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Abstract
The human body requires about 1-2 mg of iron per day 
for its normal functioning, and dietary iron is the only 
source for this essential metal. Since humans do not 
possess a mechanism for the active excretion of iron, 
the amount of iron in the body is determined by the 
amount absorbed across the proximal small intestine 
and, consequently, intestinal iron absorption is a highly 
regulated process. In recent years, the liver has emerged 
as a central regulator of both iron absorption and iron 
release from other tissues. It achieves this by secreting 
a peptide hormone called hepcidin that acts on the small 
intestinal epithelium and other cells to limit iron delivery 
to the plasma. Hepcidin itself is regulated in response 
to various systemic stimuli including variations in body 
iron stores, the rate of erythropoiesis, inflammation and 
hypoxia, the same stimuli that have been known for 
many years to modulate iron absorption. This review will 
summarize recent findings on the role played by the liver 
and hepcidin in the regulation of body iron absorption.
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INTRODUCTION
Intestinal epithelial cells or enterocytes take up the 
predominating ferric iron from the diet through the 
combined act ion of  an iron reductase (duodenal 

cytochrome B or DcytB is a strong candidate) and a 
ferrous iron transporter known as divalent metal-ion 
transporter (DMT1) on the brush border membrane[1,2]. 
Heme iron, on the other hand, appears to be absorbed 
through a separate system, and a recently identified apical 
membrane protein, HCP1, has emerged as a candidate 
heme transporter[3]. Irrespective of  the form in which iron 
crosses the brush border, enterocytes export iron into the 
circulation by the combined action of  an iron reductase, 
hephaestin, and a basolateral membrane iron transporter, 
ferroportin (FPN). The newly absorbed iron is then bound 
to circulating transferrin which distributes it around the 
body to sites of  utilization and storage.

The amount of  iron transported across the enterocytes 
is ultimately influenced by body iron requirements. Thus, 
for example, when body iron levels are low or when 
erythropoietic demand is increased, iron absorption is 
elevated. The factors that alter iron absorption exert 
their effects by influencing the duodenal expression of  
the major iron transport molecules, particularly DMT1, 
Dcytb1 and ferroportin[1,2,4]. Early kinetic studies suggested 
that it was the efflux of  iron out of  the enterocytes and 
into the circulation that was rate limiting for absorption[5], 
and more recent molecular studies have provided support 
for this concept[6,7]. In particular, this work suggested that 
basolateral iron transfer by ferroportin was most likely 
the primary regulatory step. But, how signals from distant 
sites modulate iron release from enterocytes has until 
recently remained poorly understood. The missing link 
in this regulatory pathway has now emerged as the liver-
derived peptide hormone hepcidin, and thus we know 
that the liver plays a central role in the regulation of  body 
iron homeostasis. Hepcidin regulates plasma iron levels 
by controlling the cell surface expression of  ferroportin, 
and this in turn limits the efflux of  iron from enterocytes, 
macrophages and a number of  other cell types.

Hepcidin
Hepcidin was first discovered as an antimicrobial peptide 
in human blood ultrafiltrate[8] and urine samples[9]. The 
gene encoding hepcidin (HAMP) is very strongly expressed 
in the liver. But, weak expression has also been detected 
in heart, spinal cord, stomach, intestine and lungs[8-10]. The 
first evidence linking hepcidin to iron metabolism came 
almost simultaneously from two groups. One group, using 
suppressive subtractive hybridization, demonstrated that 
the levels of  the hepcidin transcript were greatly increased 
in the livers of  iron loaded mice[10]. The other group 

www.wjgnet.com

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace

https://core.ac.uk/display/16694937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


inadvertently engineered a mouse strain with negligible 
hepcidin expression (considered in more detail below), and 
found that these animals accumulated high levels of  body 
iron[11]. HAMP was mapped to human chromosome 19, 
and it encodes an 84 amino acid pre-pro-peptide[9,10]. Pre-
pro-hepcidin is ultimately processed into several smaller 
peptides that consist of  the 20, 22 or 25 C-terminal amino 
acids[9]. The 25 amino acid peptide has eight cysteine 
residues forming four intramolecular disulfide bonds, and 
is the biologically active form of  hepcidin[9,12]. The eight 
cysteine residues are highly conserved among species 
from zebra fish to humans (Figure 1). Two-dimensional 
nuclear magnetic resonance (NMR) spectroscopy showed 
that hepcidin forms a distorted hairpin-like structure, 
and NMR diffusion studies demonstrated that the 25 
residue peptide forms aggregates involving the first five 
N-terminal residues[13]. The 20 and 22 amino acid forms, 
that lack the N-terminal residues, do not form aggregates 
and have much reduced iron regulatory capacity[12,13]. 
Removal of  individual disulfide bonds did not reduce the 
hepcidin function significantly in vitro. However, serial 
deletions of  the N-terminal residues progressively reduced 
hepcidin activity[12].

The first animal model describing the relationship 
between hepcidin and iron homeostasis came serendipitously 
from the knockout of  an adjacent gene encoding upstream 
stimulatory factor 2 (USF2)[11]. The USF2 knockout mice 
of  this strain (Paris USF2) had very low levels of  hepcidin 
transcript in the liver and developed multi-organ iron 
overload (but with relative sparing the spleen) and high 
transferrin saturation, a phenotype consistent with the 
human iron loading disease hereditary hemochromatosis[11]. 
These results provided the first indication that hepcidin was 
a negative regulator of  iron uptake from the intestine and 
of  iron release from macrophages. Another USF2 knockout 
mouse strain (Houston USF2)[14] had normal hepcidin levels, 
and showed no aberrations in iron metabolism[15], indicating 
that the Paris USF2 knockout phenotype was due to hepcidin 
deficiency. Since these original studies, a specific hepcidin 
knockout mouse has been generated, and it also shows an 
iron loading phenotype[16]. In contrast, mice over expressing 
hepcidin display decreased body iron levels and a microcytic 
hypochromic anaemia typical of  severe iron deficiency[15]. 
The majority of  these mice die within a few hours after 
birth suggesting that hepcidin also inhibits placental iron 
transport[15]. A similar situation has been described in 
humans, and patients with hepatic adenomas producing 
abnormally high levels of  hepcidin suffer from a severe iron 
refractory anaemia that only resolved after resection of  the 
tumour[17]. As might be expected from these results, ����������injection 
of  synthetic hepcidin peptide into mice leads to inhibition of  
intestinal iron absorption and consequently hypoferremia[18]. 

Taken together, these data provide strong evidence that 
hepcidin is the central regulator of  body iron levels.

In humans, mutations in the HAMP gene result in 
a severe form of  iron loading disease that presents at 
early age, and is aptly named juvenile hemochromatosis 
(JH). HAMP-associated JH is inherited in an autosomal 
recessive manner, and two mutations have been described 
(93delG and C166T) that are associated with iron loading 
when present in the homozygous state[13,19]. While 
heterozygosity for these mutations alone does not lead to 
iron loading, compound heterozygosity between two other 
HAMP mutations (Met50del IVS2+1(-G) and G71D) 
and C282Y, the most common mutation in patients with 
HFE-associated iron loading, has been reported to result 
in hemochromatosis[20]. Thus HAMP mutations may act 
as modifiers of  the HFE-associated hemochromatosis 
phenotype.

Clearly hepcidin plays a major role in the regulation 
of  intestinal iron absorption. But, how does it exert its 
effects? Soon after the link between hepcidin and iron was 
recognised, a close inverse correlation between HAMP 
expression and iron absorption and the expression of  
duodenal iron transporter transcripts was described[21]. 
It was suspected that hepcidin interacted with a receptor 
on the basolateral surface of  the enterocytes, thereby 
activating one or more signal transduction pathways that 
ultimately led to changes in the expression of  the iron 
transport genes. The truth turned out to be elegantly 
simple. Hepcidin acts by directly binding to the sole 
basolateral iron export molecule, ferroportin, and causing 
its internalisation and subsequent degradation[22]. Thus 
ferroportin is the hepcidin “receptor”. This loss of  
ferroportin on the cell surface reduces iron export from 
the cells leading to intracellular iron accumulation. As 
ferroportin is responsible for iron export from both 
enterocytes and macrophages, loss of  this protein will 
result in reduced supply of  iron to the plasma and, 
hence, will cause hypoferremia and, ultimately, anaemia. 
Consistent with this mechanism is the observation that 
mice lacking hepcidin show decreased iron in the spleen, 
an organ rich in macrophages, in the face of  increased 
hepatic iron[15]. Similarly, J774 mouse macrophages 
treated with hepcidin peptide showed decreased levels of  
ferroportin and reduced the efflux of  iron[23]. Hepcidin 
likely acts on iron export from other cell types, such as 
hepatocytes, in a similar fashion, and this can explain its 
key role in regulating iron traffic into and around the body. 

Since hepcidin interacts with FPN, it might be expected 
that mutations in FPN that alter this interaction could 
essentially mimic hepcidin deficiency. This has been found 
to be the case. Two classes of  FPN mutations have been 
identified in human subjects and both lead to iron loading. 

Figure 1   Sequence al ignment of 
hepcidin from various species.
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Homo sapiens D T H F P I C I F C C G C C H R S K C G M C C K T
Canis familiaris D T H F P I C I F C C G C C K T P K C G L C C K T
Sus scrofa D T H F P I C I F C C G C C R K A I C G M C C K T
Bos taurus D T H F P I C I F C C G C C R K G T C G M C C R T
Mus musculus D T N F P I C I F C C K C C N N S Q C G I C C K T
Rattus norvegicus D T N F P I C L F C C K C C K N S S C G L C C I T
Danio rerio Q S H L S L C R F C C K C C R N K G C G Y C C K F
Salmo salar Q I H L S L C G L C C N C C H N I G C G F C C K F



However, there are subtle differences in the phenotypes, 
with one being consistent with reduced iron transport 
by the protein and, the other consistent with impaired 
interaction with hepcidin[24].

Systemic factors that regulate
hepcidin
Consistent with its role as a central regulator of  body 
iron metabolism, hepcidin levels are modulated by the 
same factors that alter iron homeostasis. Changes in body 
iron stores, the rate of  erythropoiesis, inflammation and 
hypoxia all influence iron absorption and iron release from 
macrophages and these are the major systemic factors that 
regulate HAMP mRNA levels in the liver.

Hepcidin levels are increased in response to oral and 
parenteral iron loading and decreased under iron deficient 
conditions[10]. This inverse relationship is seen with chronic 
changes in body iron status. But, it can also occur quite 
quickly, and HAMP mRNA levels in the liver can decrease 
within days of  transferring rats from a control to iron 
deficient diet[21]. The regulation of  hepcidin by body iron 
levels acts as a feedback mechanism to allow sufficient iron 
to enter the plasma when demand is high, but to limit iron 
intake/release in times of  iron sufficiency. How hepcidin 
responds to changes in body iron levels is incompletely 
understood. Since hepcidin expression is largely restricted 
to the liver, it is highly likely that the hepatocyte is the 
site of  action of  the regulatory stimulus. But, whether 
hepatocyte iron levels per se play a primary role or whether 
an external signal is involved in unclear. This will be 
considered in more detail in the following section.

Interestingly, in vitro loading of  hepatocyte cell lines and 
primary hepatocytes with iron decreases HAMP mRNA 
expression, the opposite effect to that seen in vivo[25]. 
Why this is the case has proved difficult to resolve. One 
possibility is that the iron supplied to the cultured cells is 
of  a different form to that presented to the liver in vivo. 
This may be the case, but the in vitro reduction in hepcidin 
expression is seen when both iron salts and transferrin-
bound iron is presented to the cells. A second possibility 
is that during the isolation and culture procedure liver-
derived cells lose some factor that is critical for their 
normal physiological response to iron. Since the same 
effect is seen on freshly isolated primary hepatocytes this 
appears unlikely. But, it remains possible. Potentially the 
most satisfying explanation for the observations is that the 
response of  the liver to iron in vivo requires the interaction 
of  two or more types of  cells, and that this interaction is 
lost after the cells are isolated. The liver macrophages or 
Kupffer cells are strong candidates for cells that might 
interact with hepatocytes to regulate iron homeostasis.
But, several studies have now shown that when animals are 
depleted of  macrophages (including Kupffer cells) their 
livers respond normally by increasing hepcidin expression 
in response to iron[26,27]. Thus it appears that macrophages 
are not required for hepcidin regulation in the liver in 
response to iron in vivo. A final possibility is that reduced 
expression of  hepcidin is the normal physiological 
response of  hepcidin to iron, and that the in vivo situation 
is complicated by a range of  interacting stimuli that 

influence expression of  the HAMP gene. Further work is 
required to resolve this issue.

The largest s ingle s ink for iron in the body is 
haemoglobin in the red blood cells, and consequently iron 
demand is closely linked to the rate of  erythropoiesis. 
Thus when erythropoiesis is stimulated, following 
phenylhydrazine-induced hemolysis for example, hepcidin 
expression is suppressed to allow increased iron flow 
into the plasma and consequently to the developing 
red cells[15,28]. This hepcidin response is observed only 
in the presence of  erythropoiesis as suppression of  
erythropoiesis by irradiation or by post-transfusion 
polycythemia leads to increased hepcidin levels[29,30]. The 
regulation of  hepcidin mRNA levels by erythropoiesis is 
independent of  direct erythropoietin effects[30], and is likely 
to reflect several stimuli. The iron requirement of  the 
erythroid marrow is certainly a major factor. But, hypoxia 
too is also likely to be important as reduced haemoglobin 
may reduce oxygen delivery to the tissues. The response 
of  hepcidin to hypoxia is considered in more detail below. 
In a recent study by Ganz and colleagues, it was concluded 
that in addition to iron requirements and hypoxia, 
there is an erythropoiesis-specific factor that affects 
hepcidin expression[30]. However, this factor has yet to be 
characterized.

Another situation where body iron homeostasis is 
perturbed is during inflammation or infection. Under 
these circumstances, iron absorption declines and iron is 
sequestered in macrophages, with the consequence that 
the plasma iron level is decreased (hypoferremia). With 
chronic inflammation or infection, anemia may result, 
and this condition is often called the anemia of  chronic 
disease[31]. Consistent with the reduction in plasma iron 
is the demonstration that inflammatory stimuli positively 
regulate hepcidin levels[32-35]. Increased hepcidin means 
decreased iron entry into the plasma. That hepcidin 
is responsible for the hypoferremia accompanying 
inflammation has been shown by studies with Hamp null 
mice. These animals mount a standard inflammatory 
response to a stimulus such as bacterial lipopolysaccharide 
(LPS), but the expected hypoferremia does not occur[32].

One of  the major mediators of  the inflammatory 
response is the cytokine IL-6. IL-6 infusion in humans or 
administration to experimental animals leads to an increase 
in hepcidin production and decrease in serum iron levels 
within a few hours[36]. A time course analysis in human 
subjects injected with LPS revealed a strong temporal 
correlation between increases in serum IL-6 and urinary 
hepcidin, and the decrease in serum iron[34]. Similarly, IL-6, 
other pro-inflammatory cytokines like IL-1α and IL-1β 
and LPS stimulate hepcidin in primary hepatocytes and 
hepatoma cell lines[36,37].

Many inf lammatory processes have a systemic 
component, and these are able to influence hepcidin 
expression in hepatocytes. However, there is increasing 
evidence that hepcidin may also be relevant in the local, 
extra-hepatic setting. For example, in an in vivo murine 
granulomatous pouch model of  infection the host 
animals responded to bacterial infection by upregulating 
hepcidin at the local level, presumably to limit availability 
of  iron to the pathogens in the immediate vicinity[35]. The 
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cells responsible for the local production of  hepcidin 
are unknown, but may be infiltrating macrophages and 
neutrophils. Indeed hepcidin expression has been detected 
in myeloid cells in response to systemic infection[38]. 
Hepcidin production also has been demonstrated in 
adipose tissue. But, again the responsible cell type is not 
known[39].

At the whole body level, hypoxia is usually associated 
with a reduced amount of  circulating hemoglobin, and 
the body’s response to this deficiency is to stimulate 
erythropoiesis. This in turn requires an increased iron 
supply. It thus comes as no surprise that hepcidin 
levels drop 2-4 d after animals are placed in a hypoxic 
chamber[32], and that luminal iron uptake is increased in 
the small intestine under the same conditions[40]. Some of  
the in vivo effects of  hypoxia cannot be attributed to the 
direct repression of  hepcidin expression by low oxygen 
as increased erythropoiesis may reduce hepcidin levels by 
other mechanisms[30]. But, the demonstration that hypoxia 
down regulates hepcidin mRNA levels in human hepatoma 
cell lines[32] suggests that the HAMP gene itself  may be 
regulated by hypoxia. In addition, hypoxia could also 
trigger a stress response in cells and animals, and HAMP is 
a known stress response gene[33].

The factors that regulate hepcidin levels described 
above vary in their relative strength, and in certain 
situations, where more than one stimulus is present, 
one may predominate. A good example of  this is in 
β-thalassemia. In both mice and humans with this 
disorder, hepcidin levels are initially low despite increased 
levels of  storage iron, and thus the erythropoietic stimulus 
is predominating[41-43]. However, as the disease advances 
the effect of  the increasing iron stores become relatively 
stronger and hepcidin levels increase. A similar situation 
is found in hypotransferrinaemic mice[17] and in iron 
loaded animals treated with PHZ to induce anaemia 
and erythropoiesis[32] where the erythropoietic stimulus 
predominates.

The molecular basis of hepcidin
regulation
While the major physiological factors that alter hepcidin 
expression have been identified, how these stimuli signal 
the liver to alter hepcidin expression, and how the changes 
in expression are brought about is complex and only 
partially understood. Important clues in dissecting these 
regulatory pathways have come from the analysis of  
human iron loading disorders and their equivalent murine 
models. Patients with mutations in the HFE, transferrin 
receptor 2 (TfR2), hemojuvelin (HJV) or HAMP genes 
all show a histological pattern of  iron deposition that 
is similar and consistent with elevated iron absorption. 
Furthermore, HFE, TfR2 and HAMP all show their 
highest expression in the liver and HJV shows strong 
expression in this organ. These similarities suggested that 
the proteins these genes encode may form part of  the 
same regulatory pathway. This has now proved to be the 
case.

Classical, adult onset hereditary hemochromatosis (HH) 
results from mutations in the HFE gene, and both human 

patients and mouse strains with a disrupted HFE gene 
show periportal iron deposition with relative sparing of  
the Kupffer cells[44,45]. HFE is expressed on the cell surface 
as a complex with β2-microglobulin (β2m) and mouse 
models of  β2m deficiency show a similar iron loading 
phenotype[46-48]. Since hepcidin expression is increased with 
iron loading, it was expected that disruption of  the HFE 
gene would lead to enhanced hepcidin levels. When this 
was investigated, however, the opposite was seen. Human 
patients with HFE-associated hemochromatosis showed 
significantly lower levels of  liver hepcidin expression than 
control subjects[49]. In Hfe knockout mice, hepcidin levels 
were similar to those of  wild-type animals. But, the level 
remained low even when the knockout animals were fed 
a high iron diet[50]. Taken together, these observations 
show that HFE is an upstream regulator of  hepcidin, and 
not a downstream target as was previously believed[49]. 
Proof  of  this was provided by Nicolas and colleagues who 
showed that mice over expressing hepcidin, but null at 
the Hfe locus, did not accumulate excess iron[51]. Despite 
low hepcidin levels in patients with HH, hepcidin levels 
still increase as the body iron load increases indicating 
that hepcidin regulation is not completely disrupted when 
HFE is mutated[49,52]. This is consistent with the milder 
phenotype of  patients with HFE-associated HH compared 
to those with mutations in the HAMP gene[24].

If  HFE acts as an upstream regulator of  hepcidin, 
how does it respond to changes in body iron demand? 
The answer to this question is not clear. But, the level of  
circulating diferric transferrin has emerged as a potential 
regulator[53,54]. HFE is able to bind to TfR1, the major cell-
surface diferric transferrin binding protein[55,56], and HFE 
and transferrin are able to compete for TfR1 binding. Such 
competition could modulate the amount of  HFE that is 
not bound to TfR1 that in turn could transduce a signal 
to alter hepcidin expression. It is also possible that HFE 
interferes with the cellular uptake of  transferrin-bound 
iron, and that this in turn affects HAMP expression[57]. 
Support for diferric transferrin as a signal to alter HAMP 
expression has come from the demonstration that another 
transferrin binding protein, TfR2, also is involved in 
hepcidin regulation.

Transferrin receptor 2 encodes a protein that shares 
45% identity with TfR1[58]. However, in contrast to its 
widely expressed homolog, TfR2 expression is restricted to 
the liver, spleen, brain and heart, with highest expression 
in the liver[58]. Mutations in TfR2 lead to iron overload in 
human patients[59] with a clinical picture similar to classical 
HFE-associated hereditary hemochromatosis[60]. The same 
phenotype is seen in TfR2 knockout and mutant mice[61,62]. 
As in HFE-associated iron loading, hepcidin expression 
is decreased in the liver of  TfR2 mutant mice[62,63], and 
patients with TfR2-related hemochromatosis also show 
decreased urinary hepcidin levels[64]. The severity of  TfR2-
related hemochromatosis is much less than that associated 
with mutations in HAMP or HJV, but is similar to HFE-
associated hemochromatosis.

Like HFE, TfR2 appears to be an upstream regulator 
of  hepcidin. But, how it exerts its effects is unknown. It 
has been reported that, unlike TfR1, TfR2 does not bind 
to HFE, and shows 25 times less affinity for transferrin 
compared to TfR1[65] making it unlikely that TfR2 makes a 
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major contribution to cellular iron uptake. Indeed, in Tfr2 
knockout mice, the liver accumulates iron very efficiently 
indicating that TfR2 is not essential for hepatic iron uptake. 
In contrast, a recent study has shown that when TfR2 and 
HFE are over expressed together in the same cells they 
can be co-immunoprecipitated[66]. Whether this interaction 
is physiologically relevant or represents an overexpression 
artefact remains to be determined. Interestingly, two 
independent studies have demonstrated that TfR2 
protein levels are upregulated by diferric transferrin, 
but do not respond to apotransferrin or non-transferrin 
bound iron[67,68]. This effect of  diferric transferrin is not 
observed at the transcript level, and appears to be post-
translational[68]. Recently, it has been reported that the 
interaction between diferric transferrin and TfR2 activates 
ERK1/ERK2 and p38 MAP kinase, but only when TfR2 
is present on the lipid rafts of  the exosomes[69]. However, 
the precise mechanisms and signalling pathway of  TfR2-
hepcidin axis are not yet understood and remain to be 
further explored.

The third important protein known to be involved 
in the regulation of  hepcidin is hemojuvelin (HJV, 
RGMc). HJV, is a member of  the repulsive guidance 
molecule (RGM) family, and shares some common 
features with RGMa and RGMb, including a C-terminal 
glycosylphosphatidylinositol-linked membrane anchor 
(GPI-anchor), N-terminal signal sequence, proteolytic 
cleavage site and partial von Willebrand factor type D 
domain[70,71]. Mutations in the HJV gene cause severe iron 
overload, and lead to juvenile hemochromatosis due to 
greatly decreased hepcidin levels in human patients[72] and 
mice[73,74]. Moreover, knocking down HJV with siRNA 
in Hep3B cells leads to a decrease in hepcidin levels[74]. 
Interestingly, HJV expression is strongest in heart and 
skeletal muscle, but also shows moderate expression in the 
liver[72], where HAMP is most strongly expressed. Treating 
primary hepatocytes with soluble HJV led to a decrease 
in hepcidin levels suggesting that a binding competition 
exists between soluble and cell-associated hemojuvelin[75]. 
In addition, increasing iron concentrations led to a 
decrease in soluble HJV (sHJV) in cells over expressing 
HJV[75], indicating that iron could regulate HJV at the post-
transcriptional level.

HJV acts as a co-receptor for the bone morphogenetic 
proteins (BMPs), in a similar fashion to other molecules 
of  the Rgm family, and HJV mutants have impaired BMP 
signalling[76]. BMPs represent a subfamily of  transforming 
growth factor-beta (TGF-β) ligands that signal by binding 
to and bringing together typeⅠand type Ⅱ BMP receptors 
on the cell surface, and then propagating the signal through 
phosphorylation of  the Smad proteins[77] (Figure 2). BMPs 
phosphorylate receptor-regulated Smads 1, 5 and 8 that in 
turn form heteromers with the co-mediator Smad 4. The 
activated complex then translocates to the nucleus and, 
in combination with other factors, regulates target genes 
such as HAMP[77]. Cells transfected with the co-receptor 
HJV or treated with the ligand BMP-2 showed increased 
levels of  hepcidin, and BMP-2 induction was enhanced in 
the presence of  HJV[76]. Other BMPs, BMP-4 and BMP-9, 
have been shown to have a similar effect on hepcidin 
expression independent of  HFE and TfR2 status[78]. This 
suggests that HJV acts via a HFE/TfR2 independent 
pathway to alter HAMP levels. Further insight into this 
aspect of  hepcidin regulation comes from the studies 
of  the liver-specific Smad 4 knockout mouse. These 
animals showed markedly decreased levels of  hepcidin, 
increased duodenal transporters and iron overload[79]. 
Overexpression of  Smad 4 led to transcriptional activation 
of  HAMP due to epigenetic modification of  histone 
H3 protein[79]. Smad 4-deficient hepatocytes showed no 
increase in hepcidin levels upon treatment with BMP, 
iron, TGF-β or IL-6[79]. This response to BMP is expected 
as Smad 4 acts downstream in the signalling pathway[76]. 
However, the result with IL-6 is interesting as it indicates 
that the IL-6 pathway and the BMP-Smad pathway 
converge at some point. Overall, these data indicate that 
the BMP/SMAD pathway plays an important role in the 
regulation of  HAMP gene expression. Whether this is the 
major pathway operating or other pathways are dominant 
remains to be determined, as the relationship between 
HFE, TfR2 and HJV (Figure 2).

Pro-inf lammatory molecules l ike LPS and FCA 
positively regulate hepcidin expression by inducing the 
expression of  cytokines such as IL-6. This induction of  
hepcidin by pro-inflammatory cytokines appears to be 
independent of  HFE, β2m and TfR2[80,81], although one 
study provided evidence that these proteins may play 
some role[82]. The differences in these studies could be 
due to the difference in the timing and dosage of  the 
treatments. IL-6 alters HAMP transcription through the 
classical JAK-STAT pathway[83,84]. This pathway ultimately 
leads to activation of  STAT3 that binds to an element 
in the proximal 100 bases of  the HAMP promoter. The 
interesting observation that the IL-6 dependent stimulation 
of  the HAMP gene is abrogated in Smad 4 knockout mice 
indicates that Smad 4 is involved in the signalling process 
as well. This has yet to be investigated in detail, as have the 
mechanisms by which other pro-inflammatory cytokines 
stimulate HAMP expression.

Although it is widely considered that the HAMP gene 
is regulated predominantly at the level of  transcription, 
relatively few promoter analyses have been carried out. As 
noted above, STAT3 is known to bind to the promoter, 
and several other transcription factors have been 
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identified. C/EBPα, a liver-enriched transcription factor, 
has been shown to bind the HAMP promoter 230-250 
bp upstream of  the transcription start site[85], and may 
drive basal transcriptional activity of  the gene. Supporting 
such a role, C/EBPα knockout mice showed decreased 
hepcidin levels and increased iron staining in their livers[85]. 
In another study, the role of  the basic helix-loop-helix 
leucine zipper (bHLH-ZIP) family of  transcriptional 
regulators, and notably USF2, in HAMP transcription was 
studied in order to investigate the reasons behind the lack 
of  hepcidin expression in the USF2 knock out mouse. 
It was demonstrated using site-directed mutagenesis, 
chromatin immunoprecipitaton assays and mobility shift 
assays that USF1/USF2 and c-Myc/Max bind to E-boxes 
in the hepcidin promoter, and regulate its transcription[86]. 
Because some genes with E-boxes show rhythmicity, it has 
been proposed that hepcidin might also be under pulsatile 
or rhythmic transcriptional control. However, the signals 
and cellular pathways that lead to the activation of  these 
proteins in the context of  hepcidin regulation remain to be 
resolved.

A model for the liver-dependent
regulation of iron homeostasis
The discussion above has highlighted various factors that 
regulate hepcidin. and the current knowledge about the 
molecular mechanisms behind their effects. We previously 
proposed a model to explain the regulation of  hepcidin in 
a physiological context[53], and present an updated version 
of  the model here (Figure 3). In this model, signals that 
alter body iron homeostasis (iron stores, erythropoiesis, 
inflammation, hypoxia) act on the hepatocytes in the liver 
to modulate HAMP gene expression. Some of  these 
stimuli may act directly on the liver cells (e.g. hypoxia), 
while others may act indirectly e.g. iron stores may act 
through changing the levels of  diferric transferrin in the 
circulation. How the signals alter HAMP expression at the 

molecular level is incompletely understood. HFE, TfR2 
and HJV are clearly involved in the process and, in the case 
of  the latter; signalling through the BMP/SMAD pathway 
is a likely mode of  action. Pro-inflammatory cytokines 
such as IL-6 act through the JAK/STAT pathway to 
regulate HAMP transcription. Hepcidin secreted by the 
liver acts on mature enterocytes in the proximal small 
intestine to reduce iron export into the circulation. Thus, 
high hepcidin means reduced iron absorption and vice 
versa. Hepcidin also acts on macrophages, hepatocytes, 
and likely other cells in the body to regulate their release 
of  iron, so it plays a universal role in iron homeostasis.

Hepcidin levels show a positive correlation with 
transferrin saturation that is independent of  the liver 
iron content[21] indicating that the levels of  iron bound 
to transferrin may be a major signal that regulates the 
expression of  hepcidin in the liver. Diferric transferrin is 
essential for iron delivery to the tissues making it suitable 
as an indicator of  plasma iron status. Transferrin saturation 
thus decreases with iron deficiency and increases with 
iron loading. Diferric transferrin competes with HFE for 
binding to TfR1, and their binding sites overlap. But, it 
has a higher affinity for its principal receptor than HFE[87], 
and thus out-competes HFE for binding to TfR1. This 
leaves HFE “free” on the cell surface to initiate a signal to 
stimulate hepcidin expression. Similarly, diferric transferrin 
binds to TfR2, although with lower affinity, and sends a 
signal via the proposed ERK1/2 and MAPK pathways[69]. 
The signal transduction pathways driven by HFE and TfR2 
that lead to the regulation of  hepcidin expression are not 
yet clear. HFE and TfR2 may form a stable complex with 
each other as has been proposed[66] or may interact with 
HJV/BMPRs to propagate the signalling via the Smad1, 5, 
8/Smad4 pathway. But, the precise details have yet to be 
elucidated.

In iron deficiency, TfR1 and transferrin levels increase, 
and transferrin saturation drops. The balance shifts 
towards monoferric transferrin that has lower binding 
affinity for TfR1 compared to diferric transferrin. This 
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results in increased binding of  HFE to TfR1, decreased 
signalling, and consequently lower hepcidin production. 
Similarly, as the plasma iron level falls, TfR1 binds residual 
diferric transferrin more efficiently than TfR2. This 
down regulates the TfR2-ERK signalling pathway, and 
thus hepcidin synthesis. When body iron levels are high 
the opposite pattern is seen, and hepcidin expression 
is increased. Stimulated erythropoiesis is another major 
stimulus for iron absorption, and at least one mechanism 
by which it might exert its effects on reducing hepcidin 
expression is via reduced transferrin saturation.

Conclusion
Recent developments in understanding the molecular 
mechanisms of  iron homeostasis have greatly enhanced 
our knowledge of  iron absorption in the gut. The most 
important advance in this area has been the recognition 
that the liver-derived peptide hepcidin responds to 
variations in body iron demand, and acts on the proximal 
small intestine to regulate iron efflux into the plasma. This 
shows that the liver plays a central role in the regulation of  
body iron homeostasis. Various systemic stimuli including 
iron stores, the rate of  erythropoiesis, and oxygen levels 
regulate hepcidin expression, and consequently iron 
absorption. But, how systemic signals are received by the 
liver, and how these signals are transduced into changes 
in HAMP gene expression are incompletely understood. 
Strong evidence now suggests that signalling through 
the BMP/Smad pathway plays a major role in regulating 
hepcidin. But, how universal this pathway is has yet to be 
resolved.
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