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Abstract

Many ecological studies compare the genetic structure of populations undergoing natu-
ral or artificial selection across different environments. High-throughput molecular mark-
ers are now commonly used for these comparisons and provide information on the adapta-
tion of the populations to their environments. The genetic structure reflects the history of
selection, mutation, migration, and the reproductive breeding system of the populations
in their environments. This can be investigated by comparing the ordering of markers
obtained from the population with that provided by a recombination or physical map. In
populations undergoing selection many genes (markers) have low or zero frequency and
commonly used disequilibrium coefficients become unstable under these conditions. A
method is presented for ordering bi-allelic markers for populations of self-fertilizing plant
species which consist of mixtures of related homozygous genotypes. This provides stable
pair-wise marker similarity measures even when marker frequencies are low, identification
of marker combinations that reflect phenomena that cause differentiation (such as selec-
tion and migration), and genetic information on the adaptation of the populations to the
environments. The method is illustrated using data from a plant breeding program and
inferences are made about accumulation of desirable genes (such as for disease resistance).
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1. Introduction

Plant populations, both those undergoing natural and artificial selection, are genetically struc-
tured in space and time (Beavis 1998; Allard 1999; Stodart et al. 2007) and this structure
may be manifested among locations, within locations and among individuals. This genetic
structure is the joint result of mutation, migration, selection, drift and reproductive breeding
system which all operate within the historical and biological context of each species (Loveless
and Hamrick 1984). Thus, the genetic structure of a population reflects its history across time
and space and comparing population histories should reveal information on the evolution of
adaptedness (Allard 1999). A measure of gametic phase disequilibrium (GPD) can be used
to study population history since GPD is affected by any factor causing genetic structure in
a population (Falconer and McKay 1996). The assessment of GPD in populations is greatly
enhanced by high-throughput marker technology (Fan et al. 2006; Jaccoud et al. 2001) as it
enables the investigation of whole-genome GPD.

While not essential for the calculation or study of pairwise GPD among markers, a suitable
marker order maximizes the information that can be gleaned from such an investigation. This
is particularly so with the use of an increasingly large number of markers (van Os et al. 2005).
A marker order is usually obtained from linkage or physical maps. These maps are constructed
to reflect GPD due to linkage (i.e. recombination or physical chromosome distance), typically
using special (bi-parental) mapping populations. In the study of human populations, a com-
bination of physical maps and GPD measurements has been used to provide information on
recombination, selection, population history and gene expression (Tapper et al. 2005). For
the study of plant populations, marker order that reflects all causes of GPD can be directly
constructed for each population using disequilibrium measures. Comparing this marker order
across populations and/or with linkage or physical maps enables the study of changes in the
populations due to selection.

Many measures of GPD (Hedrick 1987; Devlin and Risch 1995) can be used to order markers.
While all of them are based on measures of similarity among markers, most are not stable
for low frequency or non-polymorphic markers as the denominator approaches zero (Hubalek
1982). Yet low frequency or non-polymorphic markers are common for populations undergo-
ing selection since desirable genes tend to become fixed over time.

In order to study populations undergoing selection, we propose the use of a similarity mea-
sure which is stable under low or non-polymorphic markers and present a method to obtain
marker order for bi-allelic marker systems from populations of self-fertilising plant species
which consist of mixtures of related homozygous genotypes. The method can be applied to
both natural populations (e.g. landraces) and artificial populations (e.g. populations from
plant breeding programs) and is illustrated using wheat populations for two generations (i.e.
parents and offspring) from an international breeding program.

2. Procedure Development

2.1. Calculating Pairwise GPD

The data produced for a population under study by genotyping a set of ng homozygous geno-
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types with ne bi-allelic markers form an ng × ne matrix S with elements sij which record
the “state” of the marker as 1 if the genotype has the marker and 0 if it does not. Hence
the matrix records whether the genotypes are identical by state, i.e. whether genotypes have
the same state for each marker. Any measure of GPD in the population under study is a
similarity measure among markers, i.e. the columns in S.

There are many similarity measures for binary data (43 were listed by Hubalek 1982) such
as those produced by genotyping with bi-allelic markers. These similarity measures are re-
lated to each other in that they can be calculated from a two-way contingency table among
pairs of markers j and j′. Genetically, the contingency table indicates the frequency (fjj′) of
the possible gamete combinations in the population, with the marginal frequencies (fj•, f•j′)
reflecting expected gamete frequencies under Hardy-Weinberg equilibrium. Some of these
similarity measures have been used as a GPD coefficient in genetic studies (e.g. r2 and D′;
Hedrick 1987; Devlin and Risch 1995). The most commonly used GPD coefficients have the
same numerator, the determinant of the 2 × 2 contingency table (f11f22 − f12f21), but have
different denominators used to standardize the measure (e.g. f1•f2•f•1f•2 for r2) (Devlin and
Risch 1995). However, all current GPD coefficients measure GPD as a deviation from ex-
pected frequencies such as those derived from the application of Hardy-Weinberg equilibrium
theory. But these have the problem that they become unstable because their denominator will
approach zero when one of the gamete combinations approaches zero. The latter is expected
in populations undergoing selection as loci approach fixation.

The Hamann coefficient or the G Index of Agreement (Hamann 1961; Sokal and Sneath 1963;
Holley and Guilford 1964) is the difference between the proportions of matches and mis-
matches in the binary measures on a pair of objects. The Hamann coefficient has been used
in psychology, education, taxonomy and social sciences disciplines (Hamann 1961; Sokal and
Sneath 1963; Holley and Guilford 1964), but its use in genetics is limited (Leǐsová et al. 2007).
The Hamann coefficient gjj′ between marker j and j′ is

gjj′ = [(f11 + f22)− (f12 + f21)]/f•• (1)

where f11 is the frequency of both markers being present. These coefficients form a sym-
metrical ne × ne similarity matrix G. Genetically, gjj′ is the difference between coupling and
repulsion haplotypes for bi-allelic markers j and j′. If the data used to calculate gjj′ were
displayed in a 2× 2 contingency table, then the matches are on the diagonal, the mismatches
are on the off-diagonals, and the denominator is the sum of the elements in the table. When
scored in populations consisting of mixtures of homozygous genotypes, gjj′ is a direct measure
of the excess of gamete combinations in coupling (f11 and f22) phase (when greater than zero)
or repulsion (f12 and f21) phase (when less than zero) and reflects all causes of GPD. Thus
gjj′ is a measure of observed haplotype disequilibrium (HD), but it does not measure disequi-
librium as a deviance from Hardy-Weinberg equilibrium. The gjj′ between two markers j and
j′ will be one if their patterns over genotypes are identical (coupling) and minus one if they
have exactly opposite patterns (repulsion). Importantly, the Hamann coefficient is stable for
non-polymorphic markers as its denominator never approaches zero.

Marker phase is important in genetics for the calculation of recombination frequency, as re-
combination frequency is defined as the number of recombinant gametes over the total number
of gamete combinations (Falconer and McKay 1996). Thus, using the absolute value of the
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Hamann coefficient (|gjj′|) eliminates the problem of unknown marker phase.

The Hamann coefficient also has a linear relationship with the simple matching coefficient
mjj′ between markers j and j′ (Hubalek 1982):

mjj′ = (f11 + f22)/f•• = (gjj′ + 1)/2 . (2)

In bi-parental mapping populations with an expected segregation ratio of 1:1 for each marker
(backcross, doubled haploid, F∞ populations) the mjj′ has a linear relationship with the
recombination fraction cjj′ between markers j and j′ as

cjj′ = 1−mjj′ = (1− gjj′)/2 . (3)

Each cjj′ is a dissimilarity measure and mjj′ is its complementary similarity measure (Gower
1966, 1967). This relationship between cjj′ and mjj′ is not commonly referred to in the
molecular mapping literature but was referred to by Hackett (2002). Recognizing that the
disequilibrium and recombination measures are complementary similarity and dissimilarity
measures means that all standard pattern analysis methodologies, i.e. the joint use of clus-
tering and ordination procedures (Williams 1976; DeLacy et al. 1996), can be directly applied
to the appropriate genetic studies.

2.2. Ordering Markers

A two stage procedure was used to order markers: a dendrogram was obtained from a hi-
erarchical clustering, followed by optimization of the marker order along the base of the
dendrogram.

In the first stage, a hierarchical agglomerative procedure with 1 − |gjj′| as the dissimilarity
measure among markers and group average (or UPGMA, Sokal and Michener 1958) as the
clustering strategy was used to form a dendrogram. The use of the absolute value of gjj′
removes the mirror effect due to marker phase and those marker pairs in complete disequilib-
rium (gjj′ = ±1) will be grouped first. Those in equilibrium (no association) will be grouped
last. The order of the markers along the dendrogram traces a walk through multidimensional
space visiting the position of each marker once only.

However, there are many “marker orders” obtainable from a hierarchical dendrogram as the
leaves of the dendrogram can be rotated at any fusion point of the dendrogram. A desirable
order would be the shortest possible walk through the disequilibrium space. This is the “trav-
eling salesman problem” and solutions to the problem employ seriation methods (Arabie and
Hubert 1996; Hahsler et al. 2008). The seriation method of Gruvaeus and Wainer (1972) as
implemented in the seriation package (Hahsler et al. 2008) of the R statistical software (R
Core Team 2012) was used to optimize marker order. This method uses dendrogram order as
scaffolding and flips each leaf of the dendrogram moving up the clustering so that adjacent
entities are the most similar. This algorithm explicitly solves the problem of starting position
(i.e. in marker mapping, determining which marker is at the end of the chromosome) by
determining which entities are at the extremities. We refer to dendrograms optimized in this
manner as “optimized dendrograms”.

This procedure produces an optimized marker order over the whole genome that reflects all
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processes that cause GPD in the population: selection, migration (founder effect), mutation,
drift and linkage. We refer to this order as “genome haplotype disequilibrium order”, or
“genome HDO”, to distinguish it from the marker order obtained from a linkage or physical
map. The development of this method was motivated by results from microarray studies (Bar-
Joseph et al. 2001; Eisen et al. 1998) that have shown genes with similar function tend to
group together regardless of their position in chromosomes.

However, markers can also be ordered within each chromosome, referred to as “chromosome
HDO”, because it describes GPD within chromosomes. A list of anchor markers allocated to
chromosomes can normally be obtained from published comprehensive marker maps (Dodds
et al. 2004). If an anchor map containing sufficient markers used in the study is available,
the hierarchical clustering procedure described above can also be used to assign markers with
unknown allocation or markers with multiple allocations to the same chromosome as that of
the anchor marker(s) with which they first cluster in the dendrogram.

The procedure described here to obtain marker HDO is a modification of the well-known
standard mapping procedure that has been implemented in many software packages (e.g.
Lander et al. 1987; Stam 1993) to produce genetic linkage maps in plants using bi-parental
populations. There are four steps in this standard procedure: (1) calculate the recombination
matrix from the observed genotypic data, (2) allocate markers to linkage groups and then to
chromosomes, (3) order markers within linkage groups or chromosomes, and (4) calculate map
distances. Here we calculate the GPD matrix, use hierarchical clustering to form a dendro-
gram, order markers across the whole genome, allocate unmapped markers to chromosomes
via an anchor map and the dendrogram, and order markers within chromosomes.

If the method is applied to bi-parental mapping populations with expected frequencies of 1:1
for all markers, the chromosome HDO is the same as that derived from standard mapping pro-
cedures. In addition, because of the direct relationship between the Hamann coefficient, the
simple matching coefficient and the recombination fraction, 1− |gjj′| is a measure of linkage
distance along the chromosome and can be converted to centimorgans by the application of
the Haldane or Kosambi mapping functions. Hence, the method produces a standard linkage
map when applied to standard mapping populations. It has a further advantage in that the
absolute value of the Hamann coefficient adjusts for phase differences, so knowledge of the
marker status of the parents is not required.

2.3. Marker Blocks

A group of adjacent markers that show a high level of disequilibrium is defined as a marker
block. The combined use of linkage and/or physical maps and detailed targeted disequilibrium
studies enables groups of adjacent markers to be assigned to a marker block if their GPD
coefficient exceeds a pre-determined threshold value. Linkage disequilibrium (LD) blocks have
been found useful for fine mapping and for identifying recombination hotspots in chromosome
regions (Maniatis et al. 2002; Tapper et al. 2005). Similarly, the absolute value of the Hamann
coefficient, |gjj′|, though limited to dominant bi-allelic marker systems, can be employed, in
conjunction with maps, to identify marker blocks.

A haplotype disequilibrium block (HDB) is defined as a group of adjacent markers (or a
single marker) with the absolute value of the Hamann coefficient greater than or equal to
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a threshold. The threshold value indicates the minimum excess of the most common pair
of haplotypes over the other types and the value chosen will depend on the structure of the
populations. Using a higher threshold increases the likelihood that the identified HDBs are
due to linkage. However, in addition to linkage, HDBs indicate all the processes (selection,
migration, mutation, and genetic drift) that affect GPD in the population under study. They
will be common in artificial or natural populations that are undergoing selection.

3. Case Study

The procedure described above was applied to two successive populations of inbred wheat lines
from the Elite Spring Wheat Yield Trial (ESWYT) at the International Maize and Wheat
Improvement Center (CIMMYT) in México. The first population consisted of 685 entry lines
tested in the first 25 cycles of the ESWYT (ESWYT entries) and the second population
consisted of 195 parental lines (ESWYT parents). It is estimated that there is an average
six-year gap between the two generations as six years is the time required in the CIMMYT
what breeding cycle to develop the best advance lines after making new crosses (Wang et al.
2003). The entries and parents were mostly bred at CIMMYT and targeted to low latitude,
irrigated, high input conditions. These lines form a population of genealogically connected
small families of inbred lines.

Five hundred and ninety-nine (plus some duplicates) of the 685 ESWYT entries were geno-
typed using composite DArT chip v2.3 and 1,447 polymorphic DArT markers were scored.
About two years later, the 195 parents were genotyped using DArT chip v2.6 and 2,153
polymorphic DArT markers were scored. DArT chip v2.6 contains 5,000 markers including
the 2,500 markers from DArT chip v2.3 (http://www.trticarte.com.au/content/wheat_
diversity_analysis.html), hence more markers were expected to be scored on the parental
population. As low or non-polymorphic markers in both populations were not scored, only
741 polymorphic markers common to both populations were available for comparing the HDO
across the two generations of this breeding program. Both chromosome HDO and genome
HDO were constructed for each of the populations and used to describe the change in ge-
netic structure of the ESWYT population over time. Following the procedure of defining LD
blocks in human studies (Maniatis et al. 2002), a threshold value of 0.8 for the absolute value
of the Hamann coefficient, |gjj′|, was used to define a HDB in both populations. The wheat
consensus map (Huang et al. 2012) with 4,606 DArT markers was used as an anchor map and
provided 1,115 and 1,596 anchor markers for the ESWYT entries and parents, respectively.
The HDO from both ESWYT populations were compared to the order of this consensus map.

The procedure described above was also applied to a bi-parental mapping population, the
Synthetic×Opata (SO) double haploid mapping population (Sorrells et al. 2011). This popu-
lation consisted of 163 double haploid lines with a total of 1,414 polymorphic DArT markers.
The chromosome HDO was then compared to the published SO map produced using a stan-
dard mapping software EasyMap (Sorrells et al. 2011) .

4. Results

The map for the Synthetic×Opata double haploid mapping population obtained using the

http://www.trticarte.com.au/content/wheat_diversity_analysis.html
http://www.trticarte.com.au/content/wheat_diversity_analysis.html
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method described here was essentially the same as that produced by the standard mapping
software, EasyMap (not shown here). It confirmed that using the absolute value of the
Hamann coefficient successfully deals with phase differences for marker mapping.

An additional 299 markers for the entries and 469 markers for the parents were successfully
allocated to chromosomes. These included 31 markers (25 of them common with markers
for the parents) that were reassigned to the 1BL/1RS translocation based on the haplotype
profiles of 32 released cultivars included in the entries with known 1BL/1RS translocation
status (data not shown). 1BL/1RS is a substitution of a rye chromosome arm for the short
arm of chromosome 1B (Zeller 1973). This translocation, observed on about half of the en-
tries, provides several rust resistance genes and has contributed to high-yielding genotypes.
In total, there were 1,414 and 2,056 markers ordered for the entries and parents, respectively.

Chromosome HDO reflects HD within each chromosome, whereas genome HDO reflects HD
across the whole genome (Figure 1). Long-distance HD was detected in both the parents
(Figure 1a) and the entries (Figure 1c) and was not caused by linkage (as it was across differ-
ent chromosomes). In a plant breeding population, this long-distance HD is likely to be the
result of selection. As the markers in the 1BL/1RS translocation were in disequilibrium with
markers in the short arm of chromosome 1B, they were ordered together in genome HDO. In
the SO population, the three disequilibrium coefficients produced similar results and detected
no long-distance HD as this population was not undergoing selection (data not shown). In
the ESWYT parental and entries populations, r2 and D′ detected less long-distance HD than

Figure 1: Graphical depiction of the matrices of the absolute value of the Hamann coefficient
(|gjj′|) among markers for two generations of the Elite Spring Wheat Yield Trial (ESWYT)
population based on chromosome and genome haplotype disequilibrium order (HDO). Graph-
ical depiction of |gjj′| for the parents based on (a) chromosome and (b) genome HDO and for
the entries based on (c) chromosome and (d) genome HDO. Horizontal lines in the chromo-
some HDO indicate chromosomes. Arrows indicate the re-arrangement of markers between
chromosome and genome HDO for markers in the 1BL/1RS translocation and the short arm
of chromosome 1B.
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the Hamann coefficient (Figure 2).

Two types of HDB, chromosome HDB based on chromosome HDO (Figures 1a and 1c) and
genome HDB based on genome HDO (Figures 1b and 1d) were identified. There were more
chromosome HDBs (727 and 485) than genome HDBs (691 and 448) for both the parents

Figure 2: Graphical depiction of the matrices of the |D′| and r2 coefficients among markers
for two generations of the Elite Spring Wheat Yield Trial (ESWYT) population based on
chromosome and genome haplotype disequilibrium order (HDO). Graphical depiction of |D′|
and r2 for the parents based on (a) chromosome and (b) genome HDO and for the entries
based on (c) chromosome and (d) genome HDO. Horizontal lines in the chromosome HDO
indicate chromosomes. Arrows indicate markers in the 1BL/1RS translocation and the short
arm of chromosome 1B. Unlabeled black square in genome HDO indicates the biggest genome
HD block (HDB) identified using the Hamann coefficient.
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and the entries. The smaller number of genome HDBs was due to the merging of several
chromosome HDBs into a single genome HDB. The biggest genome HDB in the parents (Fig-
ure 1b red triangle) consisted of 18 chromosome HDBs, while the biggest one in the entries
(Figure 1d) consisted of 17 chromosome HDBs. The biggest genome HDBs in both parents
and entries were not identified using r2 and D′ (Figures 2b and 2d) as these blocks consisted
of low polymorphic markers. In the SO population, both chromosome and genome HDBs
reflect the chromosomes arms and were identified using the three GPD coefficients (data not
shown).

Chromosome and genome HDOs constructed from the parents were different from those ob-
tained from the entries (Figure 3), both in order and in size. While most chromosome HDBs

Figure 3: Chromosome haplotype disequilibrium order (HDO) constructed using two genera-
tions of the Elite Spring Wheat Yield Trial (ESWYT) population. Comparison of chromosome
HDO from the parents (black) and the entries (purple) for (a) all markers and (b) markers in
chromosome 2A for the parents (left) and the entries (right).
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were retained in both generations, the relative orientation of these blocks was different (Fig-
ure 3). In several cases, chromosome HDBs in the parents were merged into a single chromo-

Figure 4: Chromosome haplotype disequilibrium order (HDO) constructed using two gener-
ations of the Elite Spring Wheat Yield Trial (ESWYT) and DArT consensus map (Huang
et al. 2012). (a) Comparison of chromosome HDO from the parents (blacks) and the con-
sensus map (blue). (b) Comparison of chromosome HDO from the entries (purple) and the
consensus map (blue). Markers in the consensus map were displayed in cM, while markers
in both ESWYT populations were displayed as order. Consensus map distance (cM, vertical
axis) for chromosome haplotype disequilibrium blocks (HDBs) in chromosome 2A arranged
in chromosome HDO (horizontal axis) from the parents (c) and the entries (d). The number
of markers in each HDB was displayed, except for single-marker HDBs. The colored points
indicated the markers that were common to the parental and entry populations and discussed
in the text.
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some HDB in the entries, but the reverse was rare (Figure 3). For example, the two HDBs in
chromosome 2A of the parents were merged into a single HDB in the entries (Figure 3). For
genome HDO, the biggest HDB in the entries consisted of 20 smaller HDBs in the parents
with some adjacent blocks. The re-ordering and re-sizing of HDBs between the parents and
the entries were likely to reflect selection that occurred over time between the parental and
entry populations. For example, the biggest genome HDB in the entries included markers
from chromosome 2A and 7D. These chromosomes were known to have, respectively, the
photoperiod gene Ppd3 (Worland et al. 1998) that is important for adaptation and the Lr19
translocation that carries a leaf rust resistance gene (Sharma and Knott 1966). In the par-
ents, markers for each chromosome were allocated to HDBs which were not adjacent to one
another. This result could indicate the effect of selection for the Ppd3 and Lr19 genes.

With few exceptions, the markers in a chromosome HDB were co-located or close together in
the consensus map (Figure 4). For example, a HDB in the entry population (Figure 4d, red
points) consisted of two clusters of markers at 4-20cM and 63-78cM. This HDB is likely to be
a result of selection. In the parental population, the markers in this HDB formed five smaller
HDBs (Figure 4c, red points), but with selection they coalesced. Some co-located or closely
linked (<10cM) markers in the consensus map were divided into several adjacent HDBs in the
parental population (Figure 4c, blue points). This might be an indication that the threshold
value used in defining the HDBs in the parents was too high, especially since these markers
grouped into a single HDB in the entries (Figure 4d, blue points).

5. Discussion

The procedure described here, using the Hamann coefficient (|gjj′|), enables the determination
of a marker order that is useful for studying the disequilibrium of any population that consists
of inter-related inbred lines, especially those under selection. The standard coefficients, D′

and r2, have a limitation when studying populations under selection as they become unstable
when the frequency of alleles approaches zero (the denominator approaches zero) and they are
undefined at zero frequencies. Low or non-polymorphic allele frequencies must be expected
when comparing populations under selection. Comparing HDO with linkage order from a
consensus or physical map provides information about the cause of GPD in the population.
In addition, HDBs can be identified and used to study the population structure. As an ap-
propriate HDO can be generated for any temporal and/or spatial partition of an artificial or
natural population, this procedure facilitates study of evolution.

While the development of the Hamann coefficient given here is restricted to bi-allelic loci, this
coefficient can be generalized to multi-allelic systems by averaging all the pairwise coefficients
among alleles as is done with D′ and r2.

The procedure to obtain marker HDO involved (1) calculating pairwise GPD using the
Hamann coefficient, (2) using hierarchical clustering to form a dendrogram, (3) ordering
markers across the whole genome, (4) allocating unmapped markers to chromosomes via an
anchor map and the dendrogram, and (5) ordering markers within chromosomes. It can be
applied to any population consisting of related homozygous genotypes to produce marker
HDOs based on the similarity of bi-allelic marker combinations across genotypes. The hap-
lotypes among members of a population reflect disequilibrium, as a set of markers will have
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identical patterns across genotypes if they are either co-located (linked), or the only marker
combinations in the founders, or they are selected together, or a combination of these.

The derived chromosome and genome HDO provide complementary information on popula-
tion history (Figure 2). Chromosome HDO enables the identification of chromosome HDBs
that are likely to be influenced by linkage, while genome HDO is used to identify genome
HDBs that are likely to be affected by any factor causing GPD. For example, the HDB con-
sisting of markers on the BL/1RS translocation (Figure 1) is definitely caused by linkage since
there is no recombination in this translocation (Lukaszewski 2000).

Markers with low or no haplotype variability are expected in highly selected populations, such
as the ESWYT. These markers will group together in either chromosome or genome HDBs.
While many HDBs were identified using the absolute value of the Hamann coefficient, most
were not identified using the two common GPD coefficients, D′ and r2 (Figure 2). These two
commonly used GPD coefficients identified a marker block in the 1BL/1RS translocation that
was carried by half of the ESWYT lines, but did not identify the biggest genome HDB in the
ESWYT that had very low polymorphic markers. A pair of markers with low polymorphism
will have a small value of D′ and an even smaller value of r2 and these coefficients will not
be defined if there is no polymorphism. While it is common practice to remove low or non-
polymorphic markers from the analysis, for populations undergoing selection, these low or
non-polymorphic markers indicate regions of chromosomes that are highly selected and are
reaching or have reached fixation. For plant breeding purposes, the information on low or
non-polymorphic markers in the breeding populations can be useful in designing the crossing
strategies, evaluating the effectiveness of selection, and measuring the genetic diversity in the
breeding populations.

The recommended measure of disequilibrium enables a comparison of HDO from populations
that differ in space and time, enhancing studies of the evolution of adaptedness as outlined
by Allard (1999). This approach will be most useful if all populations have the same set of
markers scored, whether or not they have low or no polymorphism as these provide informa-
tion on marker fixation due to selection during evolution.

HDO produced from special bi-parental populations with no selection and expected Mendelian
segregation ratio of 1:1 (e.g. double haploid, backcross, and F∞) reflects only GPD due to
linkage. When applied to such a population, the method outlined here produces essentially the
same map order as standard mapping procedures and does not require parental information.
In this case, the relationships among the Hamann coefficient, simple matching coefficient,
and recombination frequency can be used to calculate map distance and produce a standard
linkage map. Moreover, the threshold to determine HDB in such special populations can be
adjusted, e.g. in the Synthetic×Opata double haploid population we used a threshold value of
0.6 and identified genome HDBs that corresponded to a chromosome arm (data not shown).

The procedure described here enables the determination of a marker order that is useful for
any population consisting of inter-related inbred lines. Thus, it can be used to study changes
in natural or artificial populations undergoing selection even when low or non-polymorphic
markers are present.
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