
.

Note that we recently developed an R package named PCAmixdata with a function PCAmix

which provides the principal components of PCAMIX and a function PCArot which provides
the principal component after orthogonal rotation.

Homogeneity H of a cluster Ck. It is a measure of adequacy between the variables in
the cluster and its central synthetic quantitative variable ck:

H(Ck) =
∑

xj∈Ck

r2xj ,ck
+

∑
yj∈Ck

η2ck|yj
= λ1Ck

. (1)

The first term in (1) (based on the squared Pearson correlation r2) measures the link between
the quantitative variables in Ck and ck independently of the sign of the relationship. The
second one (based on the correlation ratio η2) measures the link between the qualitative
variables in Ck and ck. The homogeneity of a cluster is maximum when all the quantitative
variables are correlated (or anti-correlated) to ck and when all the correlation ratios of the
qualitative variables are equal to 1. It means that all the variables in the cluster Ck bring the
same information.

Homogeneity H of a partition PK . It is defined as the sum of the homogeneities of its
clusters:

H(PK) =
K∑
k=1

H(Ck) = λ1C1
+ . . .+ λ1CK

, (2)

where λ1C1
, . . . , λ1CK

are the first eigenvalues of PCAMIX applied to the K clusters Ck of PK .

This homogeneity is maximum for the partition of the singletons (partition in p clusters) with
H(Pp) = p. Indeed if Ck is a singleton (reduced to one variable), we have H(Ck) = 1.

3. The clustering algorithms

The aim is to find a partition of a set of quantitative and/or qualitative variables such that
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the variables within a cluster are strongly related to each other. In other words the objective
is to find a partition PK which maximizes the homogeneity function H defined in (2). For
this, a hierarchical and a partitioning clustering algorithms are proposed in the package
ClustOfVar. A bootstrap procedure is also proposed to evaluate the stability of the partitions
into K = 2, 3, . . . , p− 1 clusters and then to help the user to determine a suitable number of
clusters of variables.

The hierarchical clustering algorithm. This algorithm builds a set of p nested partitions
of variables in the following way:

1. Step l = 0: initialization. Start with the partition in p clusters.

2. Step l = 1, . . . , p− 2: aggregate two clusters of the partition in p− l+ 1 clusters to get
a new partition in p − l clusters. For this, choose clusters A and B with the smallest
dissimilarity d defined as:

d(C1, C2) = H(C1) +H(C2)−H(C1 ∪ C2) = λ1C1
+ λ1C2

− λ1C1∪C2
, (3)

where H(Ck) = λ1Ck
is obtained by PCAMIX on the variables in Ck as defined in (1).

3. Step l = p− 1: stop. The partition in one cluster is obtained.

The dissimilarity d measures the lost of homogeneity observed when the two clusters C1 and
C2 are merged. Using this aggregation measure the new partition in p−l clusters maximizesH
among all the partitions in p−l clusters obtained by aggregation of two clusters of the partition
in p− l + 1 clusters. This algorithm is implemented in the function hclustvar which builds
a hierarchy of the p variables. The function plot.hclustvar gives the dendrogram of this
hierarchy. The height of a cluster C = A∪B in this dendrogram is defined as h(C) = d(A,B).
It is easy to verify that h(C) ≥ 0 but the property “A ⊂ B ⇒ h(A) ≤ h(B)” has not been
proved yet. Nevertheless, inversions in the dendrogram have never been observed in practice
neither on simulated data nor on real data sets. Finally the function cutreevar cuts this
dendrogram and gives one of the p nested partitions according to the number K of clusters
given in input by the user.

The partitioning algorithm. This partitioning algorithm requires the definition of a simi-
larity measure between two variables of any type (quantitative or qualitative). We use for this
purpose the squared canonical correlation between two data matrices E and F of dimensions
n× r1 and n× r2. This correlation, denoted by ρ, can be easily calculated with the following
procedure:

ρ(E,F) =


first eigenvalue of the n× n matrix EF>FE> if min(n, r1, r2) = n,
first eigenvalue of the r1 × r1 matrix E>FF>E if min(n, r1, r2) = r1,
first eigenvalue of the r2 × r2 matrix F>EE>F if min(n, r1, r2) = r2.

More precisely:

� For two quantitative variables xi and xj , let E = x̃i and F = x̃j where x̃i and x̃j are
the standardized versions of xi and xj . In this case, the squared canonical correlation
is the squared Pearson correlation: ρ(xi,xj) = r2xi,xj

.



6 ClustOfVar: Clustering of Variables in R

� For one qualitative variable yi and one quantitative variable xj , let E = Ỹi and F = x̃j

where Ỹi is the standardized version of the indicator matrix Gi of the qualitative
variable yi. In this case, the squared canonical correlation is the correlation ratio:
ρ(yi,xj) = η2xj |yi

.

� For two qualitative variables yi and yj having r and s categories, let E = Ỹi and
F = Ỹj . In this case, the squared canonical correlation s(yi,yj) does not correspond to
a well known association measure. Its interpretation is geometrical: the closer to one is
ρ(yi,yj), the closer are the two linear subspaces og Rn spanned by the matrices E and
F. Then the two qualitative variables yi and yj bring similar information.

This similarity measure is implemented in the function mixedVarSim.

The clustering algorithm implemented in the function kmeansvar builds then a partition in
K clusters in the following way:

1. Initialization step: two possibilities are available.

(a) A non random initialization: an initial partition in K clusters is given in input (for
instance the partition obtained by cutting the dendrogram of the hierarchy).

(b) A random initialization:

i. K variables are randomly selected among the p variables as initial central
synthetic variables (named centers hereafter).

ii. An initial partition into K clusters is built by allocating each variable to the
cluster with the closest initial center: the similarity between a variable and an
initial center is calculated using the function mixedVarSim.

2. Repeat

(a) A representation step: the quantitative central synthetic variable ck of each cluster
Ck is calculated with PCAMIX as defined in Section 2.

(b) An allocation step: a partition is constructed by assigning each variable to the clos-
est cluster. The similarity between a variable and the central synthetic quantitative
variable of the corresponding cluster is calculated with the function mixedVarSim:
it is either a squared correlation (if the variable is quantitative) or a correlation
ratio (if the variable is qualitative).

3. Stop if there is no more changes in the partition or if a maximum number of iterations
(fixed by the user) is reached.

This iterative procedure kmeansvar provides a partition PK into K clusters which maximizes
H but this optimum is local and may depend on the initial partition. A solution to overcome
this problem and to avoid the influence of the choice of an arbitrary initial partition is to
consider multiple random initializations. In this case, steps 1(b), 2 and 3 are repeated, and
we propose to retain as final partition the one which provides the highest value of H.
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Stability of partitions of variables. We propose a procedure which evaluates the stability
of the p nested partitions of the dendrogram obtained with hclustvar. It works as follows:

1. B boostrap samples of the n observations are drawn and the corresponding B dendro-
grams are obtained with the function hclustvar.

2. The partitions of these B dendrograms are compared with the partitions of the initial
hierarchy using the corrected Rand index. The Rand and the adjusted Rand indices
are implemented in the function Rand (see Hubert and Arabie 1985 for details on these
indices).

3. The stability of a partition is evaluated by the mean of the B adjusted Rand indices.

The plot of this stability criterion according to the number of clusters can help the user in
the choice of a sensible and suitable number of clusters. Note that an error message may
appear with this function in some case of rare categories of qualitative variable. Indeed, if a
rare category disappears in a bootstrap sample of observations, a column of identical values
is then formed and the standardization of this variable is not possible in PCAMIX step.

4. Illustration on simple examples

First, we illustrate our R package ClustOfVar on two real datasets. The first one only concerns
quantitative variables, the second one is a mixture of quantitative and qualitative variables.
Then we give computational times examples for the functions kmeansvar and hclustvar

applied on simulated data.

4.1. First example: Quantitative data

We use the dataset decathlon which contains n = 41 athletes described according to their
performances in p = 10 different sports of decathlon.

R> library("ClustOfVar")

R> data("decathlon")

R> head(decathlon[, 1:4])

100m Long.jump Shot.put High.jump

SEBRLE 11.04 7.58 14.83 2.07

CLAY 10.76 7.40 14.26 1.86

KARPOV 11.02 7.30 14.77 2.04

BERNARD 11.02 7.23 14.25 1.92

YURKOV 11.34 7.09 15.19 2.10

WARNERS 11.11 7.60 14.31 1.98

In order to have an idea of the links between these 10 quantitative variables, one usually plots
the correlation circle of the two first PCA dimensions. Figure 1 gives a first sight of groups
of correlated or anti-correlated variables. However it does not provide a strict partition of
variables. To go further we construct a hierarchy with the function hclustvar.



8 ClustOfVar: Clustering of Variables in R

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Correlation circle

Dim 1 (32.72%)

D
im

 2
 (

17
.3

7%
)

100m

Long.jump

Shot.put

High.jump

400m

110m.hurdle

Discus

Pole.vault

Javeline

1500m

Figure 1: Correlation circle of the two first PCA dimensions.

0.
0

0.
5

1.
0

1.
5

Aggregation levels

number of clusters

H
ei

gh
t

1 2 3 4 5 6 7 8 9

Ja
ve

lin
e

H
ig

h.
ju

m
p

S
ho

t.p
ut

D
is

cu
s

Lo
ng

.ju
m

p

40
0m

10
0m

11
0m

.h
ur

dl
e

P
ol

e.
va

ul
t

15
00

m

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Cluster Dendrogram

H
ei

gh
t

Figure 2: Graphical output of the function plot.hclustvar.

R> tree <- hclustvar(decathlon[, 1:10])

R> plot(tree)
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Figure 3: Graphical output of the functions stability and plot.clustab.

In Figure 2, the plot of the aggregation levels suggests to choose 3 clusters of variables. The
dendrogram, on the right hand side of this figure, shows the link between the variables in
terms of r2. For instance, the two variables Discus and Shot.put are linked as well as the
two variables Long.jump and 400m, but the user must keep in mind that the dendrogram
does not indicate the sign of these relationships: a careful study of these variables shows that
Discus and Shot.put are correlated whereas Long.jump and 400m are anti-correlated.

The user can use the stability function in order to have an idea of the stability of the
partitions of the dendrogram represented in Figure 2.

R> stab <- stability(tree, B = 40)

R> plot(stab, main = "Stability of the partitions")

R> boxplot(stab$matCR, main = "Dispersion of the adjusted Rand index")

On the left of Figure 3, the plot of the mean (over the B = 40 bootstrap samples) of the
adjusted Rand indices is obtained with the function plot.clustab. It clearly suggests to
choose 5 clusters. The boxplots on the right of Figure 3 show the dispersion of these indices
over the B = 40 bootstrap replications for partition, and they also suggest to retain 5 clusters.

In the following we choose K = 3 clusters because PCA applied to each of the 3 clusters gives
each time only one eigenvalue greater than 1. The function cutree cuts the dendrogram of
the hierarchy and gives a partition into K = 3 clusters of the p = 10 variables:

R> P3 <- cutreevar(tree, 3, matsim = TRUE)

R> cluster <- P3$cluster

R> X <- decathlon[, 1:10]

R> princomp(X[, which(cluster==1)], cor = TRUE)$sdev^2

R> princomp(X[, which(cluster==2)], cor = TRUE)$sdev^2

R> princomp(X[, which(cluster==3)], cor = TRUE)$sdev^2
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The partition P3 is contained in an object of class clustvar. Note that partitions obtained
with the kmeansvar function are also objects of class clustvar. The function print method
gives a description of the values of this object.

R> print(P3)

Call:

cutreevar(obj = tree, k = 3)

name description

"$var" "list of variables in each cluster"

"$sim" "similarity matrix in each cluster"

"$cluster" "cluster memberships"

"$wss" "within-cluster sum of squares"

"$E" "gain in cohesion (in %)"

"$size" "size of each cluster"

"$scores" "score of each cluster"

The value $wss is H(PK) where the homogeneity function H is defined in (2). The gain in
cohesion $E is the percentage of homogeneity which is accounted by the partition PK . It is
defined by:

E(PK) =
H(PK)−H(P1)

H(Pp)−H(P1)
. (4)

where H(Pp) = p. The value $sim provides the similarity matrices of the variables in each
cluster (calculated with the function mixedVarSim). Note that it is time consuming to perform
these similarity matrices when the number of variables is large. Thus they are not calculated
by default: matsim=TRUE must be specified in the parameters of the function cutreevar if
the user wants this output. We provide below the similarity matrix for the first cluster of this
partition into 3 clusters.

> round(P3$sim$cluster1, digit = 2)

100m Long.jump 400m 110m.hurdle

100m 1.00 0.36 0.27 0.34

Long.jump 0.36 1.00 0.36 0.26

400m 0.27 0.36 1.00 0.30

110m.hurdle 0.34 0.26 0.30 1.00

The value $cluster is a vector of integers indicating the cluster to which each variable is
allocated.

R> P3$cluster

100m Long.jump Shot.put High.jump 400m 110m.hurdle

1 1 2 2 1 1

Discus Pole.vault Javeline 1500m

2 3 2 3
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The value $var gives a description of each cluster of the partition. More precisely it provides
for each cluster the squared loadings with the central synthetic variable of the cluster (which is
the first principal component of PCAMIX). For quantitative variables (resp. qualitative), the
squared loadings are squared correlations (resp. correlation ratio) with this central synthetic
variable. For instance the squared correlation between the variable 100m and the central
synthetic variable of cluster1 is 0.68.

R> P3$var

$cluster1

squared loading

100m 0.6822349

Long.jump 0.6873076

400m 0.6652279

110m.hurdle 0.6427661

$cluster2

squared loading

Shot.put 0.7861012

High.jump 0.4991778

Discus 0.6023186

Javeline 0.2546550

$cluster3

squared loading

Pole.vault 0.6237239

1500m 0.6237239

The value $scores is the n×K matrix of the scores of the n observations on the first principal
components of PCAMIX applied to the K clusters: PCAMIX is applied 3 times here, one
time in each cluster. Each column is then the synthetic variable of the cluster. The central
synthetic variable of cluster1 for instance is the first column of the 41 × 3 matrix above.
This column gives the scores of the 41 athletes on the first component of PCAMIX applied
to the variables of cluster1 (100m, Long.jump, 400m, 110m.hurdle).

R> head(P3$scores)

cluster1 cluster2 cluster3

SEBRLE 0.2640687 -1.0353928 -1.4405915

CLAY 1.3816943 -0.3454687 -1.7840860

KARPOV 1.1098485 -0.7209119 -1.7043603

BERNARD -0.1949061 0.7082857 -1.5017373

YURKOV -2.0319539 -1.8850107 0.2702640

WARNERS 1.1385110 1.0929346 -0.3490226

Note that this 41× 3 matrix of the scores of the 41 athletes in each cluster of variables is of
course different from the 41 × 3 matrix of the scores of the athletes on the first 3 principal
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components of PCAMIX (here PCA) applied to the initial dataset. The 3 synthetic variables
for instance can be correlated whereas the first 3 principal components of PCAMIX are not
correlated by construction. Moreover this matrix of the synthetic variables in $scores can be
used as the matrix of the principal components of PCAMIX for dimension reduction purpose.

4.2. Second example: A mixture of quantitative and qualitative data

We use the dataset wine which contains n = 21 french wines described by p = 31 variables.
The first two variables Label and Soil are qualitative with respectively 3 and 4 categories.
The other 29 variables are quantitative.

R> data("wine")

R> head(wine[, 1:4])

Label Soil Odor.Intensity Aroma.quality

2EL Saumur Env1 3.074 3.000

1CHA Saumur Env1 2.964 2.821

1FON Bourgueuil Env1 2.857 2.929

1VAU Chinon Env2 2.808 2.593

1DAM Saumur Reference 3.607 3.429

2BOU Bourgueuil Reference 2.857 3.111

In order to have an idea of the links between the 29 first quantitative variables and the two
qualitative variables, we construct a hierarchy using the function hclustvar.

R> X.quanti <- wine[, 3:29]

R> X.quali <- wine[, 1:2]

R> tree <- hclustvar(X.quanti, X.quali)

R> plot(tree)

In Figure 4, we plot the dendrogram. It shows for instance that the qualitative variable
Label is linked (in term of correlation ratio) with the quantitative variable Phenolic. The
user chooses according to this dendrogram to cut this dendrogram into K = 6 clusters:

R> part_hier <- cutreevar(tree, 6)

R> part_hier$var$cluster1

squared loading

Odor.Intensity 0.7617528

Spice.before.shaking 0.6160243

Odor.Intensity.1 0.6663325

Spice 0.5357837

Bitterness 0.6620632

Soil 0.7768805

A close reading of the output for cluster1 shows that the correlation ratio between the
qualitative variable Soil and the synthetic variable of the cluster is about 0.78. The squared
correlation between Odor.Intensity and the synthetic variable of the cluster is 0.76.
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Figure 4: Dendrogram of the hierarchy of the 29 variables of the wine dataset.

The central synthetic variables of the 6 clusters are in part_hier$scores. This 21×6 quanti-
tative matrix can replace the original 21×31 data matrix mixing qualitative and quantitative
variables. Usually this matrix of the synthetic variables can then be used for recoding a mixed
data matrix (or a qualitative data matrix) into a quantitative data matrix, as is usually done
with the matrix of the principal components of PCAMIX.

The function kmeansvar can also provide a partition into K = 6 clusters of the 31 variables.

R> part_km <- kmeansvar(X.quanti, X.quali, init = 6, nstart = 10)

The gain in cohesion of the partition obtained with the k-means type partitioning algorithm
and 10 random initializations is smaller than that of the partition obtained with the hierar-
chical clustering algorithm (51.02 versus 56.84):

R> part_km$E

[1] 51.02414

R> part_hier$E

[1] 56.84082

4.3. Computational time examples for simulated data

The time complexity of the proposed variable clustering algorithms is obtained from the
expression of complexity for objects clustering by swapping the number of objects n by the
number of variables p. Concerning the hierarchical ascendant algorithm, we use the Nearest
Neighbours Chain algorithm implemented in the hclust R function. The complexity of this
algorithm is then quadratic in p that is o(p2). On the other side, the complexity of the
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n = 100 n = 500 n = 1000 n = 5000 n = 10000 n = 20000

kmeansvar (K = 10) 0.004 0.012 0.020 0.104 0.215 0.441

hclustvar 0.072 0.106 0.141 0.497 0.867 1.644

Table 1: CPU time in minutes (with 3.06 GHz processor) for p = 100 variables and varying
number of objects.

p = 100 p = 500 p = 1000 p = 5000 p = 10000 p = 20000

kmeansvar (K = 10) 0.004 0.024 0.069 0.632 1.387 4.034

hclustvar 0.072 3.078 18.282 – – –

Table 2: CPU time in minutes (with 3.06 GHz processor) for n = 100 objects and varying
number of variables.

iterative relocation algorithm is classical and linear in p. The main difference lies in the fact
that we do not calculate some gravity centers but we realize Singular Value Decompositions,
which complexity for a (n×p) matrix of rank r is equal to o(npr). But to give a concrete idea
of computational times for hclustvar and kmeansvar R functions, we simulate quantitative
data matrices drawn from a uniform distribution with varying number of observations and
variables. We calculate the CPU time in minutes (with 3.06 GHz processor) for p = 100
variables and varying number of objects (from n = 100 to n = 20000) and then for n = 100
objects and varying number of variables (from p = 100 to p = 20000 for kmeansvar and from
p = 100 to p = 1000 for hclustvar)

Table 1 shows that for p = 100 variables, both clustering functions remain fast even if the
number n of objects increases. For growing number of variables with fixed number of objects
(n = 100), Table 2 shows that kmeansvar takes from few seconds with p = 100 variables to
few minutes with p = 20000 variables. Not surprisingly, the hclustvar function is slower. For
instance it takes 18 minutes for p = 1000 variables. We stopped our numerical experiments at
this number of variables because it should have taken about at least 7 hours (52 × 18mn) for
p = 5000 variables. In this case, kmeansvar and hclustvar can be combined in the following
way. First we apply kmeansvar with K = 1000 clusters for instance and then we build with
hclustvar the hierarchy from the previously obtained 1000 synthetic variables. The idea was
previously and widely used in the context of objects clustering by several authors (see for
instance Wong 1982).

For datasets with simultaneously large number of objects and variables, both functions en-
counter problems of computation time and storage capacity.

5. Concluding remarks

The R package ClustOfVar proposes hierarchical and k-means type algorithms for the clus-
tering of variables of any type (quantitative and/or qualitative).

This package proposes useful tools to visualize the links between the variables and the re-
dundancy in a data set. It is also an alternative to PCA or MCA methods for dimension
reduction and for recoding qualitative or mixed data matrices into quantitative data matri-
ces. Let us recall that the main difference between PCA (for instance) and the approach of
clustering of variables presented in this paper, is that the synthetic variables of the clusters
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can be correlated whereas the principal components are not correlated by construction.

To deal with datasets having huge number of variables, a future work is to propose a new
version of the package with the functions hclustvar, kmeansvar and stability developed
for parallel computing.

We mentioned that the package ClustOfVar can deal with missing data. However let us note
that the imputation method used in the code is simple and may not perform well when the
proportion of missing data is too large. In that case, one of the numerous R packages devoted
to missing data imputation should be used prior to ClustOfVar.
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