
Promile � A Management Architecture for Programmable Modular

Routers

M� Rio� N� Pezzi� L� Zanolin� H� De Meer� W� Emmerich and C� Mascolo

Dept� of Computer Science

University College London

Gower Street� London WC�E �BT

f m�rio� n�pezzi� l�zanolin� h�demeer� w�emmerich� c�mascolo g�cs�ucl�ac�uk

� Introduction

In recent years the �eld of Active or Programmable net�
works has received much attention from the networking
community� The goal is to achieve �exible programma�
bility in routers and switches� This will be particularly
useful in the context of di�erentiated services ��� where
di�erent functionalities may or may not be present�

This document describes a novel active router archi�
tecture that provides policy management and it is com�
pletely updatable and con�gurable at run�time provid�
ing the possibility of changing the packet �ow inside
the router without signi�cant tra	c disruption� We
use XML to describe the behaviour of the router�

� Architecture Overview

The architecture seen in �gure � represents an active
router with two levels of functionality� On the lower
level resides the OS kernel and on the upper level the
XML based engine
described in ���� running in user
space which will manage and con�gure the lower level�

The use of XML for high level management allows
�exibility de�ning router behaviour since XPath ��� al�
lows the insertion or modi�cation of the rules that man�
age the router� Using XML Schema ��� the behaviour
grammar can be de�ned checked and modi�ed at run�
time providing extra �exibility security and easy up�
grading� The existence of several o��the�shelf XML
tools and related technologies is another advantage of
following this approach�

Our router is built to run on di�erent platforms with
di�erent hardware architectures� In order to accom�
plish this we use Java to develop the XML based en�
gine� Assuming that all the platforms have a Java Vir�
tual Machine the code will be portable without need
for a new implementation� The use of Java also allows
dynamic downloading of con�guration code of the low
level part of the architecture�

The XML based engine communicates with the lower
level through a set of primitives provided to the user

space in a special library� The manager inserts and
deletes modules in the kernel and connects them ac�
cording to the graph de�ned by the administrator� Af�
ter a module is inserted in the kernel and properly con�
nected to the graph it can be con�gured in real time
by the XML engine depending on the rules de�ned by
the administrator�

IP Forwarding

IPv4

IPv6

Manager

class.

mod n

mod 2mod 1

mod x mod y

Packet

Reception Transmission

Packet

Promile.lib

send_message()

XML based engine

Figure �� Architecture

The modules will typically be the usual components
in a router and�or more speci�cally in a di�erentiated
services capable router� Examples include classi�ers
markers droppers shapers and schedulers�
After a packet is received it is passed to the �rst

module
in the example a classi�er� which then passes
to the next module depending on the conditions ex�
pressed by the rules�
At some point the packet is passed to the forwarding

engine
more than one may exist in the router� which
decides which output port the packet is intended to� At
each output port the packet may �nd di�erent modules

a shaper or a TCP marker for example� and �nally a
scheduler� The system allows di�erent ports to run dif�
ferent schedulers and this is con�gured using our graph
mechanism� A di�erent scheduler is implemented by a
di�erent module which is inserted and connected in the

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

graph the same way as the other modules�
A similar functionality can be installed in the dif�

ferent input ports� Di�erent modules can be installed
only in the path of packets arriving on a speci�c input
port
a dropper or a marker for example��

� Module Management

Each module is de�ned by a set of input and output
gates� The internals of the module are not important
for the rest of the system� The module manager will
only have to know which connections will need to be
de�ned�established� For administration purposes each
module should include metadata explaining the seman�
tic of each gate�
When a module is loaded into memory it registers

with the module manager registering its gates and
functions to update parameters�
The �rst thing the module manager does is to in�

sert a module� It inserts it in memory and keeps
the references to the gates in memory
as pointers
to functions�� When receiving a graph command it
changes the pointer accordingly in order to implement
the de�nition of the graph� Packets are implemented as
structures being passed through these functions� This
doesn�t need to do major changes in the linux kernel
since it already uses these data structures
skbu�� all
over the packet forwarding process�
Upon insertion of a module it returns to user space

a module reference number so that the module can be
uniquely identi�ed in future messages�

� Graph and Rules de�nition

Graphs are de�ned by the administrator using XML as
seen in the example below

���xml version������ encoding��UTF	
�����

�message�

�action value��reset��

�module name��mark��

�outputgate number�����

�inputgate module��shape� number�����

�outputgate�

�rules�

�rule InIP������������������

InPort������� mark��first��

�rule OutIP������������������

OutPort������� mark��second��

�rules�

�module�

�action�

�message�

Here we see the con�guration of the module mark

which implements a di�erentiated services marker�

First the gate connections are de�ned linking the
modules together
in this case with a shaper� building
the graph�
The second part is module dependent and describes

its speci�c rules� In this case we de�ne how the packets
should be marked
�rst or second class� according to
their IP addresses and TCP ports�
When receiving data with information about gate

connection in the graph the engine connects modules
using the connect modules
� function�

connect modules�input module�output gate� output
module� input gate�

The graph manager is kept at user space in order
to minimise the work and memory executed in kernel
space� The only thing the module manager does is to
connect the modules in memory which is something
that cannot be done in user space�

� Implementation

The system is implemented using the linux kernel ������
On a �rst stage we de�ned as a requirement that the
kernel should not needed to be recompiled� The mod�
ule manager is inserted as a normal module and the
promile�lib library is implemented in user space using
the Netlink functionality to communicate with the
manager�
Modules are inserted in the kernel and linked to the

packet �ow usingNet�lter
a linux kernel feature that
allows code to be inserted in some points of the packet
�ow��
The XML engine is implemented in Java and com�

municates with promile�lib via JNI� The use of Java
allows the portability of the XML engine to di�erent
platforms having the same high layer architecture in
all router types� Moreover Java permits the download
of more complex functions to update the rules at run�
time� Performance at the higher level is not a rele�
vant issue since policy decisions are not made often
and some latency is acceptable�
The use of a �glue� library is needed because netlink

requires complex data structures to be exchanged be�
tween kernel and user space�

� An Example

Let�s suppose that a particular provider wants to con�
�gure a router with the f following requirements�

� Some tra	c should be dropped on entering the
router

� Some tra	c should be remarked on entering the
router

�

IP Forwarding

IPv4

IPv6

Manager

Promile.lib

send_message()

Class.

Input
port 1

Input
port 2

Input
port 3 C.B.Q.C.B.Q.R.E.D

RemarkerDropper

XML based engine

Figure �� A simple example

� Tra	c going to provider D should be scheduled
using RED
the link is often congested�� The oth�
ers are scheduled using CBQ� RED and CBQ are
two well�known packet schedulers�

Three modules are installed in the router� a clas�
si�er that selects which packets should be dropped a
dropper that just drops packets and a remarker that
remarks packets according to rules speci�ed in XML�
The connections between modules are made according
to the rules also speci�ed in the XML message�

� Related Work

An important source of inspiration for our work was
MIT�s Click router ���� Click is also con�gured through
a graph where nodes are units of router processing and
edges or connections between two elements represent
a possible path for packet transfer� Contrary to our
approach Click compiles all the elements in one module
that then is installed in the router� Promile approach
is more dynamic�
Router Plugins ��� follows a similar modular ap�

proach to ours in that it can install and uninstall plug�
ins at run�time� But plugins always return the packet
to a PCU
Plugin Classi�er Unit� which makes the im�
plementation of a packet �ow graph much more com�
plex�
The Pronto router ��� which also uses linux gave us

some ideas for the implementation�

	 Conclusions

The use of XML for high level management in our so�
lution allows �exibility de�ning router behaviour since
it is portable and it is a well�known markup language
that is easy to create using existing application tools�

Using XML Schema the behaviour grammar can be de�
�ned checked and modi�ed at run�time�
The choice of Java provides portability of the XML

based engine and allows dynamic downloading of con�
�guration code of the low level part of the architecture
Our architecture allows the insertion and removal at

run time of modules inside the active router� It allows
the modules to be connected to any place inside the ker�
nel and it provides a uniform interface to parameterise
and con�gure the modules at any time after they are
inserted into the kernel� It uses the linux kernel with�
out any need for recompilations� We believe that the
�nal active router does not present signi�cant e	ciency
overhead compared with a normal linux router�

References

��� S� Blake D� Black M� Carlson E� Davies Z� Wang
and W� Weiss� RFC ���� � An Architecture for
Di�erentiated Services� December �����

��� J� Clark and S� DeRose� XML Path
Language
XPath�� Technical Report
http���www�w��org�TR�xpath World Wide
Web Consortium November �����

��� D� Decasper Z� Dittia G� Parulkar and B� Plat�
tner� Router Plugins� A Software Architecture
for Next�Generation Routers� IEEE�ACM trans�
actions on Networking �
�� July�August �����

��� David C� Fallside� XML Schema� Techni�
cal Report http���www�w��org�TR�xmlschema���
World Wide Web Consortium April �����

��� Gisli Hjalmtysson� The Pronto Platform� Technical
report AT�T Labs Research �����

��� C� Mascolo W� Emmerich and H� De Meer�
XMILE� An XML based Approach for Pro�
grammable Networks� In Symposium on Software
Mobility and Adaptive Behaviour� Aisb March
�����

��� Robert Morris Eddie Kohler John Jannotti and
M� Frans Kaashoek� The Click modular router� Op�
erating Systems Review ��
���������� December
�����

�

