
DESIGN AND VERIFICATION OF DISTRIBUTED TASKING

SUPERVISORS FOR CONCURRENT PROGRAMMING

LANGUAGES

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

David Samuel Rosenblum

March ����

c� Copyright ����

by

David Samuel Rosenblum

ii

I certify that I have read this thesis and that in my opinion

it is fully adequate� in scope and in quality� as a dissertation

for the degree of Doctor of Philosophy�

David C� Luckham
�Principal Advisor�

I certify that I have read this thesis and that in my opinion

it is fully adequate� in scope and in quality� as a dissertation

for the degree of Doctor of Philosophy�

Susan S� Owicki
�Associate Advisor�

I certify that I have read this thesis and that in my opinion

it is fully adequate� in scope and in quality� as a dissertation

for the degree of Doctor of Philosophy�

James B� Angell

Approved for the University Committee on Graduate Studies�

Dean of Graduate Studies

iii

iv

Abstract

A tasking supervisor implements the concurrency constructs of a concurrent programming

language� This thesis addresses two fundamental issues in constructing distributed imple�

mentations of a concurrent language� ��� Principles for designing a tasking supervisor for

the language� and �	� Practical techniques for verifying that the supervisor correctly imple�

ments the semantics of the language� Previous research in concurrent languages has focused

on the design of constructs for expressing concurrency� while ignoring these two important

implementation issues�

First� the thesis describes the design of a tasking supervisor for the Ada programming

language� The Supervisor implements the full Ada tasking language� and it performs dis�

tributed program execution on multiple CPUs� The Supervisor is a portable� modular�

distributed software system written in Ada� The interface between the Supervisor and ap�

plication programs forms the topmost layer of the Supervisor and is formally speci
ed in

Anna �ANNotated Ada�� All machine dependences are encapsulated in the bottom layer of

the Supervisor� this layer is an implementation of an abstract virtual loosely coupled multi�

processor� The principles used to design the Supervisor may be used to design a distributed

supervisor for any concurrent language�

Second� the thesis presents new and practical techniques for automatically verifying the

behavior of a distributed supervisor� these techniques are illustrated by the veri
cation

of the Distributed Ada Supervisor� An event�based formalization of the Ada tasking se�

mantics is expressed as a collection of machine�processable speci
cations written in TSL

�Task Sequencing Language�� Correctness of the Supervisor is established by automatically

checking executions of test programs for consistency with the TSL speci
cations� Since the

speci
cations are derived solely from the Ada semantics� the speci
cations can be used to

test any implementation of Ada tasking� In addition� every Ada tasking program may be

used as test input�

v

The theory and practice of concurrent programming is in its infancy� The research

described in this thesis represents a major step toward the development of a theory of

constructing multiprocessor implementations of concurrent programming languages�

vi

Acknowledgments

Many people have given their time and talent in helping me to complete this dissertation�

First and foremost among these people is my principal advisor� David Luckham� who for

ve years has been a constant source of inspiration and sage advice� teaching me to hold

my research to only the highest and most rigorous of intellectual standards�

My associate advisor� Susan Owicki� whose thoroughness was especially helpful in shap�

ing the more theoretical aspects of this thesis� provided countless insightful comments and

observations�

Doug Bryan and Geo� Mendal read portions of this thesis in a di�erent form and

contributed many comments that helped clarify my understanding of Ada tasking� In

addition� Sriram Sankar was very helpful in developing the presentation of various material

related to formal speci
cations� The comments and suggestions of my third reader� Jim

Angell� were also helpful�

My colleagues Dave Helmbold� Sigurd Meldal� Manu Thapar� Will Tracz and Neel Mad�

hav provided many astute suggestions during various public presentations of this research�

Dave Olien of Sequent was a great source of knowledge on the more subtle aspects of the

Balance shared memory architecture� and Steve Deller of VERDIX helped shed light on a

few of the dark corners of the VADS Environment�

The research described in this dissertation was supported by DARPA contract N���

���C	�� and AFOSR contract ������

My parents instilled in me the desire to strive for excellence in my education� and their

constant support over the years is greatly appreciated�

I dedicate this dissertation to my wife Sarah� The completion of this dissertation would

never have been possible without her patience� endurance and loving support�

vii

viii

Table of Contents

List of Tables xv

List of Figures xvii

� Introduction �

� Background and Related Work �

	�� Concurrent Programming Languages �

	���� Concurrent Pascal �

	���	 CSP �

	���� Ada �

Features of the Ada Tasking Language � � � � � � � � � � � � � � � � � �

Implementations of Ada �	

Towards Distributed Ada Tasking ��

	�	 Distributed Operating Systems ��

	�	�� Special Features ��

	�	�	 The V System ��

	�� Testing and Verifying Concurrent Software � � � � � � � � � � � � � � � � � � ��

	���� Parallel Debuggers ��

	���	 Monitoring Systems ��

	���� Formal Veri
cation of Parallel Programs � � � � � � � � � � � � � � � � 	�

	���� Machine�Processable Speci
cation Languages � � � � � � � � � � � � � 	�

Anna�ANNotated Ada � 	�

TSL�Task Sequencing Language � 	�

	�� Summary ��

ix

� Distributed Supervisor Design Principles ��

��� The Virtual Machine Interface �

����� Interface Requirements ��

��	 The Supervisor Kernel �	

��� Supervisor Subprograms ��

��� Summary of Design Principles ��

� Distributed Ada Supervisor Design ��

��� Overview of the Distributed Ada Supervisor Design � � � � � � � � � � � � � � ��

��	 Ada Supervisor Structure ��

��� The Virtual Machine Interface �

��� The Supervisor Kernel �	

����� The Local Task Map ��

����	 The Global Task Map ��

����� The Message�Sending Algorithm ��

����� The Message�Receiving�Routing Algorithm � � � � � � � � � � � � � � ��

����� Analysis of the Kernel Algorithms ��

����� Elimination of Kernel Race Conditions � � � � � � � � � � � � � � � � � ��

��� The Supervisor Message�Passing Protocol ��

����� Minor Enhancements to the Weatherly Protocol � � � � � � � � � � � ��

����	 Messages for Scheduling Newly Activated Tasks � � � � � � � � � � � � ��

����� Messages for Remote Exception Propagation � � � � � � � � � � � � � ��

����� Messages for Evaluation of Task Attributes � � � � � � � � � � � � � � ��

����� Messages for Remote Activation of Dependents � � � � � � � � � � � � ��

����� Messages for the Terminate Alternative � � � � � � � � � � � � � � � � �

����� Messages for the Abort Statement ��

��� The Supervisor Interface ��

����� The Supervisor Data Types ��

����	 The Vocabulary of the Anna Speci
cations � � � � � � � � � � � � � � ��

����� The Scope Control Subprograms �	

����� Synchronization Points ��

����� The CALLABLE ATTR Function ��

����� The TERMINATED ATTR Function � � � � � � � � � � � � � � � � � ��

x

����� The COUNT ATTR Function ��

����� The ENTRY CALL Procedure ��

����� The ACCEPT BEGIN Procedure ��

����� The ACCEPT END Procedure ��

������ The CHILD TASK Function ��

�����	 The ACTIVATE TASK Procedure ��

������ The ELABORATE TASK Function � � � � � � � � � � � � � � � � � � �	

������ The TERMINATE TASK Procedure � � � � � � � � � � � � � � � � � � ��

������ The ABORT TASKS Procedure ��

������ The DELAY TASK Procedure ��

��� Design Summary ��

� Distributed Ada Supervisor Implementation ��

��� The Uniprocessor Supervisor Simulator ��

��	 The Distributed Supervisor Implementation � � � � � � � � � � � � � � � � � � �	

��	�� Task Scheduling with DOMINO ��

��	�	 Synchronization with Sequent Locks � � � � � � � � � � � � � � � � � � ��

��	�� Parallel Execution with Unix FORK � � � � � � � � � � � � � � � � � � ��

��� Communication Overhead ��

��� Diagnostic Supervisor Output ��

� Distributed Supervisor Veri�cation ���

��� The Veri
cation Approach ���

��	 Formalization of the Ada Tasking Semantics � � � � � � � � � � � � � � � � � � ���

��	�� Choosing the Tasking Events and Predicates of the Rendezvous � � � ���

��	�	 Formalizing the Semantics of the Accept Statement � � � � � � � � � ���

TSL De
nition of the Tasking Events and Predicates � � � � � � � � � ���

Construction of the TSL Speci
cations � � � � � � � � � � � � � � � � � �		

��� The NET SERVICES Connectedness Assumptions � � � � � � � � � � � � � � �	�

��� Runtime Checking Experiments �	�

��� Comparison With Other Approaches ��

� Conclusions ���

��� Contributions of the Dissertation ���

xi

��	 Future Work ���

��	�� Remaining Ada Supervisor Design Details � � � � � � � � � � � � � � � ���

��	�	 New Models of Concurrency ���

A The Virtual Machine Interface ���

B Ada Supervisor Kernel Algorithms ���

B�� The SEND Algorithm ���

B�	 The Routing and Receiving Algorithm ���

C Ada Supervisor Messages ���

C�� The Supervisor Message Type ���

C�	 Task Execution Status Types ��	

D Terminate Alternative Algorithm ���

E The Supervisor Preprocessor ���

��� Task Speci
cations and Task Bodies ���

��	 Task Types and Task Objects ��	

��� Task Execution�Task Activation ���

��� Task Dependence�Termination of Tasks ���

��� Entries� Entry Calls� and Accept Statements � � � � � � � � � � � � � � � � � � ���

��� Delay Statements� Duration and Time ���

��� Select Statements ��

����� Selective Waits ��

����	 Conditional Entry Calls ���

����� Timed Entry Calls ���

��� Priorities ���

��� Task and Entry Attributes ���

��� Abort Statements ���

���� Shared Variables ���

F Ada Tasking Events ���

F�� Action Declarations for the Tasking Events � � � � � � � � � � � � � � � � � � ���

F�	 TSL Speci
cation of the Tasking Events ���

xii

��� Task Speci
cations and Task Bodies � � � � � � � � � � � � � � � � � � ���

��	 Task Types and Task Objects ��	

��� Task Execution�Task Activation ��	

��� Task Dependence�Termination of Tasks � � � � � � � � � � � � � � � ���

��� Entries� Entry Calls� and Accept Statements � � � � � � � � � � � � � ���

��� Delay Statements� Duration and Time � � � � � � � � � � � � � � � � � ���

��� Select Statements ���

����� Selective Waits ���

����	 Conditional Entry Calls ���

����� Timed Entry Calls ���

��� Priorities ���

��� Task and Entry Attributes ���

��� Abort Statements ���

���� Shared Variables ���

G TSL Formalization of Ada Tasking �	�

G�� Task Activation ���

G���� Property Declarations ���

G���	 Functional Speci
cation ���

G���� Safety Speci
cations ��	

G�	 Task Termination ���

G�	�� Property Declarations ���

G�	�	 Functional Speci
cation ���

G�	�� Safety Speci
cations ���

G�� Task Execution ���

G���� Property Declarations ���

G���	 Functional Speci
cation ���

G���� Safety Speci
cations ���

G�� The Entry Call Statement ���

G���� Property Declarations ���

G���	 Functional Speci
cation ���

G���� Safety Speci
cations � 	�

G�� The Delay Statement � 		

xiii

G���� Property Declarations � 		

G���	 Functional Speci
cation � 	�

G���� Safety Speci
cations � 	�

G�� Other Speci
cations � 	�

Bibliography �
�

xiv

List of Tables

� Semantics of TSL Speci
cations� �

	 Locks� Semaphores and Condition Variables� � � � � � � � � � � � � � � � � � � ��

xv

xvi

List of Figures

� Abstract View of Ada Program Execution� 	

	 An Ada Implementation of Dining Philosophers� � � � � � � � � � � � � � � � ��

� The TSL View of Concurrent Program Execution� � � � � � � � � � � � � � � 	�

� Properties for TSL Speci
cation of Dining Philosophers� � � � � � � � � � � � ��

� TSL Speci
cation of Dining Philosophers� ��

� A Supervisor Supporting Execution of Concurrent Programs� � � � � � � � � ��

� Partitioning the Tasking Supervisor Design� � � � � � � � � � � � � � � � � � � ��

� Structure of the Distributed Tasking Supervisor Design� � � � � � � � � � � � �

� Computational Environment of the Distributed Ada Supervisor� � � � � � � ��

� Structure of the Distributed Ada Supervisor Design� � � � � � � � � � � � � � ��

�� Correspondence with the Generic Supervisor Design� � � � � � � � � � � � � � ��

�	 Interaction of the Supervisor Packages During an Entry Call� � � � � � � � � �

�� Outline of the Virtual Machine Interface� ��

�� The Supervisor Message Type� ��

�� Contents of a Local Task Map Entry� ��

�� Contents of a Global Task Map Entry� ��

�� Global Map Updates Resulting from Activation of a Dependent� � � � � � � ��

�� Task Dependency and Visibility Relationships� � � � � � � � � � � � � � � � � �

�� Task Visibility Relationships in a Sample Ada Fragment� � � � � � � � � � � � ��

	 Message Transaction for Scheduling a Newly Activated Dependent� � � � � � ��

	� Message Transaction for Remote Propagation of TASKING ERROR� � � � � ��

		 Message Transaction for Evaluation of Attribute CALLABLE� � � � � � � � ��

	� Remote Activation of Dependent Tasks� �

	� Message Transaction for Remote Activation of a Dependent� � � � � � � � � � ��

	� Message Transaction for Execution of a Terminate Alternative �I�� � � � � ��

xvii

	� Message Transaction for Execution of a Terminate Alternative �II�� � � � � ��

	� Message Transaction for Abandonment of a Terminate Alternative� � � � � ��

	� Message Transaction for Execution of the Abort Statement� � � � � � � � � ��

	� Outline of the Supervisor Interface� ��

� Supervisor Data Types� �

�� The Supervisor Virtual Functions� �	

�	 The Supervisor ENTER NEW SCOPE Procedure� � � � � � � � � � � � � � � �	

�� The Supervisor CALLABLE ATTR Function� � � � � � � � � � � � � � � � � � ��

�� The Supervisor TERMINATED ATTR Function� � � � � � � � � � � � � � � � ��

�� The Supervisor COUNT ATTR Function� ��

�� The Supervisor ENTRY CALL Procedure� ��

�� The Supervisor ACCEPT BEGIN Procedure� � � � � � � � � � � � � � � � � � ��

�� The Supervisor ACCEPT END Procedure� � � � � � � � � � � � � � � � � � � ��

�� The Supervisor CHILD TASK Function� �

� The Supervisor ACTIVATE TASK Procedure� � � � � � � � � � � � � � � � � �	

�� The Supervisor ELABORATE TASK Function� � � � � � � � � � � � � � � � � �	

�	 The Supervisor TERMINATE TASK Procedure� � � � � � � � � � � � � � � � ��

�� The Supervisor ABORT TASKS Procedure� � � � � � � � � � � � � � � � � � � ��

�� The Supervisor DELAY TASK Procedure� ��

�� Sample Tasking Program Before Preprocessing� � � � � � � � � � � � � � � � � ��

�� Sample Program After Full Preprocessing� ��

�� Sample Program After Partial Preprocessing for the Simulator� � � � � � � � �

�� Implementation of Semaphores and Condition Variables as Tasks� � � � � � � ��

�� Observing Tasking Events Outside the Supervisor� � � � � � � � � � � � � � � ��	

� Action Declarations for the Tasking Events of the Accept Statement� � � � ���

�� The S ACTIVATED and S COMPLETED Properties� � � � � � � � � � � � � �	

�	 The S QUEUE SIZE Property� �	�

�� The S ACCEPTING and S IN RENDEZVOUS Properties� � � � � � � � � � �	�

�� Generic TSL Functional Speci
cation� �		

�� Functional Speci
cation of the Accept Statement Semantics� � � � � � � � � �	�

�� Safety Speci
cations of the Accept Statement Semantics� � � � � � � � � � � �	�

�� Transformation of Test Programs for the Distributed Ada Supervisor� � � � �	�

�� Transformation of Test Programs for Any Tasking Supervisor� � � � � � � � � �	�

xviii

Chapter �

Introduction

Many software systems are designed to exploit the resources of a distributed computing

system for added execution speed and�or fault�tolerance� A concurrent software system is

a software system in which multiple logical threads of control are explicitly declared� A

distributed software system is a concurrent software system that is executed on multiple

CPUs with two or more logical threads of control executing simultaneously�

A concurrent programming language is a high�level programming language that contains

features for expressing concurrency in a software system� these features collectively comprise

a subset of the language called its tasking language� A runtime tasking supervisor� or

simply a tasking supervisor� is a collection of subprograms� each of which provides execution

support for a separate feature of a tasking language �Fal�	�BR���� This thesis addresses

two fundamental issues in the construction of distributed implementations of a concurrent

language�

�� Development of principles for designing a tasking supervisor for the language�

	� Development of practical techniques for verifying that the supervisor correctly imple�

ments the semantics of the language�

The fundamental principles� techniques and conclusions set forth in this thesis are based

on the design� implementation and veri
cation of a distributed tasking supervisor for the

Ada� programming language �Ada����

Figure � depicts an abstract view of the execution environment of an Ada application

�Ada is a registered trademark of the US Government �Ada Joint Program O�ce��

�

	 CHAPTER �� INTRODUCTION

�
�

�
�Ada Application Program

�

�

Ada Runtime System

Tasking Supervisor

�

�
Underlying

Multiprocessor

Figure �� Abstract View of Ada Program Execution�

program� As shown in the
gure� the program uses the facilities of an Ada runtime system

�RTS� during its execution� The tasking supervisor is one component of the RTS� other

components provide runtime support for exception handling� memory management� and

attribute evaluation� The Ada compiler is responsible for translating all source�level tasking

statements in the application program into calls to appropriate subprograms of the tasking

supervisor�

The Distributed Ada Supervisor implements the full Ada tasking language� and it per�

forms distributed program execution on multiple CPUs� The Supervisor is a modular�

portable� distributed software system written in Ada� In addition� two high�level formal

speci
cation languages and their associated checking tools are used for formally describing

and verifying the behavior of the Supervisor� Anna �ANNotated Ada� �LvHKO���LvH��� is

used to specify to the compiler writer constraints on the parameters of each subprogram that

is declared in the top�level Supervisor interface� TSL �Task Sequencing Language� �HL��b�

is used to specify and verify the overall distributed behavior patterns of the Supervisor�

Chapter 	 describes previous research e�orts relevant to the work described in this thesis�

This thesis relies on results from a variety of disciplines� including high�level concurrent

�

programming languages� distributed operating systems� program veri
cation theory and

high�level formal speci
cation languages�

Chapter � summarizes the principles that are used to design distributed tasking super�

visors� these principles were used to design the Distributed Ada Supervisor� A distributed

supervisor is constructed in layers� much in the same way that computer networks are

layered �Zim��Tan���� The chapter summarizes the functionality of each design layer�

Chapter � describes in detail the design of the Distributed Ada Supervisor� The chapter

also presents the formal speci
cation of the Supervisor interface in Anna� Some of the

speci
cations are promises about the Supervisor that may be assumed for the purposes of

compiling source�level tasking constructs into supervisor subprogram calls� the remaining

speci
cations are constraints that must be satis
ed by the compiled source programs when

calling the Supervisor�

Chapter � describes in detail the implementation of the Distributed Ada Supervisor on

both uniprocessor and multiprocessor hardware� The uniprocessor simulator developed on

a Data General MV������Eclipse� provided a framework for testing Supervisor algorithms

without the need for debugging an actual distributed software system� The implementa�

tion of the Supervisor on the Sequent Balance ������ provided the experience of creating

a working distributed Ada tasking supervisor� The successful implementation of the Su�

pervisor on the Sequent demonstrates the feasibility of the design principles presented in

Chapter ��

Chapter � describes new and practical techniques for verifying a tasking supervisor for

consistency with the semantics of the language it implements� The techniques comprise a

methodology based on automatic runtime checking of supervisor behavior for consistency

with a formalization of the tasking semantics written in TSL� The methodology is illustrated

by the formalization of a subset of the Ada tasking semantics� The chapter describes the

mechanics of performing checking experiments on the Distributed Ada Supervisor using

TSL� The major advantages of these consistency checking techniques over other testing

methods are that

�� The TSL formalization of the Ada tasking semantics is a formal standard against which

the behavior of every supervisor implementation may be automatically compared�

	� When a speci
cation is violated during runtime checking� the violated speci
cation

�Eclipse is a registered trademark of Data General Corporation�
�Balance is a registered trademark of Sequent Computer Systems� Inc�

� CHAPTER �� INTRODUCTION

provides an explicit characterization of an error in the supervisor�

�� Supervisor debugging is carried out using high�level concepts from the tasking lan�

guage such as task dependency and rendezvous� not low�level concepts such as stack

frames� network messages and program counters�

�� Spare processors� if available for runtime speci
cation checking� can be used to make

a supervisor permanently self�checking�

�� The speci
cations can also be used to construct a formal proof of supervisor consis�

tency� once the appropriate proof rules and proving tools have been developed�

Chapter � concludes the thesis by
rst summarizing the contributions of the thesis� and

then by suggesting other research endeavors which may aid future work in the design and

veri
cation of distributed tasking supervisors�

The theory and practice of concurrent programming is in its infancy� The research

described in this thesis represents a major step toward the development of a theory of

constructing multiprocessor implementations of concurrent programming languages� It is

hoped that the tools for constructing and testing distributed tasking supervisors will even�

tually be based on a technology as sophisticated as that which is available for constructing

compilers�

Chapter �

Background and Related Work

This chapter surveys the literature describing the technology of concurrent programming�

The previous work in this broad subject area can be subdivided into three categories� First�

the need for special language facilities has led to the development of language notations for

expressing concurrency and the design of concurrent programming languages� Second� op�

erating systems have been designed explicitly to create a suitable environment for execution

of distributed software systems� Third� the extreme di�culty of testing and debugging con�

current software has led to a large body of work� running the gamut from parallel debuggers

to fully automated veri
cation systems� most of which is too immature to be successfully

applied to real software�

��� Concurrent Programming Languages

The most prevalent paradigm for concurrent programming languages is the procedural or

imperative model� typi
ed by a family of sequential programming languages that were

originally based on ALGOL �Nau���� However� the computational requirements of many

arti
cial intelligence applications such as rule�based expert systems has led to the devel�

opment of concurrent functional programming languages� such as QLISP �GM���� This

section focuses on the features of those �ALGOL�like� concurrent programming languages�

The designers of the concurrent language Linda name four desirable criteria of a con�

current programming language �ACG����

�� A machine�independent and �potentially� portable programming vehicle�

�

� CHAPTER �� BACKGROUND AND RELATED WORK

	� A programming tool that absolves � the programmer � as fully as possible

from dealing with spatial and temporal relationships among parallel pro�

cesses�

�� A programming tool that allows dynamic distribution of tasks at runtime�

�� A programming tool that can be implemented e�ciently on existing hard�

ware� �ACG��� p� 	��

As the designers of Linda admit� these needs have not been completely accommodated by

existing languages� The NIL �PS���SY��� language seems to be one of the better attempts

at attaining this ideal�

Brinch Hansen has shown that most concurrent programming constructs are special

cases of a notation he calls distributed processes �BH���� This section will describe some of

the better known special cases� In their survey of notations for concurrent programming�

Andrews and Schneider �AS��� subdivide the facilities of concurrent programming languages

into two basic categories� ��� Constructs for declaring multiple threads of control in a

program and �	� Constructs for synchronizing the execution of the threads� The second

class of facilities can be subdivided further into synchronization primitives based on shared

variable manipulation and synchronization primitives based on message�passing� As Wegner

and Smolka note �WS���� the
rst class of construct is typi
ed by the CSP process and the

Ada task while the second class is typi
ed by Hoare�s monitor construct �shared variable

manipulation�� CSP input�output commands �message�passing� and the Ada rendezvous

�message�passing��

Before looking at the facilities of speci
c concurrent languages� it should also be men�

tioned that there is a school of thought which says that no special facilities are required for

expressing parallelism in software� and that what is needed instead are software tools which

detect and extract parallelism from sequential programs� Two approaches in this area have

shown some amount of success� First� there are �parallelizing� FORTRAN compilers such as

the Parafrase system �PKL��� which break apart loops in FORTRAN programs for parallel

execution on vector machines� Such systems seem best suited to parallelization of �scien�

ti
c� programs having a simple structure� Second� there are data�ow languages �Ack���

for graphically depicting data �ow and data dependencies within a computation� the pro�

gram graph is the �machine code� for the program� which is executed on special data�ow

machines that detect and exploit the parallelism inherent in the program graph� However�

���� CONCURRENT PROGRAMMING LANGUAGES �

the elegance of the ideal data�ow model has yet to be satisfactorily realized in a working

machine�

����� Concurrent Pascal

One of the earliest concurrent languages to gain widespread attention is Concurrent Pas�

cal �BH���� which was designed by Per Brinch Hansen as an extension of Pascal �Wir��� for

structured programming of operating systems� The extensions to Pascal are in the form of

three language constructs� the process� the monitor and the class� Each of these constructs

is declared as a type� which must be explicitly initialized�

A separately executing thread of control is represented by a process� which is a sequence

of Pascal statements that has its own private data� The monitor construct�
rst described

by Hoare �Hoa���� is a means of providing synchronized access to a shared resource� shared

objects in Concurrent Pascal must be monitors� The class construct of Simula �� �DH�	�

is simply an unprotected monitor� which may not be shared� but which may be used in

place of a monitor to increase implementation e�ciency� The use of monitors and classes

by processes is controlled in Concurrent Pascal through explicit� statically checkable access

rights� Access rights take the form of bindings of existing monitors and classes to parameters

of newly initialized processes�

The
rst operating system that was implemented in Concurrent Pascal was the Solo

operating system �BH���� The Solo kernel performs the low�level synchronization that is

needed for the implementation of processes and monitors� and thus serves as the �tasking su�

pervisor� for Concurrent Pascal� In truth Concurrent Pascal has no real tasking supervisor�

in the sense of a separate software module which is called at runtime to execute a high�level

concurrency construct� Instead� the Concurrent Pascal compiler generates a complete in�

line code translation of each concurrency construct that is encountered in a source program�

only the machine�level synchronization primitives are called by the generated code� This

rather cumbersome approach to implementing concurrency has the disadvantages of hiding

the functionality of the supervisor inside the compiler code generator and generating object

les that contain large amounts of redundant code�

The major contributions of Concurrent Pascal were its incorporation of monitors as a

language feature and its emphasis on compile�time checking of program semantics� especially

the semantics of process creation and access to shared objects� Many of the ideas used in

the development of Concurrent Pascal were later used in the design of Modula�	 �Wir�	��

� CHAPTER �� BACKGROUND AND RELATED WORK

����� CSP

Hoare�s landmark paper on communicating sequential processes �Hoa��� introduced a no�

tation for describing concurrent computations that has become a standard language for

formal speci
cation and veri
cation of concurrent software� this notation has come to be

known as CSP�

The language is based on the premises that input and output are fundamental con�

current programming primitives and that parallel composition of sequential processes is a

fundamental paradigm for structuring concurrent programs� Thus� a CSP process is simply

a sequential body of code� and CSP processes communicate with each other in pairs with one

process executing an input command and the other process executing an output command�

An output command passes either a value or a signal to a matching input command� the in�

put command stores the value in a variable or accepts the signal� In addition to these basic

communication mechanisms� Hoare used Dijkstra�s guarded command statement �Dij��� to

incorporate nondeterminism into the language� The result is a language of great �exibility

and expressive power which was eventually expanded into a full programming language for

the INMOS Transputer called Occam � �Jon���� In fact� Occam was intended by its de�

signers to be the �assembly language� of the Transputer� thereby removing the need for a

tasking supervisor for Occam�

To illustrate the features of CSP� a version of Hoare�s speci
cation of the Dining Philoso�

pher�s problem �Hoa��� will be presented� Recall that in the Dining Philosophers problem

ve philosophers are seated at a circular table� with a fork between each philosopher� Each

philosopher repeatedly thinks and eats� in order to eat� a philosopher must
rst pick up

both the fork to his left and the fork to his right� This problem will be speci
ed by a

CSP program in which each philosopher and each fork is represented by a process� The

following CSP statement serves to declare the ten processes� which execute in parallel with

one another�

� a phil �i � � � � �� �� PHIL k a fork �i � � � � �� �� FORK �

The philosophers and forks are di�erentiated by an index value between and � and have a

body that is speci
ed respectively by the programs PHIL and FORK� Inside these program

bodies� the variable i may be used to identify the particular process that is executing the

body�

�Occam and Transputer are a registered trademark of the INMOS Group of Companies�

���� CONCURRENT PROGRAMMING LANGUAGES �

The body of the philosophers is simply a loop in which thinking alternates with eating�

the required communications with the forks occur between these two activities� Philosopher

number i will use forks number i and �i� ��mod � for eating� The acquisition and release

of a fork will be accomplished respectively by sending a pickup�� or putdown�� signal to the

fork� Prior to eating� both forks must be picked up� after eating� the same two forks must

be put down� Thus� the speci
cation of PHILOSOPHER can be written as follows�

PHIL � �� Think�

a fork�i� � pickup���

a fork��i�	� mod
� � pickup���

Eat�

a fork�i� � putdown���

a fork��i�	� mod
� � putdown��

�

Repetition is indicated by the asterisk outside the bracketed sequence of statements� which

is thus called a repetitive command� The statements with exclamation points are output

commands� The left side of the exclamation point names the fork process that is the intended

recipient of the pickup�� or putdown�� signal� The output command will be executed only

when a matching input command is executed in the named fork process �and vice versa��

The basic outline of the fork is again a repetitive command� but this time one that

nondeterministically chooses between two possible sequences of input commands� namely

a sequence for the philosopher to its left �number �i � ��mod �� and a sequence for the

philosopher to its right �number i�� The fork must �decide� which philosopher to give the

fork to when both eligible philosophers are competing for the fork� In order to guarantee

that a hungry philosopher has immediate access to a fork when his neighbor is thinking�

a Boolean�valued guard will be used to control how the choice is made� The evaluation

of all of the guards in a so�called guarded command is performed prior to choosing the

sequence that will be executed� a sequence is chosen only if its guard is true� Since there

is a binary possibility of executing an input command at any point in time �i�e�� either the

named process is ready or not ready to execute a matching output command�� the
rst input

command in each sequence will serve as the guard for the sequence� Thus� the speci
cation

of FORK may be written as follows�

FORK � �� a phil��i�	� mod
� � pickup�� �

� CHAPTER �� BACKGROUND AND RELATED WORK

a phil��i�	� mod
� � putdown��

a phil�i� � pickup�� �

a phil�i� � putdown��

�

The box speci
es that only one of the two sequences of statements is to be executed� and

that the choice of sequence is nondeterministic�

This simple example demonstrates the ability of CSP to describe nontrivial concurrent

computation in a few lines of code� As will be seen throughout the rest of this chapter�

CSP is one of the most signi
cant developments in the theory and practice of concurrent

programming�

����� Ada

The need of the US Department of Defense for a common� high�level programming lan�

guage for �mission�critical� embedded software systems �Fis���Gro��� led ultimately to the

controversial development and standardization of the programming language Ada �Ada����

Ada is probably the most rigorously de
ned programming language in use� Not only is

the language a US Military Standard� an ANSI Standard and an ISO Standard� but it

also has a widely used common intermediate representation for compilers and programming

environments called DIANA �EBGW����

The Ada language is a very rich and� some would say� complex collection of features that

have an extremely diverse lineage� incorporating ideas from Algol ��� CLU� Pascal� Simula ��

and other languages� Woodger �Woo��� has surveyed the sources of the features of Ada that

were incorporated into the language throughout its ten�year development history�

Features of the Ada Tasking Language

One of the most controversial features of Ada is its tasking language� The tasking model

of Ada is based on CSP� An Ada task is a sequential program in the same way that a CSP

process is� It may have multiple� nested declarative regions� or scopes� including the scopes

of subprograms it calls�

A task declaration declares either a single task or a task type� an associated task body

must be declared for each task declaration� A task object �or simply a task� is either ��� A

single task� �	� An object� or a subcomponent of an object� that is declared by an Ada

���� CONCURRENT PROGRAMMING LANGUAGES ��

object declaration� or ��� A task designated by a value of an access type �i�e�� pointer type�

whose designated subtype is a task type� The type of a single task is anonymous� tasks of

the other two kinds are objects of explicitly named task types�

The execution of a task object begins with its activation� Tasks of the
rst two kinds

are activated when program execution reaches the begin of the declarative region in which

they are declared� Execution of an allocator for an appropriate access type causes activation

of a task of the third kind� the allocator returns an access value �pointer� designating the

newly activated task� Activation through execution of an allocator is sometimes referred to

in the literature as �dynamic activation��

Every task has a direct master� of which it is a direct dependent� An indirect master is

some master of a direct master� A direct master is a particular scope of some task� thus�

the task which owns this master scope is a master of the dependent� In the case of single

tasks and tasks declared by object declarations� the direct master is the scope in which the

declaration appears� The direct master of a task designated by an access value is the scope

in which the corresponding access type de
nition appears� All tasks declared in library

packages are dependents of the environment task� which can be thought of as the operating

system process in which a program is executed� the main program is a procedure that is

called by the environment task once all library packages have been elaborated� Thus� the

tasks of a program form a dependency tree whose root is the environment task�

A scope is completed once the end of its sequence of statements is reached� a scope is

terminated once it is completed and once all of its dependents have terminated� A task is

completed once its outermost scope is completed� a task is terminated once its outermost

scope is terminated�

The preferred form of communication between tasks is the rendezvous� a synchronous

mechanism for communication between pairs of tasks similar to communication in CSP�

For a rendezvous to take place� a caller task must call an entry �communication port� of a

speci
c task� and the task called by the caller must execute an accept statement for the

called entry� Once both of these statements have been reached �assuming that the caller

is the
rst task in the queue of the called entry�� then the two tasks are in rendezvous�

During a rendezvous� the caller is suspended while the called task executes a sequence of

statements associated with the accept statement�

Added to the basic rendezvous statements is the select statement� which resembles

Dijkstra�s guarded command� The select statement is a general facility for introducing

�	 CHAPTER �� BACKGROUND AND RELATED WORK

nondeterminism into the execution of multiple accept statements� for placing time con�

straints on rendezvous statements� and for achieving simultaneous termination of a family

of tasks� A dependency tree of tasks may be simultaneously terminated if all tasks in the

tree are either terminated or waiting at a terminate alternative of a selective wait �a select

statement with one or more accept alternatives�� The root task of such a tree must itself

be completed at the time termination is carried out�

Of the remaining features of the Ada tasking language� the delay statement allows a

task to delay itself for a speci
ed duration� the semantics of the various uses of Ada�s delay

statement are particularly weak and are considered by some to be of limited utility �VM����

The abort statement is used by a task to abort the execution of one or more other tasks

�possibly including itself�� an aborted task is said to be abnormal� and it remains so until it

reaches a synchronization point �e�g�� an entry call�� at which time it becomes completed�

As an example of an Ada tasking program� an Ada version of the CSP Dining Philoso�

phers program of Section 	���	 is shown in Figure 	� Each philosopher and fork is represented

by a task� the tasks are activated when the main program reaches its begin statement� Note

that because an Ada accept statement does not name the task that is to be accepted for

rendezvous� the FORK task may be programmed with a single pair of accept statements�

The remainder of the operation of the program is analogous to the CSP version�

Implementations of Ada

Ada was adopted as an ANSI standard in February ����� As of August ��� ����� there

were �� Ada compilers that were validated as conforming to the Ada�� standard� all of

these compilers are uniprocessor implementations� And with one exception� the various

experimental implementations of Ada that have been reported over the past seven years

are also all uniprocessor implementations� The only publicly reported distributed imple�

mentation of Ada is an unvalidated� proprietary� shared memory implementation developed

by Sequent Computer Systems �Oli��� �� The tasking supervisor for this implementation

was customized solely for parallel execution of Ada tasking programs on the Sequent Bal�

ance ����� multiprocessor�

As Volz et al� have pointed out �VMNM���� the development of a distributed imple�

mentation of Ada requires the consideration and solution of several problems that are not

�In addition� in Autumn ���� Alliant Computer Systems announced the FX	Ada runtime system� which
supports parallel Ada tasking on the Alliant FX	� machine�

���� CONCURRENT PROGRAMMING LANGUAGES ��

with THINK� EAT� �� Make these visible�
procedure DINING PHILOSOPHERS is

task type PHILOSOPHER is

entry GET ID �ID � in NATURAL��
end PHILOSOPHER�

task type FORK is

entry GET ID �ID � in NATURAL��
entry PICKUP�
entry PUTDOWN�

end FORK�

MAX PHILOSOPHERS � constant POSITIVE ��
�
subtype TABLE RANGE is NATURAL range � � � MAX PHILOSOPHERS � 	�
A PHILOSOPHER � array �TABLE RANGE� of PHILOSOPHER�
A FORK � array �TABLE RANGE� of FORK�

task body PHILOSOPHER is

I � NATURAL�
begin

accept GET ID �ID � in NATURAL� do I �� ID� end GET ID�
loop

THINK� A FORK �I�PICKUP� A FORK ��I � 	� mod
�PICKUP�
EAT� A FORK �I�PUTDOWN� A FORK ��I � 	� mod
�PUTDOWN�

end loop�
end PHILOSOPHER�

task body FORK is

I � NATURAL�
begin

accept GET ID �ID � in NATURAL� do I �� ID� end GET ID�
loop

accept PICKUP� accept PUTDOWN�
end loop�

end FORK�
begin

for I in TABLE RANGE loop �� Pass IDs to the tasks�
A PHILOSOPHER �I�GET ID �I�� A FORK �I�GET ID �I��

end loop�
end DINING PHILOSOPHERS�

Figure 	� An Ada Implementation of Dining Philosophers�

�� CHAPTER �� BACKGROUND AND RELATED WORK

addressed in the development of single�CPU implementations� such as how the semantics

of Ada�s real�time constructs are to be implemented in an execution environment that has

no global sense of time� Thus� it would be nearly impossible to use currently available

uniprocessor implementations for distributed execution of Ada tasking programs because

the issues involved in achieving distributed execution have never been addressed by their

developers�

One of the earliest uniprocessor implementations of Ada was actually a superset of the

��� draft standard version of Ada� called Adam �LLSvH���� Adam contains extensions

to Ada that were designed for multiprocessing research �which explains the origin of the

early name for the language� Ada�M�� These extensions comprise an intermediate tasking

language that is at a lower level of abstraction than the Ada tasking constructs� The

implementation of Ada tasking was originally speci
ed by translating each Ada tasking

construct to an equivalent sequence of Adam statements �Ste���

The tasking supervisor for Adam is built as a package of subprograms� each of which

implements a di�erent tasking construct �Fal�	�� Thus� the Adam compiler translates each

tasking construct that appears in a source program into an appropriate sequence of super�

visor subprogram calls� This organization enhances the portability of the Adam runtime

system and simpli
es the translations required of the Adam compiler� This method of

compilation seems to be the universal paradigm for the implementation of Ada tasking�

Since the development of Adam� there have been numerous other research e�orts in the

design and analysis of Ada runtime systems and tasking supervisors� Leathrum �Lea���

gives an overview of an Ada runtime system� focusing on mechanisms for task activation�

termination and abortion� and task stack allocation� Baker and Riccardi �RB���RB���BR���

discuss highlights of their tasking supervisor design� which supports task priorities� In

addition� Baker has proposed a standard interface for an Ada runtime system �Bak���� The

authors of all of the above papers explicitly state that their designs are suitable only for

single�CPU� single shared address space implementations of Ada tasking�

Towards Distributed Ada Tasking

Except for the Sequent implementation described above� all other research on distributed

Ada tasking has either been preliminary analysis �such as the paper by Volz et al�� or

paper design� Furthermore� none of these e�orts has satisfactorily addressed the problem of

testing a distributed implementation of Ada for consistency with the language semantics�

���� DISTRIBUTED OPERATING SYSTEMS ��

The most notable previous work on distributed Ada tasking is the supervisor interface

and message�passing protocol described by Weatherly �Wea��a�Wea��b�� Weatherly�s pro�

tocol supports distributed execution of a subset of the Ada tasking constructs in a loosely

coupled computing environment� and his interface provides most of the services required for

distributed execution of compiled Ada tasking programs� In Weatherly�s design� an iden�

tical copy of the tasking supervisor executes at each system processor� Weatherly tested

his design by simulation� but he did not implement it on on parallel hardware� Another

of his contributions was the reduction of Ada tasking to its �essential syntax�� noting for

example that a selective wait with a delay alternative is a general construct from which

the simple accept statement and all forms of selective wait are derived� A paper by Fisher

and Weatherly �FW��� describes a continuation of Weatherly�s work�

An interesting approach to the development of a distributed Ada tasking supervisor was

described by Clemmensen �Cle�	�� He began with an abstract formal operational model of a

distributed tasking supervisor for a subset of Ada tasking� this model was designed to be free

of any implementation dependencies� He then proposed deriving an implementation from

this model by stepwise re
nement and functional decomposition� gradually incorporating

necessary implementation dependencies� He claimed that the resulting implementation

could be formally veri
ed for consistency with the formal model by verifying each level

of re
nement for consistency with the previous level� Although the model was apparently

re
ned a few steps toward an implementation� no results were given to support his claims of

veri
ability� and no consideration is given to the veri
cation of implementation dependencies

as they are introduced�

��� Distributed Operating Systems

An operating system provides users and programs with simple� controlled access to and

allocation of system resources �Tan���� Part of the function of a tasking supervisor is to

provide a concurrent program with access to system resources in a way that conforms to

the semantics of the programming language� Thus� a tasking supervisor must either use

the services of an available operating system or implement such services itself in order

to support the execution of a concurrent program� A distributed tasking supervisor uses

the services of a distributed operating system� including an interface to the resources of a

computer network �Tan���Sta���� This section brie�y discusses some of the common features

�� CHAPTER �� BACKGROUND AND RELATED WORK

of distributed operating systems that are used in the implementation of a distributed tasking

supervisor�

����� Special Features

In their excellent survey of distributed operating systems� Tanenbaum and van Renesse

describe the characteristics of distributed operating systems which di�erentiate them from

conventional operating systems �TvR���� They de
ne a distributed operating system as

follows�

A distributed operating system is one that looks to its users like an ordinary

centralized operating system but runs on multiple� independent central process�

ing units �CPUs�� � � � In other words� the use of multiple processors should be

invisible �transparent� to the user� �TvR��� p� ����

They note that few operating systems have been built which ful
ll this principle� and they

use the term network operating system to refer to systems which provide a minimal set of

facilities for accessing the resources of a distributed system� They draw the distinction be�

tween the two types of system by noting the following characteristics of a network operating

system�

� Each computer �in the distributed system� has its own private operating

system � � �

� Each user normally works on his or her own machine � � �

� Users are typically aware of where each of their
les are kept and must

move
les between machines � � �

� The system has little or no fault tolerance � � � �TvR��� p��	�

A network operating system is simply a traditional operating system with a few extra

facilities for accessing a computer network�

Tanenbaum and van Renesse describe several services provided by a distributed op�

erating system� including communication primitives� naming service�
le service� process

service� scheduling� print service� terminal service� mail service� time service and network

gateway service� The most important of these services to the designer of a distributed task�

ing supervisor are communication and process management services� In addition� naming

���� DISTRIBUTED OPERATING SYSTEMS ��

service is also important �e�g�� program tasks are typically named with globally unique in�

teger identi
ers�� but the naming services provided by most distributed operating systems

are incompatible with the needs of a distributed tasking supervisor�

Although a distributed operating system is intended to provide a specialized set of

services to concurrent programs� many operating system�level services are ill�suited for use

as primitives of a programming language library� Indeed� Cheriton concludes his description

of the V Kernel with the following words�

A fundamental issue is whether the V model of processes and messages� which

was designed to support concurrency� is suitable for structuring parallel pro�

grams where the objective is to make the program run faster� �Che��� p� �	�

As an example of this problem� Ousterhout demonstrated that the usual global multipro�

gram scheduling mechanisms of operating systems are incompatible with the scheduling

requirements of individual concurrent programs �Ous�	��

Many of the distributed operating systems that have been described in the literature

are experimental research projects� the more notable of these include LOCUS �PWC�����

CHORUS �ZGMB�	�� Mach �ABB����� Charlotte �ACF���� and V �BBC����� To illustrate

the way in which the facilities of a distributed operating system are used by a distributed

tasking supervisor� some of the facilities of the V System are examined brie�y below�

����� The V System

The V System is based to some extent on earlier experiences with the Thoth portable

real�time operating system �CMMS���� The V System has been designed with a keen eye

on performance �CZ���� but with little fault�tolerance �TvR���� The heart of the V Sys�

tem is the V Kernel �Che���� which provides process� communication and naming services�

including multicasting services �CZ���CZ���� remote execution and process migration ser�

vices �TLC���� and a decentralized naming facility �CM���� In addition� the V System has

a highly �exible internetworking capability �Che����

The
nest grain of execution in the V System is a �lightweight� process� which shares the

address space of a process team� All processes of a team all execute at the same system node�

This hierarchy is ideal for a distributed tasking supervisor� Using the distribution paradigm

in which an identical copy of the supervisor is assigned to each system node� concurrent

program execution can proceed in V with each copy of the supervisor comprising a separate

�� CHAPTER �� BACKGROUND AND RELATED WORK

team� one per system node� Then each program task is scheduled as a V process inside the

team of its node� sharing the address space with other co�resident program tasks�

Interprocess communication in V is based on the transaction� or Send�Receive�Reply�

model of message�passing� Since the V IPC protocol provides for reliable delivery of single

messages� it is a suitable basis on which to build the communication kernel of a tasking

supervisor�

However� V lacks certain facilities that would be useful to the supervisor implementor�

For example� programs written in languages such as Ada must execute within a single

address space� since one task may access global variables that are declared in another task�

thus� because V teams cannot share an address space� the partitioning of an Ada program

onto multiple processors would be di�cult using V� Furthermore� although V supports

priorities at the team level� it does not support priorities at the process level� thus� since

Ada allows the association of priorities with tasks� priority�based scheduling of tasks must

be implemented on top of V�

��� Testing and Verifying Concurrent Software

As mentioned at the beginning of this chapter� the methods available for testing and ver�

ifying concurrent software covers an extremely wide spectrum� this section describes some

of the speci
c tools and systems that are available� The current state�of�the�art is domi�

nated by systems which require the programmer to do most of the work and supply most of

the intuition in discovering and
nding program bugs� although the theory of parallel pro�

gram veri
cation has reached a respectable level of maturity� a useful system for automatic

veri
cation of real concurrent programs is still a thing of the future�

����� Parallel Debuggers

The most obvious way to test concurrent software is to use something similar to a symbolic

debugger for sequential programs� Such �parallel debuggers� still require the programmer

to
rst discover bugs on his own� and then gradually pinpoint the cause of the bug in the

original software by examining program variables and controlling the progress of execution�

This method of debugging is usually performed in an ad hoc manner�the software is always

assumed to be correct while it is being written� and the occurrence of bugs usually mysti
es

the programmer� Once the bug is eventually found� the programmer berates himself for

��	� TESTING AND VERIFYING CONCURRENT SOFTWARE ��

missing something so obvious�

Despite this rather simplistic picture of debugging concurrent software� parallel debug�

ging is inherently much more complex than sequential debugging� especially when the execu�

tion of the software is distributed� Like sequential software� correct execution of concurrent

software depends to some extent on the correct computation of data values� However� unlike

sequential software� correct execution of concurrent software depends heavily on the order

in which computations are performed and the order in which synchronizations are carried

out by the multiple threads of control in the program� It is the existence� complexity and

erroneous implementation of such event orderings which make the chore of debugging con�

current software so di�cult� In addition� the mere act of interactively debugging concurrent

software can in�uence and alter the event orderings of the program�

The Pdbx� debugger� developed by Sequent Computer Systems� is representative of

most parallel debuggers �Pdb���� Pdbx is an extension of the sequential Dbx debugger for

Berkeley Unix� ���BSD environments� Pdbx views a parallel program as a collection of

Unix processes� Pdbx has facilities for running processes individually� suspending speci
c

processes� terminating speci
c processes� halting the program at the occurrence of process

forks and signals �interrupts�� delivering signals to speci
c processes� and tracing the state�

ments that are executed by speci
ed processes� These features are supplied in addition to

the usual features of sequential debuggers� However� like all sequential debuggers� Pdbx and

other parallel debuggers are unable to discover erroneous program behavior� They simply

provide the programmer with a primitive collection of facilities for trying to make these

discoveries on his own�

����� Monitoring Systems

Monitoring systems are passive observers of program behavior which add to the power of

parallel debuggers by performing a great deal of the information gathering that is part of

the debugging process� However� most such systems are incapable of detecting erroneous

execution behavior on their own�

The simplest monitoring systems simply maintain a history log of the signi
cant events

that occur during the execution of a concurrent program� the log can then be used to perform

a post�mortem analysis or simulation of the execution that was logged� BugNet �CW�	� is

�Pdbx is a registered trademark of Sequent Computer Systems� Inc�
�Unix is a registered trademark of AT
T Bell Laboratories�

	 CHAPTER �� BACKGROUND AND RELATED WORK

an example of such systems� The user must specify which events are to be logged during

execution� the occurrence of an event is stamped with the local process time of occurrence

before being placed in the log� In addition to providing traditional debugger facilities such

as interactive execution control� BugNet gives the programmer the capability of simulat�

ing a logged execution using the event log as a script� Similar to BugNet is the Radar

system �LR���� which supports interactive graphical simulation of an event log� During

simulation the programmer can force the debugger to ignore events which are irrelevant to

the execution that is being examined�

The most notable characteristic of both BugNet and Radar is that only the event history

chosen by the programmer is �executed� during debugging� not the actual program� The

main problem with executing concurrent software over and over again for debugging is that

the inherent nondeterminism of concurrent software may make it impossible to reproduce

erroneous execution patterns once they have been observed�

Tai and Obid have overcome this problem to some extent with their notion of �repro�

ducible testing� �TO���� To perform reproducible testing� a concurrent program is instru�

mented to execute in two modes� it may either execute in �normal mode�� during which

a history of synchronization events is logged� or it may execute in �replay mode�� during

which the program completely reproduces an execution that is contained in a history log�

Thus� unlike debugging in the BugNet and Radar systems� reproducible testing takes place

by re�executing the code itself� Tai and Obid have applied their method to Ada tasking

programs with some success� although they experienced di�culty deriving a way of instru�

menting some of the more esoteric constructions of Ada tasking statements� However� the

Tai and Obid system provides no interactive debugging capability during replay mode�

LeBlanc and Mellor�Crummey added interactive debugging to reproducible testing and

came up with the Instant Replay system �LM���� Using Instant Replay� a program is

instrumented to execute in two modes as in the Tai and Obid system� but replay mode

takes place interactively for debugging� so that the usual facilities of parallel debuggers can

be applied�

Like parallel debuggers� the monitoring systems described so far are unable to automat�

ically detect erroneous execution behavior on their own� As a step toward automatic detec�

tion of erroneous behavior� Helmbold and Luckham developed a system for automatic mon�

itoring and detection of deadness errors in �instrumented� Ada tasking programs �GHL�	��

The monitoring algorithms can detect both circular deadlock and global blocking� Although

��	� TESTING AND VERIFYING CONCURRENT SOFTWARE 	�

their monitor was able to detect only a limited class of tasking errors� the work of Helmbold

and Luckham nevertheless represents the
rst major step toward automating the detection

of erroneous behavior in concurrent software� Natarajan used some of the ideas of Helmbold

and Luckham in the development of a distributed deadlock detection algorithm �Nat����

����� Formal Veri�cation of Parallel Programs

Formal program veri
cation� or mathematical proof of program correctness� was looked

upon for many years as the ultimate solution to the problem of developing software that

meets its speci
cations� Today it is considered a powerful complement to program testing�

The testing methodology to be described later in this thesis is based on a mixture of both

veri
cation and testing� using automatic runtime checking of formal speci
cations as a

viable compromise between the two extremes� Since the programmer must have a thorough

conception of the purpose and intended behavior of a software system� it is reasonable to

require the development of a formal model of what is considered correct behavior so that

techniques from veri
cation theory may be applied in testing the software�

Program veri
cation involves reasoning about the behavior of programs based on a for�

mal semantics of the source programming language� The development of a formal syntax

for ALGOL� represents one of the most important developments in the formal description

of programming languages �Nau���� Since then various models have been suggested for

formally describing the semantics of programming languages� For example� a denotational

semantics gives a mathematical interpretation of each program construct according to its

e�ect on the global program state �SS���Ten���� In a similar vein� the Vienna De
nition

Language �VDL� is used to de
ne a language semantics by formally describing an abstract

interpreter for the language �Weg�	b�� An attribute grammar is a syntax�directed method

of specifying language semantics� an attribute grammar associates semantic attributes with

nodes in an abstract syntax tree �AST� representation of a program �ASU���� An opera�

tional semantics de
nes a language in terms of an abstract implementation �Weg�	a��

By far� however� the most popular and most easily understood semantic model for veri
�

cation is an axiomatic semantics� as
rst described in Hoare�s landmark paper �Hoa��� and as

rst illustrated successfully by the full axiomatic de
nition of Pascal �HW���� An axiomatic

semantics de
nes a programming language by a set of axioms and rules of inference �proof

rules� that are satis
ed by the execution of all programs written in the language� the axioms

and proof rules are usually speci
ed using
rst�order predicate calculus �MW���� Such a

		 CHAPTER �� BACKGROUND AND RELATED WORK

description is naturally suited to the theorem�proving orientation of program veri
cation

as it has developed over the past two decades�

The origins of axiomatic program veri
cation are usually credited to the papers of

Floyd �Flo��� and Hoare �Hoa���� who described similar approaches to proving program

correctness� Floyd�s approach is based on dividing a correctness proof into smaller proofs of

each linear path in the program� which is usually represented by a �owchart� Hoare further

formalized this proof process by de
ning an axiom for each class of language statement�

based on a precondition and postcondition for the statement� For example� the axiomatic

semantics of an assignment statement is given by the following axiom�

� fPx
e g x �� e� fPg

This axiom says that in order for the above assignment statement to terminate in a state

satisfying some arbitrary postcondition P � it must begin execution in a state satisfying a

precondition which is the predicate that is formed when all free occurrences of the variable

x in P are replaced with the expression e�

Given a desired precondition and postcondition for a full program� a correctness proof

is carried out using the full set of axioms and proof rules for the programming language�

More accurately� a program is proven to be consistent with its given precondition and

postcondition� from this consistency proof� one may decide that the program is correct� If

correctness can be proven within the given axiomatic system� the resulting proof is said to

be a proof of partial correctness� That is� the program is correct if it terminates� However�

since knowledge about termination is not built into the proof system� one must perform

reasoning outside the proof system to conclude that termination takes place� Floyd�s paper

included techniques for proving termination of possibly non�terminating program constructs

�e�g�� in
nite loops� within a partial correctness framework� This is done by introducing

counter variables for loops which must monotonically decrease to zero in order to conclude

that termination will take place� A system that includes explicit axioms and rules for

proving termination is said to support proof of total correctness� Apt has surveyed the

large amount of research in veri
cation that was generated by Hoare�s initial paper �Apt����

The theory of automatic program veri
cation was pioneered by Luckham et al� �ILL����

The approach they describe requires the programmer to provide assertions at certain places

in the program text �e�g�� an invariant assertion for each loop�� A program enhanced in this

way is fed to a veri
cation condition generator �or VCG� along with the desired precondition

��	� TESTING AND VERIFYING CONCURRENT SOFTWARE 	�

and postcondition for the program� The VCG uses an axiomatic semantics for the program�

ming language to construct a set of veri
cation conditions� which are
rst�order formulae

that must be satis
ed in order to prove correctness of the program� The veri
cation condi�

tions are then fed to a theorem prover which attempts to prove the veri
cation conditions

using a
rst order reasoning system that may be enhanced with proof rules supplied by

the programmer� The various concepts developed in their theory of automatic veri
cation

ultimately resulted in the development of the Stanford Pascal Veri
er �LGvH�����

The work that has been described so far is suitable for the veri
cation of sequential pro�

grams� Owicki and Gries pioneered the theory of veri
cation of parallel programs �OG����

using the basic Hoare�style axiomatic approach� A proof of partial correctness of a parallel

program is begun by constructing local proofs of each program task� In order to demonstrate

that the program is consistent with its postcondition� it is necessary to introduce auxiliary

variables in order to demonstrate non�interference of the local proofs� That is� although

each individual task may be proven consistent with the precondition and postcondition� the

computation of one task may interfere with the computation of another task �e�g�� in read�

ing and writing shared variables�� This interference is not taken into account in the local

proofs� so the local proofs may be invalid without a demonstration of non�interference� The

Owicki�Gries proof system includes axioms for reasoning about auxiliary variables and non�

interference� In addition� they described techniques for proving total correctness properties

based on a proof of partial correctness�

Since the development of the Owicki�Gries proof theory there have been many other ap�

proaches to axiomatic veri
cation of parallel programs� The survey by Barringer is a good

summary of the major contributions in this area �Bar���� Apt� Francez and de Roever de�

scribe a proof system for CSP which is again based on local proofs of correctness �AFdR���

Co�operation of the local proofs is demonstrated by proving the satisfaction of a global in�

variant for the program� Other notable approaches to parallel veri
cation include the CSP

proof system of Levin �Lev��� and the proof system of Flon and Suzuki �FS���� which

includes axioms and inference rules for proofs of total correctness properties�

The work of Apt� Francez and de Roever has inspired the development of proof sys�

tems for Ada tasking� For example� Gerth describes an axiomatization of the Ada ren�

dezvous �Ger�	�� Gerth and de Roever �GdR���� and Barringer and Mearns �BM�	�� both

de
ne a proof system for the �CSP subset� of Ada tasking� All of these systems deal only

with programs which activate tasks through CSP�style �splitting�� Meldal has developed an

	� CHAPTER �� BACKGROUND AND RELATED WORK

axiomatic basis for �spawning� of tasks� such as through execution of allocators to activate

tasks �Mel����

A somewhat di�erent approach to veri
cation of parallel programs is based on temporal

logic speci
cations of program behavior �MP��a�� Temporal logic is a
rst�order logic

extended with modal operators for describing temporal� or time�based� properties� these

operators are ��always��� � ��eventually��� � ��next�� and U ��until��� For example� the

temporal formula

�PRODUCE � �CONSUME�

says that it is always the case that whenever a PRODUCE operation is performed� a corre�

sponding CONSUME operation will eventually be performed� Temporal logic is well suited

to the speci
cation of total correctness properties of programs� Hailpern developed heuris�

tics for temporal�based speci
cation and veri
cation of parallel programs �Hai��� and other

temporal proof principles have been described by Manna and Pnueli �MP��b�� Nguyen et

al� described a temporal proof system for a computation model in which interprocess com�

munication takes place solely through special communication ports �NGO���� Pnueli and

de Roever described a temporal�based approach to reasoning about a small subset of Ada

tasking �PdR�	�� based on an operational semantics of the rendezvous�

Many ideas from program veri
cation have been borrowed for the development of prac�

tical systems for automated testing of software� often based on automatic runtime checking

of formal speci
cations of the intended behavior of the software� Such ideas have been

applied to checking the correctness of language implementations� For example� Bird and

Mu�noz described a system for automatically generating large� random test programs for

testing the correctness of a PL�I compiler �BM���� In addition� the validation of Ada com�

pilers is carried out using the Ada Compiler Validation Capability �ACVC�� a huge suite of

programs for testing the correctness of an Ada implementation �Ada���� Klarund described

an extended temporal logic called Temporal Rule Logic �TRL� �Kla��� for the speci
cation

of Ada tasking programs� TRL was developed from a perceived weakness in the power of

the ACVC in checking the implementation of Ada tasking� The power and usefulness of the

ACVC test suite will be discussed in detail in Chapter ��

����� Machine�Processable Speci�cation Languages

In applying formal methods to veri
cation and testing of concurrent programs� formal spec�

i
cations are expressed in a machine�processable speci
cation language� The speci
cations

��	� TESTING AND VERIFYING CONCURRENT SOFTWARE 	�

are then automatically processed for performing veri
cation or runtime checking� While

purely mathematical formalisms such as
rst�order logic are suitable as a speci
cation lan�

guage� it is often desirable to design a speci
cation language to meet other practical criteria

in order to make the language attractive to non�mathematically inclined programmers� The

most important criterion is that the syntax and semantics of a speci
cation language should

complement the features of a chosen implementation language�

Larch is one of the newest of the current breed of speci
cation languages� The Larch

system contains a variety of software tools and design techniques for the application of formal

speci
cations to software development� Speci
cations in Larch are written in two parts�

First� language�independent algebraic speci
cations of the behavior of a programmodule are

written in the Larch Shared Language �GHW���� then� language�dependent speci
cations

of the interfaces between program modules are written in the Larch Interface Language for

the chosen source language �Win���� The features of the Larch Shared Language provide

for the design and hierarchical composition of abstract module speci
cations and algebraic

theories that are amenable to incremental veri
cation�

One interesting application of Larch described by Birrell et al� is the formal speci
cation

of operating system interfaces �BGHL���� Such speci
cations require taking into account the

atomicity of the primitive operations being speci
ed� as well as their concurrent interleaving

on a multiprocessor� A primitive is viewed as the composition of its atomic actions� each of

which is speci
ed separately from the others� The authors� experience demonstrates both

the advantages and the drawbacks of a purely algebraic approach to specifying concurrent

software� While such speci
cations provide a fairly precise and understandable description

of the interfaces to the user� it is di�cult to strongly state various safety properties that

may be guaranteed by an actual implementation� For example� the authors found it di�cult

to state that an atomic wakeup operation causes at most one task to resume execution� or

that raising an exception during a primitive takes precedence over normal termination of

the primitive under certain conditions�

GYPSY �AGB���� and GEM �LO��� are two languages that were designed explicitly

for specifying parallel programs� GYPSY is a high�level speci
cation language for writing

veri
able programs whose threads of control communicate through mailboxes� a construct

similar to monitors� The GYPSY environment includes an interactive system for design�

formal veri
cation and runtime validation of parallel programs� The GEM language� an

event�oriented speci
cation language for describing concurrency problems� foreshadowed

	� CHAPTER �� BACKGROUND AND RELATED WORK

the design of TSL �described below�� Each GEM computation is viewed as a partially

ordered sequence of events� which is characterized mathematically based on properties of

intertask synchronization�

Anna�ANNotated Ada

Anna was designed as the high�level formal speci
cation language for an Ada software

development environment �LvHKO���LvH���LNR���� An Anna annotation is a
rst�order

formula specifying a constraint that must hold over a scope� the scope of an annotation

is determined both by its kind �e�g�� a subprogram annotation� and by its position in the

source text� Anna also supports declaration of virtual Ada code for de
ning concepts used

in annotations� Anna constructs are introduced into program text as formal comments

which are ignored by conventional Ada compilers� but which can be manipulated by special

Anna software tools� An annotation is indicated by the ��j indicator at the beginning of

each line� while virtual code is indicated by the ��� indicator�

In addition to the usual constructs of other speci
cation languages� Anna has special

facilities for specifying packages �LP�b�vHLKO��� and exceptions �LP�a�� However� Anna

does not support the speci
cation of the concurrency in Ada programs� The designers of

Anna envisioned the language as serving a multitude of needs� It is suitable as a formal

documentation language� it can be used for automatic runtime consistency checking� it is a

suitable basis for a high�level program design language� and it can be used as the assertion

language for an Ada veri
cation system�

Research with Anna has focused mainly on its use for automatic runtime checking of Ada

programs �SRN���� A large suite of software tools has been developed for this purpose� the

most important one being the Anna Transformer� The Anna Transformer transforms the

annotations in an annotated program into executable Ada checking code �Kri���SR���� The

resulting �self�checking program� then invokes the Anna Debugger each time a speci
cation

is violated� The Anna Transformer currently transforms a large subset of Anna� including

subtype annotations� object annotations� subprogram annotations� �exception� propagation

annotations� �function� result annotations and statement annotations�

Transformation of more advanced constructs� such as state expressions and axiomatic

annotations for algebraic speci
cation of packages� is currently under investigation� run�

time checking of these constructs will require the use of a reasoning tool such as a Prolog

engine �CM���� Also under investigation is a methodology for parallel runtime checking of

��	� TESTING AND VERIFYING CONCURRENT SOFTWARE 	�

annotations �RSL���� Runtime checking of certain annotations �e�g�� annotations on access

type collections� requires large computational power� parallel checking is viewed as a way

of reducing the interference with the underlying program while such checking is carried out�

Parallel checking would also be useful for creating permanently self�checking Ada software�

In the work described in this thesis� Anna is used to formally specify the top�level

interface of the Distributed Ada Supervisor� The annotations that will be presented should

be fairly easy to understand� therefore� the reader is directed to the excellent descriptions

that are readily available in the literature� especially �LvH����

TSL�Task Sequencing Language

The speci
cation language TSL represents the current state of the technology of automated

testing of concurrent software �HL��b�LHM����� TSL is a language for formally specifying

constraints on the event sequencing behavior of concurrent programs and is the main spec�

i
cation language that is used in this thesis for the formal description of the Ada tasking

semantics�

The development of TSL was inspired by preliminary work on event�based concepts for

debugging Ada tasking programs� and by previous work on automated deadlock detection

in Ada tasking programs �HL��a�� However� TSL is de
ned to a great extent independently

of Ada� making it possible to recon
gure TSL for formal speci
cation and testing of pro�

grams written in other concurrent languages� The notation and semantics of TSL are based

to some extent on the interval logic of Schwartz et al� �SMV��� and the Event Description

Language �EDL� of Bates and Wileden �BW�	�� Baiardi et al� later described a similar sys�

tem for automated testing of CSP programs for consistency with high�level formal behavior

speci
cations �BdFV����

Figure � depicts the TSL view of concurrent program execution� in the
gure� the Ti

represent program tasks� while the Ei represent tasking events� The Merger and Monitor

shown in the
gure together form the TSL Runtime System�

Each task generates a local stream of events characterizing its execution� The local event

streams are then merged by the Merger into a single global stream of events before being

fed to the Monitor� A computation may be characterized by many di�erent global streams�

depending on how the local streams are merged during a particular observation� A pair of

events is said to be connected if the events are causally related� thus� connected events must

occur in the same order in all global streams representing a computation� Every pair of

	� CHAPTER �� BACKGROUND AND RELATED WORK

Ada Tasking Program

T� T� � � � Tn

E��k��

E��k��

E��k

�

E��k��

E��k��

E��k

�

�

�

�

�

En�k��

En�k��

En�k

�

Local
Event
Streams

�
�

�
�

TSL Merger

Ej��

Ej��

Ej

�

Global Event Stream

�

Speci�cations

TSL Monitor

y Signal a
Violation�

Figure �� The TSL View of Concurrent Program Execution�

��	� TESTING AND VERIFYING CONCURRENT SOFTWARE 	�

events generated by a single task is connected� while pairs of events generated by di�erent

tasks need not be connected� A fundamental assumption in using TSL is that connected

events from the local streams will appear in the correct order in the global stream� it is up

to the TSL Merger to guarantee the validity of this assumption�

TSL constructs are introduced in program text as formal comments using the ���

formal comment indicator� The basic construct of TSL is the speci
cation� which is a special

formation of a set of compound events� The TSL Monitor decides whether a speci
cation is

satis
ed or violated by matching the constituent compound events against the global event

stream� The basic format of the speci
cation is as follows� with optional parts shown in

square brackets�

� when Ea

then � � not � Eb

� before Et ��

The compound event Ea is referred to as the activator of the speci
cation� the compound

event Eb is referred to as the body� and the compound event Et is referred to as the

terminator� Additionally� the terminator may be speci
ed using the keyword until instead

of the keyword before� The presence of the keyword not signi
es a negative speci
cation�

its absence signi
es a positive speci
cation�

Each time the TSL runtime system matches the activator of a speci
cation� it creates

an instance of the speci
cation� Each instance of a speci
cation is satis
ed or violated

depending on three criteria�

�� Whether the body is matched
rst� the terminator is matched
rst� or the two are

matched simultaneously�

	� Whether the speci
cation is positive or negative�

�� Whether the terminator is speci
ed with before or until�

Table � summarizes the semantics of a TSL speci
cation based on these three criteria�

Essentially� the syntax of the speci
cation makes its meaning intuitive� for example� the

speci
cation �when A then B before C� simply means �whenever A is matched� then B

must be matched before C is matched�� If the activator of a speci
cation is missing� the

activator is implicitly �when the scope of this speci
cation is entered�� Similarly� if the

� CHAPTER �� BACKGROUND AND RELATED WORK

Positive Negative
Speci
cations Speci
cations

Before Until Before Until

Body
Matched Satis
ed Satis
ed Violated Violated
First

Terminator
Matched Violated Violated Satis
ed Satis
ed
First

Body and
Terminator Matched Violated Satis
ed Satis
ed Violated
Simultaneously

Table �� Semantics of TSL Speci
cations�

terminator is missing� the terminator is implicitly �before the scope of this speci
cation is

exited��

A compound event is a pattern of basic events� There are two kinds of basic events

in TSL� prede
ned basic events and user�de
ned actions� The TSL Compiler instruments

a user tasking program with calls to the TSL Runtime System� these calls generate the

events that are sent to the TSL Monitor for pattern�matching and speci
cation checking�

The TSL Compiler causes the program to generate the prede
ned events at all places in

the program where the corresponding source construct is executed� however� the user must

insert perform statements at each place a user�de
ned action is to be generated�

There are six TSL prede
ned events for Ada�

� C calls T at E�generated by C immediately prior to each simple� timed or condi�

tional call to entry E of task T �

� T accepting E�generated by T immediately prior to each simple accept statement

for entry E or a selective wait with an open accept alternative for entry E�

� T accepts C at E�generated by T at the beginning of the body of each accept

statement for entry E� note that this corresponds to the beginning of a rendezvous�

the calling task in this case being task C�

� T releases C from E�generated by T at the end of the body of each accept

statement for entry E� note that this corresponds to the end of a rendezvous� the

calling task in this case being task C�

��	� TESTING AND VERIFYING CONCURRENT SOFTWARE ��

� T activates D�generated by T immediately following the activation of task D�

� T terminates�generated by T at the end of its body� note that this corresponds to

the completion of T � not its termination�

A user de
ned action is declared by an action declaration� which declares the name of

the action along with an optional set of parameters� it is matched by a basic performs

event� For example� if the calls event were not prede
ned� it could be declared by the

following action declaration�

��� action CALLS �CALLEE � task� CALLEE ENTRY � entry��

The CALLS event could then be generated by C prior to each entry call� as in the following�

��� perform CALLS �T� E��

TE� �� Call to entry E of task T�

This occurrence of CALLS would be matched by the following event�

��� C performs CALLS �CALLEE �� T� CALLEE ENTRY �� E�

Note that the prede
ned TSL type names task and entry have been used in the above

declaration�

Compound events are de
ned inductively as follows� A basic event is a compound event

that is matched by a single event in the global stream� A sequence of compound events

is matched when the constituent events are matched in the order speci
ed� the sequence

�A then B then C� is written in TSL as �A �� B �� C�� A disjunction of compound

events is matched when any one of the constituent events is matched� the disjunction of

the events A� B and C is written in TSL as �A or B or C�� A conjunction of compound

events is matched when any complete permutation of the constituent events is matched�

a conjunction may be de
ned in terms of sequences and disjunctions� For example� the

conjunction

A and B and C

is equivalent to the compound event

�A �� B �� C� or �A �� C �� B� or

�B �� A �� C� or �B �� C �� A� or

�C �� A �� B� or �C �� B �� A�

�	 CHAPTER �� BACKGROUND AND RELATED WORK

An iteration of a compound event is matched if the compound event is matched the speci
ed

number of times� the iteration �� occurrences of A� is written in TSL as ��A� � ���

Constituents of events and actions �e�g�� task names and entry names� may be speci
ed

either by a name from the program� by the special name any� or by a placeholder� a place�

holder is a variable name preceded by a question mark �e�g�� �A�� A placeholder appearing

in a speci
cation is initially unbound and is at various times bound to values appearing in

the global event stream� A placeholder that is bound during matching of the activator of

a speci
cation remains bound during matching of the rest of the activator and during the

matching of the created instance� If a placeholder remains unbound after creation of an

instance� the placeholder may be bound to di�erent values in the body and in the termina�

tor� As an example� suppose that the TSL Monitor is attempting to match an instance of

the TSL event ��X calls �Y at �Z�� and suppose that �X is bound to task C� Then the

event will match the
rst occurrence in the global event stream of an entry call by task C�

Suppose the
rst matching occurrence is the event �C calls T at E�� The match will cause

the unbound placeholders �Y and �Z to be bound to T and E� respectively�

In addition to this basic event language� TSL provides a guard facility for qualifying

which instances of basic events are to be matched� a basic event E guarded by guard G is

written as �E where G� and is matched by an occurrence of E only when G is true� A

guard is a Boolean�valued expression that is written using the Ada expression language and

property evaluations�

A property is a function of the global event stream� but it is often convenient to think

of a property as de
ning an array of values� indexed by other values� There are prede
ned

properties� and the user can de
ne his own with a property declaration� A property

declaration gives the name of a property� its type� the types of the values it is indexed

by� the initial value for all �components�� and the events which cause the value of the

property to change� Value changes are speci
ed by update statements within the property

declaration� An update statement speci
es an activator and optional body that causes an

assignment to the property to be executed each time the speci
ed events are matched� For

example� the prede
ned property CALLING� indicating whether or not one task is calling

another task� is de
ned as follows�

property CALLING �task� � BOOLEAN �� FALSE

is

when �C calls any at any then

��	� TESTING AND VERIFYING CONCURRENT SOFTWARE ��

set CALLING ��C� �� TRUE�

when any releases �C from any then

set CALLING ��C� �� FALSE�

end CALLING�

As a larger example of TSL speci
cations� the formal speci
cation of the Dining Philoso�

phers program of Figure 	 will be presented� There are several requirements of this program

that can be formally speci
ed in TSL� including the following�

� The actions of picking up and putting down a fork must alternate�

� Each philosopher uses only the forks to his immediate right and left�

� No fork is picked up by a philosopher when he is eating�

� No fork is put down by a philosopher when he is not eating�

� It is never the case that all philosophers are simultaneously holding one fork while

waiting to pick up the other�

This last speci
cation� a speci
cation of deadlock�freedom� would not be satis
ed by the

program of Figure 	� but it may nevertheless be speci
ed in TSL�

Since the tasks in the program are components of arrays� it is necessary to de
ne an

ID OF property� which keeps track of the ID of each task� A FORK COUNT property is

used to keep track of how many forks each philosopher is holding� It is also necessary to

de
ne an EATING property� which states that a philosopher is eating once he has picked

up two forks and is no longer eating once he has put down two forks� Finally� a property

WAITING TO EAT COUNT is used to count the number of philosophers which have picked

up the
rst fork for eating but have not yet picked up the second� These four properties

are de
ned in TSL in Figure �� It will be assumed for the sake of simplicity that ��� Only

philosophers pick up and put down forks� �	� If an eating philosopher puts down one fork

then he will put down the second before picking the
rst up again� and ��� A non�eating

philosopher that has picked up one fork will pick up the second fork before he puts the
rst

fork down� All of these assumptions can be easily stated in TSL� Figure � gives the TSL

speci
cation of the program�

�� CHAPTER �� BACKGROUND AND RELATED WORK

��� property ID OF �task� � NATURAL �� �
��� is

��� when �T accepts any at GET ID �ID �� �I� then
��� set ID OF ��T� �� �I�
��� end ID OF�

��� property FORK COUNT �task� � NATURAL �� �
��� is

��� when �F accepts �P at PICKUP then

��� set FORK COUNT ��P� �� FORK COUNT ��P� � 	�
��� when �F accepts �P at PUTDOWN then

��� set FORK COUNT ��P� �� FORK COUNT ��P� � 	�
��� end FORK COUNT�

��� property EATING �task� � BOOLEAN �� FALSE
��� is

��� when �F	 accepts �P at PICKUP where FORK COUNT ��P� � �
��� then �F� accepts �P at PICKUP where �F� �� �F	
��� set EATING ��P� �� TRUE�
���
��� when �F	 accepts �P at PUTDOWN where FORK COUNT ��P� � �
��� then �F� accepts �P at PUTDOWN where �F� �� �F	
��� set EATING ��P� �� FALSE�
��� end EATING�

��� property WAITING TO EAT COUNT � NATURAL �� �
��� is

��� when �F accepts �P at PICKUP where FORK COUNT ��P� � � then

��� set WAITING TO EAT COUNT �� WAITING TO EAT COUNT � 	�
��� when �F accepts �P at PICKUP where FORK COUNT ��P� � 	 then

��� set WAITING TO EAT COUNT �� WAITING TO EAT COUNT � 	�
��� end WAITING TO EAT COUNT�

Figure �� Properties for TSL Speci
cation of Dining Philosophers�

��� SUMMARY ��

�� PICKUP alternates with PUTDOWN�
��� when �F accepts �P	 at PICKUP
��� then �F accepts �P	 at PUTDOWN
��� before �F accepts �P� at PICKUP�
���
��� when �F accepts �P	 at PUTDOWN
��� then �F accepts �P	 at PICKUP
��� before �F accepts �P� at PUTDOWN�

�� A philosopher uses only the forks to his immediate right and left�
��� not �P calls �F where ID OF ��F� �� ID OF ��P� and
��� ID OF ��F� �� �ID OF ��P� � 	� mod
�

�� A philosopher does not pick up a fork while he�s eating�
��� not �P calls any at PICKUP where EATING ��P��

�� A philosopher does not put down a fork while he�s not eating�
��� not �P calls any at PUTDOWN where not EATING ��P��

�� Deadlock never occurs�
��� not any calls any at PICKUP
��� where WAITING TO EAT COUNT � MAX PHILOSOPHERS�

Figure �� TSL Speci
cation of Dining Philosophers�

��� Summary

As the survey of this chapter demonstrates� the theory and practice of concurrent program�

ming is at a stage at which it is feasible to develop large distributed software systems for

execution on parallel hardware� However� several de
ciencies and unsolved problems are

apparent in this technology as it currently exists�

�� The technology underlying the construction of distributed implementations of concur�

rent programming languages is de
cient for the following reasons�

�a� Descriptions of concurrent languages in general focus on the design of constructs

for expressing concurrency� Implementations� if they exist� are usually mentioned

only in passing for the purpose of claiming the successful implementation of a

�� CHAPTER �� BACKGROUND AND RELATED WORK

language�

�b� Concurrent programming languages other than Ada which have been successfully

implemented on multiprocessors are in general small� experimental languages�

�c� No successful distributed implementation of Ada has been described to a satis�

factory extent in the literature� previous descriptions have dealt exclusively with

the design of uniprocessor implementations� Thus� no serious consideration has

been given to the important issues in distributed supervisor design�the over�

all software architecture� the interface to application programs� the interface to

the underlying computer system� the separation of machine�independent compo�

nents from machine�dependent components� and the separation of components

of unrelated functionality�

	� The technology available for verifying that a distributed implementation of a concur�

rent language is consistent with the language semantics is de
cient for the following

reasons�

�a� No suitable system exists for automatic veri
cation of concurrent software sys�

tems� such as a distributed supervisor� Furthermore� the systems which do exist

require a great deal of reasoning on the part of the programmer to introduce

auxiliary variables and construct a global invariant that is strong enough for

proving non�interference or co operation of the proofs of individual tasks�

�b� Other testing methods�parallel debuggers� history logging� reproducible testing�

interactive replays�are unable to automatically di�erentiate incorrect program

behavior from correct program behavior� Such determination is left entirely up

to the programmer�

�c� As will be further discussed in Chapter �� methods for verifying a language im�

plementation based on automated testing su�er from the fact that each test

program must be instrumented individually� with machine�processable speci
ca�

tions or with executable checking code� so that it can check some part of the

language implementation�

This thesis describes new approaches to solving the problems which have caused the con�

tinued existence of the above de
ciencies�

Chapter �

Distributed Supervisor Design

Principles

This chapter presents in a language�independent manner a set of principles for designing

distributed tasking supervisors for concurrent programming languages� The next chapter

shows how these principles were applied to the design of the Distributed Ada Supervisor�

A distributed implementation of a concurrent programming language requires a dis�

tributed tasking supervisor� since a centralized supervisor is a highly ine�cient bottleneck�

a localized site of relatively intense communication activity� The distribution is best

achieved by assigning an identical copy of the supervisor code to each node �processor�

of the target system� Each supervisor copy serves as the execution agent for locally exe�

cuting program tasks and acts as a gateway for communication with remotely executing

program tasks�

The design of a distributed supervisor is in�uenced by both the tasking features of

the language and the various computer hardware systems it is targeted for� As a starting

point for the discussion� consider Figure �� which shows abstractly how a tasking supervisor

achieves distributed execution of concurrent programs on a multiprocessor system� In this

gure� the interface between the tasking program and the supervisor is considered to be the

top�level interface to the supervisor� the interface between the supervisor and the underlying

machine is the bottom�level interface�

On the one hand� since the compilation of source�level tasking constructs is nothing more

than calls to supervisor subprograms� it is reasonable to expect the top�level supervisor in�

terface to be portable� machine�independent and standardized� Thus� there are components

��

�� CHAPTER 	� DISTRIBUTED SUPERVISOR DESIGN PRINCIPLES

�
�

�
�Application Program

Tasking Supervisor

Underlying
Multiprocessor

Top�Level Interface

Bottom�Level
Interface

�

�

�

�

Figure �� A Supervisor Supporting Execution of Concurrent Programs�

of the tasking supervisor design that remain unchanged as the supervisor is targeted for

di�erent machines�

On the other hand� the bottom�level interface between the supervisor and the under�

lying system is by necessity machine�dependent� Multiprocessor hardware con
gurations

vary widely� depending on the availability of shared memory� the reliability of processor

interconnections and the type of communication subsystem available� If the supervisor is to

be built on top of� or as part of� an available operating system� it must be recognized that

di�erent operating systems provide widely varying collections of primitives for accessing the

resources of the target system� If the supervisor is to be implemented on a bare machine�

one is confronted with a wide variety of available processor architectures� Thus� there are

components of the tasking supervisor design that di�er radically as the supervisor is ported

between di�erent distributed target systems�

The portability of the supervisor of Figure � can be increased dramatically by con�

structing a layered design which separates and isolates into a single module the machine�

independent components from the machine�dependent components� To port the supervisor

from computer system A to computer system B� the machine�dependent module for system

A is replaced by an appropriate module for system B� leaving the machine�independent

modules untouched�

To attain maximum portability� the upper layers of the supervisor must be provided with

��

�
�

�
�Application Program

Machine�Independent
Components

VIRTUAL MACHINE
INTERFACE

Machine�Dependent
Components

�

	

Tasking
Supervisor

Underlying
Multiprocessor

�

�

�

�

Figure �� Partitioning the Tasking Supervisor Design�

a machine�independent view of the underlying computational resources� Brinch Hansen

demonstrates the utility of such an abstract virtual machine in his description of the se�

mantics of Concurrent Pascal �BH���� To achieve the desired separation of supervisor com�

ponents� the virtual machine must support a �universal� distributed computational model

which can e�ectively serve the needs of the machine�independent parts of the supervisor and

also encapsulate the relevant features most likely to be encountered on any chosen target

system� This computational model is represented as a virtual machine interface which is

the boundary between the machine�independent and machine�dependent components of the

supervisor� It provides an interface to relevant data structures and services that are typical

of distributed operating systems �see Section 	�	�� Figure � depicts the binding of machine�

dependent supervisor components to machine�independent supervisor components through

the virtual machine interface� Figure � depicts a
nal re
nement of Figure �� showing the

individual layers of the supervisor design structure� each of which is described below�

� CHAPTER 	� DISTRIBUTED SUPERVISOR DESIGN PRINCIPLES

�

�
Application Program

Supervisor Interface

Supervisor Subprograms

Supervisor Kernel

VIRTUAL MACHINE
INTERFACE

Machine�Dependent
Components

Tasking
Supervisor

Underlying
Multiprocessor

�

�

�

�

Figure �� Structure of the Distributed Tasking Supervisor Design�

��� The Virtual Machine Interface

In order for the supervisor to be portable between as many di�erent computer systems as

possible� the underlying computational model of the supervisor design must be a loosely

coupled multiprocessor �HB���� i�e� a multiprocessor in which the processors �nodes� commu�

nicate over memoryless internode links and for which no global shared memory is available�

A restriction of this model is the homogeneous loosely coupled multiprocessor� i�e� a loosely

coupled multiprocessor in which all processor architectures are identical� This restricted

model represents a practical limit on the types of target system which can support a dis�

tributed implementation of a concurrent programming language� It also greatly simpli
es

the design requirements of the supervisor� since homogeneity of the nodes removes the need

for a common external data representation and the need for managing multiple sets of

object code� The virtual machine interface of the supervisor must accurately present this

fundamental computational model�

	��� THE VIRTUAL MACHINE INTERFACE ��

Some examples of loosely coupled multiprocessors include the FLEX�	� �Mat���� the

Cm� �FFS��� and a local network of workstations� All other computational models are

special cases of the homogeneous loosely coupled multiprocessor� A tightly coupled multi�

processor is a loosely coupled multiprocessor in which the set of internode communication

links is a single� global shared memory space� A uniprocessor is a tightly coupled multipro�

cessor containing a single processing element�

Because the underlying computational model of the supervisor is a loosely coupled mul�

tiprocessor� communication between nodes must be in the form of message�passing �Tan���

or one of its variants� such as remote procedure call �BN���� The most representative form

of message�passing is point�to�point message�passing� that is� communication of messages

between a single source node and a single destination node� Other special forms of message�

passing� such as broadcasting �Tan���� are suited only to certain system topologies which can

be exploited for communication e�ciency� Since message�passing is used for communica�

tion between supervisor copies� a language�dependent message�passing protocol is required

which correctly implements the semantics of the concurrency constructs available in the

language�

����� Interface Requirements

The upper layers of the supervisor require an interface to the following low�level services�

� Execution management facilities� for the creation� activation� suspension and ter�

mination of multiple threads of execution� Such facilities are needed for two di�erent

types of processes�

	 OS Processes� large�grained threads of control which execute on di�erent proces�

sors� These are scheduled by the underlying operating system and correspond to

the multiple executing copies of the distributed supervisor�

	 Local Processes�
ne�grained threads of execution which are scheduled inside a

single OS process� These correspond to the tasks in a source program�

Both types of process may be implemented by a lightweight process if the operating

system provides such a construct� As mentioned in Section 	�	� if the V System

were to be used for the underlying operating system support� a local process could

be implemented by a V process� and an OS process could be implemented by a V

team �Che����

�	 CHAPTER 	� DISTRIBUTED SUPERVISOR DESIGN PRINCIPLES

� Synchronization facilities� such as semaphores� for protecting critical sections�

� Communication facilities� to support reliable� sequenced message�passing �Tan���

between OS processes�

� ID generators� which return globally unique numerical identi
ers for distinguishing

program tasks and for identifying other tasking transactions� such as rendezvous�

� Con�guration predicates� which provide fundamental information about the con�

guration of a chosen target system� such as the number of processors available�

The implementation of a service may simply be a call to an operating system primitive if

such exists� otherwise the service must be implemented from scratch� If the supervisor is

to be targeted to a bare machine� then all of the above services must be implemented from

scratch�

��� The Supervisor Kernel

Each copy of the supervisor contains a kernel component which logically resides on top

of the virtual machine interface� the set of kernel copies collectively forms the supervisor

kernel� Within the kernel� and within all layers which logically reside on top of the kernel�

each program task is referred to by a globally unique integer identi
er called its task name�

In addition� each system processor �or equivalently� each supervisor copy� is referred to by

a globally unique integer identi
er called its node address� Supervisor subprograms use the

kernel to send and receive messages to and from other copies of the supervisor�

The supervisor kernel has the following responsibilities�

�� The supervisor kernel serves as the transport communication layer �Zim�� of the

supervisor in the sense that it presents a logically fully connected network of program

tasks to the higher layers of the supervisor� For example� if execution of a supervisor

subprogram requires sending a message to a remote task� the kernel is responsible for

determining which system node to send this message to so that the message reaches

the destination in an e�cient manner� The algorithm for the subprogram can then

be designed without regard to node addresses or system topology�

	� The supervisor kernel is responsible for maintaining a consistent global picture of the

locations� dependencies and execution states of tasks during program execution� This

	�	� SUPERVISOR SUBPROGRAMS ��

global picture represents the dynamically changing state of an executing program�

The
rst responsibility is satis
ed by special language�dependent SEND and RECEIVE

routines� the second responsibility is satis
ed by a database which stores information about

program tasks� For the sake of e�ciency� each copy of the kernel stores and maintains in

its database only that subset of the global picture relevant to locally executing tasks� This

subset is comprised of a local task map and a global task map� The local task map contains

a variety of state information about locally executing tasks� The global task map serves as

an �address book� listing the name and node address of all tasks whose location is �known�

to the supervisor copy which owns the map�

��� Supervisor Subprograms

The top�level interface between the supervisor and a compiled application program is a set

of subprogram declarations� the bodies of these subprograms implement the concurrency

constructs of the source language� The subprograms logically reside on top of the kernel

layer of the supervisor� A good understanding of the language semantics should make clear

what subprograms are needed and how they should be parameterized� Roughly speaking� a

single subprogram must be provided for each of the following kinds of language construct�

� The creation of a program task�

� The termination of a program task�

� Each language construct which allows one program task to interact with another �for

example� the Ada entry call statement��

� Each language construct whose execution requires the use of some low�level service

such as an operating system primitive �for example� the Ada delay statement��

� Each language construct whose execution requires information maintained by the

supervisor �for example� the Ada COUNT attribute��

� Each language construct whose execution a�ects the execution of one of the other kinds

of language construct �for example� the beginning of a nested scope of execution in

Ada��

�� CHAPTER 	� DISTRIBUTED SUPERVISOR DESIGN PRINCIPLES

Once the subprograms have been chosen� the design of the supervisor interface is completed

by formally specifying the subprograms� These speci
cations are derived from the language

semantics and are constraints on both the compilation of application programs and on the

implementation of the subprograms�

��� Summary of Design Principles

The design of a distributed tasking supervisor can be summarized as follows�

�� The supervisor is distributed� since a centralized supervisor would be a bottleneck�

	� Distribution is achieved by placing an identical copy of the supervisor code on each

node of the target system�

�� The supervisor is constructed in layers to ease enhancement of the design� modi
cation

of one module should have little impact on other modules�

�� To maximize portability� the underlying computational model of the supervisor is a

loosely coupled multiprocessor� the most general model of distributed computation�

�� Supervisor copies communicate with each other using a language�dependent message�

passing protocol�

�� Machine dependencies are encapsulated into a single module� which comprises the

lowest layer of the supervisor�

�� The supervisor is formally speci
ed� for documentation� automated testing and�or

formal veri
cation�

A well�designed supervisor will manifest itself in both the ease with which portability is

achieved and the ease with which an implementation is tested and maintained�

Chapter �

Design of the Distributed Ada

Supervisor

This chapter presents the design of the Distributed Ada Supervisor� this chapter provides

the
rst known detailed description of such a design� In designing the Supervisor� the

principles presented in the previous chapter were adhered to rigorously�

��� Overview of the Distributed Ada Supervisor Design

The Supervisor is written in Ada to take advantage of Ada�s features for strong typing and

modularity� In addition� The Supervisor interface is speci
ed in Anna in order to formally

describe the interface to the compiler implementor� Figure � depicts the Distributed Ada

Supervisor executing an application program on a two�node multiprocessor� The Supervisor

is an almost full implementation of the Ada tasking language� only the optional interrupt�

task priority and shared variable features of Ada are unaccounted for in the design� In

particular� each copy of the Supervisor is able to perform the following operations�

�� Perform message�passing with other supervisor copies to support execution of sim�

ple accept statements� selective waits� simple entry calls� conditional entry calls and

timed entry calls� Thus� full support for the various rendezvous mechanisms is pro�

vided�

	� Perform message�passing with other supervisor copies to support execution of abort

statements�

��

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

Node � Node �

Program Tasks Program Tasks

�

�

�

�
Subprogram Calls

�

�

�

�

�

�

Distributed
Ada

Supervisor

Distributed
Ada

Supervisor

�

�

�

�

Supervisor Messages

� �

Underlying Multiprocessor and Communication Medium

i

Figure �� Computational Environment of the Distributed Ada Supervisor�

�� Perform message�passing with other supervisor copies to evaluate the task attributes

CALLABLE and TERMINATED�

�� Perform message�passing with other supervisor copies to achieve remote scheduling of

program tasks�

�� Perform message�passing with other supervisor copies to correctly synchronize the

activation and termination of dependent tasks with the execution of their masters�

�� Perform message�passing with other supervisor copies to perform distributed execu�

tion of the terminate alternative�

�� Evaluate the entry attribute COUNT� It is a consequence of the Ada tasking seman�

tics �Ada��� x ����
 �!�� that a task may only evaluate the COUNT attribute of its

own entries� thus� this service is always a local operation�it requires no message�

passing between copies of the supervisor�

��� ADA SUPERVISOR STRUCTURE ��

For the purposes of discussion� the
rst six of the above operations are all situations in

which one program task communicates with another�

��� Ada Supervisor Structure

Figure � depicts the set of packages which comprise each copy of the Distributed Ada

Supervisor� packages are shown with a solid border� while parts of a package are separated

by dashed lines� Figure �� depicts the correspondence between this
gure and Figure � in

Chapter ��

Several characteristics of the Supervisor are similar to the model described by Clem�

mensen �Cle�	�� these similarities will be noted throughout the description of the Supervisor

design� The packages shown in the diagram have the following functions�

� NET SERVICES�This package is the abstract virtual loosely coupled multiprocessor

upon which the rest of the Supervisor is built� Its visible part is the virtual machine

interface� the interface declares in a language�independent and machine�independent

manner the set of low�level services needed by the rest of the Supervisor� Its body

contains the implementation of the virtual machine using the services available on the

chosen target system�

� MESSAGES�This package declares the Supervisor message type and is the interface

between the Supervisor kernel �see below� and the low�level message�passing routines

of the virtual machine�

� TASK INFO MANAGER�This is a subunit of TASKING SUPERVISOR and is re�

sponsible for maintaining a consistent picture of the execution state of the application

program at runtime�

� TASKING SUPERVISOR�This is the main Supervisor package� Its visible part is

the interface to the subprograms which are called by the application program at

runtime� Its body contains the implementation of these subprograms plus the spe�

cial SEND and RECEIVE communication subprograms� The SEND and RECEIVE

subprograms� together with the TASK INFO MANAGER� comprise the Supervisor

kernel�

Figure �	 depicts an example of how these packages interact� The
gure depicts part of the

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

�

�
Application Program

�
�

TASKING SUPERVISOR
�visible part�

TASKING SUPERVISOR
�body�

SEND Procedure�
Receiver Process

TASK INFO MANAGER
�subunit�

MESSAGES

NET SERVICES
�visible part�

NET SERVICES
�body�

�
�

Supervisor
Interface

�

�

Supervisor
Kernel

�
�

Virtual
Machine
Interface

�

	

Abstract
Virtual
Machine

�
�

Distributed
Ada

Supervisor

Underlying
Multiprocessor

�
�

Figure �� Structure of the Distributed Ada Supervisor Design�

��� ADA SUPERVISOR STRUCTURE ��

�Generic�
Distributed
Supervisor

Distributed
Ada

Supervisor

Supervisor Interface

Supervisor Subprograms

Supervisor Kernel

VIRTUAL MACHINE
INTERFACE

Machine�Dependent
Components

TASKING SUPERVISOR
�visible part�

TASKING SUPERVISOR
�body�

SEND Procedure�
Receiver Process

TASK INFO MANAGER
�subunit�

MESSAGES

NET SERVICES
�visible part�

NET SERVICES
�body�

Figure ��� Correspondence with the Generic Supervisor Design�

execution of an entry call statement� with the arrows representing subprogram calls� The

portion between the two horizontal lines represents execution inside the Supervisor� At the

application program level� the entry call has been compiled into a call to the ENTRY CALL

procedure of the TASKING SUPERVISOR package �described in Section ������� To call

task T � ENTRY CALL calls the kernel to SEND a CALL MSG to T � The kernel uses the

TASK INFO MANAGER to determine which node to send the message to� and it calls the

MESSAGES package to SEND the message to the node� The MESSAGES package �attens

the message into an array of bytes and calls NET SERVICES to perform the SEND� Finally�

NET SERVICES calls a routine in the underlying operating system to SEND the message

� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

T�E� Application Program

�
ENTRY CALL �T� E� � � �� TASKING SUPERVISOR

�
SEND �CALL MSG to T� Kernel�TASK INFO MANAGER

�
SEND �CALL MSG to T at Node N� MESSAGES

�
SEND �Equivalent Byte Array to N� NET SERVICES

�
SEND �Byte Array to N over Network� Underlying System

Figure �	� Interaction of the Supervisor Packages During an Entry Call�

over the network� The receipt of the message and the placement of the call on the queue

for T �s entry E are carried out in the reverse sequence of operations at node N �

The design of the various layers of the Supervisor are now presented in detail� in order

from bottom to top�

��� The Virtual Machine Interface

Figure �� is an outline Ada speci
cation of the NET SERVICES package speci
cation�

the complete speci
cation is given in Appendix A� NET SERVICES contains subprogram

interfaces to each of the services described in Section ���� Chapter � describes the imple�

mentation of the body of NET SERVICES for two di�erent machines�

The facilities of NET SERVICES have been chosen so as to closely represent the fa�

cilities available in a number of existing distributed operating systems� such as the V

System� NET SERVICES provides for the naming of system processors by a contiguous

sequence of logical node addresses� which the package converts to system physical node

addresses or process identi
ers� It also provides an interface to low�level byte�oriented

�	� THE VIRTUAL MACHINE INTERFACE ��

package NET SERVICES is

Byte types�BYTE� BYTE ARRAY� BYTE ARRAY REF�
Constant�MAX NODES� �� Maximum number of CPUs available�

ID types�NODE ID TYPE� PROCESS ID TYPE� UNIQUE ID TYPE�

Unique ID generator�GET UNIQUE ID�

Timer�TIME OUT�

�� SEND does not block its caller while the message is being sent�
�� RECEIVE blocks its caller until a message has arrived�
Message�passing subprograms�SEND� RECEIVE�

Concurrency subprograms�CREATE OS PROCESS� DESTROY OS PROCESS�
CREATE LOCAL PROCESS� ACTIVATE LOCAL PROCESS�
SUSPEND LOCAL PROCESS� TERMINATE LOCAL PROCESS�

Semaphore type�LOCK�
Semaphore exception�LOCK IS UNINITIALIZED�
Semaphore subprograms�INITIALIZE� FINALIZE� ACQUIRE� RELEASE�

CONDITIONAL ACQUIRE� IS LOCKED� IS INITIALIZED�

��j Formal speci�cation of NET SERVICES�
private

Implementation of LOCK�
end NET SERVICES�

Figure ��� Outline of the Virtual Machine Interface�

�	 CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

message�passing services� task switching and scheduling services� timing services and pro�

cess management services� Most of the entities in the package should be self�explanatory�

The semaphore type is called LOCK� the ACQUIRE subprogram is equivalent to the P

operation� and the RELEASE subprogram is equivalent to the V operation� Additionally�

CONDITIONAL ACQUIRE is a non�blocking ACQUIRE attempt that returns an indica�

tion of success of failure� The SEND subprogram is called by program tasks during execution

of a tasking statement� the RECEIVE subprogram is called by the RECEIVE process of

the Supervisor kernel �see below�� The behavior of the interface has been formally speci
ed

in Anna �see Appendix A��

��� The Supervisor Kernel

As described in the previous chapter� each copy of the Distributed Ada Supervisor contains

a kernel component which logically resides on top of the virtual machine interface �see Fig�

ure ��� In addition to the responsibilities listed in the previous chapter� the kernel can

be enhanced to support migration of tasks between system nodes during program execu�

tion� the necessary enhancements are described in �Ros���� The TASK INFO MANAGER

implements the local task map and global task map� These data structures are similar in

functionality to the monitortables of Clemmensen�s model and are described separately in

Sections ����� and ����	 below� following a discussion of their similarities� The SEND and

RECEIVE routines of the kernel are described respectively in Sections ����� and ������

Each entry of the local and global task maps contains information about a speci
c

program task� Thus� searching within both maps is performed using a task name �i�e��

unique integer identi
er� as the key value� Since the task maps are shared by multiple

threads of control� updates to the maps are implemented as critical sections� Construction

and maintenance of the local and global task maps relies on information obtained from the

tasking messages that are passed between supervisor copies� Each tasking message contains

the following information�

� The name of the task which initiated the tasking operation that caused the message

to be sent� This task is called the MSG SOURCE�

� The name of the intended recipient task� This task is called the MSG DEST�

� The node address of MSG SOURCE� called MSG SOURCE NODE�

�� THE SUPERVISOR KERNEL ��

type SUPERVISOR MESSAGE TYPE �CLASS � MSG CLASS� is
record

MSG SOURCE � TASK NAME�
MSG DEST � TASK NAME�
MSG SOURCE NODE � NODE ADDRESS�
CURRENT SENDERS MASTER � TASK NAME�
case CLASS is

� � � �� Other Message Components�
end case�

end record�

Figure ��� The Supervisor Message Type�

� The name of an ancestor of the task currently serving as the routing agent for the

message� This ancestor task is called the CURRENT SENDERS MASTER� and its

function as a routing agent is described more fully below�

An outline of the Supervisor message type is shown in Figure ��� The CLASS discriminant

indicates the function of the message and determines what remaining components are sup�

plied with the message� The full declaration of SUPERVISOR MESSAGE TYPE is given

in Appendix C�

����� The Local Task Map

The local task map maintained by each copy of the kernel contains a descriptor entry for

each task executing at the node of the copy� this supervisor copy is the execution agent

of each locally executing task� Figure �� gives an Ada declaration of the local map en�

try type� The entry for task MY NAME keeps track of the number of entries it declared

�the ENTRY COUNT discriminant�� the name of its master �MASTER NAME�� its exe�

cution status �CURRENT STATUS and MY STATUS� and its current scope level �CUR�

RENT SCOPE�� As mentioned in Section 	����� tasks are dependents not only of a master

task� but of a particular scope within that master task� and a scope may not be exited until

all dependents of the scope have terminated� Thus� the CURRENT SCOPE component

keeps track of the nesting level a task is executing so that when waiting to exit the current

scope� the Supervisor can di�erentiate between dependents of the scope being exited and

dependents of enclosing scopes�

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

type LOCAL MAP ENTRY �ENTRY COUNT � NATURAL �� �� is
record

MY NAME � TASK NAME�
MASTER NAME � TASK NAME�
CURRENT STATUS � TASK STATUS �� UNBORN�
CURRENT SCOPE � SCOPE NUMBER TYPE �� ��
MY STATUS � STACK TYPE � �
CURRENT CALLS � STACK TYPE � �
CALL MSG QUEUES � QUEUE ARRAY �

�	 � � ENTRY COUNT��
CONFIRM ABORT MSG QUEUES � QUEUE ARRAY �

�	 � � ENTRY COUNT��
ACKNOWLEDGMENT MSG � SUPERVISOR MESSAGE TYPE�
ABORTED TASKS � AVL TREE TYPE � �
DEPENDENTS � AVL TREE TYPE � �
C VARIABLES � C VARS TYPE�

end record�

Figure ��� Contents of a Local Task Map Entry�

Arriving entry calls are placed on the CALL MSG QUEUES� there is one queue per

declared entry� Messages indicating commitment to or abandonment of a rendezvous by a

caller are placed on the CONFIRM ABORT MSG QUEUES�

CURRENT CALLS contains the names of the tasks which are currently engaged in

rendezvous with task MY NAME� CURRENT CALLS is a stack because a task may be

executing multiple nested accept statements simultaneously� and because an inner accept

statement must complete before the accept statement it is contained within may proceed�

It is a consequence of Ada syntax and semantics that nested accept statements are executed

in a LIFO �last�in�
rst�out� manner�

ABORTED TASKS is used during execution of an abort statement by task MY NAME�

it is an AVL�tree containing the names of aborted tasks which have yet to acknowledge their

abnormality� ACKNOWLEDGMENT MSG is used to hold various acknowledgment and

reply messages� DEPENDENTS is an AVL�tree which stores the names of all currently

active dependents of MY NAME� Associated with each dependent is an execution status

value and a scope number� indicating the nesting level within MY NAME that is the direct

master scope of the dependent�

�� THE SUPERVISOR KERNEL ��

type GLOBAL MAP ENTRY is

record

T NAME � TASK NAME�
T NODE � NODE ADDRESS�

end record�

Figure ��� Contents of a Global Task Map Entry�

Finally� C VARIABLES is an array of Hoare�style condition variables �Hoa��� which are

used to eliminate busy�wait spins from supervisor synchronization activities� For example�

inside the Supervisor� a task beginning the execution of its body performs a WAIT on a

condition variable that is used to signify activation of all new dependents� when the last

of the new dependents is activated� the Supervisor performs a SIGNAL on the condition

variable� allowing the program task to proceed with its execution�

Each time a task is scheduled for activation at a node� the copy of the Supervisor at the

node creates an entry for that task in its local map� The name of the master of the task is

inserted into the local map entry at this time� Each time the task declares a dependent� it

calls its agent at the place of the declaration so that the agent may register the name and

master scope level of the dependent in the local map entry for the task� When a dependent

of the task terminates� the name of the dependent is removed from the local map entry�

Thus� the local map entry for a task always contains the names of its master and currently

active dependents�

When the task itself terminates� its local map entry is still kept in the local task map

since it is possible for other tasks to attempt communication with the terminated task�

����� The Global Task Map

The global task map maintained by each copy of the kernel contains an entry for each task

whose node location is �known� to the kernel copy� including all locally executing tasks�

thus� as shown in Figure �� each entry in the global map is simply a task name along

with its node address� A copy of the Supervisor can learn the location of a remote task

in one of two ways�whenever it receives a message from a remote task� and whenever it

schedules a dependent of a locally executing task for remote execution� The global task

map corresponds to the WhereTable of Clemmensen�s model�

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

BEFORE�M Executing at Node X

M X

AFTER�M Activates T at Node Y

M X

T Y

T Y

M X

Node X Node Y

Figure ��� Global Map Updates Resulting from Activation of a Dependent�

Each time a task T is scheduled for activation at a node Y� three global map entries are

created� assume that M is the master of T and that M is executing at node X �

�� An entry for T in the global map of node Y�

	� An entry for T in the global map of node X�

�� An entry for M in the global map of node Y�

These global map updates are depicted in Figure ��� Note that if the new task is assigned

to the same node as its master� entry number � will already exist� and entry number 	 will

be taken care of by entry number �� Thus� the global map at a node contains entries for

all locally executing tasks as well as entries for the direct masters and direct dependents of

these tasks�

The continued existence of global map entries for terminated tasks is required since it

is possible for other tasks to attempt communication with the terminated task�

�� THE SUPERVISOR KERNEL ��

����� The Message�Sending Algorithm

When a task communicates with another task� it is ultimately the agents serving the two

tasks which must perform message�passing to carry out the tasking operation� If the two

communicating tasks reside on the same node� then no distributed message�passing is re�

quired� messages are simply queued in appropriate
elds of the local task map entries for

the two tasks� On the other hand� if the two communicating tasks are executing on di�erent

nodes� the node address of one task may not be immediately available to the agent serving

the other task� and vice versa� This is due to the fact that the agent serving a task initially

has available from its global map only the node addresses of local tasks� their direct masters

and their direct dependents� the node addresses of other tasks visible inside the body of a

task may not be initially available�

Messages destined for non�local tasks are sent to one of two places�

�� If there is an entry in the global map for the destination task� the message is sent to

the node location of that task�

	� If there is not an entry in the global map for the destination task� the message

is sent to the node location of the �closest� ancestor of the source task which is

not executing locally� The name of this ancestor becomes the value of the CUR�

RENT SENDERS MASTER component of the message and is the routing agent for

the
rst hop of the message�

At each node� all locally executing tasks and their dependents are represented in the global

map at the node� thus� the second case listed above is required only when a task attempts

communication with a remote task that is not one of its dependents� Therefore� it is

guaranteed in this case that there is an ancestor of the task that is not executing locally�

otherwise� the destination task would be a dependent of one of these ancestors and would

thus be represented by an entry in the global map� This ancestor will be the direct master

of the task� or the master of the master� or the master of the master of the master� etc��

this ancestor and node address may be determined locally because each intervening local

ancestor has a local map entry containing the name of its master�

Once the message has been sent� the algorithm described in the next section for receiving

and forwarding messages takes over at all subsequent nodes in the path of the message� The

Ada implementation of the message�sending algorithm is given in Appendix B���

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

����� The Message�Receiving�Routing Algorithm

Message sending is an action performed by a program task executing inside the Supervisor�

on the other hand� message receiving is an asynchronous operation that requires a single�

continually executing and separate thread of control to ensure reliable receipt and process�

ing of all messages arriving at a node� Thus� each copy of the Supervisor must have a

dedicated message�receiving process� a separate thread of control responsible for receiving

all messages sent to the copy and forwarding all messages not destined for locally executing

tasks� This process can be scheduled in the same way that program tasks are scheduled�

possibly with higher priority� Such a process serves as a �helper process� in the terminol�

ogy of Cheriton �Che�	�� and it corresponds to the COMMUNICATION meta�process of

Clemmensen�s model�

Each time the receiver process receives a message� it adds or updates the global map

entry for the MSG SOURCE using the value of MSG SOURCE NODE� These update

operations contribute to the frequent enlargement and updating of all global maps so that

expensive forwarding of messages through intermediate nodes occurs less and less frequently

during program execution�

After the receiver process updates the global map� it checks the global map to see if the

MSG DEST designates a local task� If it does� the message is placed in an appropriate
eld

or queue of the local map entry for MSG DEST� otherwise� the receiver process forwards

the message to one of two places�

�� If there is an entry for MSG DEST in the global map� the message is forwarded to

the node address given in the entry�

	� If there is not an entry for MSG DEST in the global map� the message is forwarded to

the �closest� ancestor of CURRENT SENDERS MASTER which is not executing lo�

cally� This ancestor then becomes the new value of CURRENT SENDERS MASTER

and is the routing agent for the next hop of the message�

Again� the speci
cation of the local and global map contents ensures that in the second

case above such an ancestor and node address can be found� The Ada implementation of

the receiver process is given in Appendix B�	 as an Ada task�

�� THE SUPERVISOR KERNEL ��

����� Analysis of the Kernel Algorithms

The Ada compiler is responsible for ensuring the semantic legality of all task communications

appearing in a source program� The compiler translates legal communication statements

to supervisor subprogram calls� each call must pass enough information to the Supervisor

so that the Supervisor can implement the requested communication� As will be seen in

Chapter �� other means have been developed for checking the correctness of the Supervisor�

But because the Supervisor kernel plays such an important r"ole in implementing communi�

cation between tasks at runtime� it is worth analyzing the kernel algorithms to ensure that

all possible communications are implemented�

At each point in the body of a task� communication may be attempted with any other

task visible at that point� As a consequence of the Ada scoping and visibility rules� each of

these visible tasks must
t into one of the following mutually exclusive classes�

�� A single task or a task declared by an object declaration� which is declared in some

declarative part within the body in question� or a task designated by an access value�

such that the corresponding access type is declared in some declarative part within

the body in question�

	� A single task or a task declared by an object declaration� which is declared in the

same declarative part containing the declaration of the body in question� or a task

designated by an access value� such that the corresponding access type is declared in

the same declarative part containing the body in question�

�� A single task or a task declared by an object declaration� which is declared in some

declarative region which encloses the declarative part containing the declaration of the

body in question� or a task designated by an access value� such that the corresponding

access type is declared in some declarative region which encloses the declarative part

containing the declaration of the body in question�

�� A task which is passed as a parameter to the body in question and which does not
t

one of the above classes�

Figure �� is a pictorial representation of the relationships between these classes in a hypo�

thetical dependency tree from the point of view of a single task T� Figure �� is a sample

Ada source fragment which also depicts the above visibility relationships from the point of

view of a single task T� Note that a task may communicate with any other locally executing

� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

�

�
�

�

�
�
�
�

A
A
A
A

�

A
A
A
A

�

A
A
A
A

�

�

�
�
�
�

A
A
A
A

�

A
A
A
A

�

A
A
A
A

�

�

�
�
�
�

�

A
A
A
A

�

A
A
A
A

�

T

�
�

A
A

�

�

�

�

Figure ��� Task Dependency and Visibility Relationships�

�� THE SUPERVISOR KERNEL ��

declare

task M�
task body M is

task type S�
type S REF is access S�
S	 � S�
S� � S REF�

task T is

entry E �SP � in out S��
end T�

task body S is � � � �

task body T is

S� � S�
S� � S REF �� new S� �� M� not T� is the master of S�all�

begin

�� S	 is visible here as a Class � task�
�� S�all� S� and S��all are visible here as Class � tasks�
�� M is visible here as a Class 	 task�
accept E �SP � in S� do

�� Additionally� S� is visible here as a Class task during
�� the entry call executed below�
null�

end E�
end T�

begin �� M�
S� �� new S�
declare

S
 � S�
begin

TE �S
�� �� S� is not directly visible to T�
�� but is passed as a parameter to T�

end�
end M�

begin �� outer block�
null�

end�

Figure ��� Task Visibility Relationships in a Sample Ada Fragment�

�	 CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

task� since the SEND algorithm of Section �����
rst checks the co�resident global map for

the location of the destination of each tasking message� and since Section ����	 speci
es

that the global map contains entries for all locally executing tasks�

Class � tasks are direct dependents of an activation of the body in question� As speci
ed

in Section ������ the location of each dependent is stored in the global map of the agent

serving the activation in question� Furthermore� the SEND algorithm
rst checks the co�

resident global map for the location of the destination of each tasking message� Thus� the

kernel algorithms allow a task to communicate with all visible Class � tasks�

Class 	 and Class � tasks are dependents of some �direct or indirect� respectively� mas�

ter of an activation of the body in question� As speci
ed in Section ������ the name of

the direct master of a task is available in the local map entry for the task� In addition�

Section ����	 speci
es that the location of the direct master is available in the co�resident

global map� Thus� if a task T attempts communication with any task of these two classes�

the tasking message involved can
rst be sent to the direct master M of T� If the desti�

nation task is a dependent of M � then the arguments used above for Class � apply for this

case� Otherwise� the destination task is a dependent of some indirect master of T� and the

immediately preceding arguments used for T apply inductively to M � Since the algorithms

of Section ����� and Section ����� perform exactly this routing through masters when the

location of a destination task is not immediately available� the kernel algorithms allow a

task to communicate with all visible Class 	 and Class � tasks�

Class � tasks are all objects of named task types� the declarations of the types must

be visible to an activation of the body in question� In general� a Class � task can be a

dependent of any scope in which the declaration of the corresponding task type is visible�

Thus� some Class � tasks will not be direct dependents of an activation of the body in

question or direct dependents of some master of such an activation� This fact implies that

the kernel algorithms as presented so far do not allow communication between an activation

of the body in question and an �unrelated� Class � task� A simple remedy for this situation

is that each time an object of a named task type is activated� a message is sent to the task

which declared the task type� this message allows the new task to be registered in the global

map at the node of the task which declared the type� Since this latter task is some master of

an activation of the body in question� the location of the new task would be available during

routing of messages from the body in question� Thus� using these simple enhancements to

the message�passing protocol used by the Supervisor� the kernel algorithms allow a task to

��� THE SUPERVISOR MESSAGE�PASSING PROTOCOL ��

communicate with all Class � tasks� �The details of the message�passing enhancement are

described later in Section �����

����	 Elimination of Kernel Race Conditions

Even though a correct implementation of the task maps and message�passing algorithms

should guarantee �# reliability of all distributed task communication �assuming the use of

a reliable lower�level communication system�� it is conceivable that certain race conditions

could cause the algorithms to fail� Many potential race conditions are overcome by the

requirement that map updates be implemented as critical sections� However� more serious

race conditions are handled by placing a few simple additional constraints on the Supervisor

design�

One serious race condition that could arise during parallel activation of a set of tasks

declared in the same declarative part is that one of the activated tasks attempts commu�

nication with one of the unactivated tasks� This is legal Ada semantics� and one might

suppose that the unactivated task may not be fully accounted for in the appropriate task

maps� To overcome this situation� the Supervisor is required to schedule each task at a

speci
c system node prior to the end of the elaboration of the declarative part in which

the task is declared� Since scheduling a task includes updating appropriate tasks maps as

speci
ed in Sections ����� and ����	� the location of a task will be known to all other tasks

which could communicate with it prior to its activation�

One abnormal system condition that must be considered is failure of a system node

on which program tasks are executing� To gracefully recover from such a failure� some

amount of distributed redundancy of program state information is required� Such recovery

is ignored by the Ada language and is beyond the scope of the research described in this

thesis� further research along the lines described by Knight and Urquhart �KU��� will be

necessary before full fault�tolerance may be built into a distributed Ada supervisor�

��� The Supervisor Message�Passing Protocol

The Distributed Ada Supervisor uses a special protocol for passing messages between partic�

ipating agents in order to correctly synchronize distributed execution of tasking operations

according to the Ada semantics� Weatherly �Wea��a�Wea��b� described such a protocol for

a subset of Ada tasking� His protocol also speci
es the transitions in execution status that

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

a task undergoes while message�passing is performed on its behalf� These status values are

stored on a stack� the top of the stack may be changed� or values may be pushed on and

popped o� the stack�

The protocol described by Weatherly is an adequate starting point for the protocol

required by the Distributed Ada Supervisor� however� the Weatherly protocol lacks the

following functionality that is needed for a full implementation of Ada tasking�

�� A message�passing sequence which blocks a task executing an abort statement until

all of the aborted tasks have become abnormal�

	� A message�passing sequence for scheduling a newly activated task on a remote node�

�� A message�passing sequence for evaluation of the task attributes CALLABLE and

TERMINATED�

�� A message�passing sequence for remote propagation of an Ada exception�

�� A message�passing sequence for notifying a remote master of the activation of a de�

pendent� when the activation results from execution of an allocator�

�� Message�passing sequences for distributed execution of the terminate alternative�

An additional message�passing sequence is required to complete the implementation of the

Supervisor kernel algorithms� As described previously in Section ������ this sequence enables

an object of a named task type to be registered in the global map at the node of the task

which declared the type�

This section describes enhancements to the Weatherly protocol which were designed to

take care of the above de
ciencies� the enhancements are described both textually and by

Weatherly�style diagrammatic speci
cations� Appendix C contains the Ada declaration of

the Supervisor message type� Also given in Appendix C is the declaration and description

of the task execution status values used by the enhanced protocol� As in the Weatherly

protocol� the message type is discriminated by a CLASS component indicating the pur�

pose of the message� The Weatherly message has been enhanced with a BYTE COUNT

discriminant for those variants of the type containing a variable�size byte array component�

��� THE SUPERVISOR MESSAGE�PASSING PROTOCOL ��

����� Minor Enhancements to the Weatherly Protocol

A few minor enhancements to the existing Weatherly protocol were made for purposes of

Supervisor execution e�ciency�

In the Weatherly version� in�mode parameters to the accept statement of a rendezvous

are passed to the accepting task in the CALL MSG of the rendezvous message sequence�

In the protocol for the Distributed Ada Supervisor� in�mode parameters are passed in the

CONFIRM MSG of the rendezvous sequence instead� It makes no sense to pass a poten�

tially large aggregate of parameters in a CALL MSG since the call may be subsequently

canceled� this would incur a waste of precious communication resources� Instead� the CON�

FIRM MSG� which commits the caller to the rendezvous� is better�suited to the purpose

of parameter passing� In addition to this major change� the ABORT MSG of the ren�

dezvous sequence has been renamed to ABORT CALL MSG to further distinguish it from

the ABORT TASK MSG�

To solve the minor kernel communication problem described in Section ������ a message

with CLASS value TYPED TASK MSG is sent each time an object of a named task type

is activated� including tasks activated by execution of an an allocator� The MSG SOURCE

is the task which activated the typed task� and the MSG DEST is the task which de�

clared the corresponding task type� The variant for this message has two components�

TYPED TASK NAME �the name of the new task� and TYPED TASK NODE �the node

address of the new task�� The recipient agent adds these last two pieces of information to

its global map

����� Messages for Scheduling Newly Activated Tasks

Whenever a task declares a new dependent� the agent serving the task must schedule the de�

pendent for execution on some system node� The most e�cient partitioning� scheduling and

migration strategies� such as those considered in �BF���Cor���SH���� require co operation

between supervisor copies to determine which node the task should be placed at so that

parallel execution proceeds most e�ciently� The simplest scheduling strategy� and the one

adopted for use in the Distributed Ada Supervisor� is for the agent serving the activator of

the new dependent to arbitrarily choose a node on its own� Even with this simple strat�

egy� however� the agent serving the activator must send a message to another agent if the

dependent is to be scheduled on a remote node�

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

For this purpose� the Supervisor uses a NEW TASK MSG� The message is sent during

execution of the CHILD TASK function� which informs the Supervisor of the existence of

a new dependent task� The MSG SOURCE and MSG SOURCE NODE components are

set� respectively� to the name and node location of the task that is activating the new

dependent� The MSG DEST component is set to the name of the new dependent� The

CURRENT SENDERS MASTER component is unused during this transaction� since the

message is always sent to a particular supervisor copy rather than to a particular task�

The variant for the NEW TASK MSG has seven components� The NEW TASK EN�

TRY ADDRESS component is initialized with the entry address for the code of the new

dependent� The NEW TASK FRAME PTR is initialized with the address of the activation

record for the declarative part that contains the declaration of the body of the dependent�

As was mentioned at the beginning of this chapter� the semantics of shared global variables

is unaccounted for in the design of the Distributed Ada Supervisor� However� each task

must be given some artifact which it can use to refer to its enclosing scopes� In the current

design� this artifact is simply the address of an activation record for the innermost enclosing

scope� With a design that incorporates a full implementation of global variables� this artifact

would include additional information� such as a logical node address�

The NEW TASK STACK SIZE component contains the number of bytes that are to

be allocated for the execution stack of the dependent� The NEW TASK ENTRY COUNT

component is initialized with the number of entries that are declared for the dependent�

The NEW TASK PRIORITY component is initialized with the priority of the depen�

dent� this component is currently ignored� Finally� the NEW TASK MASTER compo�

nent and NEW TASK MASTER NODE component are set respectively to the name and

node location of the master of the dependent� these will di�er from MSG SOURCE and

MSG SOURCE NODE when the dependent is activated by a task that is not its master�

Figure 	 depicts the use of the NEW TASK MSG in a scheduling transaction� The new

dependent begins its activation once its agent receives an ELABORATE MSG for the de�

pendent�

����� Messages for Remote Exception Propagation

An exception may be propagated from one task to another in two cases�either during a

rendezvous between two tasks� or when one task calls an entry of another task and the

latter is abnormal� completed or terminated� In both cases the recipient of the propagated

��� THE SUPERVISOR MESSAGE�PASSING PROTOCOL ��

Task T
at Node X

�executing CHILD TASK�

Supervisor Copy
at Node Y

Schedule new
dependent D
at node Y Z

Z
Z
Z
Z
ZZ�

NEW TASK MSG
Z
Z
Z
Z
Z
ZZ�

Create task map
entries for T and D as
per kernel algorithms

Figure 	� Message Transaction for Scheduling a Newly Activated Dependent�

exception will be executing inside the Supervisor�

A single message is used by the Supervisor for remote propagation of an exception� Its

CLASS value is EXCEPTION MSG� and its associated message variant contains the sin�

gle component EXCEPTION NAME� a variable length string bounded by the value of the

BYTE COUNT discriminant� Whenever an exception is propagated during a rendezvous�

an EXCEPTION MSG is sent to the caller with the name of the exception placed in the

EXCEPTION NAME component� Whenever the execution status of a task becomes AB�

NORMAL� COMPLETED or TERMINATED� an EXCEPTION MSG is sent to all tasks

with calls on the entry queues of the
rst task and to all subsequent callers� in this case

EXCEPTION NAME is set to TASKING ERROR� In all cases� the task which propagates

the exception is the MSG SOURCE and the recipient of the exception is the MSG DEST�

Figure 	� is a Weatherly�style diagrammatic depiction of remote exception propagation

during a rendezvous�

����� Messages for Evaluation of Task Attributes

A task T� may evaluate the attributes T� �CALLABLE and T� �TERMINATED of any task

T� visible inside the body of T�� Two new functions� CALLABLE ATTR and TERMINA�

TED ATTR� have been added to the Supervisor for runtime evaluation of these attributes�

they are described in Sections ����� and ������ respectively� Two messages are required

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

Accepting Task

�in rendezvous�
Calling Task

�executing entry call�

Propagate
TASKING ERRORZ

Z
Z
Z
ZZ�

EXCEPTION MSG
�EXCEPTION NAME � �TASKING ERROR��

Z
Z
Z
Z
ZZ�

Handle Exception

Figure 	�� Message Transaction for Remote Propagation of TASKING ERROR�

for distributed implementation of these attributes� a request and a reply� For the request

message� the MSG SOURCE component is set to T� and the MSG DEST component is set

to T� � for the reply message� the opposite settings are used�

The request message is indicated by a CLASS value of ATTR REQ MSG� Its variant has

a single BOOLEAN component named CALLABLE MSG� This component is set to TRUE

if the CALLABLE attribute is requested evaluated or to FALSE if the TERMINATED

attribute is requested�

The reply message is indicated by a CLASS value of ATTR REPLY MSG� The variant

of this message has a single BOOLEAN component called ATTR VALUE� which contains

the result of evaluating the requested attribute� Figure 		 is a Weatherly�style diagram�

matic depiction of the message transaction required for evaluation of the task attribute

CALLABLE�

����� Messages for Remote Activation of Dependents

Consider the program fragment of Figure 	� which shows a task that is activated by exe�

cution of an allocator� The task P which executes the allocator is not the master of T�all�

T�all is a direct dependent of the task that declared the corresponding access type de
ni�

tion� which in this case is M� Whenever a dependent of M is activated� the agent serving

M must be informed of this fact so that other aspects of the Ada tasking semantics �such

as ensuring satisfaction of task termination conditions� may be carried out correctly� Since

��� THE SUPERVISOR MESSAGE�PASSING PROTOCOL ��

Task P Supervisor Agent
of Task T

Evaluate
T�CALLABLE

Z
Z
Z
Z
ZZ�

ATTR REQ MSG
�CALLABLE MSG � TRUE�

Z
Z
Z
Z
ZZ� Get Status

of T�
�

�
�

���
ATTR REPLY MSG

�ATTR VALUE � result�
�

�
�

�
���

Return Result

Figure 		� Message Transaction for Evaluation of Attribute CALLABLE�

M and P are di�erent tasks in the example� it is necessary for P to send a message to M

notifying M of the activation of a dependent� M must then send an acknowledgment to P�

In the
rst message� MSG SOURCE is set to the name of the task which activated

the dependent �e�g�� task P in the above example�� while the MSG DEST is set to the

name of the master of the activated dependent �e�g�� task M in the above example�� The

CLASS value of this message is DEPENDENT MSG� and its variant has three compo�

nents� The DEPENDENT NAME component is the name of the activated dependent� the

DEPENDENT NODE component is the node location to which the activated dependent

was assigned� The MASTER SCOPE component indicates the nesting level in the master

task which contains the corresponding access type de
nition�

The reply message has a CLASS value of DEPENDENT REPLY MSG and no vari�

ant� the MSG SOURCE and MSG DEST are set opposite to the settings in the DEPEN�

DENT MSG� Figure 	� is a Weatherly�style diagrammatic depiction of the message trans�

action described above� using the tasks of Figure 	��

� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

declare

task M�
task body M is

task type T TYPE�
type T REF is access T TYPE�

task body T TYPE is � � � �

task P�
task body P is

T � T REF
begin

T �� new T TYPE�
�� T�all is a direct dependent of M� not P�
� � �

end P�
begin

� � �
end M�

begin

� � �
end�

Figure 	�� Remote Activation of Dependent Tasks�

����	 Messages for the Terminate Alternative

The major defect of the Weatherly protocol is its lack of support for the terminate alterna�

tive� Consider the execution of a selective wait with a terminate alternative by some task

T� Assume that either T has no dependents� or else that the dependents of T are either

terminated or are themselves waiting at a terminate alternative� It is a consequence of

the termination semantics de
ned in Section ��� of the Ada Language Reference Manual

�LRM� that T must communicate with its master M in order to determine whether or not

it is able to execute its terminate alternative� Three new messages �AT TERM MSG�

TERM REQ MSG and TERM CONFIRM MSG� and two new execution status values

�WAIT FOR ENTRY TERMINATE and WAIT FOR TERMINATE CONFIRMATION�

have been added to the Weatherly protocol to implement the terminate alternative� Some

of the terminology used for this implementation is taken from Jha and Kafura �JK���Kaf����

��� THE SUPERVISOR MESSAGE�PASSING PROTOCOL ��

Task P Task M

Allocate
T�all

Z
Z
Z
Z
ZZ�

DEPENDENT MSG
�DEPENDENT NAME � ID for T�all�

Z
Z
Z
Z
ZZ�Store Dependent

Name in Local
Entry for M�

�
�

�
�

���
DEPENDENT REPLY MSG

�
�

�
�

�
���

Update Global
Map With
Entry for M

Figure 	�� Message Transaction for Remote Activation of a Dependent�

The terminate alternative is complicated because of its nondeterministic nature� since it is

possible for some task T waiting at a terminate alternative to be called by a task located

�exterior� to the task dependency tree that is being terminated�

The functions of the new messages are as follows�

�� AT TERM MSG� This message informs T�s master M that T is waiting at an open

terminate alternative� The status of T changes to WAIT FOR ENTRY TERMI�

NATE after the message is sent�

	� TERM REQ MSG� This message requests an immediate indication from M as to

whether or not all conditions have been satis
ed for T to execute its terminate

alternative� The status of T changes to WAIT FOR TERMINATE CONFIRMA�

TION after the message is sent�

�� TERM CONFIRM MSG� The reply to a TERM REQ MSG or AT TERM MSG�

The BOOLEAN component CONFIRMED of the variant for this message indicates

�	 CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

whether or not permission to terminate has been granted by M�

The TERM CONFIRM MSG is sent in reply to an AT TERM MSG only when a termina�

tion decision is made by M based on some eventual change in the status of the dependency

tree of which it is the root� On the other hand� the TERM CONFIRM MSG is immediately

sent in reply to a TERM REQ MSG� because the TERM REQ MSG forces M to make a

termination decision based on the current status of its dependency tree�

To enable a task to correctly determine when termination conditions have been satis
ed�

the execution status of the dependents of each such M is recorded in the DEPENDENTS

component of the local map entry for M �see Figure ���� The following execution status

values are de
ned for each dependent status record�

�� AWAITING ACTIVATION� The dependent has not yet been activated� or else it is

executing its declarative part�

	� ACTIVATED� The dependent is executing its body�

�� AWAITING TERMINATION� The dependent is waiting at a terminate alternative�

indicated by M �s receipt of an AT TERM MSG from the dependent�

�� AWAITING TERMINATION CONFIRMATION� M has received from the depen�

dent a TERM REQ MSG� indicating that the dependent received an entry call after

reaching a terminate alternative� At this point only M has the power to allow or

disallow the dependent to accept the entry call� since M may have already decided to

carry out termination of its dependency tree�

�� PENDING TERMINATION� The dependent has been told to execute its terminate

alternative� equivalently� M has sent the dependent a TERM CONFIRM MSG with

the CONFIRMED component set to TRUE�

�� TERMINATED� The dependent has terminated�

The need for both an AWAITING TERMINATION dependent status value and an AWAIT�

ING TERMINATION CONFIRMATION status value is related to the issuance of a ter�

mination decision by M with a TERM CONFIRM MSG� If the decision is to con
rm

termination to dependents� both AWAITING TERMINATION and AWAITING TERMI�

NATION CONFIRMATION dependents must be noti
ed of this decision� On the other

��� THE SUPERVISOR MESSAGE�PASSING PROTOCOL ��

Task T Task M
�T�s Master�

Reach Executable
Terminate Alternative

Z
Z
Z
Z
Z
ZZ�

AT TERM MSG
Z
Z
Z
Z
Z
ZZ�

Change Status of T
���

Termination Conditions
Become Satis
ed

�
�

�
�

���
TERM CONFIRM MSG
�CONFIRMED � TRUE�

�
�

�
�

���Execute Terminate
Alternative

Figure 	�� Message Transaction for Execution of a Terminate Alternative�

hand� if the decision is to deny termination to dependents� only AWAITING TERMI�

NATION CONFIRMATION dependents must be noti
ed of this decision� since AWAIT�

ING TERMINATION dependents are still passively suspended waiting at a terminate

alternative�

In every case� the MSG SOURCE and MSG DEST component settings correspond in

an obvious way to the two communicants of each message transaction� The complete al�

gorithm for distributed execution of the terminate alternative has been given in detail in

Appendix D� Figures 	�� 	� and 	� are Weatherly�style diagrammatic depictions of the

possible message transactions� each
gure depicts the message transactions between a task

T waiting at a terminate alternative and T�s master M� Figure 	� depicts the case of a

terminate alternative that is executed after termination conditions become satis
ed and

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

Task T Task M
�T�s Master�

Reach Executable
Terminate Alternative

Z
Z
Z
Z
Z
ZZ�

AT TERM MSG
Z
Z
Z
Z
Z
ZZ�

Change Status of T
���

Termination Conditions
Become Satis
ed

�
�

�
�

���
TERM CONFIRM MSG
�CONFIRMED � TRUE�

�
�

�
�

���Execute Terminate
Alternative

���

Receive
Entry CallZ

Z
Z
Z
Z
ZZ�

TERM REQ MSG
Z
Z
Z
Z
Z
ZZ�

�ignore�

Figure 	�� Message Transaction for Execution of a Terminate Alternative After Arrival of
an Entry Call�

before any entry calls arrive at T� Figure 	� depicts the case of a terminate alternative

whose execution results from a forced con
rmation after arrival of an entry call� Finally�

Figure 	� depicts the case of a terminate alternative that is abandoned in favor of accept�

ing an entry call� Note that in the last two of these
gures it is assumed that M is able

to decide on its own whether or to con
rm a request to execute a terminate alternative�

however� it may be necessary in the general case for M to propagate the TERM REQ MSG

to its master before making a termination decision�

��� THE SUPERVISOR MESSAGE�PASSING PROTOCOL ��

Task T Task M
�T�s Master�

Reach Executable
Terminate Alternative

Z
Z
Z
Z
Z
ZZ�

AT TERM MSG
Z
Z
Z
Z
Z
ZZ� Change Status of T

���

���

Receive
Entry CallZ

Z
Z
Z
Z
ZZ�

TERM REQ MSG
Z
Z
Z
Z
Z
ZZ� �termination conditions

not satis
ed��
�

�
�

���
TERM CONFIRM MSG
�CONFIRMED � FALSE�

�
�

�
�

���
Accept Entry Call

Figure 	�� Message Transaction for Abandonment of a Terminate Alternative�

����
 Messages for the Abort Statement

In the Weatherly protocol an ABORT TASK MSG is sent to tasks that are aborted by the

execution of an abort statement� However� the semantics of Section ��� of the Ada LRM

requires the tasks named in the abort statement to become abnormal before completion

of the abort statement� Thus� to ensure correct implementation of these semantics� a task

executing an abort statement must await a reply from all aborted tasks before continuing

execution� Requiring the task to await these replies prevents race conditions which can lead

to erroneous execution� for example� this improved protocol ensures that in the following

sequence of statements

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

abort A�

AE� �� Call to an aborted task�

TASKING ERROR will always be propagated during the entry call�

The reply message has a CLASS value of ABORT REPLY MSG� Each time a task T

executes an abort statement� the following algorithm is executed by the Supervisor�

�� T�s agent sends an ABORT TASK MSG to each task A named in the abort state�

ment� The MSG SOURCE is T and the MSG DEST is A�

	� For each aborted task A the agent serving A checks to see if A has dependents� if so�

A�s agent sends an ABORT TASK MSG to each dependent D�MSG SOURCE is A

and MSG DEST is D�and an ABORT REPLY MSG is awaited from each such D�

This step is performed recursively for each level of aborted dependents�

�� For each aborted task A that has received an ABORT REPLY MSG from all of its

dependents� A�s agent sends an ABORT REPLY MSG to task T� with MSG SOURCE

set to A and MSG DEST set to T�

�� An ABORT REPLY MSG must be received by T�s agent from each aborted task A

before T is allowed to continue execution�

Thus� the agents of all aborted tasks are able to correctly register the abnormality of these

tasks before task T is allowed to continue execution� The ABORTED TASKS component

of the local map entry for T �see Figure ��� is used to keep track of the names of all tasks

aborted by T� Each time a reply is received from one of these tasks� its name is deleted

from ABORTED TASKS� once all names have been deleted from ABORTED TASKS� the

execution of the abort statement is considered complete� In the case when T aborts itself�

the above algorithm is applied to the dependents of T as well as to all other aborted tasks�

The execution status changes of the aborted tasks also require a more rigorous algorithm

than that described by Weatherly� which simply makes all aborted tasks ABNORMAL� The

new execution status of each aborted task A is determined directly according to the Ada

semantics as follows�

�� If the execution status ofA is WAIT FOR ENTRY� WAIT FOR TERMINATE CON�

FIRMATION� WAIT FOR ENTRY TERMINATE� DELAYED or WAIT FOR AC�

CEPT� then the status of A is changed to COMPLETED�

��� THE SUPERVISOR INTERFACE ��

	� If the execution status of A is UNBORN or RUN DCL then

�a� If A is executing in its outermost scope� its status is changed to TERMINATED�

�b� If A is not executing in its outermost scope� its status is changed to COM�

PLETED�

�� The status of a task aborting itself is changed to COMPLETED at the end of the

abort statement�

�� In all other cases� the status of A is changed to ABNORMAL�

Figure 	� is a Weatherly�style diagrammatic depiction of the message transactions described

in this section�

��� The Supervisor Interface

The interface to the Distributed Ada Supervisor is the visible part of the TASKING SU�

PERVISOR package� Each subprogram in the package is responsible for executing a dif�

ferent tasking operation� An Ada compiler translates the source�level tasking constructs of

application programs into calls to appropriate subprograms of this package�

A crucial component of the interface design is its documentation� since the compiler

writer must understand the speci
cation of the interface in order to implement correct

compilation of source level tasking statements� Thus� a formal speci
cation of the package

interface was written in Anna� The Anna speci
cations are useful not only as formal docu�

mentation� but they can also be used to automatically check the correct use of the interface

during execution of application programs� In this form� the formal package speci
cation

can serve as a standardized interface to the tasking supervisor of an Ada runtime system�

Figure 	� is an outline of the Supervisor interface� The Anna speci
cations describe

constraints on the parameters of each Supervisor subprogram� the TSL speci
cations that

are described in Chapter � serve as as the axiomatic annotation of the interface� The
rst

section below describes the Supervisor data types in detail� The second section describes

the �vocabulary� of the Anna speci
cations� the vocabulary includes the two virtual func�

tions de
ned in this section� The remaining sections present each Supervisor subprogram�

informally in text and formally in Anna� Type names in the subprogram declarations are

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

Aborting Task Aborted Tasks Dependents of
Aborted Tasks

Execute Abort
Statement HHHHHj

ABORT TASK MSG
HHHj

Make Aborted Tasks Abnormal� Completed or Terminated
HHHj

ABORT TASK MSG
HHHHHj

Make Aborted
Tasks Abnormal�
Completed or
Terminated

etc�

Acknowledge
					

ABORT REPLY MSG
			

Acknowledge
			

ABORT REPLY MSG
					

Continue

Figure 	�� Message Transaction for Execution of the Abort Statement�

��� THE SUPERVISOR INTERFACE ��

package TASKING SUPERVISOR is

�� Described in Section �����
Declarations of Supervisor Data Types�

��j Speci�cation of Supervisor Data Types�

�� Described in Section �����
��� Declarations of Virtual Functions�CURRENT SCOPE� ENTRY COUNT�

�� Described in Sections ���	 through ������
Declarations of Supervisor Subprograms�ENTER NEW SCOPE�

CALLABLE ATTR� TERMINATED ATTR� COUNT ATTR�
ENTRY CALL� ACCEPT BEGIN� ACCEPT END� CHILD TASK�
ACTIVATE TASK� ELABORATE TASK� TERMINATE TASK�
ABORT TASKS� DELAY TASK�

��j Speci�cation of Supervisor Subprograms�

end TASKING SUPERVISOR�

Figure 	�� Outline of the Supervisor Interface�

in most cases self�explanatory and are described in the text when necessary� The subpro�

gram declarations are based on those of Weatherly �Wea��b�� with major enhancements and

additions as described�

��	�� The Supervisor Data Types

The Supervisor uses the set of data types shown in Figure �� Most of these types are

adaptations and enhancements of the types described by Weatherly� Although some of the

types are actually declared in the MESSAGES and NET SERVICES packages� they are

listed here for clarity�

NODE ID TYPE provides a logical numbering of the CPUs which are available for pro�

gram execution� Each Supervisor subprogram has a parameter of type NODE ID TYPE

called MY NODE� which is set to the logical CPU address of the task calling the subpro�

gram� This parameter is used to make the means of accessing the Supervisor data structures

more e�cient and portable�

� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

�� Type for logical CPU addresses�
type NODE ID TYPE is new NATURAL range � � � Available CPUs � 	�
�� Types and constants for task and entry identi
ers�
subtype TASK NAME is NATURAL�
subtype ENTRY NAME is NATURAL�

MAIN ID � constant TASK NAME �� TASK NAME�FIRST�
MAIN NODE � NODE ID TYPE �� NODE ID TYPE�FIRST�

�� Type for numbering nested declarative regions�
subtype SCOPE NUMBER TYPE is NATURAL�

�� Supervisor array types�
type GUARD ARRAY is array �POSITIVE range ��� of BOOLEAN�

��j where GA � GUARD ARRAY �� GA�FIRST � 	�

type INDEX ARRAY is array �POSITIVE range ��� of INTEGER�
��j where IA � INDEX ARRAY �� IA�FIRST � 	�

type TASK NAME ARRAY is array �POSITIVE range ��� of TASK NAME�
��j where TA � TASK NAME ARRAY ��
�� Component values of a TASK NAME ARRAY are unique�
��j TA�FIRST � 	 and

��j �for all I	� I� � TA�RANGE �� �I	 �� I� �� TA �I	� �� TA �I�����

�� Array type for in�mode parameter value lists�
type PARAM LIST is array of bytes �

�� Access type for out�mode parameter value lists�
type PARAM LIST REF is access PARAM LIST�

Figure �� Supervisor Data Types�

��� THE SUPERVISOR INTERFACE ��

The SCOPE NUMBER TYPE is used for numbering nested declarative regions of a

task� its use is described in the next section� The TASK NAME and ENTRY NAME types

are used for assigning unique integer identi
ers to tasks and to the entries within a task�

respectively� By convention� the task identi
er �the value of MAIN ID in Figure �� is

reserved for the thread of control which activates the main program� this thread of control

is the �environment task� referred to in the Ada LRM�

� � �Each main program acts as if called by some environment task� the means by

which this execution is initiated are not prescribed by the language de
nition�

� � � �Ada��� x ����
 ��

It is convenient to think of this task as the Ada package STANDARD� Clemmensen refers

to it as the SYSTEM meta�process� In numbering the entries of a task� entry families are

��attened out� to obtain a simple linear numbering scheme�

A GUARD ARRAY holds the set of guard values for a selective wait� which is executed

by the procedure ACCEPT BEGIN �see Section ������� The INDEX ARRAY type� also

used for selective waits� assigns an integer value to the additional sequence of statements

associated with each selective wait alternative� The ACCEPT BEGIN procedure returns

the index value associated with the alternative that was selected�

A TASK NAME ARRAY holds the identi
ers of tasks named in an abort statement�

Parameter values for rendezvous are passed to subprograms and in messages as variable�

length arrays of bytes called PARAM LISTs�

��	�� The Vocabulary of the Anna Speci�cations

Figure �� presents the virtual functions that are used to specify the Supervisor inter�

face� These virtual functions are part of the vocabulary that is used to formally de�

scribe the Supervisor interface in Anna� The vocabulary is further comprised of three

�actual� subprograms�the attribute evaluation functions CALLABLE ATTR and TER�

MINATED ATTR of the TASKING SUPERVISOR package �described below�� and the

CLOCK function of the prede
ned Ada package CALENDAR� This vocabulary� along with

the prede
ned Ada expression operators� is su�cient for expressing all of the Supervisor

interface constraints written in Anna�

The virtual function CURRENT SCOPE provides the current scope level value of the

task named in the parameter� the value of this function changes after execution of scope

�	 CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

�� Function returning the current scope level of TASK NAME�
��� function CURRENT SCOPE �T � in TASK NAME� return SCOPE NUMBER TYPE�

�� Function returning the number of entries declared for TASK NAME�
��� function ENTRY COUNT �T � in TASK NAME� return NATURAL�

Figure ��� The Supervisor Virtual Functions�

function ENTER NEW SCOPE �MY NAME � in TASK NAME�
MY NODE � in NODE ID TYPE�
return SCOPE NUMBER TYPE�

��j where
�� The current scope value of MY NAME is incremented�
��j return in CURRENT SCOPE �MY NAME� � 	�
��j out �CURRENT SCOPE �MY NAME� �
��j in CURRENT SCOPE �MY NAME� � 	��

Figure �	� The Supervisor ENTER NEW SCOPE Procedure�

control subprograms �see the next section�� The virtual function ENTRY COUNT returns

the total number of entries declared by the input task� the Supervisor
rst receives this value

during a call to the Supervisor function CHILD TASK� described below in Section �������

��	�� The Scope Control Subprograms

One of the de
ciencies of Weatherly�s work is its neglect of the semantics of nested scope

execution� Correct implementation of the task dependency and termination semantics of

Ada requires that the Supervisor keep track of when a task enters and leaves nested declar�

ative regions� These actions are communicated to the Supervisor respectively by the EN�

TER NEW SCOPE and TERMINATE TASK procedures� The
rst of these is declared in

Figure �	� The latter procedure is used both to exit inner scopes and terminate the outer

scope of each task� it is described more fully in Section ������� ENTER NEW SCOPE is

called by a task immediately upon entering a nested declarative region� it returns the new

nesting level value of the calling task� whose name is passed as the parameter� This value is

��� THE SUPERVISOR INTERFACE ��

function CALLABLE ATTR �MY NAME � in TASK NAME�
C NAME � in TASK NAME�
MY NODE � in out NODE ID TYPE�

return BOOLEAN�
��j where
�� MY NAME�s scope is unchanged�
��j CURRENT SCOPE �MY NAME� � in CURRENT SCOPE �MY NAME��

Figure ��� The Supervisor CALLABLE ATTR Function�

then used when dependents are declared to the Supervisor during a call to CHILD TASK

�see Section �������� Scope number zero is associated with the outermost scope of each task�

each level of nesting adds one to the scope number�

��	�� Synchronization Points

A Boolean�valued out�mode ABORTED parameter is provided for those subprograms which

implement synchronization points named in the Ada LRM�

The completion of any other abnormal task need not happen before completion

of the abort statement� It must happen no later than when the abnormal task

reaches a synchronization point that is one of the following� the end of its

activation� a point where it causes the activation of another task� an entry

call� the start or the end of an accept statement� a select statement� a delay

statement� an exception handler� or an abort statement� If a task that calls an

entry becomes abnormal while in a rendezvous� its termination does not take

place before the completion of the rendezvous �see ������ �Ada��� x ����
 ��

Upon termination of such a subprogram� ABORTED will be TRUE if the task MY NAME

is abnormal� The compiled application program then uses this value to force completion of

the abnormal task�

��	�� The CALLABLE ATTR Function

A task calls the CALLABLE ATTR function� shown in Figure ��� to evaluate the CALL�

ABLE attribute of a task� For task T executing C �CALLABLE� MY NAME is set to the

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

function TERMINATED ATTR �MY NAME � in TASK NAME�
T NAME � in TASK NAME�
MY NODE � in out NODE ID TYPE�

return BOOLEAN�
��j where
�� MY NAME�s scope is unchanged�
��j CURRENT SCOPE �MY NAME� � in CURRENT SCOPE �MY NAME��
�� If MY NAME evaluates TERMINATED on itself� then it must not
�� be terminated�
��j return B	 � BOOLEAN �� MY NAME � T NAME �� not B	�

Figure ��� The Supervisor TERMINATED ATTR Function�

identi
er for T� and C NAME is set to the identi
er for C� the function returns the result

of the evaluation� The CALLABLE ATTR function initiates the the attribute message

sequence described in Section ������

��	�	 The TERMINATED ATTR Function

A task calls the TERMINATED ATTR function� shown in Figure ��� to evaluate the TER�

MINATED attribute of a task� except for the di�erence in attribute that is evaluated� it

behaves in exactly the same way as CALLABLE ATTR�

��	�
 The COUNT ATTR Function

A task calls the COUNT ATTR function� shown in Figure ��� to evaluate the COUNT

attribute of one of its entries� The name of the calling task is passed in MY NAME and the

name of the entry is passed in MY ENTRY� the function returns the result of the evaluation�

��	�� The ENTRY CALL Procedure

Simple entry calls� conditional entry calls and timed entry calls are compiled as calls to the

ENTRY CALL procedure whose declaration is shown in Figure ��� The TIME OUT param�

eter is used to di�erentiate between the three kinds of call� For a simple call� TIME OUT is

set to DURATION�LAST �the largest positive value of the prede
ned type DURATION��

which the Supervisor uses by convention as an in
nite time value� For a conditional call�

��� THE SUPERVISOR INTERFACE ��

function COUNT ATTR �MY NAME � in TASK NAME�
MY ENTRY � in ENTRY NAME�
MY NODE � in out NODE ID TYPE�

return BOOLEAN�
��j where
�� MY NAME�s scope is unchanged�
��j CURRENT SCOPE �MY NAME� � in CURRENT SCOPE �MY NAME��
�� MY ENTRY must be in the range of entries declared by MY NAME�
��j 	 �� MY ENTRY �� ENTRY COUNT �MY NAME��

Figure ��� The Supervisor COUNT ATTR Function�

TIME OUT is set to zero� For a timed call� TIME OUT is set to the value speci
ed in the

delay statement associated with the call�

MY NAME is set to the name of the calling task� CALLEE T NAME is set to the name

of the called task� and CALLEE E NAME is set to the name of the entry being called� In�

mode parameters to the entry call are passed in IN PARAMS� while out�mode parameters

are returned in OUT PARAMS� For conditional and timed entry calls� ACCEPTED indi�

cates whether or not a rendezvous actually took place� for a simple call� ACCEPTED must

be TRUE upon normal termination of the procedure�

Since an entry call and rendezvous are named in Section ��� of the Ada LRM as

synchronization points at which an abnormal task must become completed� the Supervisor

communicates the fact of abnormality to an abnormal caller through the ABNORMAL

parameter so that the caller may complete its execution after ENTRY CALL terminates�

ENTRY CALL initiates the rendezvous message sequence of the Weatherly protocol and

returns when either the call has been accepted� TASKING ERROR has been propagated

to the caller� or the speci
ed TIME OUT has elapsed� Characteristics of ENTRY CALL

which are a consequence of the semantics of Ada are formally speci
ed in Anna in Figure ���

��	�� The ACCEPT BEGIN Procedure

Selective waits and simple accept statements are compiled into either one or two procedure

calls� The
rst procedure is ACCEPT BEGIN� whose declaration is shown in Figure ���

The second procedure� which is called if an accept alternative is selected� is ACCEPT END�

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

procedure ENTRY CALL �MY NAME � in TASK NAME�
CALLEE T NAME � in TASK NAME�
CALLEE E NAME � in ENTRY NAME�
IN PARAMS � in PARAM LIST�
TIME OUT � in DURATION�
OUT PARAMS � out PARAM LIST REF�
ACCEPTED � out BOOLEAN�
ABORTED � out BOOLEAN�
MY NODE � in out NODE ID TYPE��

��j where
�� MY NAME�s scope is unchanged�
��j CURRENT SCOPE �MY NAME� � in CURRENT SCOPE �MY NAME��
�� A task cannot rendezvous with itself�
��j out �ACCEPTED �� MY NAME �� CALLEE T NAME��
�� For a simple entry call by a caller that is not abnormal� ENTRY CALL
�� will not terminate until the call is accepted�
��j out �TIME OUT � DURATION�LAST and not ABORTED ��
��j ACCEPTED��
�� The called entry must have been declared by CALLEE T NAME�
��j 	 �� CALLEE E NAME �� ENTRY COUNT �CALLEE T NAME��
�� An unaccepted timed entry call by a caller that is not abnormal
�� lasts at least as long as TIME OUT�
��j out �not ABORTED and not ACCEPTED ��
��j CALENDARCLOCK � in CALENDARCLOCK �� TIME OUT��
�� An aborted task is no longer CALLABLE� i�e�� any evaluation of the CALLABLE
�� attribute on MY NAME should return FALSE if ABORTED is TRUE�
��j out �ABORTED ��
��j �for all T	 � TASK NAME� N	 � NODE ID TYPE ��
��j not CALLABLE ATTR �T	� MY NAME� N	����
�� Execution of an entry call can cause TASKING ERROR to be
�� propagated to the caller�
��j raise TASKING ERROR�

Figure ��� The Supervisor ENTRY CALL Procedure�

��� THE SUPERVISOR INTERFACE ��

procedure ACCEPT BEGIN �MY NAME � in TASK NAME�
GUARDS � in GUARD ARRAY�
INDICES � in INDEX ARRAY�
TIME OUT � in DURATION�
TERM ALT � in BOOLEAN�
IN PARAMS � out PARAM LIST REF�
INDEX � out NATURAL�
ABORTED � out BOOLEAN�
MY NODE � in out NODE ID TYPE��

��j where
�� MY NAME�s scope is unchanged�
��j CURRENT SCOPE �MY NAME� � in CURRENT SCOPE �MY NAME��
�� GUARDS and INDICES have one component per entry of MY NAME
�� plus an extra one�
��j GUARDS�LAST � INDICES�LAST � ENTRY COUNT �MY NAME� � 	�
�� Execution of the delay alternative of a selective wait must occur
�� after TIME OUT has elapsed�
��j out �not ABORTED and not TERM ALT and

��j in TIME OUT � DURATION�LAST and

��j GUARDS �GUARDS�LAST� and
��j INDEX � INDICES �INDICES�LAST� ��
��j CALENDARCLOCK � in CALENDARCLOCK �� TIME OUT��
�� Execution of a selective wait with all alternatives closed results in the
�� propagation of PROGRAM ERROR to the accepting task�
��j �for all I	 � GUARDS�RANGE �� not GUARDS �I	�� ��
��j raise PROGRAM ERROR�
�� The value returned in INDEX must be a component of INDICES�
��j out �not ABORTED ��
��j exist I	 � INDICES�RANGE �� INDEX � INDICES �I	���
�� An aborted task is no longer CALLABLE�
��j out �ABORTED ��
��j �for all T	 � TASK NAME� N	 � NODE ID TYPE ��
��j not CALLABLE ATTR �T	� MY NAME� N	����

Figure ��� The Supervisor ACCEPT BEGIN Procedure�

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

described in the next section�

MY NAME is set to the name of the task executing the simple accept or selective wait�

The possible forms of accept statement or selective wait are di�erentiated by the values

of the parameters TERM ALT� TIME OUT and GUARDS� GUARDS and INDICES are

arrays of N � � components�the
rst N components for the N entries of MY NAME�

and the N � �th component for an else part� delay alternative or terminate alterna�

tive� TERM ALT is set to TRUE only when executing a selective wait with a terminate

alternative�

A simple accept statement for entry number K will have GUARDS �K� set to TRUE

and all other GUARDS set to FALSE� If an entry is named as an accept alternative in a

selective wait� the GUARDS component for the entry is set to the value of the guard on

the alternative� or to TRUE if the alternative is unguarded� If an entry is not named in a

selective wait� its GUARDS component is set to FALSE� If an entry is named in multiple

accept alternatives of a selective wait� a single open alternative for the entry �if one exists�

is chosen at runtime in an unspeci
ed manner�

For a selective wait with an else part� GUARDS �N��� is set to TRUE and TIME OUT

is set to zero� For a selective wait with a terminate alternative� TERM ALT is set to

TRUE� TIME OUT is set to DURATION�LAST ��in
nity�� and GUARDS �N � �� is set

to the value of the guard on the terminate alternative �or TRUE if there is no guard��

For a selective wait with one or more delay alternatives� a single open alternative with

the smallest delay value �if one exists� is chosen at runtime in an unspeci
ed manner�

TIME OUT is set to the chosen delay value� For a selective wait that contains only accept

alternatives� GUARDS �N � �� is set to FALSE�

The function of INDICES was explained in Section ������ the component of INDICES

corresponding to the chosen alternative is returned in INDEX� The values of in�mode

parameters to a selected accept are available in IN PARAMS upon termination of the

procedure� Since an accept statement and selective wait are both synchronization points

for completion of an abnormal task� an ABNORMAL parameter is provided�

ACCEPT BEGIN performs the beginning of the rendezvous message sequence of the

Weatherly protocol� Characteristics of ACCEPT BEGIN which are a consequence of the

semantics of Ada are formally speci
ed in Anna in Figure ���

��� THE SUPERVISOR INTERFACE ��

procedure ACCEPT END �MY NAME � in TASK NAME�
OUT PARAMS � in PARAM LIST LIST�
ABORTED � out BOOLEAN�
MY NODE � in out NODE ID TYPE��

��j where
�� MY NAME�s scope is unchanged�
��j CURRENT SCOPE �MY NAME� � in CURRENT SCOPE �MY NAME��
�� An aborted task is no longer CALLABLE�
��j out �ABORTED ��
��j �for all T	 � TASK NAME� N	 � NODE ID TYPE ��
��j not CALLABLE ATTR �T	� MY NAME� N	����

Figure ��� The Supervisor ACCEPT END Procedure�

��	�� The ACCEPT END Procedure

The ACCEPT END procedure� shown in Figure ��� is called at the end of the sequence of

statements associated with every accept statement� MY NAME is set to the name of the

task executing the accept statement� The values of out�mode parameters computed during

the rendezvous are passed in OUT PARAMS� Again� an ABORTED parameter is provided

since an accept statement is a synchronization point for completion of an abnormal task�

ACCEPT END completes the rendezvous message sequence of the Weatherly protocol�

��	��� The CHILD TASK Function

Declarations of tasks are compiled into calls to the CHILD TASK function� It is called each

place a single task is declared� each place a task is declared by an object declaration� and

each place a task is activated by execution of an allocator� The declaration of this function is

shown in Figure ��� Since the task which activates a new dependent may not be the master

of the dependent �see Section ������� the names of both the activator �MY NAME� and the

master �MASTER NAME� are passed to CHILD TASK� CHILD TASK generates a task

identi
er for the dependent and passes the generated value back to the caller �MY NAME�

as the return value� The number of entries declared for the dependent is passed as EN�

TRY COUNT� MASTER SCOPE indicates the nested scope level of the master on which

the dependent directly depends�

� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

function CHILD TASK �MY NAME � in TASK NAME�
MASTER NAME � in TASK NAME�
ENTRY COUNT � in ENTRY NAME�
MASTER SCOPE � in SCOPE NUMBER TYPE�
DEP ENTRY ADDR � in SYSTEMADDRESS�
GLOBAL FRAME PTR � in SYSTEMADDRESS�
MY NODE � in NODE ID TYPE�
DEP STACK SIZE � in POSITIVE �� 	�����
IMMEDIATE � in BOOLEAN �� FALSE�
PRE BODY � in BOOLEAN �� TRUE�
DEP PRIORITY � in SYSTEMPRIORITY ��

SYSTEMPRIORITY�FIRST�
return TASK NAME�

��j where
�� MY NAME�s scope is unchanged�
��j CURRENT SCOPE �MY NAME� � in CURRENT SCOPE �MY NAME��
�� De
nition of virtual function ENTRY COUNT�
��j return N � TASK NAME ��
��j ENTRY COUNT �N� � ENTRY COUNT and

�� The initial scope level of the new dependent is ��
��j CURRENT SCOPE �N� � � and

�� A task cannot activate itself�
��j MY NAME �� N and MASTER �� N�
�� Dynamic activation of a task prior to elaboration of its body causes
�� PROGRAM ERROR to be raised�
��j PRE BODY �� IMMEDIATE�
��j IMMEDIATE and PRE BODY �� raise PROGRAM ERROR�

Figure ��� The Supervisor CHILD TASK Function�

��� THE SUPERVISOR INTERFACE ��

Parameters are also passed that are used by CHILD TASK to start up the new task as

a separate thread of control� The execution entry point of the new dependent is passed in

DEP ENTRY ADDR� GLOBAL FRAME PTR is the address of the activation record for

the declarative part which contains the declaration of the body of the new dependent� The

number of bytes to be allocated for the execution stack of the new dependent is passed in

DEP STACK SIZE� The priority of the task is passed in DEP PRIORITY� the Supervisor

currently ignores this information� If the task is a single task or a task declared by an object

declaration� then the IMMEDIATE parameter is set to FALSE� Otherwise� the IMMEDI�

ATE parameter is set to TRUE� indicating that the task is to begin activation immediately�

in this case CHILD TASK subsumes the functionality of the ACTIVATE TASK procedure

described below� In addition� the PRE BODY parameter indicates whether or not the task

is being activated before its body has been elaborated� this can occur only in the situation

when a task is activated through execution of an allocator within the same declarative part

that contains the declaration of its body�

CHILD TASK updates the task maps as described in Section ��� and assigns the new

dependent to a system node� sending a NEW TASK MSG to a remote supervisor copy

if necessary �see Section ����	�� The task activation semantics of Ada are enforced by the

ACTIVATE TASK procedure and ELABORATE TASK function� described in the next two

sections� Characteristics of CHILD TASK which are a consequence of the semantics of Ada

are formally speci
ed in Anna in Figure ���

An overloading of CHILD TASK that returns a TASK NAME ARRAY is also supplied�

this form of CHILD TASK is used to activate an array of tasks� The number of new tasks

to be activated is given by an extra in�mode parameter called DEPENDENT COUNT�

��	��� The ACTIVATE TASK Procedure

The ACTIVATE TASK procedure is executed at the end of every declarative part �i�e� as

the
rst action following the reserved word begin�� Its declaration is shown in Figure ��

Its purpose is to enforce the task activation semantics of Ada� which requires that all de�

pendents of a scope
nish their activation before execution of the body of the scope may

proceed� The procedure initiates the dependent activation message sequence of the Weath�

erly protocol� the ELABORATE TASK function described below carries out the remaining

communication of this sequence� MY NAME is the identi
er of the task which is activating

new dependents�

�	 CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

procedure ACTIVATE TASK �MY NAME � in TASK NAME�
ABORTED � out BOOLEAN�
MY NODE � in NODE ID TYPE��

��j where
�� MY NAME�s scope is unchanged�
��j CURRENT SCOPE �MY NAME� � in CURRENT SCOPE �MY NAME��
�� An aborted task is no longer CALLABLE�
��j out �ABORTED ��
��j �for all T	 � TASK NAME� N	 � NODE ID TYPE ��
��j not CALLABLE ATTR �T	� MY NAME� N	����
�� Failed activation of a dependent causes propagation of TASKING ERROR�
��j raise TASKING ERROR�

Figure �� The Supervisor ACTIVATE TASK Procedure�

function ELABORATE TASK �MY NAME � in TASK NAME�
MY NODE � in NODE ID TYPE�
return NODE ID TYPE�

��j where
�� MY NAME is executing its outermost scope �scope ���
��j CURRENT SCOPE �MY NAME� � ��
��j return MY NODE�

Figure ��� The Supervisor ELABORATE TASK Function�

��	��� The ELABORATE TASK Function

The ELABORATE TASK function is executed at the beginning of the outermost declar�

ative part of each task� the function returns the value of the MY NODE parameter� The

declaration of this function is shown in Figure ��� Its purpose is to block execution of

the calling task� MY NAME� until its master reaches the appropriate point for its activa�

tion� ELABORATE TASK carries out the remaining communication of the task activation

message sequence of the Weatherly protocol�

��� THE SUPERVISOR INTERFACE ��

procedure TERMINATE TASK �MY NAME � in TASK NAME�
ABORTED � in BOOLEAN��
MY NODE � in NODE ID TYPE��

��j where
�� MY NAME�s scope level number is decremented if
�� the current scope is not the outermost scope�
��j out �in CURRENT SCOPE �MY NAME� � � ��
��j CURRENT SCOPE �MY NAME� �
��j in CURRENT SCOPE �MY NAME� � 	��
�� If the current scope is the outermost scope� then evaluation of
�� CALLABLE and TERMINATED on MY NAME must yield
�� the values FALSE and TRUE� respectively�
��j out �in CURRENT SCOPE �MY NAME� � � ��
��j for all T	 � TASK NAME� N	� NODE ID TYPE ��
��j not CALLABLE ATTR �T	� MY NAME� N	� and
��j TERMINATED ATTR �T	� MY NAME� N	����

Figure �	� The Supervisor TERMINATE TASK Procedure�

��	��� The TERMINATE TASK Procedure

The TERMINATE TASK procedure� shown in Figure �	� is executed at the end of every

declarative region �i�e� as the last action preceding the reserved word end�� The main

purpose of TERMINATE TASK is to block the calling task �MY NAME� at the end of a

scope until all dependents of the scope have terminated� If the scope level of MY NAME

is � the outermost scope level� then MY NAME is also terminated� otherwise� the scope

level number of MY NAME is decremented�

��	��� The ABORT TASKS Procedure

The abort statement is compiled into a call to the ABORT TASK procedure� whose decla�

ration is shown in Figure ��� The ABORT TASK procedure of Weatherly�s supervisor has

been enhanced to accept in an array the names of all tasks named in an abort statement�

Because a reply must be received from each aborted task� compilation of an abort of N

tasks into N sequential calls to Weatherly�s ABORT TASK procedure would be extremely

ine�cient� since after sending an ABORT TASK MSG to a task� an ABORT REPLY MSG

must be received before another ABORT TASK MSG can be sent� With the modi
cation�

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

procedure ABORT TASKS �MY NAME � in TASK NAME�
VICTIMS � in TASK NAME ARRAY�
ABORTED � out BOOLEAN�
MY NODE � in out NODE ID TYPE��

��j where
�� MY NAME�s scope is unchanged�
��j CURRENT SCOPE �MY NAME� � in CURRENT SCOPE �MY NAME��
�� If MY NAME is aborting itself� then ABORTED must be TRUE�
��j out ��exist I	 � VICTIMS�RANGE �� MY NAME � VICTIMS �I	�� ��
��j ABORTED��
�� Aborted tasks are no longer CALLABLE�
��j out �ABORTED ��
��j �for all T	 � TASK NAME� N	 � NODE ID TYPE ��
��j not CALLABLE ATTR �T	� MY NAME� N	����
��j out �not ABORTED ��
��j �for all T	� T� � TASK NAME� N	 � NODE ID TYPE ��
��j �exist I	 � VICTIMS�RANGE �� T� � VICTIMS �I	�� ��
��j not CALLABLE ATTR �T	� T�� N	����

Figure ��� The Supervisor ABORT TASKS Procedure�

all ABORT TASK MSGs can be sent simultaneously� allowing the responses to the messages

to be received in parallel�

The identi
er of the task executing the abort statement is passed in MY NAME� the

identi
ers of the aborted tasks are passed in the VICTIMS array� Since an abort statement

is a synchronization point for completion of an abnormal task� an ABORTED parameter is

provided� This will be set to TRUE if either MY NAME is ABNORMAL upon input to the

procedure� if MY NAME is ABNORMAL upon exit from the procedure� or if MY NAME

is a component of VICTIMS� In the
rst case� the abort statement is not carried out� in

the latter two cases� all VICTIMS are aborted� ABORT TASK initiates the abort mes�

sage sequence described in Section ������ Characteristics of ABORT TASK which are a

consequence of the semantics of Ada are formally speci
ed in Anna in Figure ���

��	��	 The DELAY TASK Procedure

Delay statements which do not appear as the
rst statement of a delay alternative in

��� DESIGN SUMMARY ��

procedure DELAY TASK �MY NAME � in TASK NAME�
A WHILE � in DURATION�
ABORTED � out BOOLEAN�
MY NODE � in out NODE ID TYPE��

��j where
�� MY NAME�s scope is unchanged�
��j CURRENT SCOPE �MY NAME� � in CURRENT SCOPE �MY NAME��
�� An aborted task is no longer CALLABLE�
��j out �ABORTED ��
��j �for all T	 � TASK NAME� N	 � NODE ID TYPE ��
��j not CALLABLE ATTR �T	� MY NAME� N	����
�� If MY NAME is not abnormal� then it must delay for at least A WHILE�
��j out �not ABORTED ��
��j CALENDARCLOCK � in CALENDARCLOCK ��
��j A WHILE��

Figure ��� The Supervisor DELAY TASK Procedure�

a select statement are compiled into a call to the DELAY TASK procedure� shown in

Figure ��� The identi
er of the delaying task is passed in MY NAME� and the delay value

is passed in A WHILE� Since a delay statement is a synchronization point for completion

of an abnormal task� an ABORTED parameter is provided� The semantics of the delay

statement are formally speci
ed in Anna in Figure ���

��� Design Summary

During development of the Distributed Ada Supervisor� it was necessary to debug Supervisor

components and port them to di�erent machines� The ease with which these endeavors were

accomplished is a result of the way in which the Supervisor is designed� The success of the

design can be attributed to the following factors�

�� The encapsulation of all machine�dependencies inside a single package body results in

a design that is highly portable�

	� The modularization of the design means that modi
cation of one component takes

place without disturbing unrelated components�

�� CHAPTER � DISTRIBUTED ADA SUPERVISOR DESIGN

�� The kernel algorithms exploit the visibility and scoping rules of Ada� resulting in

the dynamic shortening of message paths and reduction of overall message�passing

activity at runtime�

�� The interface to the Supervisor is formally speci
ed in Anna� making it suitable for

standardization�

The next chapter presents a detailed description of two particular implementations of the

Distributed Ada Supervisor�

Chapter �

Implementation of the Distributed

Ada Supervisor

This chapter presents the
rst known detailed description of the con
guration� operation

and execution of a distributed Ada supervisor on a speci
c multiprocessor architecture�an

implementation of the Distributed Ada Supervisor on the Sequent Balance ������ a shared

memory multiprocessor� An earlier implementation� a simulator that was implemented on

the Data General MV������Eclipse� is also described� the simulator simulates the execu�

tion of an Ada tasking program on a virtual distributed multiprocessor� In addition� the

communication overhead of a distributed program execution is discussed� Finally� the use

of diagnostic output for preliminary testing of both implementations is described at the end

of the chapter�

Both implementations were tested with programs that test all of the Supervisor subpro�

grams� Since both the Supervisor and the test programs are compiled using the commercial

Ada compiler available on each target system� the test programs are manually preprocessed

to replace all source�level tasking constructs with calls to the Distributed Ada Supervi�

sor� this preprocessing is necessary to ensure that ��� The use of the tasking supervisor of

the commercial compiler is completely eliminated� and �	� The remaining functionality of

the runtime system of the commercial compiler is preserved for use by the test programs�

The source preprocessing is described in detail in Appendix E in the form of Before�After

examples such as those found in �HL����

��

�� CHAPTER �� DISTRIBUTED ADA SUPERVISOR IMPLEMENTATION

procedure MAIN is

task T�
task body T is

begin

� � � �� Code of body�
end T�

begin�� Activation of T occurs here�
� � � �� Code of body�

end MAIN�

Figure ��� Sample Tasking Program Before Preprocessing�

��� The Uniprocessor Supervisor Simulator

The Supervisor simulator was implemented on the Data General using the ROLM Ada

compiler� All of the Supervisor subprograms were implemented� however� the Supervisor

relied on the ROLM runtime system to perform task activation and scheduling� This de�

pendence on the ROLM runtime system simpli
ed the implementation of the simulator as

well as the preprocessing of test programs� All other aspects of Ada tasking were per�

formed by the Supervisor simulator� The reliance on the ROLM runtime system can be

illustrated by an example� Consider the source program of Figure ��� which depicts a main

program with a single dependent task� Figure �� shows the program of Figure �� after it

has undergone the complete set of preprocessing transformations for testing the Distributed

Ada Supervisor on the Sequent�the program no longer contains any source�level tasking

constructs� the task bodies have become Ada procedures �which are �called� by the Su�

pervisor to activate the bodies as tasks�� and calls to Supervisor subprograms have been

inserted appropriately� In the
gure� italicized names stand for Supervisor�generated task

identi
ers� On the other hand� Figure �� depicts the program of Figure �� as it would be

transformed for testing with the simulator� Calls to subprograms have been inserted� but

the tasks remain in the program� which means that the task is activated by the ROLM

runtime system� Due to this reliance on the ROLM supervisor it was necessary to split

the functionality of the ACTIVATE TASK procedure� ACTIVATE TASK BEGIN causes

ELABORATE MSGs to be sent to all dependents that are to be activated� and it is then

exited to allow the activation to proceed� Once the activation has
nished� the remain�

ing functionality of ACTIVATE TASK� the awaiting of ACTIVATE MSGs from the new

���� THE UNIPROCESSOR SUPERVISOR SIMULATOR ��

with TASKING SUPERVISOR�
procedure MAIN is

procedure T �T � in TASK NAME� is
�� Task T is activated when the Supervisor �calls� this procedure�

DUMMY	 � BOOLEAN ��
TASKING SUPERVISORELABORATE TASK �T� � � ���

begin

TASKING SUPERVISORACTIVATE TASK �T� � � ���
� � � �� Code of body�
TASKING SUPERVISORTERMINATE TASK �T� � � ���

end T�
begin

�� Activation of T occurs during this call�
TASKING SUPERVISORACTIVATE TASK �MAIN� � � ���
� � � �� Code of body�
TASKING SUPERVISORTERMINATE TASK �MAIN� � � ���

end MAIN�

Figure ��� Sample Program After Full Preprocessing�

dependent� is taken care of by the ACTIVATE TASK END procedure�

Tasks were also used in the implementation of the Supervisor simulator itself� Supervisor

tasks served four purposes�

�� The set of simulated processors were represented by tasks�

	� The kernel message receiver�router was implemented as a task �see Section �������

�� Tasks were used to implement semaphores �Dij��� for protecting critical sections of

the Supervisor�

�� Tasks were used to implement monitor condition variables �Hoa���� which are used to

avoid ine�cient busy�waits in the Supervisor�

Associated with each �hardware task� was a queue for incoming messages� each queue was

visible to all other hardware tasks� Message�passing between these hardware tasks occurs

as follows� Messages destined for remote nodes are passed to the �local� hardware task

by the kernel SEND procedure �see Section ������� The local hardware task then places

the message at the tail of the queue of the destination hardware task� The receiver�router

� CHAPTER �� DISTRIBUTED ADA SUPERVISOR IMPLEMENTATION

with TASKING SUPERVISOR�
procedure MAIN is

task T�

DUMMY� � BOOLEAN ��
TASKING SUPERVISORACTIVATE TASK BEGIN �MAIN� � � ���

task body T is

DUMMY	 � BOOLEAN ��
TASKING SUPERVISORELABORATE TASK �T� � � ���

DUMMY� � BOOLEAN ��
TASKING SUPERVISORACTIVATE TASK BEGIN �T� � � ���

begin

TASKING SUPERVISORACTIVATE TASK END �T� � � ���
� � � �� Code of body�
TASKING SUPERVISORTERMINATE TASK �T� � � ���

end T�
begin �� Activation of T occurs here�

TASKING SUPERVISORACTIVATE TASK END �MAIN� � � ���
� � � �� Code of body�
TASKING SUPERVISORTERMINATE TASK �MAIN� � � ���

end MAIN�

Figure ��� Sample Program After Partial Preprocessing for the Simulator�

at the destination node continually requests messages from its local hardware task� which

takes messages o� the head of its own queue�

The implementation of the receiver�router of the kernel as a task is an obvious manifes�

tation of its behavior as an asynchronous thread of control inside the Supervisor� However�

the implementation of semaphores and condition variables requires a bit more explanation�

In reality� semaphores and condition variables are coded in the same way� each has two

associated operations which are always performed in an alternating order� The di�erence

lies in the manner in which semaphores and condition variables are used in software� To

use a semaphore� a task must execute both operations to bracket a critical section� To use

a condition variable� one task must execute one of the operations to wait for a condition�

the occurrence of the condition is signaled by another task executing the second operation�

Figure �� depicts the implementation of semaphores and condition variables as tasks and

���� THE UNIPROCESSOR SUPERVISOR SIMULATOR ��

task SEMAPHORE is

entry P�

entry V�

end SEMAPHORE�

task body SEMAPHORE is

begin

loop

select

accept P� accept V�

or

terminate�

end select�

end loop�

end SEMAPHORE�

task CONDITION X is

entry SIGNAL�

entry WAIT�

end CONDITION X�

task body CONDITION X is

begin

loop

select

accept SIGNAL� accept WAIT�

or

terminate�

end select�

end loop�

end CONDITION X�

task body A is

begin

SEMAPHORE�P�

� � � �� Critical region�

SEMAPHORE�V�

CONDITION X�WAIT� �� Wait for condition X to occur�

end A�

task body B is

begin

SEMAPHORE�P�

� � � �� Critical region�

SEMAPHORE�V�

CONDITION X�SIGNAL� �� Signal that condition X has occurred�

end B�

Figure ��� Implementation of Semaphores and Condition Variables as Tasks�

�	 CHAPTER �� DISTRIBUTED ADA SUPERVISOR IMPLEMENTATION

illustrates their use�

��� The Distributed Supervisor Implementation

The uniprocessor Supervisor simulator was converted into a full��edged distributed tasking

supervisor on the Sequent� This conversion was aided by the modular� layered structure of

the Supervisor software� The Sequent implementation of the Distributed Ada Supervisor

contains ���� lines of code �		�� Ada statements� 			� comments� in 	�
les� �� of these

statements are Ada machine code insertions� In addition� the Supervisor calls � functions

from the Sequent C library and � functions from the Sequent Parallel Programming Li�

brary� It takes approximately � minutes to compile the Supervisor on the Sequent using

Version ���� of the Verdix Ada compiler�

In converting the simulator for parallelization� it was necessary only to provide replace�

ments for certain software modules� no massive global modi
cations to the Supervisor were

necessary� The conversions that were required fall into three categories�

�� Implementation of a task scheduler�

	� Removal of Ada tasks from the Supervisor software�

�� Achieving synchronized parallel execution of multiple copies of the Supervisor soft�

ware�

These conversions were accomplished respectively by three software tools�

�� The public�domain DOMINO multitasking library �OSvdG����

	� The Sequent Parallel Programming Library �PPL� �PPL����

�� The fork�� library function of DYNIX�� the Sequent version of Unix�

The basic task switching algorithms and data structures of DOMINO were adapted to the

needs of the Distributed Ada Supervisor� and the resulting modi
cations were implemented

from scratch in Ada� with an unavoidable smattering of C and NS�	�	� assembly language�

The interfaces to the DOMINO routines are the NET SERVICES procedures CREATE LO�

CAL PROCESS �task creation�� ACTIVATE LOCAL PROCESS �task activation�� SUS�

PEND LOCAL PROCESS �task suspension� and TERMINATE LOCAL PROCESS �task

�DYNIX is a registered trademark of Sequent Computer Systems� Inc�
�Series �� is a registered trademark of National Semiconductor Corporation�

���� THE DISTRIBUTED SUPERVISOR IMPLEMENTATION ��

termination�� The interface to the DYNIX fork primitive is the CREATE OS PROCESS

procedure of NET SERVICES� and the LOCK subprograms of NET SERVICES provide

the interface to the lock facilities of the Sequent PPL�

The VERDIX compiler �VADS� Version ����� was used on the Sequent to compile both

the Supervisor and preprocessed test programs� As a result of the above conversions� the

VERDIX tasking supervisor is completely ignored during compilation and execution of

preprocessed application programs� The Sequent implementation of the Distributed Ada

Supervisor was instrumented to accept from the command line the number of processors

to be used for program execution� To execute application program foo on N processors�

the user executes the command �foo N�� This form causes the diagnostic output described

in Section ��� to be turned on� the diagnostic output is turned o� by executing �foo �N�

instead�

Once the conversion from Ada tasks to equivalent sequential constructs was completed in

the Sequent implementation of the Supervisor� the Supervisor was ported from the Sequent

to a Sun�� workstation� It was con
gured to run in simulator mode and was compiled using

a VERDIX compiler� This porting operation took only an hour to achieve�

����� Task Scheduling with DOMINO

DOMINO contains a collection of routines for scheduling and switching between tasks in

a single program� A new task is scheduled by allocating stack space for its execution and

creating a descriptor in a global list� The descriptor contains the entry address for the code

of the task� a unique identi
er for the particular instance of the task� pointers to the top

and bottom of its stack� and a status variable� the status may be either �READY� �waiting

to begin execution�� �ACTIVE� �executing� or �DETACHED� �
nished execution��

Execution in the DOMINO environment takes place with the DOMINO control routine

�the task switching loop� acting as main program and the user tasks �including the user�s

main program� executed as subservient coroutines� DOMINO performs simple round�robin

scheduling of tasks without time�slicing� tasks must explicitly suspend themselves in favor

of the control routine� which places the suspended task on the tail of the descriptor list and

then awakens the
rst READY or ACTIVE task at the head of the list�

DOMINO is ideally suited to parallel programs containing a linear� non�hierarchical

collection of execution threads whose synchronization and scheduling are programmed by

�VADS is a registered trademark of the VERDIX Corporation�

�� CHAPTER �� DISTRIBUTED ADA SUPERVISOR IMPLEMENTATION

the user� In adapting DOMINO to the needs of the Distributed Ada Supervisor� Ada tasks

were quite easily implemented as DOMINO tasks� however� several enhancements were

necessary�

�� The descriptor for each program task was expanded to contain the node address of

the task� Instances of the scheduler then schedule tasks whose node address matches

that of the scheduler instance�

	� The descriptor for each program task was expanded to contain a pointer to the acti�

vation record for the innermost scope enclosing the declaration of the task body� This

allows the building of �cactus stacks�� whereby multiple threads of control execute on

branches of a tree of execution stack frames�

�� Instead of having the control program serve as the main program� it is called as a

subroutine which early in the elaboration of the Ada main program� During this

initialization� the control routine transparently usurps the r"ole of main program� and

the Ada main program thread is transparently transformed into a DOMINO task�

�� A fourth status value� NOT READY� is used so that each new task remains unacti�

vated until it is explicitly activated by the Supervisor�

In addition to the above enhancements� implementation of Ada task priorities requires the

ability to time�slice and pre empt tasks� this particular functionality was not added�

With these enhancements to DOMINO� scheduling of Ada program tasks is accomplished

at runtime as follows� As explained in Section ������� each declaration of a task is translated

into a call to the Supervisor function CHILD TASK� If CHILD TASK schedules the new

task for local execution� it calls the CREATE LOCAL PROCESS procedure� which creates

a descriptor for the new task� On the other hand� if CHILD TASK schedules the new task

for execution at a remote processor� it sends a NEW TASK MSG message to the destination

copy of the Supervisor �see Section ����	�� this message provides the remote agent with the

information it needs to make the call to CREATE LOCAL PROCESS� In both cases� the

status of the new task is initially NOT READY� When the master of the new task is ready

for the new task to begin its activation� a call is made to the ACTIVATE LOCAL PROC�

ESS procedure� which changes the status of the new task from NOT READY to READY�

In addition to program tasks� the receiver�router of each supervisor copy is scheduled as a

DOMINO task�

���� THE DISTRIBUTED SUPERVISOR IMPLEMENTATION ��

Since no time�slicing or asynchronous pre emption is used by the scheduler to perform

task switching� task switching occurs at predetermined places inside the Supervisor corre�

sponding to execution of �blocking� statements in the application program� The following

list describes these blocking constructs�

� The activation of new dependents causes the master to block until the activations are

completed� The blocking occurs in both the ACTIVATE TASK procedure and the

CHILD TASK function�

� A task whose agent is waiting for a DEPENDENT REPLY MSG �see Section ������

is blocked from scheduling new dependents until the message has been received and

processed� The blocking occurs in the CHILD TASK function�

� A single task or a task declared by an object declaration is blocked from beginning its

activation until the master of the new task passes the begin in its body� The blocking

occurs in the ELABORATE TASK function�

� A master is blocked from terminating a scope until all dependents of the scope have

terminated� The blocking occurs in the TERMINATE TASK procedure�

� A task executing an accept statement or selective wait becomes blocked if the queues

of the accepted entries are empty and the associated timeout has not yet expired� The

blocking occurs in the ACCEPT BEGIN procedure�

� A task that is executing a selective wait with a terminate alternative is blocked when

waiting for noti
cation from its master �see Section ������� The blocking occurs in the

ACCEPT BEGIN procedure�

� A task that has accepted a particular entry call �with an ACCEPT MSG� is blocked

until a CONFIRM MSG or ABORT CALL MSG is received� The blocking occurs in

the ACCEPT BEGIN procedure�

� A task that is executing an entry call is blocked until either a rendezvous completes�

a timeout expires or an exception is propagated to the task� The blocking occurs in

the ENTRY CALL procedure�

� A task that is executing an abort statement is blocked until the aborted tasks �and

their dependents� have become abnormal� The blocking occurs in the ABORT TASKS

procedure�

�� CHAPTER �� DISTRIBUTED ADA SUPERVISOR IMPLEMENTATION

� A task is blocked while waiting for the result of the evaluation of a task attribute� The

blocking occurs in the procedures CALLABLE ATTR and TERMINATED ATTR�

� A task is blocked while executing a simple delay statement� The blocking occurs in

the DELAY TASK procedure�

In addition to the above constructs� the receiver�router of the kernel is blocked during a RE�

CEIVE whenever there is no message to be received� The SUSPEND LOCAL PROCESS

procedure is the interface to the switching routine of DOMINO� A call to SUSPEND LO�

CAL PROCESS suspends the caller and passes control to the control routine� which then

awakens the next task in its descriptor list� Eventually� a suspended task becomes reawak�

ened� at which time it attempts to progress through its blocking construct�

The removal of a program task from the descriptor list is accomplished by a call to

the TERMINATE LOCAL PROCESS procedure� This call is made at the very end of the

TERMINATE TASK procedure only when a task is terminating its outermost declarative

region�

����� Synchronization with Sequent Locks

The Sequent PPL lock facility provides a suitable replacement for the semaphore and con�

dition variable tasks� A lock is a bistable component of special memory hardware called

Atomic Lock Memory �ALM�� The PPL provides primitives for initializing� locking� un�

locking and testing locks� locking is accomplished by an atomic test�and�set instruction� A

lock is initially in its unlocked state� A lock that is locked remains so until it is unlocked�

in particular� an attempt to lock a lock that is already locked is blocked until the lock

becomes unlocked� However� since a lock may be repeatedly unlocked before being locked�

the implementation of condition variables as locks requires explicit testing for the unlocked

state so as to preserve strict alternation between waiting and signaling� The correspondence

between locks� semaphores and condition variables is immediately obvious and is portrayed

in Table 	� Note that when a lock is used as a condition variable� it must be set initially in

its locked state� since the WAIT operation is implemented by locking the lock�

���� THE DISTRIBUTED SUPERVISOR IMPLEMENTATION ��

Operations

Sequent Lock Semaphore Condition Variable

lock�� P WAIT

unlock�� V SIGNAL

Table 	� Correspondence Between Locks� Semaphores and Condition Variables�

����� Parallel Execution with Unix FORK

Parallel execution of application programs is achieved in the Sequent implementation by

forking copies of the Supervisor for execution on multiple processors� The following algo�

rithm achieves parallelization of the Supervisor at runtime� Suppose that the application

program is to execute on N processors�

�� At the earliest possible point in the elaboration of the Supervisor packages� initialize

the DOMINO control routine �the main task switching loop��

	� Elaborate the Supervisor packages�

�� At the latest possible point in the elaboration of the Supervisor packages� call the

CREATE LOCAL PROCESS procedure to start up a locally executing copy of the

kernel message receiver�router� The node address of this instance of the Supervisor

is zero�

�� Parallelize the Supervisor�

�a� In each iteration of a loop from � to N�� �since one copy of the Supervisor is al�

ready executing�� fork a new DYNIX process by calling the CREATE OS PROC�

ESS procedure� It is assumed that each new process is transparently assigned to

a di�erent Sequent processor by the DYNIX load�balancing mechanism�

�b� Each new DYNIX process calls the CREATE LOCAL PROCESS procedure to

create a new instance of the kernel message receiver�router� The node address of

the new instance of the kernel is the number of the loop iteration which created

the instance�

�c� Each new process then starts up the DOMINO control routine� which performs

task switching on local tasks� Initially� the set of local tasks will include only the

above�scheduled instance of the receiver�router� which then accepts scheduling

requests from remote agents in the form of NEW TASK MSGs�

�� CHAPTER �� DISTRIBUTED ADA SUPERVISOR IMPLEMENTATION

This parallelization algorithm is almost completely portable� the only implementation de�

pendencies are the actual forking primitive used to start up new copies of the Supervisor

and the method of binding a new process to a particular system processor�

��� Communication Overhead

Although no comprehensive performance analysis was undertaken for either implementation�

it is worthwhile to compute the minimum overhead in message�passing between supervisor

copies that is required for distributed program execution� This overhead represents the cost

of parallelizing the execution of an Ada tasking program�

To compute this overhead� assume that scalar�valued message components require four

bytes of storage� Looking at the declaration of SUPERVISOR MESSAGE TYPE in Ap�

pendix C� every message contains two ��byte discriminants and four ��byte components�

plus additional storage for variant components� Thus� every message contains at least 	�

bytes�

Consider the distributed execution of an Ada tasking program on n processors� As�

sume that the program activates t tasks� tp of which are activated through execution of an

allocator� Assume further that all activations are remote scheduling operations requiring

message�passing between two di�erent supervisor copies� this is a worst�case assumption

about the overhead required to assign each task to a processor�

Under these assumptions� the execution of each task is represented by a sequence of

four messages� each of which is assumed to require one hop to reach its destination� ��� A

NEW TASK MSG� for scheduling the task at a remote node� �	� An ELABORATE MSG�

for activating the task� ��� An ACTIVE MSG� for signaling the end of activation� and

��� A COMPLETE MSG� for signaling termination of the task� The last three of these

messages have no variant components and thus require 	� bytes of storage each� The

NEW TASK MSG contains seven ��byte variant components requiring an additional 	�

bytes of storage� for a total of �	�

Activation of a task designated by an access value requires the passing of two extra mes�

sages� a DEPENDENT MSG and DEPENDENT REPLY MSG� The DEPENDENT MSG

has three ��byte variant components and thus requires a total of �� bytes of storage� the DE�

PENDENT REPLY MSG has no variant components and thus contains 	� bytes� Assume

that the DEPENDENT MSGs require an average of two hops to reach their destinations�

��� DIAGNOSTIC SUPERVISOR OUTPUT ��

and assume that each DEPENDENT REPLY MSG requires a single hop�

Finally� NEW TASK MSGs are used to create the receiver�router process of each su�

pervisor copy� as described in the previous section� n � � of these processes are activated

remotely�

Using the above
gures� the minimum number of bytes Bmin that are passed over the

interprocessor network during distributed execution is expressed as a function of n� t and

tp�

Bmin � t��	 � 	� � 	� � 	�� ���

� tp��	 � ��� � 	�� �	�

� �n� ����	� ���

� �	�t� ��tp � �	n� �	

Term ��� is the communication overhead for activating t tasks� Term �	� is the additional

overhead for activating tp of those t tasks using an allocator� Term ��� is the overhead for

starting up n � � additional copies of the Distributed Ada Supervisor�

The amount of other communication occurring during distributed execution is highly

dependent on the algorithm of the program� This amount is proportional to the number

of rendezvous� task attribute evaluations� intertask exception propagations� terminate

alternatives and task abortions that are executed�

��� Diagnostic Supervisor Output

In the early stages of implementation it became apparent that some form of diagnostic

information displayed on the terminal would be useful for visually monitoring the execution

of the Supervisor� To this end� the Supervisor was instrumented with an optional tracing

capability which signals the occurrence of the sending and receiving of messages� During

tracing� each occurrence of the following message�passing events is indicated on the terminal�

�� A message is processed locally at some system node X� This occurs when a message

is passed between two tasks executing at the same node�

	� A message is sent from some node X to some other node Y�

�� A message is received at some node X and forwarded to some other node Y� This

occurs when the indirect routing capabilities of the Supervisor kernel are invoked�

�� CHAPTER �� DISTRIBUTED ADA SUPERVISOR IMPLEMENTATION

�� A message is received and processed at some node Y�

The message involved in each event is identi
ed by its message class� source task name�

destination task name� and any other relevant
elds� such as the transaction number as�

signed to a rendezvous� Thus� messages passed between tasks executing on the same node

are represented by a single tracing event� while messages passed between tasks executing on

di�erent nodes are represented by two or more tracing events� In addition to the message�

passing events� execution of delay statements and evaluations of the COUNT attribute are

also traced�

Chapter �

Veri�cation of the Distributed

Ada Supervisor

This chapter presents a new and practical methodology for verifying a distributed supervisor

for consistency with the semantics of the language it implements� The chapter
rst describes

how TSL speci
cations are used in runtime checking experiments to detect errors in the

Distributed Ada Supervisor� The chapter then discusses how runtime checking is related

to fundamental assumptions about the behavior of the NET SERVICES virtual machine

that was described in Section ���� these assumptions are also formalized in TSL� As will

be seen� these assumptions play an important r"ole in interpreting the results of runtime

checking� for the validity of the assumptions implies that the global event stream seen by

the TSL Monitor during checking is an accurate representation of the actions performed by

the Supervisor� The chapter ends with a summary of the advantages of the methodology

over other approaches to testing a language implementation�

��� The Veri	cation Approach

The behavior of the Distributed Ada Supervisor is considered to be correct if it is consistent

with the semantics of Ada tasking� For the purpose of verifying the correctness of the

Supervisor� the Supervisor is viewed as a �black box� whose behavior is manifested at

the application program level during the execution of tasking statements� Chapter � of

the Ada Language Reference Manual �LRM� informally presents the semantics of each

tasking construct by specifying the sequence of tasking events which comprises its execution

���

��	 CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

C A

�� R
accept E do

�� X �� S
AE� � � �
�� Y �� T

end E�
�� U

Figure ��� Observing Tasking Events Outside the Supervisor�

behavior� Using the semantics of the LRM as a starting point� the following methodology

is used to check the behavior of the Supervisor�

�� Express the informal semantics of Chapter � of the Ada LRM as a set of TSL speci�

cations� These speci
cations are constraints on the patterns of Ada tasking events

that may occur during the execution of an Ada program�

	� Monitor Ada program executions for consistency with the TSL speci
cations� An

execution satisfying all speci
cations increases con
dence in the correctness of the

Supervisor� while a violated speci
cation explicitly characterizes a bug in the Super�

visor�

The speci
cations that are constructed in Step � are a formal de
nition of the Ada tasking

semantics� In addition to using the speci
cations for automatic runtime consistency check�

ing� the speci
cations may also be used to develop a formal proof of correctness� once TSL

proof rules and proving tools become available�

To that observation of supervisor behavior can be performed at the application program

level� consider the matching Ada entry call and accept statements shown in Figure ��� In

this
gure� the r"ole of the Supervisor can be viewed as progressing task C from point X

to point Y � and progressing task A from point R to point S and from point T to point U �

Furthermore� if the Supervisor implements the rendezvous between tasks C and A correctly�

then point S will not be reached in task A until point X has been reached in task C� and

point Y will not be reached in task C until point T has been reached in task A� Thus�

according to the Ada semantics� the six observation points must be reached in one of the

following four orders�

� X R S T U Y

���� FORMALIZATION OF THE ADA TASKING SEMANTICS ���

� R X S T U Y

� X R S T Y U

� R X S T Y U

By having each task generate an observable event each time an interesting point is reached

in its body� the behavior of the Supervisor may be observed by observing the sequences of

events that are thus formed�

In order to test the feasibility of the veri
cation methodology� the following subset of

the Ada tasking semantics was formalized in TSL�

� The activation and termination semantics of single tasks�

� The activation and termination semantics of tasks declared by object declarations�

� The semantics of the entry call statement� except for conditional or timed entry calls�

� The semantics of the accept statement� except for selective waits�

� The semantics of the delay statement�

The semantics of exception propagation and task abnormality as they apply to this subset

were not considered� The semantics of the Ada accept statement are used in this chapter

for the purposes of illustration� the complete formalization of the subset in TSL is presented

in Appendix G�

��� Formalization of the Ada Tasking Semantics

The formalization of the Ada tasking semantics is carried out in two steps�

�� Choose a set of events and Boolean�valued predicates for modeling the Ada tasking

semantics� These events and predicates are chosen based on an intuitive understanding

of the informal English presentation of the Ada tasking semantics in Chapter � of the

Ada LRM� The occurrence of a tasking event causes a change in the value of one or

more predicates� re�ecting a change in the computational state of the program�

	� Formally de
ne the events and predicates in TSL� and construct TSL speci
cations

which formalize the semantics of each Ada tasking statement� Each speci
cation is

��� CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

restricted to describing the execution of a single tasking statement� from the point of

view of a single participant task�

The
rst step is illustrated by determining the events and predicates that are used to

informally express the semantics of the rendezvous in Section ��� of the Ada LRM� which is

entitled �Entries� Entry Calls and Accept Statements�� Appendix F gives a complete listing

of the tasking events of Ada� The second step is illustrated by a TSL formalization of the

semantics of the accept statement�

	���� Choosing the Tasking Events and Predicates of the Rendezvous

The
rst nine paragraphs of Section ��� describe the syntax and static �i�e�� compile�time�

semantics of entry declarations� entry call statements and accept statements� One con�

sequence of the static semantics is that any task participating in a rendezvous must be

activated� but not yet completed� Thus� two predicates can be used to characterize the

state of a task T executing an entry call or accept statement�ACTIVATED �T�� which is

true if and only if T has been activated� and COMPLETED �T�� which is true if and only

if T has completed its execution�

Paragraph � begins the description of the dynamic semantics�

Execution of an accept statement starts with the evaluation of the entry index��

�in the case of an entry of a family�� Execution of an entry call statement

starts with the evaluation of the entry name� this is followed by any evaluations

required for actual parameters in the same manner as for a subprogram call �see

����� Further execution of an accept statement and of a corresponding entry call

statement are synchronized�

Paragraph � suggests that it is useful to delimit the execution of each statement by a Begin

event and an End event� Thus� the
rst four events that Section ��� mentions are

� Task C begins call to task T at entry E

� Task C ends entry call

� Task T begins accept statement for entry E

� Task T ends accept statement

���� FORMALIZATION OF THE ADA TASKING SEMANTICS ���

The predicate CALLING �C� T� E� can be used to characterize the state of a task during

execution of an entry call� the predicate is true between the occurrence of the Begin and End

events and is false at all other times� The state of a task executing an accept statement

can be similarly characterized using the predicate ACCEPTING �T� E�� The remaining

events described in the paragraph�evaluation of the entry name and evaluation of actual

parameters�are outside the domain of the responsibilities of an Ada tasking supervisor and

will therefore remain unaccounted for in the set of events and predicates�

If a given entry is called by only one task� there are two possibilities� ��

� If the calling task issues an entry call statement before a corresponding ��

accept statement is reached by the task owning the entry� the execution of

the calling task is suspended�

� If a task reaches an accept statement prior to any call of that entry� the ��

execution of the task is suspended until such a call is received�

Paragraphs �� through �� describe certain conditions under which a task may become

suspended� Thus� these paragraphs describe no events� in fact they specify that there must

be no occurrence of tasking events$

When an entry has been called and a corresponding accept statement has been ��

reached� the sequence of statements� if any� of the accept statement is executed

by the called task �while the calling task remains suspended�� This interaction is

called a rendezvous� Thereafter� the calling task and the task owning the entry

continue their execution in parallel�

Paragraph �� describes the rendezvous itself� Although the caller remains suspended� the

called task resumes its execution if it was previously suspended� this suggests that the

beginning of a rendezvous is an event� Furthermore� since the body of an accept statement

can generate an arbitrary sequence of tasking events� it is necessary to use still another

event to delimit the end of the rendezvous� Thus� the next two events of Section ��� are

� Task T begins rendezvous with task C at entry E

� Task T ends rendezvous with task C at entry E

The predicate IN RENDEZVOUS �C� T� E� can be used to characterize the state of the

tasks in rendezvous� the predicate is true during the rendezvous and false at all other times�

��� CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

Since Paragraph �� speci
es that the sequence of statements associated with the rendezvous

is executed by the called task� and since the paragraph also speci
es that end of the accept

statement always coincides with the end of the rendezvous� the End Rendezvous event will

serve to indicate both the end of the rendezvous and the end of the execution of the accept

statement� However� there is an observable period of time between the end of the rendezvous

and the end of the entry call statement� the truth of the predicate RENDEZVOUSED �C�

T� E� can be used to characterize the state of the caller during this period �true during the

period� false at all other times��

If several tasks call the same entry before a corresponding accept statement is��

reached� the calls are queued� there is one queue associated with each entry�

Each execution of an accept statement removes one call from the queue� The

calls are processed in the order of arrival�

Paragraph �� describes the mechanism by which a rendezvous is allowed to take place�

Execution of an entry call generates an artifact that is placed on a queue controlled by the

called task� Thus the event

� Call arrives from task C at entry E of task T

su�ciently describes the enqueuing of an entry call on behalf of the called task� the removal

of the call from the queue coincides with the beginning of the rendezvous� The predicate

QUEUED �C� T� E� can be used to characterize the state of the tasks in this interval� the

predicate is true between the enqueuing of the call and the beginning of the rendezvous and

false at all other times� The integer�valued function QUEUE SIZE �T� E� can be used to

indicate the number of calls on an entry queue�

An attempt to call an entry of a task that has completed its execution raises��

the exception TASKING ERROR at the point of the call� in the calling task�

similarly� this exception is raised at the point of the call if the called task com�

pletes its execution before accepting the call �see also ��� for the case when

the called task becomes abnormal�� The exception CONSTRAINT ERROR is

raised if the index of an entry of a family is not within the speci
ed discrete

range�

The
rst sentence of this paragraph mentions three related tasking events� namely

���� FORMALIZATION OF THE ADA TASKING SEMANTICS ���

� Task T completes its execution

� Task T becomes abnormal

� TASKING ERROR is raised in task T

These three events are also mentioned in other sections of Chapter � of the Ada LRM and

will be discussed no further�

The remaining seven paragraphs of Section ��� mention no other tasking events� they

give source examples� describe implications of the semantics and list cross�references to

other sections of the Ada LRM� Thus� the execution of a rendezvous can be described by

a sequence of the following nine events�

�� Task C begins call to task T at entry E

	� Task C ends entry call

�� Task T begins accept statement for entry E

�� Task T begins rendezvous with task C at entry E

�� Task T ends rendezvous with task C at entry E

�� Call arrives from task C at entry E of task T

�� Task T completes its execution

�� Task T becomes abnormal

�� TASKING ERROR is raised in task T

Furthermore� the states of the participating tasks can be characterized by expressions in�

volving the following eight predicates�

�� ACTIVATED �T�

	� COMPLETED �T�

�� CALLING �C� T� E�

�� ACCEPTING �T� E�

�� IN RENDEZVOUS �C� T� E�

��� CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

�� RENDEZVOUSED �C� T� E�

�� QUEUED �C� T� E�

�� QUEUE SIZE �T� E� �integer�valued�

A subset of these events and predicates will now be used to formalize the semantics of

the accept statement in TSL� the remaining events and predicates are de
ned formally in

Appendices F and G� respectively� The semantics of the entry call statement are formalized

in TSL in Appendix G� as are the FCFS �
rst�come�
rst�served� semantics of entry queues

and the semantics of suspension�

	���� Formalizing the Semantics of the Accept Statement

In formalizing the semantics of a tasking construct� a collection of TSL speci
cations is

constructed which describe the execution of the construct from the point of view of the task

performing the execution� This task will be referred to as the subject task for purposes of

discussion� Formalization of the semantics of the accept statement in TSL is comprised of

the following four steps�

�� Formal de
nition of the tasking events as TSL actions�

	� Formal de
nition of the tasking predicates as TSL properties�

�� Construction of a functional speci
cation in TSL� This is a positive speci
cation that

is activated each time a task begins execution of an accept statement� The activation

must be satis
ed in order to conclude correctness of the execution of the statement�

�� Construction of safety speci
cations in TSL� Each of these is a negative speci
cation

that is activated once at the beginning of program execution� In order to conclude

correctness of the execution of all accept statements in the program� no activation

may ever be violated�

The need for complementary functional and safety speci
cations is a consequence of the

semantics of TSL� A TSL speci
cation constrains relevant subsequences of the global event

stream� treating all other subsequences as irrelevant� Thus� although the functional spec�

i
cation is needed to describe what event sequences can be observed during monitoring�

���� FORMALIZATION OF THE ADA TASKING SEMANTICS ���

�� Begin Accept event�
��� action SIMPLE ACCEPT �ACCEPTED E � entry��

�� Call Arrival event�
��� action ENQUEUE CALL �C TASK � task� Q TASK � task� Q ENTRY � entry��

�� Begin Rendezvous event�
��� action BEGIN RENDEZVOUS �CALLER � task� CALLED E � entry��

�� End Rendezvous event�
��� action END RENDEZVOUS �CALLER � task� CALLED E � entry��

Figure �� Action Declarations for the Tasking Events of the Accept Statement�

the safety speci
cations are also needed to describe when events cannot be observed� Con�

struction of the safety speci
cations follows simply from the construction of the functional

speci
cation�for each guarded event of the form �E where P� appearing in the func�

tional speci
cation that is performed by the subject task of the speci
cation� the safety

speci
cation �not E where not P �� is constructed�

TSL De�nition of the Tasking Events and Predicates

The execution semantics of the accept statement may be speci
ed using four of the tasking

events and
ve of the predicates described in the previous section� The TSL action decla�

rations for the four events are shown in Figure �� �The ENQUEUE CALL action formally

de
nes the Call Arrival event� which is event number � on page ����� Except for the EN�

QUEUE CALL action� each action is performed by the subject task� which therefore need

not be a parameter to the declared actions since TSL automatically makes the performing

task a constituent of each generated event� The subject task is passed as a parameter of

the ENQUEUE CALL action� since this action is performed by the Supervisor�

In de
ning the predicates as TSL properties� the property names are all pre
xed by �S �

to distinguish them from any prede
ned TSL properties with the same name� The
rst two

predicates that are de
ned are ACTIVATED �T� and COMPLETED �T�� As described in

the previous section� ACTIVATED �T� is de
ned for all tasks T to be false initially and true

after the activation of T is
nished� Similarly� COMPLETED �T� is de
ned for all tasks

�	 CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

�� End Activation event�
��� action END ACTIVATION�
���
�� ACTIVATED predicate�
��� property S ACTIVATED �task� � BOOLEAN �� FALSE
��� is

��� when �T performs END ACTIVATION then

��� set S ACTIVATED ��T� �� TRUE�
��� end S ACTIVATED�

�� Task Completion event�
��� action COMPLETE�
���
�� COMPLETED predicate�
��� property S COMPLETED �task� � BOOLEAN �� FALSE
��� is

��� when �T performs COMPLETE then

��� set S COMPLETED ��T� �� TRUE�
��� end S COMPLETED�

Figure ��� The S ACTIVATED and S COMPLETED Properties�

T to be false initially and true after the completion of T � The TSL properties declared in

Figure �� formally de
ne these predicates� The action declarations for the End Activation

and Task Completion events are also given in the
gure�

Next� the function QUEUE SIZE �T� E� is de
ned� From the previous discussion� this

function is initially zero for all T and E� It is incremented by the arrival of an entry call and

is decremented by the beginning of a rendezvous� The TSL property of Figure �	 formally

de
nes QUEUE SIZE �T� E�� since QUEUE SIZE �T� E� must always be greater than or

equal to zero� the property is declared to be of type NATURAL�

Finally� the predicates ACCEPTING �T� E� and IN RENDEZVOUS �C� T� E� are

de
ned� These predicates are initially false for all C� T and E� ACCEPTING �T� E�

is true between the beginning of an accept statement and the end of the corresponding

rendezvous� while IN RENDEZVOUS �C� T� E� is true only between the beginning and

end of the rendezvous� The TSL properties declared in Figure �� formally de
ne these

predicates�

���� FORMALIZATION OF THE ADA TASKING SEMANTICS �	�

�� QUEUE SIZE function�
��� property S QUEUE SIZE �task� entry� � NATURAL �� �
��� is

��� when any performs ENQUEUE CALL �Q TASK �� �T�
��� Q ENTRY �� �E� then
��� set S QUEUE SIZE ��T� �E� �� S QUEUE SIZE ��T� �E� � 	�
��� when �T performs BEGIN RENDEZVOUS �CALLED E �� �E� then
��� set S QUEUE SIZE ��T� �E� �� S QUEUE SIZE ��T� �E� � 	�
��� end S QUEUE SIZE�

Figure �	� The S QUEUE SIZE Property�

�� ACCEPTING predicate�
��� property S ACCEPTING �task� entry� � BOOLEAN �� FALSE
��� is

��� when �T performs SIMPLE ACCEPT �ACCEPTED E �� �E� then
��� set S ACCEPTING ��T� �E� �� TRUE�
��� when �T performs END RENDEZVOUS �CALLED E �� �E� then
��� set S ACCEPTING ��T� �E� �� FALSE�
��� end S ACCEPTING�

�� IN RENDEZVOUS predicate�
��� property S IN RENDEZVOUS �task� task� entry� � BOOLEAN �� FALSE
��� is

��� when �T performs BEGIN RENDEZVOUS �CALLER �� �C�
��� CALLED E �� �E� then
��� set S IN RENDEZVOUS ��C� �T� �E� �� TRUE�
��� when �T performs END RENDEZVOUS �CALLER �� �C�
��� CALLED E �� �E� then
��� set S IN RENDEZVOUS ��C� �T� �E� �� FALSE�
��� end S IN RENDEZVOUS�

Figure ��� The S ACCEPTING and S IN RENDEZVOUS Properties�

�		 CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

��� when Begin where Initial State

��� then �Intermediate Events �� End where Final State�
��� until End �

Figure ��� Generic TSL Functional Speci
cation�

Construction of the TSL Speci�cations

The execution of every Ada tasking construct is delimited by a Begin event and an End

event� The functional speci
cation for each statement can thus be constructed in the format

of Figure ��� According to Table � in Chapter 	� the speci
cation says that whenever the

Begin event is observed in the Initial State �as characterized by an expression involving one

or more predicates�� then by the time the End event is observed the remaining events of

the sequence must have also been observed� including the End event in the Final State�

The functional speci
cation of the semantics of the accept statement is constructed by

considering the two possible event sequences that can comprise its execution�

� Sequence ��Empty Queue�

�� Some task T begins execution of an accept statement for some entry E when

the queue for E is empty�

	� A call from some task C subsequently arrives at the queue for E�

�� T begins a rendezvous with C at E�

�� T ends the rendezvous with C at E�

� Sequence 	�Non�empty Queue�

�� Some task T begins execution of an accept statement for some entry E when

the queue for E is not empty�

	� T begins a rendezvous at E with the
rst caller on the queue� C�

�� T ends the rendezvous with C at E�

Each of these events must occur in an appropriate state� The Begin Accept event can

occur only when ACTIVATED �T� is true and COMPLETED �T� is false� The Begin

Rendezvous event can occur only when ACCEPTING �T� E� is true and QUEUE SIZE �T�

���� FORMALIZATION OF THE ADA TASKING SEMANTICS �	�

��� �� SIMPLE ACCEPT STATEMENT��
��� when �T performs SIMPLE ACCEPT �ACCEPTED E �� �E�
��� where S ACTIVATED ��T� and not S COMPLETED ��T�
��� then ��any performs ENQUEUE CALL �C TASK �� �C� Q TASK �� �T�
��� Q ENTRY �� �E�
��� where S ACCEPTING ��T� �E� and S QUEUE SIZE ��T� �E� � �
��� ��
��� �T performs BEGIN RENDEZVOUS �CALLER �� �C�
��� CALLED E �� �E�
��� where S ACCEPTING ��T� �E� and S QUEUE SIZE ��T� �E� � �
��� �
��� or

��� �T performs BEGIN RENDEZVOUS �CALLER �� �C�
��� CALLED E �� �E�
��� where S ACCEPTING ��T� �E� and S QUEUE SIZE ��T� �E� � �
��� �
��� ��
��� �T performs END RENDEZVOUS �CALLER �� �C�
��� CALLED E �� �E�
��� where S IN RENDEZVOUS ��C� �T� �E�
��� until �T performs END RENDEZVOUS�

Figure ��� Functional Speci
cation of the Accept Statement Semantics�

E� is greater than zero� The End Rendezvous event can occur only when IN RENDEZVOUS

�C� T� E� is true� The Call Arrival event can occur at any time from T �s point of view�

but the occurrences relevant to the discussion are when ACCEPTING �T� E� is true and

QUEUE SIZE �T� E� is zero� Figure �� gathers these facts together into the functional

speci
cation for the accept statement� The
rst line of the speci
cation is its name� The

speci
cation is activated once for each occurrence of the Begin Accept event� matching

on the activation is be terminated by the occurrence of the End Rendezvous event� The

activation is satis
ed if the complete sequencing behavior of the accept statement �as given

in the speci
cation body� is observed by the time the End Rendezvous event is matched�

The placeholders �C� �T and �E are initially unbound� In each activation� �T and �E will

be bound to the constituents of the Begin Accept event which created the activation� �C

will be bound to a constituent from either the Call Arrival or Begin Rendezvous event�

whichever is matched
rst�

�	� CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

�� The Begin Accept event must not occur in an incorrect state�
��� not �T performs SIMPLE ACCEPT �ACCEPTED E �� �E�
��� where not �S ACTIVATED ��T� and not S COMPLETED ��T���

�� The Begin Rendezvous event must not occur in an incorrect state�
��� not �T performs BEGIN RENDEZVOUS �CALLED E �� �E�
��� where not �S ACCEPTING ��T� �E� and S QUEUE SIZE ��T� �E� � ���

�� The End Rendezvous event must not occur in an incorrect state�
��� not �T performs END RENDEZVOUS �CALLER �� �C� CALLED E �� �E�
��� where not �S IN RENDEZVOUS ��C� �T� �E���

Figure ��� Safety Speci
cations of the Accept Statement Semantics�

The safety speci
cations may now be derived from the functional speci
cation� There

are four di�erent guarded events that appear in the functional speci
cation of Figure ���

However� only three of these are performed by the subject task T � the Call Arrival event

is performed by the Supervisor� Thus� a total of three safety speci
cations are required�

they are presented in Figure ��� The safety speci
cations ensure that no tasking event

will occur in an incorrect state� This fact implies that the guards appearing in the func�

tional speci
cation are redundant� and indeed that is the case� since satisfaction of the

safety speci
cations logically implies the truth of the guards in the functional speci
cation�

Once the safety speci
cations have been constructed� the guards may be removed from the

basic events appearing in the functional speci
cation if desired� However� the results ob�

tained from speci
cation checking will be identical with or without guards in the functional

speci
cation�

Note that in specifying the semantics of a rendezvous� it is necessary to specify that task

T cannot begin a rendezvous with task C until C calls T � however� this safety speci
cation

is derived from the functional speci
cation for the semantics of the entry call statement�

��� The NET SERVICES Connectedness Assumptions

When monitoring the Distributed Ada Supervisor for consistency with the TSL formaliza�

tion of Ada tasking� the results of monitoring are interpreted relative to the assumption

��	� THE NET SERVICES CONNECTEDNESS ASSUMPTIONS �	�

that the low�level communication facilities provided by NET SERVICES satisfy certain

connectedness constraints� the notion of connectedness of actions in TSL was discussed in

Section 	�����

The function of the Supervisor is essentially to connect the Ada tasking events gener�

ated by application programs� the TSL formalization of the Ada tasking semantics is thus a

formal description of the connections the Supervisor must implement� The Supervisor con�

nects the Ada tasking events using the SEND and RECEIVE message�passing subprograms

declared in the NET SERVICES package �see Figure ����

When interpreting the results of consistency checking on the Supervisor� connectedness

of the NET SERVICES message�passing subprograms is assumed� If this assumption is

satis
ed by NET SERVICES� then the global stream seen by the TSL Monitor will be

consistent with the connectedness of the Ada tasking events performed by the application

program� Thus� if the behavior of the Supervisor satis
es the speci
cations comprising the

TSL formalization of Ada tasking� then the Supervisor is correctly connecting the tasking

events� if a speci
cation is violated� then a bug exists in the Supervisor�

Informally� the behavior of the NET SERVICES actions is assumed to satisfy the fol�

lowing constraints�

Assumption � The output of a RECEIVE is the input of a previous SEND�

Assumption � Each message is received only once�

Assumption � Messages sent from one thread to another are received in the order they

are sent�

Satisfaction of these assumptions by NET SERVICES implies the pairwise connectedness

of SEND and RECEIVE� for together they imply that all inductively corresponding pairs

of SENDs and RECEIVEs are ordered so that the SEND precedes the RECEIVE�

To state these assumption formally in TSL� the following two actions are de
ned�

��� action RECEIVE �M � MESSAGE TYPE� BY � NODE ID TYPE��

��� action SEND �M � MESSAGE TYPE� TO � NODE ID TYPE��

The RECEIVE action is performed immediately after a thread receives a message� the

SEND action is performed immediately before a thread sends a message� Two properties

are used to keep track of the number of times a message has been sent or received�

�	� CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

��� property SEND COUNT �MESSAGE TYPE� NODE ID TYPE� � NATURAL �� �

��� is

��� when any performs SEND �M �� �M	� TO �� �S	� then

��� set SEND COUNT ��M	� �S	� �� SEND COUNT ��M	� �S	� � 	�

��� end SEND COUNT�

��� property RECEIVE COUNT �MESSAGE TYPE� NODE ID TYPE� � NATURAL �� �

��� is

��� when any performs RECEIVE �M �� �M	� BY �� �S	� then

��� set RECEIVE COUNT ��M	� �S	� �� RECEIVE COUNT ��M	� �S	� � 	�

��� end RECEIVE COUNT�

A third property is used to indicate that a message has been sent but not yet received�

��� property WAS SENT �MESSAGE TYPE� NODE ID TYPE� � BOOLEAN �� �

��� is

��� when any performs SEND �M �� �M	� TO �� �S	� then

��� set WAS SENT �� TRUE�

��� when any performs SEND �M �� �M	� TO �� �S	�

��� then any performs RECEIVE �M �� �M	� BY �� �S	�

��� set WAS SENT �� FALSE�

��� end WAS SENT�

The assumptions are then expressed formally by the following TSL speci
cations�

��� ��ASSUMPTION 	��

��� not any performs RECEIVE �M �� �M	� BY �� �S	�

��� where not WAS SENT ��M	� �S	��

��� ��ASSUMPTION ���

��� not any performs RECEIVE �M �� �M	� BY �� �S	�

��� where RECEIVE COUNT ��M	� �S	� �� SEND COUNT ��M	� �S	��

��� ��ASSUMPTION ���

��� when �S	 performs SEND �M �� �M	� TO �� �S��

��� RUNTIME CHECKING EXPERIMENTS �	�

��� ��

��� �S	 performs SEND �M �� �M�� TO �� �S��

��� where �M� �� �M	

��� then any performs RECEIVE �M �� �M	� BY �� �S��

��� before any performs RECEIVE �M �� �M�� BY �� �S���

��� Runtime Checking Experiments

After TSL speci
cations have been constructed to formalize the Ada tasking semantics� any

Ada tasking programmay be used to test the behavior of the Supervisor for consistency with

the speci
cations� However� each test program must be transformed for runtime checking�

Figure �� shows the transformations that are performed� The two Compiler transformations

and the Linker transformation are currently automated� the others may easily be automated�

First� TSL perform statements are placed in the test program at each place that

corresponds to the occurrence of a tasking event� they are placed according to the de
nitions

given in Appendix F� In a few cases� events must be performed inside the Supervisor� such

as placing an entry call on an entry queue� the Supervisor must be instrumented to perform

these events in the appropriate places�

Second� the test program and the TSL speci
cations are fed together to the TSL Com�

piler� which translates the TSL statements into executable calls to the TSL Runtime System�

Third� for reasons mentioned at the beginning of Chapter �� the test program is prepro�

cessed so that its parallel execution will be controlled by the Distributed Ada Supervisor�

Appendix E describes the necessary transformations� which convert the tasking statements

of the test program into Supervisor subprogram calls�

Finally� the test program is compiled by the VERDIX compiler� The compiled code

is linked with the Distributed Ada Supervisor and the TSL Runtime System to create a

distributed self�checking test program�

Because the TSL speci
cations are derived from the Ada tasking semantics and do not

describe internal Supervisor behavior� the speci
cations may be used to test any implemen�

tation of Ada� Figure �� shows how test programs would be prepared in this case� As shown

in the
gure� a commercial Ada compiler is chosen for testing� The compiler translates the

tasking statements of the test program� and the behavior of the supervisor that is shipped

with the compiler is checked for correctness�

�	� CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

Ada Test Program �
Insert TSL Perform

Statements

�st transformation�

�

Ada Test
Program�

TSL Speci�cations � TSL Compiler

�nd transformation�

�

Ada Test
Program��

Supervisor
Preprocessor

�rd transformation�

�

Ada Test
Program���

VERDIX Compiler

�

Compiled Ada
Test Program

Distributed
Ada Supervisor

�
TSL Runtime

System

�

Linker

�
Self�Checking Distributed Ada Test Program

Figure ��� Transformation of Test Programs for the Distributed Ada Supervisor�

��� RUNTIME CHECKING EXPERIMENTS �	�

Test Program P for
Language L

�
Insert Perform
Statements

�st transformation�

�

Test Program P
�

TSL Speci�cations � TSL Compiler

�nd transformation�

�

Test Program P ��

Compiler
C for L

�

Compiled P ��

Tasking Supervisor
for Compiler C

�
TSL Runtime System

�

Linker

�
Self�Checking Test Program P

Figure ��� Transformation of Test Programs for Any Tasking Supervisor�

�� CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

Once the test program is transformed it may be executed� and the execution is then

checked for consistency with the speci
cations� A violated speci
cation indicates the exis�

tence of a bug in the Supervisor� Since each speci
cation is associated with a single tasking

construct� and since each Supervisor subprogram implements a single tasking construct�

the violated speci
cation indicates which subprogram most likely contains the bug� If more

detailed information is desired� however� TSL speci
cations may be written and checked at

the Supervisor code level�

��� Comparison With Other Approaches

Chapter 	 described several techniques and tools that are available for testing concurrent

software� and the chapter demonstrated the superiority of automated speci
cation�based

methods over traditional debugger�based methods� In this section� the methodology de�

scribed in this chapter is compared to two other approaches to testing a language imple�

mentation for consistency with the language semantics�

The Ada Joint Program O�ce �AJPO� requires the validation of every commercial

Ada compiler� and it has created the Ada Compiler Validation Capability �ACVC� for this

purpose �Ada���� An Ada compiler is validated if it correctly compiles and�or executes a

suite of test programs which currently� number over � for the full language and around

� for the tasking features� Each test program contains checking code that indicates its

success or failure in executing its intended behavior� Although the ACVC has produced the

strictest certi
cation of compilers for any language� many of the validated Ada compilers

are nevertheless of unsatisfactory quality�

As mentioned in Section 	����� Klarund described a similar approach which was designed

to overcome a major di�culty with the ACVC� namely the need to manually instrument

each test program with checking code �Kla���� In Klarund�s approach� the behavior of each

test program is formally speci
ed in a variant of temporal logic� the speci
cations are then

automatically transformed into checking code for runtime validation�

The methodology described in this chapter has the major advantage of the above two

approaches� namely that it may be used to validate any implementation of Ada� However�

there are many disadvantages of the above approaches that are overcome by the TSL�based

methodology� The major �aw in both of the above approaches is that the behavior of both

�ACVC Version ���� August �����

���� COMPARISON WITH OTHER APPROACHES ���

the supervisor and the test programs is validated� If an error is detected� the checking

code does not indicate which part of the system caused the error� the supervisor or the test

program� in interpreting a report of incorrect behavior� there is a tacit assumption that the

test program behaved correctly and that the error is inside the supervisor�

There are additional disadvantages to these other approaches�

� The validation suite is equivalent to the speci
cation of a small subset of the semanti�

cally legal event sequences� Furthermore� each validation test is contrived to generate

a legal sequence in a predictable and deterministic manner�

� It is impossible to automate the conversion of arbitrary Ada programs to a form

suitable for testing� each program that is to be used as test input must be hand�

instrumented either with checking code or with a formal speci
cation of its behavior�

� The validation tests provide little information to directly relate a test failure to an

implementation bug�

In contrast� the methodology of this chapter overcomes the above disadvantages�

� Because only the event sequencing of tasking statements is monitored during testing�

a violated speci
cation is equivalent to a bug in the supervisor� regardless of whether

or not the test program behaved correctly�

� The TSL speci
cations completely describe all legal tasking event sequences�

� Every Ada program may be used as test input�

� A violated speci
cation explicitly characterizes a bug in the supervisor�

By using formal speci
cations to describe the correct behavior of a tasking supervisor� and

by automating the detection of incorrect behavior� a great deal of guesswork� intuition�

inspiration and magic is removed from supervisor testing�

��	 CHAPTER �� DISTRIBUTED SUPERVISOR VERIFICATION

Chapter �

Conclusions

This thesis has addressed two fundamental problems in the implementation of concurrent

programming languages� First� the thesis described principles for designing a distributed

tasking supervisor for a concurrent language� Second� the thesis described a methodology

for verifying the consistency of a supervisor with the semantics of the language� The contri�

butions of the thesis to the
eld of concurrent programming are detailed in the
rst section

of this chapter� In addition� the second section of the this chapter suggests other avenues

of exploration based on the results that were obtained�

��� Contributions of the Dissertation

The results described in this thesis are based on the design� implementation and veri
ca�

tion of a distributed tasking supervisor for the Ada programming language� Many of the

results can be generalized for application to other concurrent programming languages� This

thesis has made the following contributions to the technology of concurrent programming

languages�

First� the thesis presented principles for designing a distributed tasking supervisor� A

tasking supervisor should be constructed in layers� The interface between the supervisor

and application programs forms the topmost layer and is completely portable� a formal

speci
cation of the top�level interface provides a formal description of the correct use of the

interface by the compiler� Portability is maximized by encapsulating machine dependencies

within the lowest layer of the supervisor� The lowest layer is the implementation of an

abstract virtual machine which provides an interface to a variety of low�level resources in

���

��� CHAPTER �� CONCLUSIONS

a machine�independent manner� The easy porting of the Distributed Ada Supervisor from

a Data General Eclipse to both a Sequent Balance ����� and a Sun�� workstation fully

justi
es the claims of portability�

Second� this thesis described a working distributed implementation of Ada tasking that

supports parallel execution of Ada programs on a Sequent Balance ����� multiprocessor�

All previously described Ada supervisors and all currently validated Ada compilers are

designed strictly as uniprocessor implementations of Ada� The only other known distributed

supervisor is an unvalidated implementation that was custom�designed for the Sequent

Balance ����� architecture�

Third� this thesis described techniques for automatically checking a distributed supervi�

sor for consistency with the semantics of the language it implements� Previous systems for

testing and debugging concurrent software are unable to automatically distinguish incor�

rect execution behavior from correct execution behavior� Using the veri
cation methodology

described in this thesis� the tasking semantics of a concurrent language are formalized by

specifying in TSL all legal sequences of tasking events that may occur during execution

of application programs� By deriving the formal speci
cations from the tasking semantics

of the language rather than specifying the internal behavior of the supervisor� the speci�

cations are implementation�independent� Correctness of the supervisor is established by

automatically checking the execution behavior of test programs for consistency with the

TSL speci
cations� Correctness is implied by the satisfaction of all speci
cations during

runtime checking� and a violated speci
cation explicitly characterizes a bug in the super�

visor� The speci
cations may also be used to construct a formal proof of correctness� The

availability of spare processors dedicated to executing consistency checks makes feasible the

construction of permanently self�checking supervisors�

Finally� several by�products of this thesis are suitable as a basis for standardization� In

particular� the Anna speci
cation of the interface to the Distributed Ada Supervisor should

be of interest to the various committees and working groups involved in the de
nition of

a standard Ada runtime environment� Additionally� the TSL speci
cations form the basis

for a standard formal de
nition of Ada� A formal de
nition of the language would be a

powerful tool for establishing even more rigorous standards of compiler quality than are

possible with the current Ada Compiler Validation Capability �ACVC��

���� FUTURE WORK ���

��� Future Work

The most immediately useful and important area for future research is the completion of the

formal de
nition of Ada tasking in TSL� This can be accomplished through straightforward

application of the principles described in Chapter ��

There are also proposals for using the Distributed Ada Supervisor in the implementa�

tion of the formal speci
cation languages being developed by the Program Analysis and

Veri
cation Group of the Computer Systems Laboratory at Stanford University� All of the

proposals are directed toward reducing the interference of speci
cation checking on the ex�

ecution of application programs during runtime checking� In particular� the Supervisor will

be used to implement automatic runtime checking of Anna speci
cations in parallel with

the execution of the program whose behavior is being checked �RSL���� It will also be used

to build a distributed implementation of TSL� integration of the TSL Runtime System with

the Supervisor would also simplify the generation of TSL events at runtime� Finally� VAL

�VHDL Annotation Language� is being developed for the formal speci
cation of VHDL

hardware designs �AGH����� the Supervisor will be used for parallel design simulation and

for checking the consistency of a simulated design with its VAL speci
cation�

Other areas for future work in the short term include the completion of the Supervisor

design to handle the unimplemented features of Ada tasking� A more general area for future

work in the long term is the development of new paradigms for modeling concurrency� Both

these areas are discussed in detail below�

���� Remaining Ada Supervisor Design Details

As was mentioned in Chapter �� there are a few features of Ada tasking that are unaccounted

for in the design of the Distributed Ada Supervisor� Implementation of these features would

make the Supervisor more useful for real�time programs and other specialized concurrent

software applications� Additionally� a realistic scheme must be incorporated into the Su�

pervisor design for partitioning a program for e�cient distributed execution� Ideally� the

chosen scheme would divide the burden of partitioning between the compiler and the Super�

visor� Several partitioning algorithms� both static and dynamic� have been proposed �e�g��

Sarkar and Hennessy �SH����� In addition� the Supervisor could be enhanced to support dy�

namic migration of tasks between processors� the enhancements described in �Ros��� would

be required along with some atomic state update algorithms such as the ones described by

��� CHAPTER �� CONCLUSIONS

Theimer et al� �TLC����

The implementation of task priorities requires that the Supervisor have the capability

to pre empt and time�slice task executions� The implementation of time�slicing requires the

handling of asynchronous interrupts from timer hardware� As Ada compilers become more

�exible� the incorporation of the necessary interrupt handlers into the Supervisor scheduler

should be less of a problem than it was using the VERDIX compiler�

The compilation of rendezvous parameters for message�passing must e�ciently handle

all types of parameter values� including limited types� A more e�cient scheme of parameter

passing than the one described in Appendix E would use the facilities of an operating system

that o�ers good distributed memory copying features� such as the V System�

Appendix E also outlined some algorithms for compiling some of the more di�cult con�

gurations of Ada selective waits� such as selective waits with multiple accept statements

for the same entry or with multiple delay alternatives� Since the Supervisor allows at most

one accept alternative per task entry and at most one delay alternative to be considered

during execution of a selective wait� the compiled application program must choose a single

alternative before calling the ACCEPT BEGIN procedure� Thus� compilation of selective

waits must take these special cases into account in a suitable fashion�

The message�passing protocol of the Supervisor supports the propagation of exceptions

between tasks� However� no general transformations were given in Appendix E for catching

an exception that is raised in the middle of a rendezvous and passing it to the calling

task� The Supervisor currently only propagates TASKING ERROR when an entry call is

placed to a completed� terminated or abnormal task� and upon unsuccessful activation of

a dependent task� Since Ada provides no general source�level facility for determining the

name of an arbitrary propagated exception� exceptions and exception handlers must be

compiled into simpler sequential constructs so that a general exception propagation facility

can be incorporated into the Supervisor� Techniques described in �BR��� would be useful

for this purpose�

Finally� the remaining unimplemented portion of the Ada tasking semantics is the man�

agement of shared global variables� Ada discourages the use of global variables for intertask

communication� and indeed the semantics of shared variables in Ada are very weak� How�

ever� a minimum standard of behavior of shared variables is speci
ed by the Ada Language

Reference Manual and is required of all implementations� And despite Ada�s discourage�

ment of the use of shared global variables� programmers will nevertheless use them when

���� FUTURE WORK ���

more elegant solutions cannot be found�

Shared global variables can be accounted for in the Supervisor design in three ways�

First� a protocol for remotely accessing shared variables must be incorporated into the

Supervisor� a
rst implementation of this protocol could simply treat all shared global

variables as tasks which have a READ entry and a WRITE entry� Second� the algorithms

which partition a tasking program for distributed execution would consider data �ow and

data referencing patterns so as to assign tasks as often as possible to the same processor

as the data they access� Third� the Supervisor could exploit new schemes for implementing

virtual shared memory in distributed operating systems to make the management of shared

global variables transparent�

���� New Models of Concurrency

This thesis has exploited the event�based nature of concurrent computation in the develop�

ment of a methodology for automated consistency checking of just one class of concurrent

software� distributed tasking supervisors� The event�based view of concurrent computation

can be developed further by viewing the global event stream generated by the execution of

a concurrent program as a string of a formal language�

For example� path expressions have been proposed as a formalism for expressing syn�

chronization constraints of a concurrent program �CH���� path expressions are simply a form

of regular expression� It is highly probable that regular expressions are not powerful enough

for expressing other general classes of concurrency constraints� and that a richer class of

formal language would be needed� such as context�free languages �HU���� But by viewing

concurrent executions as strings of a formal language� a full array of automated techniques

for language recognition �such as parsers� could be applied to consistency checking of a

concurrent program�

Once concurrent programming becomes less of a black art and more of a rational science�

it will be possible to apply many successful ideas from other areas of computer science to

the development of concurrent programming languages� It is hoped that as the technology

develops� concurrent programmers will recognize the value of formal speci
cations as an aid

to both the design and testing of their software�

��� CHAPTER �� CONCLUSIONS

Appendix A

The Virtual Machine Interface

with GET NODE COUNT� �� Function returning from command line the

�� number of nodes desired for execution� if

�� negative� no message tracing is performed�

SYSTEM� �� Prede
ned Ada package�

CALENDAR� �� Prede
ned Ada package�

package NET SERVICES is

type BYTE is range � � � � �� SYSTEMSTORAGE UNIT � 	�

for BYTE�SIZE use SYSTEMSTORAGE UNIT�

type BYTE ARRAY is array �POSITIVE range ��� of BYTE�

��j where B	 � BYTE ARRAY �� B	�FIRST � 	�

type BYTE ARRAY REF is access BYTE ARRAY�

TEMP NODES � constant INTEGER �� GET NODE COUNT�

MAX NODES � constant NATURAL �� abs TEMP NODES�

MESSAGE TRACING � constant BOOLEAN �� TEMP NODES � ��

�� Domains of numerical identi
ers�

type NODE ID TYPE is new NATURAL range � � � MAX NODES � 	�

type OS PROCESS ID TYPE is new NATURAL�

type UNIQUE ID TYPE is new NATURAL�

�� Unique identi
er generation�

���

�� APPENDIX A� THE VIRTUAL MACHINE INTERFACE

function GET UNIQUE ID return UNIQUE ID TYPE�

procedure GET UNIQUE ID �MY ID � out UNIQUE ID TYPE��

�� Returns pointer to activation record corresponding to the scope

�� in which this function was called�

function CURRENT FRAME POINTER return SYSTEMADDRESS�

procedure TIME OUT �DELAY AMT � in DURATION��

��j where

�� Delay caller for DELAY AMT�

��j out �CALENDARCLOCK � in CALENDARCLOCK �� TIME OUT��

�� ASYNCHRONOUS SEND�caller not blocked� Send LENGTH bytes at

�� address MSG from node SOURCE to node DEST�

procedure SEND �MSG � in SYSTEMADDRESS�

LENGTH � in NATURAL�

SOURCE � in NODE ID TYPE�

DEST � in NODE ID TYPE��

�� SYNCHRONOUS RECEIVE�caller is blocked until message received�

�� Receive message destined for node DEST� Sender is at node SOURCE�

�� message is LENGTH bytes stored at address MSG�

procedure RECEIVE �MSG � out SYSTEMADDRESS�

LENGTH � out NATURAL�

SOURCE � out NODE ID TYPE�

DEST � in NODE ID TYPE��

�� Create an OS�level process for execution on a di�erent CPU�

function CREATE OS PROCESS

�PROC ID � in NATURAL�

PROC NODE � in NODE ID TYPE�

���

START ADDR � in SYSTEMADDRESS�

FRAME PTR � in SYSTEMADDRESS�

STACK SIZE � in POSITIVE�

PROC PRIORITY � in SYSTEMPRIORITY ��

SYSTEMPRIORITY�FIRST�

return PROCESS ID TYPE�

�� Terminate OS�level process number PID�

procedure DESTROY OS PROCESS �PID � in PROCESS ID TYPE��

�� Create a lightweight process for scheduling within the OS�level

�� process of the caller�

procedure CREATE LOCAL PROCESS

�PROC ID � in NATURAL�

PROC NODE � in NODE ID TYPE�

START ADDR � in SYSTEMADDRESS�

FRAME PTR � in SYSTEMADDRESS�

STACK SIZE � in POSITIVE�

PROC PRIORITY � in SYSTEMPRIORITY ��

SYSTEMPRIORITY�FIRST��

�� Suspend the lightweight process of the caller�

procedure SUSPEND LOCAL PROCESS�

�� Terminate the lightweight process of the caller�

procedure TERMINATE LOCAL PROCESS�

�� Declaration of LOCK type� similar to a semaphore�

�� subprograms are self�explanatory�

type LOCK is limited private�

LOCK IS UNINITIALIZED � exception�

��� function IS INITIALIZED �L � in LOCK� return BOOLEAN�

��	 APPENDIX A� THE VIRTUAL MACHINE INTERFACE

function IS LOCKED �L � in LOCK� return BOOLEAN�

��j where

��j not IS INITIALIZED �L� �� raise LOCK IS UNINITIALIZED�

procedure INITIALIZE �L � in out LOCK��

��j where

��j out IS INITIALIZED �L��

��j out �not IS LOCKED �L���

��j out �in IS INITIALIZED �in L� �� L �� in L and not IS INITIALIZED �in L���

procedure FINALIZE �L � in out LOCK��

��j where

��j out �not IS INITIALIZED �L���

��j not IS INITIALIZED �L� �� raise LOCK IS UNINITIALIZED�

procedure ACQUIRE �L � in out LOCK��

��j where

��j out IS LOCKED �L��

��j not IS INITIALIZED �L� �� raise LOCK IS UNINITIALIZED�

procedure CONDITIONAL ACQUIRE �L � in out LOCK��

��j where

��j out IS LOCKED �L��

��j out �SUCCESS ��� not in IS LOCKED �in L���

��j not IS INITIALIZED �L� �� raise LOCK IS UNINITIALIZED�

procedure RELEASE �L � in out LOCK��

��j where

��j out �not IS LOCKED �L���

��j not IS INITIALIZED �L� �� raise LOCK IS UNINITIALIZED�

��j axiom

��j for all N	� N� � NET SERVICES�TYPE�

���

��j U	 � UNIQUE ID TYPE ��

�� Function GET UNIQUE ID behaves exactly like procedure

�� GET UNIQUE ID� the former returning the out�value of

�� the latter�s MY ID parameter�

��j N	GET UNIQUE ID�OUT �MY ID �� U	�MY ID �

��j N	GET UNIQUE ID�

�� GET UNIQUE ID returns the NATURAL numbers in a monotonically

�� increasing sequence�

��j N	 �GET UNIQUE ID�GET UNIQUE ID � N	GET UNIQUE ID � 	�

�� GET UNIQUE ID never returns the same value twice�

��j N	 �� N� ��� N	GET UNIQUE ID �� N�GET UNIQUE ID�

private

�� Implementation of LOCK type�

type LOCK IMPL� �� De
ned in NET SERVICES body�

type LOCK is access LOCK IMPL�

end NET SERVICES�

��� APPENDIX A� THE VIRTUAL MACHINE INTERFACE

Appendix B

Ada Supervisor Kernel

Algorithms

B�� The SEND Algorithm

procedure SEND MESSAGE �MSG � in out SUPERVISOR MSG�

MY NODE � in NODE ID TYPE� is

�� The MSG SOURCE NODE and CURRENT SENDERS MASTER

�� components of MSG are
lled in by SEND MESSAGE� all other

�� components of MSG must be initialized prior to calling

�� SEND MESSAGE�

��

�� Assume visibility here of the following� low�level message SEND

�� procedure whose parameters are a message and a destination

�� node address� visibility of local and global task maps for this

�� supervisor copy� global task map subprogram NODE ADDRESS� which

�� returns the node address of the input task� local task map subprogram

�� MASTER TASK� which returns the name of the master of the input

�� �local� task�

begin

MSGMSG SOURCE NODE �� MY NODE�

if MSGMSG DEST has an entry in the GLOBAL TASK MAP then

if NODE ADDRESS �MSGMSG DEST� � MY NODE then

���

��� APPENDIX B� ADA SUPERVISOR KERNEL ALGORITHMS

�� MSG DEST is a local task�

Place MSG in an appropriate �eld of the local

task map entry for MSG�MSG DEST �

else �� MSG DEST is not a local task�

�� Forward message to MSG DEST�

SEND �MSG� NODE ADDRESS �MSGMSG DEST���

end if�

else �� MSG DEST is not in the global task map�

�� Set the CURRENT SENDERS MASTER
eld�

MSGCURRENT SENDERS MASTER ��

MASTER TASK �MSGMSG SOURCE��

�� Find the closest remote ancestor of MSG SOURCE�

while NODE ADDRESS �MSGCURRENT SENDERS MASTER� �

MY NODE loop

MSGCURRENT SENDERS MASTER ��

MASTER TASK �MSGCURRENT SENDERS MASTER��

end loop�

SEND �MSG� NODE ADDRESS �MSGCURRENT SENDERS MASTER���

end if�

end SEND MESSAGE�

B�� The Routing and Receiving Algorithm

task RECEIVE AND PROCESS MESSAGES�

task body RECEIVE AND PROCESS MESSAGES is

�� Assume visibility here of the following� low�level message SEND

�� procedure whose parameters are a message and a destination node

�� address� low�level message RECEIVE procedure whose parameter

�� is a pointer to a message� visibility of local and global task

�� maps for this supervisor copy� global task map subprogram

�� NODE ADDRESS� which returns the node address of the

�� input task� local task map subprogram MASTER TASK� which

B��� THE ROUTING AND RECEIVING ALGORITHM ���

�� returns the name of the master of the input �local� task� local

�� constant MY NODE�

TEMP MSG � SUPERVISOR MSG REF�

begin

loop

�� RECEIVE blocks until a message arrives�

RECEIVE �TEMP MSG��

Update the global map with an entry for TEMP MSG�MSG SOURCE

using the value of TEMP MSG�MSG SOURCE NODE�

if TEMP MSGMSG DEST has an entry in the global map then

if �NODE ADDRESS �TEMP MSGMSG DEST�� �

MY NODE then

�� MSG DEST is a local task�

Place TEMP MSG�all in an appropriate �eld of the

local task map entry for TEMP MSG�MSG DEST �

else �� MSG DEST is not a local task�

�� Forward the message to MSG DEST�

SEND �TEMP MSGall�

NODE ADDRESS �TEMP MSGMSG DEST���

end if�

else �� MSG DEST is not in the global task map�

�� Update the CURRENT SENDERS MASTER
eld�

TEMP MSGCURRENT SENDERS MASTER ��

MASTER TASK �TEMP MSGCURRENT SENDERS MASTER��

�� Find the closest remote ancestor of MSG SOURCE�

while NODE ADDRESS �TEMP MSGCURRENT SENDERS MASTER� �

MY NODE loop

TEMP MSGCURRENT SENDERS MASTER ��

MASTER TASK �TEMP MSGCURRENT SENDERS MASTER��

end loop�

SEND �TEMP MSGall�

NODE ADDRESS �TEMP MSGCURRENT SENDERS MASTER���

end if�

��� APPENDIX B� ADA SUPERVISOR KERNEL ALGORITHMS

end loop�

end RECEIVE AND PROCESS MESSAGES�

Appendix C

Ada Supervisor Messages

C�� The Supervisor Message Type

type MESSAGE CLASS is

�CALL MSG� �� Entry call�

RETURN MSG� �� End rendezvous�

ACCEPT MSG� �� Accept statement�

CONFIRM MSG� �� Begin rendezvous�

ABORT CALL MSG� �� Cancel entry call�

ATTR REQ MSG� �� Request attribute value�

ATTR REPLY MSG� �� Returned attribute value�

TERM CONFIRM MSG� �� Permission to execute a terminate alternative�

EXCEPTION MSG� �� Propagate exception�

DEPENDENT MSG� �� Remote activation of dependent�

NEW TASK MSG� �� Remote scheduling of dependent�

TYPED TASK MSG� �� Declaration of an object of a named task type�

ACTIVE MSG� �� End of task activation�

COMPLETE MSG� �� Task termination�

AT TERM MSG� �� Waiting at a terminate alternative�

ELABORATE MSG� �� Permission to begin elaboration�

ABORT TASK MSG� �� Abort a task�

ABORT REPLY MSG� �� Task was aborted�

TERM REQ MSG� �� Request permission to execute a

���

�� APPENDIX C� ADA SUPERVISOR MESSAGES

�� terminate alternative�

DEPENDENT REPLY MSG �� Reply to DEPENDENT MSG�

��

type SUPERVISOR MESSAGE TYPE �CLASS � MESSAGE CLASS �� CALL MSG�

BYTE COUNT � NATURAL �� �� is

record

MSG SOURCE � TASK NAME�

MSG DEST � TASK NAME�

MSG SOURCE NODE � NET SERVICESNODE ID TYPE�

CURRENT SENDERS MASTER � TASK NAME�

case CLASS is

when CALL MSG ��

CALL E DEST � ENTRY NAME�

CALL ID � NET SERVICESUNIQUE ID TYPE�

when ACCEPT MSG ��

ACCEPT ID � NET SERVICESUNIQUE ID TYPE�

when CONFIRM MSG ��

CONFIRM E DEST � ENTRY NAME�

CONFIRM ID � NET SERVICESUNIQUE ID TYPE�

CONFIRM DATA � PARAM LIST �	 � � BYTE COUNT��

when RETURN MSG ��

RETURN E SOURCE � ENTRY NAME�

RETURN DATA � PARAM LIST �	 � � BYTE COUNT��

when ABORT CALL MSG ��

ABORT E DEST � ENTRY NAME�

ABORT ID � NET SERVICESUNIQUE ID TYPE�

when ATTR REQ MSG ��

CALLABLE MSG � BOOLEAN� �� TRUE � CALLABLE�

�� FALSE � TERMINATED

when ATTR REPLY MSG ��

ATTR VALUE � BOOLEAN�

when TERM CONFIRM MSG ��

CONFIRMED � BOOLEAN�

C��� THE SUPERVISOR MESSAGE TYPE ���

when EXCEPTION MSG ��

EXCEPTION NAME � STRING �	 � � BYTE COUNT��

when DEPENDENT MSG ��

DEPENDENT NAME � TASK NAME�

DEPENDENT NODE � NET SERVICESNODE ID TYPE�

MASTER SCOPE � SCOPE NUMBER TYPE�

when NEW TASK MSG ��

NEW TASK ENTRY ADDRESS � SYSTEMADDRESS�

NEW TASK FRAME PTR � SYSTEMADDRESS�

NEW TASK STACK SIZE � POSITIVE�

NEW TASK ENTRY COUNT � ENTRY NAME�

NEW TASK PRIORITY � SYSTEMPRIORITY�

NEW TASK MASTER � TASK NAME�

NEW TASK MASTER NODE � NET SERVICESNODE ID TYPE�

when TYPED TASK MSG ��

TYPED TASK NAME � TASK NAME�

TYPED TASK NODE � NET SERVICESNODE ID TYPE�

when others ��

null�

end case�

end record�

��j where M � SUPERVISOR MESSAGE TYPE ��

�� Messages are never sent from a task to itself�

��j MMSG SOURCE �� MMSG DEST and

�� A task can never be its own dependent�

��j if MCLASS � DEPENDENT MSG then

��j MDEPENDENT NAME �� MMSG SOURCE and

��j MDEPENDENT NAME �� MMSG DEST

�� EXCEPTION NAME is a legal Ada identi
er�

��j elsif MCLASS � EXCEPTION MSG then

��j MBYTE COUNT � � and

��j �MEXCEPTION NAME �	� in �a� � � �z� or

��	 APPENDIX C� ADA SUPERVISOR MESSAGES

��j MEXCEPTION NAME �	� in �A� � � �Z�� and

��j �for all I � 	 � � BYTE COUNT ��

��j MEXCEPTION NAME �I� � � � or

��j MEXCEPTION NAME �I� in ��� � � ��� or

��j MEXCEPTION NAME �I� in �a� � � �z� or

��j MEXCEPTION NAME �I� in �A� � � �Z�� and

��j �for all I � 	 � � BYTE COUNT � 	 ��

��j MEXCEPTION NAME �I � � I � 	� �� � �� and

��j MEXCEPTION NAME �BYTE COUNT� �� � �

��j else

��j TRUE

��j end if�

C�� Task Execution Status Types

type TASK STATUS is

�� The meanings of these should be obvious except where noted�

�UNBORN� RUN DCL� WAIT TO ACTIVATE� RUN BODY� COMPLETED�

ABNORMAL� TERMINATED� DELAYED�

RUN CRITICAL� �� i�e�� executing an accept statement�

WAIT FOR RETURN� �� i�e�� wait for end of rendezvous�

WAIT FOR ENTRY� WAIT FOR ENTRY OR TERMINATE� WAIT FOR ACCEPT�

WAIT FOR CONFIRMATION� WAIT FOR TERMINATE CONFIRMATION��

type DEPENDENT STATUS is �� These values are described in Section ���

�AWAITING ACTIVATION� ACTIVATED� AWAITING TERMINATION� TERMINATED�

AWAITING TERMINATION CONFIRMATION� PENDING TERMINATION��

Appendix D

A Distributed Algorithm for the

Terminate Alternative

The agent serving a task T that is executing a selective wait with an open terminate

alternative executes the following algorithm� assume that M is the master of T�

�� If there are no waiting calls to the selected entries� and if no dependent of T is either

AWAITING ACTIVATION or ACTIVATED� then send an AT TERM MSG to M�

Change the status of T to WAIT FOR ENTRY TERMINATE� T is now awaiting

CALL MSGs from callers and a TERM CONFIRM MSG from M�

	� If the status of T is WAIT FOR ENTRY TERMINATE� and if a CALL MSG �i�e��

an entry call� arrives at an entry which T is selecting� then send a TERM REQ MSG

to M � change the status of T to WAIT FOR TERMINATE CONFIRMATION� and

await a TERM CONFIRM MSG from M�

�� Whenever a TERM CONFIRM MSG is received from M � then

�a� If the CONFIRMED component is set to TRUE� change the status of T to

COMPLETED and indicate permission to execute the terminate alternative�

this indication is transmitted to T in out�mode parameters of the supervisor

procedure ACCEPT BEGIN �see Section �������

�b� If the CONFIRMED component is set to FALSE� then it is a consequence of the

algorithm that the status of T must be WAIT FOR TERMINATE CONFIR�

MATION� Thus� T is waiting to accept a call that arrived� Change the status of

���

��� APPENDIX D� TERMINATE ALTERNATIVE ALGORITHM

T to WAIT FOR CONFIRMATION and send an ACCEPT MSG to the calling

task�

In addition� the supervisor copies perform the following algorithm at all times�

�� If a taskM becomes COMPLETED� and if no dependent of M is AWAITING ACTI�

VATION or ACTIVATED� then send a TERM CONFIRM MSG with CONFIRMED

set to TRUE to all dependents that are either AWAITING TERMINATION CON�

FIRMATION or AWAITING TERMINATION� and change the status of these de�

pendents to PENDING TERMINATION�

	� If a task M receives a COMPLETE MSG from a dependent task T �indicating ter�

mination of T�� and if the status of T in M �s local map entry was previously AC�

TIVATED� and if no other dependent of M is AWAITING ACTIVATION or ACTI�

VATED then

�a� If the status of M is COMPLETED� send a TERM CONFIRM MSG to all

dependents that are AWAITING TERMINATION or AWAITING TERMINA�

TION CONFIRMATION� and change the status of such dependents to PEN�

DING TERMINATION� In this message� CONFIRMED must be set to TRUE�

�b� Otherwise� if the status of M is WAIT FOR ENTRY TERMINATE� then send

an AT TERM MSG to M �s master�

�� If a task M receives an AT TERM MSG from a dependent task T� change the status

of T in M �s local map entry to AWAITING TERMINATION� If no dependent of M

is AWAITING ACTIVATION or ACTIVATED then

�a� If the status of M is COMPLETED� send a TERM CONFIRM MSG to all

dependents that are AWAITING TERMINATION or AWAITING TERMINA�

TION CONFIRMATION� and change the status of such dependents to PEN�

DING TERMINATION� In this message� CONFIRMED must be set to TRUE�

�b� Otherwise� if the status of M is WAIT FOR ENTRY TERMINATE� then send

an AT TERM MSG to M �s master�

�� If a task M receives a TERM REQ MSG from a dependent task T then change the

status of T in M�s local map entry to AWAITING TERMINATION CONFIRMA�

TION and

���

�a� If the status of M is WAIT FOR ENTRY TERMINATE� and if no dependent

of M is AWAITING ACTIVATION or ACTIVATED� send a TERM REQ MSG

to the master of M and await a TERM CONFIRM MSG in reply� Change the

status of M to WAIT FOR TERMINATE CONFIRMATION�

�b� Otherwise� if the status of M is WAIT FOR TERMINATE CONFIRMATION�

then await a TERM CONFIRM MSG reply from the master of M�

�c� Otherwise� if the status ofM is COMPLETED� send a TERM CONFIRM MSG

with CONFIRMED set to TRUE to all dependents that are AWAITING TER�

MINATION CONFIRMATION or AWAITING TERMINATION� and change

the status of all such dependents to PENDING TERMINATION�

�d� Otherwise send a TERM CONFIRM MSG with CONFIRMED set to FALSE to

all dependents that are AWAITING TERMINATION CONFIRMATION� and

change the status of all such dependents to ACTIVATED�

�� If a TERM CONFIRM MSG is received from the master of a task M� then

�a� If the value of the CONFIRMED component is set to TRUE� then change the

status of M to COMPLETED� Send a TERM CONFIRM MSG with CON�

FIRMED set to TRUE to each dependent that is either AWAITING TERMI�

NATION CONFIRMATION or AWAITING TERMINATION� and change the

status of these dependents in M �s local map entry to PENDING TERMINA�

TION�

�b� If the value of the CONFIRMED component is set to FALSE� then send a

TERM CONFIRM MSG� with the CONFIRMED component set to FALSE� to

each dependent that is AWAITING TERMINATION CONFIRMATION� and

change the status of these dependents to ACTIVATED� Change the status

of M to WAIT FOR CONFIRMATION if its status was WAIT FOR TERMI�

NATE CONFIRMATION� and continue with the rendezvous message sequence

with M�s caller�

��� APPENDIX D� TERMINATE ALTERNATIVE ALGORITHM

Appendix E

The Supervisor Preprocessor

Although no automatic preprocessor was implemented for transforming application pro�

grams to use the Distributed Ada Supervisor� it can be implemented by straightforward

application of the principles described in �Ros���� This appendix describes the source trans�

formations that were performed manually to enable testing the Supervisor�

The transformations are described as Before�After examples in the manner of Helmbold

and Luckham �HL���� They are described in order of syntax presentation in the Ada

Language Reference Manual� The transformations are described as they would be applied to

tasks and subprograms other than the environment task or main program� Each Supervisor

subprogram has formal parameters called MY NAME and MY NODE� For transformations

within the declarative regions of tasks and subprograms other than the environment task and

main program� the values that are passed as actual parameters for these formal parameters

are always MY NAME and MY NODE� respectively� For transformations directly within

the declarative regions of the environment task �e�g�� for the declaration of a library task�

or main program �e�g�� for the declaration of a dependent task of the main program�� the

actual parameters would instead be MAIN ID and MAIN NODE� respectively� In addition�

italicized names are used in the transformations in some cases to informally describe values

that are passed as actual parameters to Supervisor subprograms� Finally� named parameter

association is used for all subprogram calls within the transformation descriptions as a

reminder of the purpose of each parameter�

���

��� APPENDIX E� THE SUPERVISOR PREPROCESSOR

��� Task Speci	cations and Task Bodies

Single task declarations and task type declarations are transformed to procedure declara�

tions� task bodies are transformed to procedure bodies� The Supervisor �calls� the proce�

dures to activate them as tasks� First consider the transformation of single tasks� The task

declaration is transformed to a procedure declaration followed by a call to the Supervisor

function CHILD TASK� which generates an identi
er for the task� the value of this identi
er

is assigned to a variable that is used by other tasks to refer to the newly declared task�

�� Original source text�SINGLE TASK DECLARATION�

task T is

ENTRY LIST �

end T�

�� Transformed source text�

procedure T BODY

�MY NAME � in TASK NAME�

DUMMY NODE � in NET SERVICESNODE ID TYPE��

T � constant TASK NAME ��

CHILD TASK

�MY NAME �� MY NAME�

MASTER NAME �� MY NAME�

ENTRY COUNT �� CARDINALITY OF ENTRY LIST �

MASTER SCOPE �� CURRENT SCOPE�

DEP ENTRY ADDR �� T BODY�ADDRESS�

GLOBAL FRAME PTR �� MY FRAME POINTER�

MY NODE �� MY NODE��

As will always be the case� the original name of a task will be preserved by the trans�

formations so that no �using� occurrences of a task name need be transformed� For this

reason� the name of the body of a single task will have � BODY � appended to the original

task name�

In determining the cardinality of a list of entries� each single entry is counted once and

each member of an entry family is counted once� For example� the cardinality of the entry

���� TASK SPECIFICATIONS AND TASK BODIES ���

list

entry A�

entry B �CHARACTER range �a� � � �z���

entry C �	 � � 	���

entry D�

can be computed by the expression

	 � �� Entry A�

�BOOLEAN�POS ��z� � �a�� � �� Family B�

��CHARACTER�POS ��z�� �

CHARACTER�POS ��a��� � 	�� �

�BOOLEAN�POS �	� � 	� � ��	� � 	� � 	�� � �� Family C�

	 �� Entry D�
Note that if an entry family declaration contains an empty range of index values� the

BOOLEAN�POS evaluation will cause the range size to be multiplied by zero� giving a

cardinality of zero for the empty family�

The transformation of a task type declaration is similar to the transformation of a single

task declaration� the di�erence being that a frame pointer variable is declared instead of a

task identi
er�

�� Original source text�TASK TYPE DECLARATION�

task type TT is

ENTRY LIST �

end TT�

�� Transformed source text�

procedure TT �MY NAME � in TASK NAME�

DUMMY NODE � in NET SERVICESNODE ID TYPE��

TT FRAME POINTER � SYSTEMADDRESS

renames MY FRAME POINTER�

The frame pointer is the address of the activation record for the scope enclosing the

declaration of the body of the task type� this frame corresponds to the innermost scope

that is visible inside the body�

�� APPENDIX E� THE SUPERVISOR PREPROCESSOR

Finally� a task body is transformed to a procedure body with several new variables and

supervisor calls added�

�� Original source text�TASK BODY DECLARATION�

task body T is

DECLARATIONS �

begin

STATEMENTS �

exception

when SOME EXCEPTION ��

SOME EXCEPTION HANDLER �

end T�

�� Transformed source text�

procedure T �MY NAME � in TASK NAME�

DUMMY NODE � in NET SERVICESNODE ID TYPE� is

MY NODE � NET SERVICESNODE ID TYPE ��

ELABORATE TASK �MY NAME �� MY NAME�

MY NODE �� DUMMY NODE��

MY FRAME POINTER � SYSTEMADDRESS ��

NET SERVICESCURRENT FRAME POINTER�

CURRENT SCOPE � constant SCOPE NUMBER TYPE �� ��

ACCEPTED� ABORTED � BOOLEAN�

IN PARAMS� OUT PARAMS � PARAM LIST REF�

ACCEPT INDEX � NATURAL

range 	 � � CARDINALITY OF ENTRY LIST � ��

DECLARATIONS �

begin

ACTIVATE TASK �MY NAME �� MY NAME�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

if ABORTED then

���� TASK SPECIFICATIONS AND TASK BODIES ���

goto END OF SCOPE ��

end if�

STATEMENTS �

��END OF SCOPE ���

TERMINATE TASK �MY NAME �� MY NAME�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

exception

when SOME EXCEPTION ��

SOME EXCEPTION HANDLER �

TERMINATE TASK �MY NAME �� MY NAME�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

when others ��

TERMINATE TASK �MY NAME �� MY NAME�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

end T�

The three calls introduced by this transformation are a call to ELABORATE TASK

�to synchronize the beginning of activation with the master reaching its begin�� a call to

ACTIVATE TASK �to inform the master of the end of activation�� and calls to TERMI�

NATE TASK �to terminate the thread of control�� Notice that calls to TERMINATE TASK

are added to each exception handler� and an others handler is added if it does not oth�

erwise exist� Except for the call to ELABORATE TASK� MY NAME and MY NODE

are parameters to every supervisor call made by the task� MY FRAME POINTER and

CURRENT SCOPE are used in the declaration of dependent tasks� ABORTED is used in

most supervisor calls to test for abnormality� ACCEPTED� IN PARAMS� OUT PARAMS

and ACCEPT INDEX are used in transformed entry calls� accept statements and select

statements� their use will be described further below�

��	 APPENDIX E� THE SUPERVISOR PREPROCESSOR

��� Task Types and Task Objects

Declarations of tasks within object declarations are transformed to calls to CHILD TASK�

the transformations are shown assuming the existence of a previously declared task type

called TT�

�� Original source text�DECLARATION OF TASK OBJECTS�

TT OBJECT � TT�

TT ARRAY � array �discrete ranges� of TT�

type TT REC is

record

TT COMPONENT � TT�

end record�

TT RECORD � TT REC�

�� Transformed source text�

TT OBJECT � constant TASK NAME ��

CHILD TASK

�MY NAME �� MY NAME�

MASTER NAME �� MY NAME�

ENTRY COUNT �� CARDINALITY OF ENTRY LIST �

MASTER SCOPE �� CURRENT SCOPE�

DEP ENTRY ADDR �� TT�ADDRESS�

GLOBAL FRAME PTR �� TT FRAME POINTER�

MY NODE �� MY NODE��

TEMP TT ARRAY � constant

TASK NAME ARRAY �� � � CARDINALITY OF TT ARRAY � ��

CHILD TASK

�MY NAME �� MY NAME�

MASTER NAME �� MY NAME�

DEPENDENT COUNT �� CARDINALITY OF TT ARRAY�

���� TASK TYPES AND TASK OBJECTS ���

ENTRY COUNT �� CARDINALITY OF ENTRY LIST �

MASTER SCOPE �� CURRENT SCOPE�

DEP ENTRY ADDR �� TT�ADDRESS�

GLOBAL FRAME PTR �� TT FRAME POINTER�

MY NODE �� MY NODE��

TT ARRAY � constant array �discrete ranges� of

TASK NAME �� REMAP �TEMP TT ARRAY��

type TT REC is

record

TT COMPONENT � TASK NAME�

end record�

TT RECORD � TT REC �� �TT COMPONENT ��

CHILD TASK

�MY NAME �� MY NAME�

MASTER NAME �� MY NAME�

ENTRY COUNT �� CARDINALITY OF ENTRY LIST �

MASTER SCOPE �� CURRENT SCOPE�

DEP ENTRY ADDR �� TT�ADDRESS�

GLOBAL FRAME PTR �� TT FRAME POINTER�

MY NODE �� MY NODE���

In the transformation above� the cardinality of TT ARRAY is equal to the product

of the cardinalities of the individual discrete ranges� these values may be calculated as

was done for the cardinality of entry families� The REMAP operation can be any one�to�

one mapping of values from the one�dimensional array TEMP TT ARRAY to the multi�

dimensional array TT ARRAY� The REMAP operation is necessitated by the fact that it

is much more e�cient to initiate all of the components of TT ARRAY with a single call to

CHILD TASK� which can initiate the tasks in parallel�

The transformations for objects and record subcomponents of named array types are

identical to the transformation shown above for the object TT ARRAY of an anonymous

array type� Notice that in the case of objects and subcomponents of a task type� the

activating thread of control is also the master thread of control� thus� MY NAME is used for

��� APPENDIX E� THE SUPERVISOR PREPROCESSOR

the
rst two parameters� The innermost enclosing scope for the new tasks is accessible using

TT FRAME POINTER� which would have been declared for type TT as in the previous

section�

Allocators of an access type whose designated subtype is a task type are also transformed

to calls to the CHILD TASK function� while such access types themselves are modi
ed to

have TASK NAME as their designated subtype� The transformations shown below again

assume the existence of a previously declared task type called TT�

�� Original source text�ACCESS TYPES DESIGNATING A

�� TASK TYPE�

declare

type TT ACC is access TT�

TT ACCESS � TT ACC�

begin

TT ACCESS �� new TT�

end�

�� Transformed source text�

declare

type TT ACC is access TASK NAME�

TT ACC MASTER � TASK NAME renames MY NAME�

TT ACC SCOPE � SCOPE NUMBER TYPE

renames CURRENT SCOPE�

TT ACCESS � TT ACC�

begin

TT ACCESS �� new TASK NAME�

�CHILD TASK

�MY NAME �� MY NAME�

MASTER NAME �� TT ACCESS MASTER�

ENTRY COUNT �� CARDINALITY OF ENTRY LIST�

MASTER SCOPE �� TT ACCESS SCOPE�

DEP ENTRY ADDR �� TT�ADDRESS�

GLOBAL FRAME PTR�� TT FRAME POINTER�

��	� TASK EXECUTION�TASK ACTIVATION ���

MY NODE �� MY NODE�

IMMEDIATE �� TRUE�

PRE BODY �� FALSE���

end�

The transformation for the allocator is used for all allocators for the access type� The

transformations extend in the obvious way for arrays and records containing components of

such access types� If such an allocator appears prior to the declaration of the corresponding

task body� the PRE BODY parameter in the call to CHILD TASK must be TRUE instead

of FALSE�

��� Task ExecutionTask Activation

No transformations are required�

��� Task DependenceTermination of Tasks

The
rst section of this appendix showed how the outermost scope of a task body is trans�

formed to use the Distributed Ada Supervisor� In general� every declarative region of an

Ada program requires transformation so that the activation and termination of dependents

of each such scope may be synchronized correctly according to the semantics of Ada� The

following transformation applies to all subprogram bodies� packages and block statements�

the transformation is shown for a block statement�

�� Original source text�DECLARATIVE REGIONS�

declare

DECLARATIONS �

begin

STATEMENTS �

end�

�� Transformed source text�

declare

��� APPENDIX E� THE SUPERVISOR PREPROCESSOR

MY FRAME POINTER � SYSTEMADDRESS ��

NET SERVICESCURRENT FRAME POINTER�

CURRENT SCOPE � constant SCOPE NUMBER TYPE ��

ENTER NEW SCOPE �MY NAME �� MY NAME�

MY NODE �� MY NODE��

IN PARAMS� OUT PARAMS � PARAM LIST REF�

ACCEPTED � BOOLEAN�

ABORTED � BOOLEAN� �� Not inserted in outermost

�� declarative parts of

�� subprograms�

DECLARATIONS �

begin

ACTIVATE TASK �MY NAME �� MY NAME�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

if ABORTED then

goto END OF SCOPE n�

end if�

STATEMENTS �

��END OF SCOPE n��

TERMINATE TASK �MY NAME �� MY NAME�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

exception

when SOME EXCEPTION ��

SOME EXCEPTION HANDLER �

TERMINATE TASK �MY NAME �� MY NAME�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

when others ��

TERMINATE TASK �MY NAME �� MY NAME�

ABORTED �� ABORTED�

��� TASK DEPENDENCE�TERMINATION OF TASKS ���

MY NODE �� MY NODE��

end�

Note that the ABORTED variable is not inserted in the outermost declarative parts of

subprograms� since subprograms are transformed to have an ABORTED parameter �see

below��

In the case of a package� a dummy body is supplied if the package has no body� for the

purposes of the transformation� the declarative part of the package begins at the beginning

of the package visible part and ends at the end of the declarative part of the package body�

The sequence of statements of the package body is the sequence of statements to which the

transformation is applied�

Since the labels within a program unit �subprograms� packages� tasks� generic units�

must be unique� END OF SCOPE labels are generated during transformation by sequen�

tially numbering the scopes within the source text of the program unit� this is the purpose

of the n value appearing in the label of the above transformation� The outermost scope is

numbered zero�

Subprogram declarations� subprogram bodies �except for the main program� and sub�

program calls require one extra transformation in their parameter parts� so that the task

calling a subprogram can be identi
ed correctly�

�� Original source text�SUBPROGRAM PARAMETERS�

declare

� � �

procedure P �FORMALS��

� � �

begin

� � �

P �ACTUALS��

� � �

end�

�� Transformed source text�

declare

� � �

��� APPENDIX E� THE SUPERVISOR PREPROCESSOR

procedure P �MY NAME � in TASK NAME�

MY NODE � in out NODE ID TYPE�

ABORTED � in out BOOLEAN�

FORMALS��

� � �

begin

� � �

P �MY NAME �� MY NAME�

MY NODE �� MY NODE�

ABORTED �� ABORTED�

FORMALS �� ACTUALS��

if ABORTED then

goto END OF SCOPE n�

end if�

� � �

end�

The transformation of the parameter part of a subprogram body is identical to the trans�

formation shown above for the subprogram declaration� Since functions may only have mode

in formal parameters� the two in out�mode parameters of the procedure transformation

appear as in�mode parameters of an access type for NODE ID TYPE and BOOLEAN�

Renaming declarations are provided for the objects designated by these pointers so that no

special form of the other transformations need be performed inside functions�

Scopes may also be exited through execution of an exit statement� a return statement

or a goto statement� The transformation for such cases requires the insertion of one or more

calls to TERMINATE TASK� The transformation is shown below for a return statement�

but it is identical to the transformation for exits and gotos�

�� Original source text�SCOPE EXITS�

return X�

�� Transformed source text�

TERMINATE TASK �MY NAME �� MY NAME�

ABORTED �� ABORTED�

���� ENTRIES� ENTRY CALLS� AND ACCEPT STATEMENTS ���

MY NODE �� MY NODE��

� � �

TERMINATE TASK �MY NAME �� MY NAME�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

return X�

The number of calls that are inserted is equal to the number of scopes that are being

exited� this number can be determined from static examination of the source text�

��� Entries� Entry Calls� and Accept Statements

Transformation of simple entry calls and accept statements are special cases of the trans�

formation of timed entry calls and selective waits and are shown in sections below�

��� Delay Statements� Duration and Time

A simple delay statement �i�e�� one not appearing as the
rst statement of a delay alter�

native of a select statement� is transformed to a call to the DELAY TASK procedure as

follows�

�� Original source text�SIMPLE DELAY STATEMENT�

delay DELAY AMOUNT �

�� Transformed source text�

DELAY TASK �MY NAME �� MY NAME�

A WHILE �� DELAY AMOUNT �

ABORTED �� ABORTED�

MY NODE �� MY NODE��

if ABORTED then

goto END OF SCOPE n�

end if�

�� APPENDIX E� THE SUPERVISOR PREPROCESSOR

��� Select Statements

��
�� Selective Waits

A selective wait has k �where k �� accept alternatives� In addition a selective wait

may optionally have one or more delay alternatives� or a single terminate alternative�

or an else part� these three optional parts are mutually exclusive� Selective waits are

transformed into a call to the Supervisor procedure ACCEPT BEGIN� followed by a call to

the ACCEPT END procedure if an accept alternative is selected� For the transformation

shown below� each of the k � � alternatives is numbered consecutively from � to k � ��

these numbers are the index numbers �the value of the formal parameter INDICES� which

ACCEPT BEGIN chooses from to indicate which alternative was selected� The chosen

index number is then used as the switch value for a case statement which follows the call

to ACCEPT BEGIN� The transformation shown below is for a selective wait with a single

delay alternative� assume that MY NAME has declared n entries�

�� Original source text�SELECTIVE WAITS�

select

when GUARD � ��

accept E	 �FORMALS �� do

STATEMENTS � a�

end E	�

STATEMENTS � b�

or

� � �

or

when GUARD k ��

accept Ek �FORMALS k� do

STATEMENTS k a�

end Ek�

STATEMENTS k b�

or

when GUARD other ��

delay TIME OUT �

STATEMENTS other �

���� SELECT STATEMENTS ���

end select�

�� Transformed source text�

ACCEPT BEGIN �MY NAME �� MY NAME�

GUARDS �� �POSITION OF E� �� GUARD ��

� � ��

POSITION OF Ek �� GUARD k�

N � 	 �� GUARD other�

OTHER POSITIONS �� FALSE��

INDICES �� �POSITION OF E� �� 	�

� � ��

POSITION OF Ek �� k�

N � 	 �� k � 	�

OTHER POSITIONS �� ���

TIME OUT �� TIME OUT�

TERM ALT �� FALSE�

IN PARAMS �� IN PARAMS�

INDEX �� ACCEPT INDEX�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

if ABORTED then

goto END OF SCOPE n�

end if�

case ACCEPT INDEX is

when 	 ��

UNPACK �IN PARAMS��

STATEMENTS � a�

ACCEPT END �MY NAME �� MY NAME�

OUT PARAMS �� out MODE FORMALS � PACKED�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

if ABORTED then

goto END OF SCOPE n�

��	 APPENDIX E� THE SUPERVISOR PREPROCESSOR

end if�

STATEMENTS � b�

� � �

when k ��

UNPACK �IN PARAMS��

STATEMENTS k a�

ACCEPT END �MY NAME �� MY NAME�

OUT PARAMS �� out MODE FORMALS k PACKED�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

if ABORTED then

goto END OF SCOPE n�

end if�

STATEMENTS k b�

when k � 	 ��

STATEMENTS other �

end case�

The value POSITION OF E indicates the numerical position of entry E in the entry list

for task MY NAME according to the numbering scheme described earlier�

Any accept statement without a body is equivalent to one whose body is a single null

statement� An unguarded alternative is equivalent to a guarded alternative whose guard is

TRUE� A simple accept statement is equivalent to a selective wait with a single accept

alternative whose guard is TRUE� An else part is equivalent to a delay alternative whose

guard is TRUE and whose TIME OUT is �� A selective wait containing only accept

alternatives is equivalent to a selective wait with the same accept alternatives plus a single

delay alternative whose guard is FALSE�

For a selective wait with a terminate alternative� the TERM ALT parameter is set to

TRUE �instead of FALSE� as in the above forms of selective wait�� and the TIME OUT

parameter is set to DURATION�LAST� The STATEMENTS other for the terminate

alternative is simple �goto END OF SCOPE ��

As indicated in the above transformation� rendezvous parameter values are packed into

arrays of bytes and unpacked from these arrays back into program objects� No general

algorithms for this purpose was developed� but the general idea is illustrated below by the

���� SELECT STATEMENTS ���

packing and unpacking of an INTEGER value�

�� Transformation for RENDEZVOUS PARAMETER PACKING�

declare

I � INTEGER �� FOO�

TEMP I � NET SERVICESBYTE ARRAY �	 ���

begin

�� Packing I into TEMP I�

TEMP I �� NET SERVICESBYTE �I � 	�����	�� �

NET SERVICESBYTE ��I � �

��� mod �
�� �

NET SERVICESBYTE ��I � �
�� mod �
�� �

NET SERVICESBYTE �I mod �
���

�� Unpacking TEMP I into I�

I �� INTEGER �TEMP I ���� �

�
� � �INTEGER �TEMP I ���� �

�
� � �INTEGER �TEMP I ���� �

�
� � �INTEGER �TEMP I �	������

end�

The above transformation assumes that INTEGERs are stored as �	�bit values�

��
�� Conditional Entry Calls

A conditional entry call is treated as a timed entry call with a timeout value of zero� the

transformation of timed entry calls is shown in the next section�

��
�� Timed Entry Calls

Simple entry calls� conditional entry calls and timed entry calls are all transformed to calls

to the ENTRY CALL procedure�

�� Original source text�ENTRY CALLS�

select

��� APPENDIX E� THE SUPERVISOR PREPROCESSOR

TE �ACTUALS��

STATEMENTS � �

or

delay TIME OUT �

STATEMENTS � �

end select�

�� Transformed source text�

ENTRY CALL �MY NAME �� MY NAME�

CALLEE T NAME �� T�

CALLEE E NAME �� POSITION OF E�

IN PARAMS �� in MODE ACTUALS PACKED�

TIME OUT �� TIME OUT�

OUT PARAMS �� OUT PARAMS�

ACCEPTED �� ACCEPTED�

ABORTED �� ABORTED�

MY NODE �� MY NODE��

if ABORTED then

goto END OF SCOPE n�

elsif ACCEPTED then

UNPACK �OUT PARAMS��

STATEMENTS � �

else

STATEMENTS � �

end if�

A simple entry call is equivalent to a timed entry call with a TIME OUT of DURA�

TION�LAST� a conditional entry call is a timed entry call with a TIME OUT of �� The

same comments that were made about packing and unpacking of parameters for a selective

wait apply to timed entry calls also�

���� PRIORITIES ���

��� Priorities

An explicit priority for a task is declared in the entry list for the task� this value is passed

as the last parameter of the call to CHILD TASK�

�� Original source text�PRIORITIES�

task T is

pragma PRIORITY �T PRIORITY ��

end T�

�� Transformed source text�

procedure T BODY � � � � �� �� As before�

T � constant TASK NAME ��

CHILD TASK �� � �� �� As before�

DEP PRIORITY �� T PRIORITY ��

��� Task and Entry Attributes

References to task and entry attributes appear within expressions� these references are

directly transformed to calls to corresponding Supervisor functions as follows�

�� Original source text�ATTRIBUTE EVALUATIONS�

� � � T�CALLABLE � � �

� � � T�TERMINATED � � �

� � � E�COUNT � � �

�� Transformed source text�

� � � CALLABLE ATTR �MY NAME �� MY NAME�

C NAME �� T�

MY NODE �� MY NODE� � � �

� � � TERMINATED ATTR �MY NAME �� MY NAME�

T NAME �� T�

MY NODE �� MY NODE� � � �

� � � COUNT ATTR �MY NAME �� MY NAME�

MY ENTRY �� POSITION OF E�

��� APPENDIX E� THE SUPERVISOR PREPROCESSOR

MY NODE �� MY NODE� � � �

Again� the value POSITION OF E indicates the numerical position of entry E in the

entry list for task MY NAME according to the numbering scheme described earlier�

���� Abort Statements

Abort statements are transformed into calls to the ABORT TASK procedure� the VICTIMS

parameter is supplied as an aggregate list of task ID variables�

�� Original source text�ABORT STATEMENT�

abort T	� T�� � � �� Tn�

�� Transformed source text�

ABORT TASKS �MY NAME �� MY NAME�

VICTIMS �� �T	� T�� � � �� Tn��

ABORTED �� ABORTED�

MY NODE �� MY NODE��

if ABORTED then

goto END OF SCOPE n�

end if�

���� Shared Variables

Pragma SHARED is not supported�

Appendix F

Ada Tasking Events

F�� Action Declarations for the Tasking Events

This section declares the TSL actions for the tasking events of Ada� Comments indicate

where the actions are to be performed� The perform statements must be inserted into

each test program as noted� possibly using an automatic preprocessor�

�� Performed after each abort statement� once per aborted task�

��� action ABORTED �A TASK � task��

�� Performed before each abort statement� once per aborted task�

��� action BEGIN ABORT �A TASK � task��

�� Performed before each activation of tasks which are designated by

�� access values� access types are identi
ed by unique integers�

��� action BEGIN ACTIVATE DYNAMIC �D TASK � task� A TYPE � INTEGER��

�� Performed at the beginning of the declarative part of a task body�

��� action BEGIN ACTIVATION�

�� Performed as the
rst statement of the sequence of statements

�� of a new declarative region�

��� action BEGIN BLOCK�

���

��� APPENDIX F� ADA TASKING EVENTS

�� Performed before each simple delay statement� TIMESTAMP must be

�� set to CALENDAR�CLOCK in all corresponding perform statements�

��� action BEGIN DELAY �TIMEOUT � DURATION� TIMESTAMP � CALENDARTIME��

�� Performed as the
rst statement of each accept statement body�

��� action BEGIN RENDEZVOUS �CALLER � task� CALLED E � entry��

�� Performed after each evaluation of attribute CALLABLE�

��� action CHECKED CALLABLE �C TASK � task� VALUE � BOOLEAN��

�� Performed after each evaluation of attribute COUNT�

��� action CHECKED COUNT �C ENTRY � entry� VALUE � NATURAL��

�� Performed after each evaluation of attribute TERMINATED�

��� action CHECKED TERMINATED �T TASK � task� VALUE � BOOLEAN��

�� Performed immediately after evaluation of guards in a selective wait

�� with no else part and all false guards�

��� action CLOSED SELECT�

�� Performed as the last statement executed inside each task body�

��� action COMPLETE�

�� Performed at each declaration of an access type whose designated subtype is

�� a task type� access types are identi
ed by unique integers�

��� action DECLARE DYNAMIC TASK TYPE �A TYPE � INTEGER� T TYPE � task type��

�� Performed at each declaration of a single task�

��� action DECLARE SINGLE TASK �S TASK � task��

�� Performed at each declaration of a task declared by an object declaration�

��� action DECLARE TASK OBJECT �T TASK � task� T TYPE � task type��

F��� ACTION DECLARATIONS FOR THE TASKING EVENTS ���

�� Performed at each declaration of a task type�

��� action DECLARE TASK TYPE �T TYPE � task type��

�� Performed immediately following each delay statement� TIMESTAMP must

�� be set to CALENDAR�CLOCK in all corresponding perform statements�

��� action DELAYED �TIMESTAMP � CALENDARTIME��

�� Performed by the supervisor each time an entry call is removed from a call queue

�� before being accepted�

��� action DEQUEUE CALL �C TASK � task� Q TASK � task� Q ENTRY � entry��

�� Performed after each activation of tasks which are designated by

�� access values�

��� action END ACTIVATE DYNAMIC �D TASK � task� A TYPE � INTEGER��

�� Performed immediately prior to beginning the sequence of

�� statements of a task body�

��� action END ACTIVATION�

�� Performed immediately following each entry call�

��� action END CALL �CALLEE � task� CALLED E � entry��

�� Performed as the last statement of each accept statement body�

��� action END RENDEZVOUS �CALLER � task� CALLED E � entry��

�� Performed by the supervisor each time an entry call arrives at a call queue�

��� action ENQUEUE CALL �C TASK � task� Q TASK � task� Q ENTRY � entry��

�� Performed as the
rst statement upon entering a new declarative

�� region other than the outermost scope of a task�

��� action ENTER BLOCK�

�� APPENDIX F� ADA TASKING EVENTS

�� Performed as the
rst statement after exiting a declarative region other

�� than the outermost scope of a task�

��� action EXITED BLOCK�

�� Performed within each exception handler�

��� action HANDLE EXCEPTION�

�� Performed by the supervisor when the abnormality of a task is registered�

��� action MAKE ABNORMAL �A TASK � task��

�� Performed immediately after evaluation of guards in a selective wait with no else

�� part and whose only open alternatives are accept statements�

��� action OPEN SELECT�

�� Performed immediately before each raise statement�

��� action RAISE EXCEPTION�

�� Performed immediately after evaluation of guards in a selective wait

�� with an open delay alternative� the delay value passed is the

�� smallest of the open delay statements� TIMESTAMP must be set to

�� CALENDAR�CLOCK in all corresponding perform statements�

��� action SELECT DELAY �TIMEOUT � DURATION� TIMESTAMP � CALENDARTIME��

�� Performed immediately after evaluation of guards in a selective

�� wait with an else part�

��� action SELECT ELSE�

�� Performed immediately after evaluation of guards in a selective

�� wait with an open terminate alternative�

��� action SELECT TERMINATE�

�� Performed immediately before each simple accept statement�

F��� TSL SPECIFICATION OF THE TASKING EVENTS ���

��� action SIMPLE ACCEPT �ACCEPTED E � entry��

�� Performed immediately before each simple entry call�

��� action SIMPLE CALL �CALLEE � task� CALLED E � entry��

�� Performed immediately following each pragma PRIORITY statement�

��� action SPECIFY PRIORITY �P TASK � task� P � PRIORITY��

�� Performed inside the supervisor when a task is completed and all its

�� dependents have terminated�

��� action TERMINATED�

�� Performed immediately before each conditional or timed entry call

�� statement� TIMESTAMP must be set to CALENDAR�CLOCK in

�� all corresponding perform statements�

��� action TIMED CALL �TIMEOUT � DURATION� TIMESTAMP � CALENDARTIME��

�� Performed immediately following each shared variable update�

�� shared variables are identi
ed by unique integers�

��� action UPDATE �OBJ � INTEGER��

F�� TSL Speci	cation of the Tasking Events

This section lists the tasking events of Ada in the order in which they are mentioned in the

Language Reference Manual� Both an informal English description and a TSL expression

are given for each event�

��� Task Speci�cations and Task Bodies

� Single Task Declaration

Ada� Task T declares dependent D�

TSL� T performs DECLARE SINGLE TASK �S TASK �� D��

	 Task Type Declaration

��	 APPENDIX F� ADA TASKING EVENTS

Ada� Task T declares task type TT�

TSL� T performs DECLARE TASK TYPE �T TYPE �� TT��

��� Task Types and Task Objects

� Declaration of a Task By an Object Declaration

Ada� Task T declares dependent D of type TT�

TSL� T performs DECLARE TASK OBJECT �T TASK �� D� T TYPE �� TT��

	 Access Type Declaration

Ada� Task T declares access type PT referencing task type TT�

TSL� T performs DECLARE DYNAMIC TASK TYPE �A TYPE �� PT� T TYPE ��

TT��

��� Task Execution�Task Activation

� Beginning of Activation

Ada� Task T begins activation�

TSL� T performs BEGIN ACTIVATION�

	 End of Activation

Ada� Task T ends activation�

TSL� T performs END ACTIVATION�

� Begin Dynamic Activation

Ada� Task T will activate task P�all� where P is of type PT�

TSL� T performs BEGIN ACTIVATE DYNAMIC �D TASK �� Pall� A TYPE �� PT��

� End Dynamic Activation

Ada� Task T activated task P�all� where P is of type PT�

TSL� T performs END ACTIVATE DYNAMIC �D TASK �� Pall� A TYPE �� PT��

F��� TSL SPECIFICATION OF THE TASKING EVENTS ���

��� Task Dependence�Termination of Tasks

� Completion

Ada� Task T becomes completed�

TSL� T performs COMPLETE�

	 Termination

Ada� Task T becomes terminated�

TSL� T performs TERMINATED� �Must be performed by tasking supervisor��

� Block Entry

Ada� Task T enters a new nested block�

TSL� T performs ENTER BLOCK�

� Block Execution

Ada� Task T begins execution of the sequence of of statements of a new block�

TSL� T performs BEGIN BLOCK�

� Block Exit

Ada� Task T exited a nested block�

TSL� T performs EXITED BLOCK�

��� Entries� Entry Calls� and Accept Statements

� Entry Call Execution�Suspension of Caller

Ada� Task C calls task T at entry E�

TSL� C performs SIMPLE CALL �CALLEE �� T� CALLED E �� E��

	 Entry Call Arrival

Ada� A call from task C is placed on the queue of entry E at task T�

TSL� any performs ENQUEUE CALL �C TASK �� C� Q TASK �� T�

Q ENTRY �� E�� �Must be performed by tasking supervisor��

��� APPENDIX F� ADA TASKING EVENTS

� Accept Execution�Suspension of Accepting Task

Ada� Task T executes an accept for entry E�

TSL� T performs SIMPLE ACCEPT �ACCEPTED E �� E��

� Begin Rendezvous�Resumption of Accepting Task

Ada� Task C begins rendezvous at entry E of Task T�

TSL� T performs BEGIN RENDEZVOUS �CALLER �� C� CALLED E �� E��

� End Rendezvous�End of Accept Statement

Ada� Task C ends rendezvous at entry E of Task T�

TSL� T performs END RENDEZVOUS �CALLER �� C� CALLED E �� E��

� Resumption of Caller�End of Entry Call Statement

Ada� Task C ends rendezvous at entry E of Task T�

TSL� C performs END CALL �CALLEE �� T� CALLED E �� E��

��	 Delay Statements� Duration and Time

� Beginning of Delay

Ada� Task T begins execution of a delay statement with duration TO�

TSL� T performs BEGIN DELAY �TIMEOUT �� TO� TIMESTAMP ��

CALENDARCLOCK��

	 End of Delay

Ada� Task T
nishes execution of a delay statement�

TSL� T performs DELAYED �TIMESTAMP �� CALENDARCLOCK��

��
 Select Statements

����� Selective Waits

� Selective Wait with Else

F��� TSL SPECIFICATION OF THE TASKING EVENTS ���

Ada� Task T is executing select�else�

TSL� T performs SELECT ELSE�

	 Selective Wait with Terminate

Ada� Task T is executing select�terminate�

TSL� T performs SELECT TERMINATE�

� Selective Wait with Delay

Ada� Task T is executing select�delay with timeout TO�

TSL� T performs SELECT DELAY �TIMEOUT �� TO� TIMESTAMP �� CALEN�

DARCLOCK��

� Selective Wait with No Else Part and Only Open Accept Alternatives

Ada� Task T is executing select only with open accept alternatives�

TSL� T performs OPEN SELECT�

� Selective Wait with All Guards False and No Else Part

Ada� Task T is executing closed select�

TSL� T performs CLOSED SELECT�

����� Conditional Entry Calls

� Conditional Entry Call Execution

Ada� Task C begins execution of a timed entry call with timeout ��

TSL� C performs TIMED CALL �TIMEOUT �� �� TIMESTAMP ��

CALENDARCLOCK��

����� Timed Entry Calls

� Timed Entry Call Execution

Ada� Task C begins execution of a timed entry call with timeout TO�

��� APPENDIX F� ADA TASKING EVENTS

TSL� C performs TIMED CALL �TIMEOUT �� TO� TIMESTAMP ��

CALENDARCLOCK��

	 Timed Entry Call Cancellation

Ada� A call from task C is removed from the queue of entry E at task T�

TSL� any performs DEQUEUE CALL �C TASK �� C� Q TASK �� T�

Q ENTRY �� E�� �Must be performed by tasking supervisor��

��� Priorities

� Priority Speci
cation

Ada� Priority P is speci
ed for task T�

TSL� any performs SPECIFY PRIORITY �P TASK �� T� P �� P��

��� Task and Entry Attributes

� CALLABLE Attribute Evaluation

Ada� Task T evaluated attribute CALLABLE of task C to be value V�

TSL� T performs CHECKED CALLABLE �C TASK �� C� VALUE �� V��

	 TERMINATED Attribute Evaluation

Ada� Task T evaluated attribute TERMINATED of task C to value V�

TSL� T performs CHECKED TERMINATED �T TASK �� C� VALUE �� V��

� COUNT Attribute Evaluation

Ada� Task T evaluated attribute COUNT of entry E to value V�

TSL� T performs CHECKED COUNT �C ENTRY �� E� VALUE �� V��

��� Abort Statements

� Beginning of Abort Statement

Ada� Task T executes an abort statement to abort of task A�

F��� TSL SPECIFICATION OF THE TASKING EVENTS ���

TSL� T performs BEGIN ABORT �A TASK �� A��

	 End of Abort Statement

Ada� Task T
nishes execution of an abort statement which aborted task A�

TSL� T performs ABORTED �A TASK �� A��

� Abnormality

Ada� Task A becomes abnormal�

TSL� any performs MAKE ABNORMAL �A TASK �� A�� �Must be performed by task�

ing supervisor��

� Exception Raising�TASKING ERROR� PROGRAM ERROR

Ada� Task T raises exception X�

TSL� T performs RAISE EXCEPTION� �no exception name�

� Exception Handling�TASKING ERROR� PROGRAM ERROR

Ada� Task T handles exception X�

TSL� T performs HANDLE EXCEPTION� �no exception name�

���� Shared Variables

� Shared Object Update

Ada� Task T updates object object O with value V�

TSL� T performs UPDATE �OBJ �� O��

��� APPENDIX F� ADA TASKING EVENTS

Appendix G

TSL Formalization of a Subset of

Ada Tasking

This appendix presents the TSL formalization of the subset of the Ada tasking semantics

de
ned in Chapter �� The formal de
nition of the Ada tasking events were presented in

Appendix F as TSL action declarations� The TSL formalization of the semantics of the

accept statement was presented in Chapter ��

G�� Task Activation

This section presents the TSL formalization of the semantics of the activation of single tasks

and tasks declared by object declarations�

G���� Property Declarations

The property declarations for the predicates ACTIVATED �T� and COMPLETED �T� were

given in Figure �� of Chapter ��

The function SCOPE �T� is used to indicate how many nested scopes a T has entered�

it is initially zero� is incremented by each scope entry� and is decremented by each scope

exit�

�� SCOPE function�

���

�� APPENDIX G� TSL FORMALIZATION OF ADA TASKING

��� property S SCOPE �task� � NATURAL �� �

��� is

��� when �T performs ENTER BLOCK then

��� set S SCOPE ��T� �� S SCOPE ��T� � 	�

��� when �T performs EXITED BLOCK then

��� set S SCOPE ��T� �� S SCOPE ��T� � 	�

��� end S SCOPE�

The predicate DEPENDENT �T� D� is initially false and is de
ned to become true when

D is declared as a dependent of T and false again when D terminates�

�� DEPENDENT predicate�

��� property S DEPENDENT �task� task� � BOOLEAN �� FALSE

��� is

��� when ��T performs DECLARE SINGLE TASK �S TASK �� �D� or

��� �T performs DECLARE TASK OBJECT �T TASK �� �D��

��� then

��� set S DEPENDENT ��T� �D� �� TRUE�

��� when ��T performs DECLARE SINGLE TASK �S TASK �� �D� or

��� �T performs DECLARE TASK OBJECT �T TASK �� �D��

��� then �D performs TERMINATED

��� set S DEPENDENT ��T� �D� �� FALSE�

��� end S DEPENDENT�

The predicate ACTIVATING �T� is initially false and is de
ned to become true when

T is activated by its master and false again when it ends its activation�

�� ACTIVATING predicate�

��� property S ACTIVATING �task� � BOOLEAN �� FALSE

��� is

��� when �T performs BEGIN ACTIVATION then

��� set S ACTIVATING ��T� �� TRUE�

��� when �T performs END ACTIVATION then

G��� TASK ACTIVATION ���

��� set S ACTIVATING ��T� �� FALSE�

��� end S ACTIVATING�

Finally� the predicate DECLARED �TT� is initially false and is de
ned to become true

when TT is declare and false when the scope of TT is exited�

�� DECLARED predicate�

��� property S DECLARED �task type� � BOOLEAN �� FALSE

��� is

��� when any performs DECLARE TASK TYPE �T TYPE �� �TT� then

��� set S DECLARED ��TT� �� TRUE�

��� when �T performs DECLARE TASK TYPE �T TYPE �� �TT�

��� where �S � S SCOPE ��T�

��� then ��T performs EXITED SCOPE

��� where S SCOPE ��T� � �S or

��� �T performs TERMINATED

��� where �S � ��

��� set S DECLARED ��TT� �� FALSE�

��� end S DECLARED�

G���� Functional Speci�cation

Two functional speci
cations are constructed� The
rst is for the activation of a single task�

��� �� SINGLE TASK ACTIVATION��

��� when �T performs DECLARE SINGLE TASK �S TASK �� �D�

��� where �S � S SCOPE ��T� and S ACTIVATED ��T� and

��� not S COMPLETED ��T�

��� then ��D performs BEGIN ACTIVATION

��� where S SCOPE ��T� � �S and S DEPENDENT ��T� �D�

��� ��

��� �D performs END ACTIVATION

��� where S SCOPE ��T� � �S and S ACTIVATING ��D�

��� ��

��	 APPENDIX G� TSL FORMALIZATION OF ADA TASKING

��� �T performs BEGIN BLOCK

��� where S SCOPE ��T� � �S and S ACTIVATED ��D�

��� �

��� until �T performs BEGIN BLOCK�

The second is for the activation of a task declared by an object declaration�

��� ��TASK OBJECT ACTIVATION��

��� when �T performs DECLARE TASK OBJECT �T TASK �� �D�

��� T TYPE �� �TT�

��� where �S � S SCOPE ��T� and S DECLARED ��TT� and

��� S ACTIVATED ��T� and not S COMPLETED ��T�

��� then ��D performs BEGIN ACTIVATION

��� where S SCOPE ��T� � �S and S DEPENDENT ��T� �D�

��� ��

��� �D performs END ACTIVATION

��� where S SCOPE ��T� � �S and S ACTIVATING ��D�

��� ��

��� �T performs BEGIN BLOCK

��� where S SCOPE ��T� � �S and S ACTIVATED ��D�

��� �

��� until �T performs BEGIN BLOCK�

G���� Safety Speci�cations

One safety speci
cation is derived from each di�erent guarded event in the above functional

speci
cations� The safety speci
cations for the Begin Activation event and one for the Begin

Block event require a special construction to put the events in the appropriate context�

�� The Declare Single Task event must not occur

�� in an incorrect state�

��� not �T performs DECLARE SINGLE TASK

��� where not �S ACTIVATED ��T� and

��� not S COMPLETED ��T���

G��� TASK TERMINATION ���

�� The Declare Task Object event must not occur

�� in an incorrect state�

��� not �T performs DECLARE TASK OBJECT �T TYPE �� �TT�

��� where not �S DECLARED ��TT� and S ACTIVATED ��T� and

��� not S COMPLETED ��T���

�� The Begin Activation event must not occur in an incorrect state�

��� when ��T performs DECLARE SINGLE TASK �S TASK �� �D�

��� where �S � S SCOPE ��T� or

��� �T performs DECLARE TASK OBJECT �T TASK �� �D�

��� where �S � S SCOPE ��T��

��� then not �D performs BEGIN ACTIVATION

��� where not �S SCOPE ��T� � �S��

�� The Begin Block event must not occur in an incorrect state�

��� when ��T performs DECLARE SINGLE TASK �S TASK �� �D�

��� where �S � S SCOPE ��T� or

��� �T performs DECLARE TASK OBJECT �T TASK �� �D�

��� where �S � S SCOPE ��T��

��� then not �T performs BEGIN BLOCK

��� where S SCOPE ��T� � �S and

��� not �S ACTIVATED ��D���

The S SCOPE property is not needed in the guards of the
rst two safety speci
cations

since the placeholder %S is set to the value of this property when it is
rst matched�

G�� Task Termination

This section presents the TSL formalization of the semantics of the termination of single

tasks and tasks declared by object declarations�

��� APPENDIX G� TSL FORMALIZATION OF ADA TASKING

G���� Property Declarations

The property declarations for the predicates ACTIVATED �T� and COMPLETED �T�

were given in Figure ��� The property declaration for the function SCOPE �T� was given

in Section G�����

The predicate TERMINATED �T� is initially false and is de
ned to become true when

T terminates�

�� TERMINATED predicate�

��� property S TERMINATED �task� � BOOLEAN �� FALSE

��� is

��� when �T performs TERMINATED then

��� set S TERMINATED ��T� �� TRUE�

��� end S TERMINATED�

G���� Functional Speci�cation

Two functional speci
cations are constructed� The
rst is for the termination of a task

declared in the outermost scope of its master�

��� ��OUTERMOST TASK TERMINATION��

��� when ��T performs DECLARE SINGLE TASK �S TASK �� �D�

��� where S SCOPE ��T� � � and S ACTIVATED ��T� and

��� not S COMPLETED ��T� or

��� �T performs DECLARE TASK OBJECT �T TASK �� �D�

��� where S SCOPE ��T� � � and S ACTIVATED ��T� and

��� not S COMPLETED ��T��

��� then ��D performs TERMINATED

��� where S SCOPE ��T� �� � and S DEPENDENT ��T� �D�

��� ��

��� �T performs TERMINATED

��� where S SCOPE � � and S TERMINATED ��D�

��� �

��� until �T performs TERMINATED�

G��� TASK TERMINATION ���

The second is for the termination of a task declared in an inner scope of its master�

��� �� INNER TASK TERMINATION��

��� when ��T performs DECLARE SINGLE TASK �S TASK �� �D�

��� where �S � S SCOPE ��T� and S SCOPE ��T� � � and

��� S ACTIVATED ��T� and not S COMPLETED ��T�

��� or

��� �T performs DECLARE TASK OBJECT �T TASK �� �D�

��� where �S � S SCOPE ��T� and S SCOPE ��T� � � and

��� S ACTIVATED ��T� and not S COMPLETED ��T��

��� then ��D performs TERMINATED

��� where S SCOPE ��T� �� �S and S DEPENDENT ��T� �D�

��� ��

��� �T performs EXITED BLOCK

��� where S SCOPE � �S and S TERMINATED ��D�

��� �

��� until �T performs EXITED BLOCK

��� where S SCOPE � �S�

G���� Safety Speci�cations

Safety speci
cations for the Declare Task events were given in Section G����� Two other

safety speci
cations are derived from the above functional speci
cations� one for the Exited

Scope event and one for the Terminates event� These two require a special construction to

put the events in the appropriate context�

�� The Terminates event must not occur in an incorrect state�

��� when ��T performs DECLARE SINGLE TASK �S TASK �� �D�

��� where S SCOPE ��T� � � or

��� �T performs DECLARE TASK OBJECT �T TASK �� �D�

��� where S SCOPE ��T� � ��

��� then not �T performs TERMINATED

��� where not �S TERMINATED ��D���

��� APPENDIX G� TSL FORMALIZATION OF ADA TASKING

�� The Exited Block event must not occur in an incorrect state�

��� when ��T performs DECLARE SINGLE TASK �S TASK �� �D�

��� where �S � S SCOPE ��T� and S SCOPE ��T� � � or

��� �T performs DECLARE TASK OBJECT �T TASK �� �D�

��� where �S � S SCOPE ��T� and S SCOPE ��T� � ��

��� then not �T performs EXITED BLOCK

��� where S SCOPE ��T� � �S and

��� not �S TERMINATED ��D���

G�� Task Execution

This section presents the TSL formalization of the semantics of task execution� specifying

the various stages that all tasks pass through during their lifetime between activation and

termination�

G���� Property Declarations

The property declarations for the predicates ACTIVATED �T� and COMPLETED �T�

were given in Figure ��� The property declarations for the function SCOPE �T� and the

predicate ACTIVATING �T� were given in Section G����� The property declaration for the

predicateTERMINATED �T� was given in Section G�	���

G���� Functional Speci�cation

The functional speci
cation is as follows�

��� ��TASK EXECUTION��

��� when �T performs BEGIN ACTIVATION

��� where not S ACTIVATING ��T� and not S ACTIVATED ��T�

��� then ��T performs END ACTIVATION

��� where S ACTIVATING ��T� and S SCOPE ��T� � �

��� ��

��� �T performs COMPLETE

��� where S ACTIVATED ��T� and S SCOPE ��T� � �

��� ��

G�	� TASK EXECUTION ���

��� �T performs TERMINATED

��� where S COMPLETED ��T� and S SCOPE ��T� � �

��� �

��� until �T performs TERMINATED�

G���� Safety Speci�cations

One safety speci
cation is derived from each guarded event of the above functional speci
�

cation�

�� The Begin Activation event does not occur in an incorrect state�

��� not �T performs BEGIN ACTIVATION

��� where not �not S ACTIVATING ��T� and

��� not S ACTIVATED ��T���

�� The End Activation event does not occur in an incorrect state�

��� not �T performs END ACTIVATION

��� where not �S ACTIVATING ��T� and

��� not S SCOPE ��T� � ���

�� The Completes event does not occur in an incorrect state�

��� not �T performs COMPLETE

��� where not �S ACTIVATED ��T� and

��� not S SCOPE ��T� � ���

�� The Terminates event does not occur in an incorrect state�

��� not �T performs TERMINATED

��� where not �S COMPLETED ��T� and

��� S SCOPE ��T� � ���

�� A terminated task does nothing�

��� not �T performs any

��� where S TERMINATED ��T��

��� APPENDIX G� TSL FORMALIZATION OF ADA TASKING

Note that a second safety speci
cation has been de
ned for both the Begin Activation

and the Terminates events� in each case� the pair of safety speci
cations would be checked

separately� and both speci
cations must be satis
ed�

G�� The Entry Call Statement

This section presents the TSL formalization of the semantics of the entry call statement�

G���� Property Declarations

The property declarations for the predicates ACTIVATED �T� and COMPLETED �T�

were given in Figure ��� The property declarations for the predicates ACCEPTING �T�

and IN RENDEZVOUS �T� were given in Figure ���

The predicate CALLING �C� T� E� is initially false and is de
ned to be true between

the beginning and end of a call to entry E of task T by task C�

�� CALLING predicate�

��� property S CALLING �task� task� entry� � BOOLEAN �� FALSE

��� is

��� when �C performs SIMPLE CALL �CALLEE �� �T�

��� CALLED E �� �E� then

��� set S CALLING ��C� �T� �E� �� TRUE�

��� when �C performs END CALL �CALLEE �� �T�

��� CALLED E �� �E� then

��� set S CALLING ��C� �T� �E� �� FALSE�

��� end S CALLING�

The predicate QUEUED �C� T� E� is initially false and is de
ned to be true between the

arrival of a call from task C to task T at entry E and the beginning of the corresponding

rendezvous�

�� QUEUED predicate�

��� property S QUEUED �task� task� entry� � BOOLEAN �� FALSE

G�� THE ENTRY CALL STATEMENT ���

��� is

��� when any performs ENQUEUE CALL �C TASK �� �C�

��� Q TASK �� �T�

��� Q ENTRY �� �E� then

��� set S QUEUED ��C� �T� �E� �� TRUE�

��� when �T performs BEGIN RENDEZVOUS �CALLER �� �C�

��� CALLED E �� �E� then

��� set S QUEUED ��C� �T� �E� �� FALSE�

��� end S QUEUED�

Finally� the predicate RENDEZVOUSED �C� T� E� is initially false and is de
ned to be

true between the end of a rendezvous between task C and task T at T�s entry E and the

end of the corresponding entry call executed by C�

�� RENDEZVOUSED predicate�

��� property S RENDEZVOUSED �task� task� entry� � BOOLEAN

��� �� FALSE

��� is

��� when �T performs END RENDEZVOUS �CALLER �� �C�

��� CALLED E �� �E� then

��� set S RENDEZVOUSED ��C� �T� �E� �� TRUE�

��� when �C performs END CALL �CALLEE �� �T�

��� CALLED E �� �E� then

��� set S RENDEZVOUSED ��C� �T� �E� �� FALSE�

��� end S RENDEZVOUSED�

G���� Functional Speci�cation

The functional speci
cation uses the function QUEUE SIZE �T� E� to count how many

rendezvous take place before C �s call is accepted� These other rendezvous are matched by

a TSL macro �a named compound event� called OTHER RENDEZVOUS� which is used

to enable rebinding of the placeholder �C� for each such rendezvous� The terminator for

this speci
cation covers the requirement that T must be suspended �i�e�� T must perform

no action� until the entry call is
nished�

	 APPENDIX G� TSL FORMALIZATION OF ADA TASKING

��� macro OTHER RENDEZVOUS ��T � task� �E � entry�

��� �C � task� is

��� �T performs END RENDEZVOUS �CALLER �� �C��

��� CALLED E �� �E�

��� where S QUEUED ��C� �T� �E� and

��� S ACCEPTING ��T� �E� and �C� �� �C

��� ��

��� �T performs SIMPLE ACCEPT �ACCEPTED E �� �E�

��� where S QUEUED ��C� �T� �E� and

��� not S ACCEPTING ��T� �E��

��� end OTHER RENDEZVOUS�

��� �� SIMPLE ENTRY CALL��

��� when �C performs SIMPLE CALL �CALLEE �� �T�

��� CALLED E �� �E�

��� where S ACTIVATED ��C� and

��� not S COMPLETED ��C�

��� then ��any performs ENQUEUE CALL �C TASK �� �C�

��� Q TASK �� �T�

��� Q ENTRY �� �E�

��� where S CALLING ��C� �T� �E� and

��� �Q � S QUEUE SIZE ��T� �E� and

��� S ACCEPTING ��T� �E�

��� ��

��� �OTHER RENDEZVOUS ��T� �E� �C�� � �Q

��� �

��� or

��� �any performs ENQUEUE CALL �C TASK �� �C�

��� Q TASK �� �T�

��� Q ENTRY �� �E�

��� where S CALLING ��C� �T� �E� and

��� �Q � S QUEUE SIZE ��T� �E� and

��� not S ACCEPTING ��T� �E�

��� ��

G�� THE ENTRY CALL STATEMENT 	�

��� �T performs SIMPLE ACCEPT �ACCEPTED E �� �E�

��� where S QUEUED ��C� �T� �E� and

��� not S ACCEPTING ��T� �E�

��� ��

��� �OTHER RENDEZVOUS ��T� �E� �C�� � �Q

��� �

��� �

��� ��

��� �T performs BEGIN RENDEZVOUS �CALLER �� �C�

��� CALLED E �� �E�

��� where S QUEUED ��C� �T� �E� and

��� S ACCEPTING ��T� �E�

��� ��

��� �T performs END RENDEZVOUS �CALLER �� �C�

��� CALLED E �� �E�

��� where S IN RENDEZVOUS ��C� �T� �E�

��� ��

��� �C performs END CALL �CALLEE �� �T�

��� CALLED E �� �E�

��� where S RENDEZVOUSED ��C� �T� �E�

��� until �C performs any�

G���� Safety Speci�cations

The safety speci
cation for the End Rendezvous event was given in Figure ��� One safety

speci
cation is derived from each of the other guarded events of the functional speci
cation�

�� The Begin Call event does not occur in an incorrect state�

��� not �C performs SIMPLE CALL

��� where not �S ACTIVATED ��C� and not S COMPLETED ��C���

�� The Call Arrival event does not occur in an incorrect state�

��� not any performs ENQUEUE CALL �C TASK �� �C�

		 APPENDIX G� TSL FORMALIZATION OF ADA TASKING

��� Q TASK �� �T�

��� Q ENTRY �� �E�

��� where not �S CALLING ��C� �T� �E���

�� The Begin Rendezvous event does not occur in an incorrect state�

��� not �T performs BEGIN RENDEZVOUS �CALLER �� �C�

��� CALLED E �� �E�

��� where not �S QUEUED ��C� �T� �E� and

��� S ACCEPTING ��T� �E���

�� The End Call event does not occur in an incorrect state�

��� not �C performs END CALL �CALLEE �� �T�

��� CALLED E �� �E�

��� where not �S RENDEZVOUSED ��C� �T� �E���

Note that a second safety speci
cation has been de
ned for the Begin Rendezvous event

�the
rst was de
ned in Chapter ��� the two safety speci
cations would be checked sepa�

rately� and both must be satis
ed�

G�� The Delay Statement

This section presents the TSL formalization of the semantics of the delay statement�

G���� Property Declarations

The property declarations for the predicates ACTIVATED �T� and COMPLETED �T� were

given in Figure ��� The function CURRENT TIME is equivalent to the function CLOCK

of the prede
ned Ada package CALENDAR� As mentioned in Appendix F� since all notion

of time is lost in the merging of events into the TSL global event stream� the value of

CURRENT TIME must be passed as a constituent of both the Begin Delay and End Delay

events when they are performed�

G��� OTHER SPECIFICATIONS 	�

G���� Functional Speci�cation

The terminator for the functional speci
cation speci
es the requirement that T must be

suspended �i�e�� T must perform no action� until the delay is
nished�

��� �� SIMPLE DELAY��

��� when �T performs BEGIN DELAY �TIMEOUT �� �D�

��� TIMESTAMP �� �TS	�

��� where S ACTIVATED ��T� and not S COMPLETED ��T�

��� then �T performs DELAYED �TIMESTAMP �� �TS��

��� where �TS� � �TS	 �� �D

��� until �T performs any�

G���� Safety Speci�cations

A safety speci
cation is derived for the Execute Delay event of the functional speci
cation�

the safety speci
cation is equivalent to the functional speci
cation�

�� The Begin Delay event does not occur in an incorrect state�

��� not �T performs BEGIN DELAY

��� where not �S ACTIVATED ��T� and

��� not S COMPLETED ��T���

G�� Other Speci	cations

Three other speci
cations must be written in order to fully specify the semantics of the

subset of Ada tasking under consideration�

The
rst speci
cation says that a task executing an accept statement for an entry whose

queue is empty is suspended until the arrival of a call to the entry� the arrival of the call

allows the task to begin a rendezvous� In fact� once a task begins an accept statement� it

can do nothing until it begins a rendezvous�

��� ��ACCEPTOR SUSPENSION��

��� when �T performs SIMPLE ACCEPT �ACCEPTED E �� �E�

��� then �T performs BEGIN RENDEZVOUS �CALLED E �� �E�

��� until �T performs any�

	� APPENDIX G� TSL FORMALIZATION OF ADA TASKING

The second speci
cation says that a task cannot execute nested accept statements for

the same entry�

��� ��NESTED ACCEPTS��

��� not �T performs SIMPLE ACCEPT �ACCEPTED E �� �E�

��� where S ACCEPTING ��T� �E��

The
nal speci
cation says that entry queues respect a
rst�come�
rst�served �FCFS�

discipline� that is� entry calls are processed in the order of their arrival�

��� �� FCFS ENTRY QUEUES��

��� when ��S performs ENQUEUE CALL �C TASK �� �C	�

��� Q TASK �� �T�

��� Q ENTRY �� �E�

��� ��

��� �S performs ENQUEUE CALL �C TASK �� �C��

��� Q TASK �� �T�

��� Q ENTRY �� �E�

��� where �C� �� �C	 and S QUEUED ��C	� �T� �E�

��� �

��� then �T performs BEGIN RENDEZVOUS �CALLER �� �C	�

��� CALLED E �� �E�

��� before �T performs BEGIN RENDEZVOUS �CALLER �� �C��

��� CALLED E �� �E��

Bibliography

�ABB���� M� Acetta� R� Baron� W� Bolosky� D� Golub� R� Rashid� A� Tevanian� and M�

Young� Mach� a new kernel foundation for UNIX development� In Proceedings

of the USENIX ���� Summer Technical Conference� pages ��!��	� June �����

�ACF��� Yeshayahu Artsy� Hung�Yang Chang� and Raphael A� Finkel� Interprocess

communication in Charlotte� IEEE Software� �����		!	�� January �����

�ACG��� Sudhir Ahuja� Nicholas Carriero� and David Gelernter� Linda and friends�

IEEE Computer� ������	�!��� August �����

�Ack��� William B� Ackerman� Data �ow languages� In Proceedings of the National

Computer Conference� Volume �� pages ���!���� AFIPS� June �����

�Ada��� The Ada Programming Language Reference Manual� US Department of De�

fense� US Government Printing O�ce� February ����� ANSI�MIL�STD�����A�

�����

�Ada��� Ada Joint Program O�ce� Ada validation procedures and guidelines� Ada

Letters� ��	��	�!��� March!April �����

�AFdR�� Krzysztof R� Apt� Nissim Francez� and Willem P� de Roever� A proof system

for communicating sequential processes� ACM Transactions on Programming

Languages and Systems� 	�������!���� July ����

�AGB���� Allen L� Ambler� Donald I� Good� James C� Browne� Wilhelm F� Burger�

Richard M� Cohen� Charles G� Hoch� and Robert E� Wells� GYPSY� a lan�

guage for speci
cation and implementation of veri
able programs� In Proceed�

ings of a Conference on Language Design for Reliable Software� pages �!��

	�

	� BIBLIOGRAPHY

ACM SIGPLAN� March ����� Appears in SIGPLAN Notices �	���� March

�����

�AGH���� Larry M� Augustin� Benoit A� Gennart� Youm Huh� David C� Luckham� and

Alec Stanculescu� VAL� an annotation language for VHDL� In Proceed�

ings of the International Conference on Computer�Aided Design �ICCAD�����

pages ���!�	�� IEEE Computer Society� November �����

�Apt��� Krzysztof R� Apt� Ten years of Hoare�s logic� a survey�part I� ACM Trans�

actions on Programming Languages and Systems� ��������!���� October �����

�AS��� Gregory R� Andrews and Fred B� Schneider� Concepts and notations for con�

current programming� ACM Computing Surveys� �������!��� March �����

�ASU��� Alfred V� Aho� Ravi Sethi� and Je�rey D� Ullman� Compilers� Principles�

Techniques and Tools� Addison�Wesley� �����

�Bak��� Theodore P� Baker� An Ada runtime system interface� In Proceedings of

the Second International Conference on Ada Applications and Environments�

pages ��!��� IEEE Computer Society� April �����

�Bar��� Howard Barringer� A Survey of Veri
cation Techniques for Parallel Programs�

Lecture Notes in Computer Science No� ���� Springer�Verlag� �����

�BBC���� Eric J� Berglund� Kenneth P� Brooks� David R� Cheriton� David R� Kaelbling�

Keith A� Lantz� Timothy P� Mann� Robert J� Nagler� William I� Nowicki� Mar�

vin M� Theimer� and Willy E� Zwaenepoel� V�System �� Reference Manual�

Stanford University� Computer Systems Laboratory� November �����

�BdFV��� Fabrizio Baiardi� Nicoletta de Francesco� and Gigliola Vaglini� Development of

a debugger for a concurrent language� IEEE Transactions on Software Engi�

neering� SE��	�������!���� April �����

�BF��� Raymond M� Bryant and Raphael A� Finkel� A stable distributed scheduling

algorithm� In Proceedings of the �nd International Conference on Distributed

Computing Systems� pages ���!�	�� IEEE Computer Society� April �����

BIBLIOGRAPHY 	�

�BGHL��� Andrew D� Birrell� John V� Guttag� James J� Horning� and Roy Levin� Syn�

chronization primitives for a multiprocessor� A formal speci
cation� In Pro�

ceedings of the ��th Symposium on Operating Systems Principles� pages ��!

�	� ACM SIGOPS� November �����

�BH��� Per Brinch Hansen� The programming language Concurrent Pascal� IEEE

Transactions on Software Engineering� SE���	�����!	�� June �����

�BH��� Per Brinch Hansen� The Architecture of Concurrent Programs� Prentice�Hall�

�����

�BH��� Per Brinch Hansen� Distributed processes� a concurrent programming concept�

Communications of the ACM� 	���������!���� November �����

�BM�	� Howard Barringer and Ian Mearns� Axioms and proof rules for Ada tasks� IEE

Proceedings Part E� �	��	����!��� March ���	�

�BM��� David L� Bird and Carlos U� Mu�noz� Automatic generation of random self�

checking test cases� IBM Systems Journal� 		�e��		�!	��� �����

�BN��� Andrew D� Birrell and Bruce Jay Nelson� Implementing remote procedure

calls� ACM Transactions on Computer Systems� 	������!��� February �����

�BR��� Theodore P� Baker and Gregory A� Riccardi� Ada tasking� from semantics to

e�cient implementation� IEEE Software� 	�	����!��� March �����

�BR��� Theodore P� Baker and Gregory A� Riccardi� Implementing Ada exceptions�

IEEE Software� ������	!��� September �����

�BW�	� Peter C� Bates and Jack C� Wileden� EDL� a basis for distributed systems

debugging tools� In Proceedings of the ��th Hawaii International Conference

on System Sciences� pages ��!��� January ���	�

�CH��� R� H� Campbell and A� N� Habermann� The speci
cation of process synchro�

nization by path expressions� In Proceedings of an International Symposium on

Operating Systems� pages ��!�	� Springer�Verlag �Lecture Notes in Computer

Science No� ���� April �����

	� BIBLIOGRAPHY

�Che�	� David R� Cheriton� The Thoth System� Multi�Process Structuring and Porta�

bility� Elsevier Science Publishing Co�� ���	�

�Che��� David R� Cheriton� Local networking and internetworking in the V�system� In

Proceedings of the �th Data Communications Symposium� pages �!��� ACM�

October �����

�Che��� David R� Cheriton� The V kernel� a software base for distributed systems�

IEEE Software� ��	����!�	� April �����

�Cle�	� Geert B� Clemmensen� A formal model of distributed Ada tasking� In Proceed�

ings of the AdaTEC Conference� pages 		�!	��� ACM SIGPLAN�AdaTEC�

October ���	�

�CM��� W� F� Clocksin and C� S� Mellish� Programming in Prolog� Springer�Verlag�

����� Second Edition�

�CM��� David R� Cheriton and Timothy P� Mann� A Decentralized Naming Facility�

Technical Report ������� Department of Computer Science� Stanford Univer�

sity� February �����

�CMMS��� David R� Cheriton� Michael A� Malcolm� Lawrence S� Melen� and Gary R�

Sager� Thoth� a portable real time operating system� Communications of the

ACM� 		�	����!���� February �����

�Cor��� Dennis Cornhill� Four approaches to partitioning Ada programs for execution

on distributed targets� In Proceedings of the Conference on Ada Applications

and Environments� pages ���!��	� IEEE Computer Society� October �����

�CW�	� R� Curtis and L� Wittie� BugNet� a debugging system for parallel program�

ming environments� In Proceedings of the 	rd International Conference on

Distributed Computing Systems� pages ���!���� IEEE Computer Society� Oc�

tober ���	�

�CZ��� David R� Cheriton and Willy E� Zwaenepoel� The Distributed V Kernel and

Its Performance for Diskless Workstations� Technical Report ������� Depart�

ment of Computer Science� Stanford University� July ����� Computer Systems

Laboratory Report ���	���

BIBLIOGRAPHY 	�

�CZ��� David R� Cheriton and Willy E� Zwaenepoel� One�to�Many Interprocess Com�

munication in the V�System� Technical Report ���	��� Computer Systems

Laboratory� Stanford University� August ����� Department of Computer Sci�

ence Technical Report �������

�CZ��� David R� Cheriton and Willy E� Zwaenepoel� Distributed process groups in the

V kernel� ACM Transactions on Computer Systems� �������!��� May �����

�DH�	� Ole�Johan Dahl and C� A� R� Hoare� Hierarchical program structures� In

Structured Programming� pages ���!		� Academic Press� ���	�

�Dij��� Edsger W� Dijkstra� Cooperating sequential processes� In F� Genuys� editor�

Programming Languages� Academic Press� �����

�Dij��� Edsger W� Dijkstra� Guarded commands� nondeterminacy and formal deriva�

tion of programs� Communications of the ACM� ���������!���� August �����

�EBGW��� A� Evans� K�J� Butler� G� Goos� and W� A� Wulf� DIANA Reference Manual�

Revision 	� Tartan Laboratories� Inc�� Pittsburgh� PA� �����

�Fal�	� Edward Falis� Design and implementation in Ada of a runtime task supervi�

sor� In Proceedings of the AdaTEC Conference� pages �!�� ACM SIGPLAN�

AdaTEC� October ���	�

�FFS��� R� J� Fuller� S� H� Fuller� and D� P� Siewiorek� Cm��a modular� multi�

microprocessor� In Proceedings of the National Computer Conference� Volume

�� pages ���!���� AFIPS� June �����

�Fis��� David A� Fisher� DoD�s common programming language e�ort� IEEE Com�

puter� ������	�!��� March �����

�Flo��� Robert W� Floyd� Assigning meanings to programs� In Proceedings of the

Symposium in Applied Mathematics� Volume XIX� pages ��!�	� American

Mathematical Society� April �����

�FS��� Lawrence Flon and Norihisa Suzuki� The total correctness of parallel programs�

SIAM Journal on Computing� ��	��		�!	��� May �����

	� BIBLIOGRAPHY

�FW��� David A� Fisher and Richard M�Weatherly� Issues in the design of a distributed

operating system for Ada� IEEE Computer� ��������!��� May �����

�GdR��� Rob Gerth and Willem P� de Roever� A proof system for concurrent Ada

programs� Science of Computer Programming� �����!	�� �����

�Ger�	� Rob Gerth� A Sound and Complete Hoare Axiomatization of the Ada Ren�

dezvous� Technical Report RUU�CS��	��� Department of Computer Science�

University of Utrecht� April ���	� Extended Abstract�

�GHL�	� Steven M� German� David P� Helmbold� and David C� Luckham� Monitoring

for deadlocks in Ada tasking� In Proceedings of the AdaTEC Conference�

pages �!	�� ACM SIGPLAN�AdaTEC� October ���	�

�GHW��� John V� Guttag� James J� Horning� and Jeannette M� Wing� The Larch family

of speci
cation languages� IEEE Software� 	����	�!��� September �����

�GM��� Richard P� Gabriel and John McCarthy� Queue�based Multi�processing Lisp�

Technical Report ������ Computer Science Department� Stanford University�

�����

�Gro��� High Order Language Working Group� Requirements for High Order Computer

Programming Languages�STEELMAN� Technical Report� US Department of

Defense� �����

�Hai�� Brent T� Hailpern� Verifying Concurrent Processes Using Temporal Logic�

PhD thesis� Computer Systems Laboratory� Stanford University� August ����

Technical Report ������

�HB��� Kai Hwang and Fay&e A� Briggs� Computer Architecture and Parallel Process�

ing� McGraw�Hill� �����

�HL��� David P� Helmbold and David C� Luckham� Runtime Detection and Descrip�

tion of Deadness Errors in Ada Tasking� Technical Report ���	��� Computer

Systems Laboratory� Stanford University� November ����� Program Analysis

and Veri
cation Group Report 		�

�HL��a� David P� Helmbold and David C� Luckham� Debugging Ada tasking programs�

IEEE Software� 	�	����!��� March �����

BIBLIOGRAPHY 	��

�HL��b� David P� Helmbold and David C� Luckham� TSL� Task Sequencing Language�

In Ada in Use� Proceedings of the Ada International Conference� pages 	��!

	��� Cambridge University Press� May �����

�Hoa��� C� A� R� Hoare� An axiomatic basis for computer programming� Communica�

tions of the ACM� �	�������!���� October �����

�Hoa��� C� A� R� Hoare� Monitors� an operating system structuring concept� Commu�

nications of the ACM� ���������!���� October �����

�Hoa��� C� A� R� Hoare� Communicating sequential processes� Communications of the

ACM� 	��������!���� August �����

�HU��� John E� Hopcroft and Je�rey D� Ullman� Introduction to Automata Theory�

Languages and Computation� Addison�Wesley� �����

�HW��� C� A� R� Hoare and Niklaus Wirth� An axiomatic de
nition of the programming

language Pascal� Acta Informatica� 	�������!���� �����

�ILL��� Shigeru Igarashi� Ralph L� London� and David C� Luckham� Automatic pro�

gram veri
cation I� a logical basis and its implementation� Acta Informatica�

�����!��	� �����

�JK��� Rakesh Jha and Dennis Kafura� Implementation of Ada Synchronization in

Embedded Distributed Systems� Technical Report� Virginia Polytechnic Insti�

tute� �����

�Jon��� Geraint Jones� Programming in �occam��A Tourist Guide to Parallel Pro�

gramming� Technical Report PRG���� Oxford University Computing Labora�

tory� March �����

�Kaf��� Dennis Kafura� Termination of Ada Tasks in a Distributed Environment� Tech�

nical Report� Virginia Polytechnic Institute� �����

�Kla��� Nils Klarund� Formal Concepts for Speci
cation and Automatic Testing of

Ada Tasks� Technical Report� DDC International A�S� �����

�Kri��� Bernd Krieg�Br uckner� Consistency checking in Ada and Anna� a transforma�

tional approach� Ada Letters� ��	����!��� September�October �����

	�	 BIBLIOGRAPHY

�KU��� John C� Knight and John I� A� Urquhart� On the implementation and use

of Ada on fault�tolerant distributed systems� IEEE Transactions on Software

Engineering� SE����������!���� May �����

�Lea��� J� F� Leathrum� Design of an Ada run�time system� In Proceedings of the Con�

ference on Ada Applications and Environments� pages �!��� IEEE Computer

Society� October �����

�Lev�� Gary Marc Levin� Proof Rules for Communicating Sequential Processes� PhD

thesis� Department of Computer Science� Cornell University� August ����

Technical Report ������

�LGvH���� David C� Luckham� S� M� German� Friedrich W� von Henke� R� A� Karp� P� W�

Milne� D� C� Oppen� W� Polak� and W� L� Scherlis� Stanford Pascal Veri
er

User Manual� Technical Report ������� Department of Computer Science�

Stanford University� March ����� Program Analysis and Veri
cation Group

Report ���

�LHM���� David C� Luckham� David P� Helmbold� Sigurd Meldal� Douglas L� Bryan� and

Michael A� Haberler� Task Sequencing Language for specifying distributed

Ada systems� In A� Nico Habermann and Ugo Montanari� editors� System

Development and Ada� Proceedings of the CRAI �Consorzio per le Ricerche

e le Applicazioni di Informatica� Workshop on Software Factories and Ada�

pages 	��!��� Springer�Verlag �Lecture Notes in Computer Science No� 	����

����� Presented at the Workshop in Capri� Italy� May 	�!�� �����

�LLSvH��� David C� Luckham� H� J� Larsen� D� R� Stevenson� and Friedrich W� von Henke�

ADAM�An Ada�Based Language for Multi�Processing� Technical Report ���

	�� Computer Systems Laboratory� Stanford University� May ����� Reprint

of Department of Computer Science Technical Report ������� July �����

�LM��� Thomas J� LeBlanc and John M� Mellor�Crummey� Debugging parallel pro�

grams with Instant Replay� IEEE Transactions on Computers� C����������!

��	� April �����

�LNR��� David C� Luckham� Randall B� Ne�� and David S� Rosenblum� An environment

for Ada software development based on formal speci
cation� Ada Letters�

BIBLIOGRAPHY 	��

�������!��� March!April ����� Also Stanford University Computer Systems

Laboratory Technical Report ����� �ProgramAnalysis and Veri
cation Group

Report ����

�LO��� Amy L� Lansky and Susan S� Owicki� Gem� A Tool for Concurrency Speci
ca�

tion and Veri
cation� Technical Report ���	��� Computer Systems Laboratory�

Stanford University� November �����

�LP�a� David C� Luckham and Wolfgang Polak� Ada Exceptions� Speci
cation and

Proof Techniques� Technical Report ������ Computer Science Department�

Stanford University� February ���� Stanford Veri
cation Group Report ���

�LP�b� David C� Luckham and Wolfgang Polak� A practical method of documenting

and verifying Ada programs with packages� In Proceedings of the Symposium

on the Ada Programming Language� pages ���!�		� ACM SIGPLAN� Decem�

ber ���� Appears in SIGPLAN Notices ������� November ����

�LR��� Richard J� LeBlanc and Arnold D� Robbins� Event�driven monitoring of dis�

tributed programs� In Proceedings of the �th International Conference on Dis�

tributed Computing Systems� pages ���!�		� IEEE Computer Society� May

�����

�LvH��� David C� Luckham and Friedrich W� von Henke� An overview of Anna� a

speci
cation language for Ada� IEEE Software� 	�	���!	�� March �����

�LvHKO��� David C� Luckham� Friedrich W� von Henke� Bernd Krieg�Br uckner� and Olaf

Owe� Anna�A Language for Annotating Ada Programs� Lecture Notes in

Computer Science No� ���� Springer�Verlag� �����

�Mat��� Nicholas Matelan� The FLEX��	 MultiComputer� In Proceedings of the ��th

Annual International Symposium on Computer Architecture� pages 	�!	���

IEEE Computer Society and ACM SIGARCH� June �����

�Mel��� Sigurd Meldal� An Axiomatic Semantics of Spawning� Technical Report� In�

stitute of Informatics� University of Oslo� ����� In preparation�

�MP��a� Zohar Manna and Amir Pnueli� Veri
cation of Concurrent Programs� Part I�

The Temporal Framework� Technical Report ������� Department of Computer

	�� BIBLIOGRAPHY

Science� Stanford University� June �����

�MP��b� Zohar Manna and Amir Pnueli� Veri
cation of Concurrent Programs� Part II�

Temporal Proof Principles� Technical Report ������� Department of Computer

Science� Stanford University� September �����

�MW��� Zohar Manna and Richard Waldinger� The Logical Basis for Computer Pro�

gramming� Volume �� Deductive Reasoning� Addison�Wesley� �����

�Nat��� N� Natarajan� A distributed scheme for detecting communication deadlocks�

IEEE Transactions on Software Engineering� SE��	�������!���� April �����

�Nau��� Peter Naur �Ed��� Revised report on the algorithmic language ALGOL��

Communications of the ACM� ������!��� January �����

�NGO��� Van Nguyen� David Gries� and Susan S� Owicki� A Model and Temporal Proof

System for Networks of Processes� Technical Report ���	�� Computer Systems

Laboratory� Stanford University� February �����

�OG��� Susan S� Owicki and David Gries� Verifying properties of parallel programs� an

axiomatic approach� Communications of the ACM� ������	��!	��� May �����

�Oli��� Dave Olien� Parallel Ada tasking on the Balance �� In Uniforum Proceed�

ings� Winter �����

�OSvdG��� D� P� O�Leary� G�W� Stewart� and Robert van de Geijn� DOMINO�A Message

Passing Environment for Parallel Computation� Technical Report TR������

Department of Computer Science� University of Maryland� April �����

�Ous�	� John K� Ousterhout� Scheduling techniques for concurrent systems� In Pro�

ceedings of the 	rd International Conference on Distributed Computing Sys�

tems� pages 		!�� IEEE Computer Society� October ���	�

�Pdb��� DYNIX Pdbx Debugger User�s Manual� Sequent Computer Systems� Inc��

September �����

�PdR�	� Amir Pnueli and Willem P� de Roever� Rendezvous with Ada�a proof theo�

retical view� In Proceedings of the AdaTEC Conference� pages �	�!���� ACM

SIGPLAN�AdaTEC� October ���	�

BIBLIOGRAPHY 	��

�PKL�� David A� Padua� David J� Kuck� and Duncan H� Lawrie� High�speed mul�

tiprocessors and compilation techniques� IEEE Transactions on Computers�

C�	��������!���� September ����

�PPL��� Balance Guide to Parallel Programming� Sequent Computer Systems� Inc��

September �����

�PS��� F� N� Parr and Robert E� Strom� NIL� a high�level language for distributed

systems programming� IBM Systems Journal� 		���	�����!�	�� �����

�PWC���� G� Popek� B� Walker� J� Chow� D� Edwards� C� Kline� G� Rudisin� and G� Thiel�

LOCUS� a network transparent� high reliability distributed system� In Proceed�

ings of the �th Symposium on Operating Systems Principles� pages ���!����

ACM SIGOPS� December �����

�RB��� Gregory A� Riccardi and Theodore P� Baker� A runtime supervisor to support

Ada task activation� execution and termination �preliminary report�� In Pro�

ceedings of the Conference on Ada Applications and Environments� pages ��!

		� IEEE Computer Society� October �����

�RB��� Gregory A� Riccardi and Theodore P� Baker� A runtime supervisor to support

Ada tasking� rendezvous and delays� In Ada in Use� Proceedings of the Ada

International Conference� pages �	�!��	� Cambridge University Press� May

�����

�Ros��� David S� Rosenblum� A methodology for the design of Ada transformation

tools in a DIANA environment� IEEE Software� 	�	��	�!��� March ����� Also

Stanford University Computer Systems Laboratory Technical Report ���	��

�Program Analysis and Veri
cation Group Report 	���

�Ros��� David S� Rosenblum� An e�cient communication kernel for distributed Ada

runtime tasking supervisors� Ada Letters� ��	���	!���� March!April �����

�RSL��� David S� Rosenblum� Sriram Sankar� and David C� Luckham� Concurrent

runtime checking of Annotated Ada programs� In Proceedings of the �th Con�

ference on Foundations of Software Technology and Theoretical Computer Sci�

ence� pages �!��� Springer�Verlag �Lecture Notes in Computer Science No�

	�� BIBLIOGRAPHY

	���� December ����� Also Stanford University Computer Systems Laboratory

Technical Report �����	 �ProgramAnalysis and Veri
cation Group Report ����

�SH��� Vivek Sarkar and John Hennessy� Compile�time partitioning and scheduling of

parallel programs� In Proceedings of the SIGPLAN ��� Symposium on Com�

piler Construction� pages ��!	�� ACM SIGPLAN� June ����� Appears in SIG�

PLAN Notices 	����� July �����

�SMV��� Richard L� Schwartz� P� M� Melliar�Smith� and Friedrich H� Vogt� An Inter�

val Logic for Higher�Level Temporal Reasoning� Technical Report CSL�����

Computer Science Laboratory� SRI International� Menlo Park� CA� February

�����

�SR��� Sriram Sankar and David S� Rosenblum� The Complete Transformation

Methodology for Sequential Runtime Checking of an Anna Subset� Techni�

cal Report ������ Computer Systems Laboratory� Stanford University� June

����� Program Analysis and Veri
cation Group Report ��

�SRN��� Sriram Sankar� David S� Rosenblum� and Randall B� Ne�� An implementation

of Anna� In Ada in Use� Proceedings of the Ada International Conference�

pages 	��!	��� Cambridge University Press� May �����

�SS��� Dana Scott and Christopher Strachey� Toward a mathematical semantics for

computer languages� In Jerome Fox� editor� Proceedings of the Symposium on

Computers and Automata� pages ��!��� The Polytechnic Institute of Brooklyn

and The Microwave Research Institute� Wiley�Interscience� April �����

�Sta��� William Stallings� Local networks� ACM Computing Surveys� �������!���

March �����

�Ste�� D� R� Stevenson� Algorithms for translating Ada multitasking� In Proceedings

of the Symposium on the Ada Programming Language� pages ���!���� ACM

SIGPLAN� December ���� Appears in SIGPLAN Notices ������� November

����

�SY��� Robert E� Strom and Shaula Yemini� NIL� an integrated language and system

for distributed programming� In Proceedings of the SIGPLAN ��	 Symposium

BIBLIOGRAPHY 	��

on Programming Language Issues in Software Systems� pages ��!��� ACM

SIGPLAN� June ����� Appears in SIGPLAN Notices ������ June �����

�Tan��� Andrew S� Tanenbaum� Computer Networks� Prentice�Hall� �����

�Tan��� Andrew S� Tanenbaum� Operating Systems� Design and Implementation�

Prentice�Hall� �����

�Ten��� R� D� Tennent� The denotational semantics of programming languages� Com�

munications of the ACM� ���������!���� August �����

�TLC��� Marvin M� Theimer� Keith A� Lantz� and David R� Cheriton� Preemptable

Remote Execution Facilities for the V�System� Technical Report ���	��� Com�

puter Systems Laboratory� Stanford University� September ����� Department

of Computer Science Technical Report �������

�TO��� Kuo�Chung Tai and Evelyn E� Obid� Reproducible testing of Ada tasking

programs� In Proceedings of the Second International Conference on Ada Ap�

plications and Environments� pages ��!��� IEEE Computer Society� April �����

�TvR��� Andrew S� Tanenbaum and Robbert van Renesse� Distributed operating sys�

tems� ACM Computing Surveys� ���������!��� December �����

�vHLKO��� Friedrich W� von Henke� David C� Luckham� Bernd Krieg�Br uckner� and Olaf

Owe� Semantic speci
cation of Ada packages� In Ada in Use� Proceedings of

the Ada International Conference� pages ���!���� Cambridge University Press�

May �����

�VM��� Richard A� Volz and Trevor N� Mudge� Timing issues in the distributed exe�

cution of Ada programs� IEEE Transactions on Computers� C����������!����

April �����

�VMNM��� Richard A� Volz� Trevor N� Mudge� Arch W� Naylor� and John H� Mayer� Some

problems in distributing real�time Ada programs across machines� In Ada in

Use� Proceedings of the Ada International Conference� pages �	!��� Cambridge

University Press� May �����

�Wea��a� Richard M� Weatherly� Design of a Distributed Operating System for Ada�

PhD thesis� Clemson University� Clemson� SC� August �����

	�� BIBLIOGRAPHY

�Wea��b� Richard M�Weatherly� A message�based kernel to support Ada tasking� In Pro�

ceedings of the Conference on Ada Applications and Environments� pages ���!

���� IEEE Computer Society� October �����

�Weg�	a� Peter Wegner� Operational semantics of programming languages� In Proceed�

ings of a Conference on Proving Assertions About Programs� pages �	�!����

ACM SIGPLAN and SIGACT� January ���	� Appears in SIGPLAN Notices

����� January ���	�

�Weg�	b� Peter Wegner� The Vienna de
nition language� ACM Computing Surveys�

������!��� March ���	�

�Win��� Jeannette M� Wing� Writing Larch interface language speci
cations� ACM

Transactions on Programming Languages and Systems� ������!	�� January

�����

�Wir��� Niklaus Wirth� The programming language Pascal� Acta Informatica� �������!

��� �����

�Wir�	� Niklaus Wirth� Programming in Modula��� Texts and Monographs in Com�

puter Science� Springer�Verlag� ���	�

�Woo��� M� Woodger� Origins of Ada features� Ada Letters� �������!�� January!

February �����

�WS��� Peter Wegner and Scott A� Smolka� Processes� tasks� and monitors� a com�

parative study of concurrent programming primitives� IEEE Transactions on

Software Engineering� SE���������!��	� July �����

�ZGMB�	� H� Zimmerman� M� Guillemont� G� Morisset� and J� S� Banino� CHORUS� A

Communication and Processing Architecture for Distributed Systems� Tech�

nical Report EXP � �	�� INRIA� Rocquencourt� ���� Le Chesnay� France�

���	�

�Zim�� Hubert Zimmerman� OSI reference model�the ISO model of architecture for

open systems interconnection� IEEE Transactions on Communications� COM�

	������	�!��	� April ����

