
Q: Why is a Raven like a Writing Desk?
A: They’re both Objects.

Keith Duddy
Queensland University of

Technology
Brisbane, Australia

keith.duddy@qut.edu.au

Jörg Kiegeland
Queensland University of

Technology
Brisbane, Australia

joerg.kiegeland@qut.edu.au
Scott Beazley

Project Services, Queensland
Government

Brisbane, Australia
scott.beazley@

projectservices.qld.gov.au

Jim R H Steel
University of Queensland

Brisbane, Australia
j.steel@uq.edu.au

ABSTRACT
The famous riddle by Lewis Carroll is not really intended
to have an answer1, but rather to reveal the incomprehen-
sion Alice has of the world of adults. This paper is about
a team of model-driven software engineers’ concepts of “ob-
ject” coming up against the building design sector’s con-
cept of “object”, and challenging our assumptions about the
clean and clever solutions that we can create with object-
oriented metamodels and model transformation and code
generation tools. However, the story has a happy ending
in which the application of our tools in combination with
pragmatic choices of representations of building designs still
produces an outcome that meets our users’ needs and avoids
lots of bespoke programming.

1. INTRODUCTION
Through the Sustainable Built Environment National Re-
search Centre, QUT is engaged with Queensland Govern-
ment and other partners in producing a candidate technol-
ogy to fill the role of an Australian National Object Library.
In this context “objects” are re-usable design components
for CAD (Computer Aided Design) software. The project
scope requires that the library be independent of any CAD-
tool-specific format or dependency, but that designers must
be able to access the library from within their CAD tools,
and download or attach the relevant product information

1In an introduction to a later edition of Alice in Wonder-
land, Lewis Carroll suggested the following answer: “Be-
cause it can produce a few notes, tho they are very flat;
and it is nevar put with the wrong end in front!” Note the
use of “nevar” instead of “never”, which is “raven” spelled
backwards.

directly into their designs.

The Industry Foundation Classes (IFC) specification [3] is
a metamodel of buildings which allows for the exchange
of structured information among tools for Computer Aided
Drafting (CAD) and Computer Aided Engineering (CAE).
The IFC specification is designed by CAD/CAE vendors
and design practitioners specifically for the purpose of mov-
ing designs between tools, which all use their own internal
representations and file formats. Initially we assumed that
this would be the only model type needed to store a set of
representing products available from manufacturers.

We initially chose to use an EMF [12] implementation of
IFC as a tool-independent representation for our online li-
brary of building product descriptions. In their EMF form,
IFC models appeared to be amenable to transformation into
CAD-specific formats with the tools which our team had to
hand, namely: an EMF-based IFC resource implementation
that inputs/outputs standards-compliant IFC files [11], a
repository generation tool which creates a Web services layer
over a scalable model database [6, 5], and a QVT-like trans-
formation engine [8, 10]. The working description we had of
“products lines”was that they were a standard set of proper-
ties defined by a template, along with an optional geometric
shape. This proved to have nuances that defied easy imple-
mentation in the strictly object-oriented EMF environment.
In addition, the ability to provide a set of product tem-
plates by leveraging published international standards in a
variety of formats was necessary, as the resources to specify
required properties for the thousands of product types used
in the Australian construction sector were not available.

This paper discusses the resolution of tensions between the
object-oriented notions of type and instance, and the re-
quirement for representing both product templates, which
define the “type” of a product, and fully-described product
lines, which “instantiate” a template, as EMF objects. The
naive assumption that the product template/product de-
scription relationship would mirror the EMF Class/EObject
instantiation relationship was rapidly dispelled as soon as
we starting analysing the requirements of our largest stake-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/16694414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


holder, the Queensland State Government’s Project Services
agency. We discovered that supporting an building design
practice with information rich design objects requires parts
of the information to be added incrementally, depending on
the purpose of their use, and the stage of development of
the design.

After the Background section, we provide a summary of the
requirements for a continuum between template and prod-
uct description from various stakeholders’ points of view in
Section 4. We then explain our choice to use additional
metamodels outside of the IFC standard, while still largely
employing model transformation, model-to-text, and other
model persistence formats. Finally the pragmatics of im-
plementing import and export of product descriptions and
their templates to and from various tools and file formats is
explained, along with the role of modelling and transforma-
tions. We end with a discussion of future work.

2. BACKGROUND
2.1 IFC
Building Smart International is an industry consortium that
defines and publishes standards for Building Information
Model (BIM) interchange between computer applications
used for architecture and engineering and construction. The
centrepiece of their standards portfolio is the IFC specifica-
tion, which is currently in its fourth major revision since
first being published in 1995. The IFC specification is based
around a metamodel written in the EXPRESS Schema lan-
guage. EXPRESS Schemas support a similar expressive
power to the combination of EMF and OCL.

IFC is a large specification containing over three-hundred
type definitions and six-hundred classes. Classes are de-
fined to represent all the major structural components of
buildings, such as walls, doors, plumbing and electrical sys-
tems, air-conditioning, etc. These classes contain features
which describe the common properties of building parts,
such as their dimensions and subparts. In addition, there is
a rich constructive solid geometry description used to repre-
sent shapes and relative positions of the structural elements
can be related in space. Finally, a large range of classes
which express relationships between building components is
defined – 51 in all – covering things like physical contain-
ment, connectivity, spatial relations, grouping, nesting and
sequencing. Classes are also defined for describing property
sets associated with building components for more detailed
and localised values to be defined about them. Most prop-
erties contained in these property sets consist only of named
values with units of measurement.

Most classes representing building components may also have
one or more shape (geometry) definitions, containing a set
of linked geometric objects for use in a 3D viewer or CAD
tool. However, the well-formedness rules of IFC require ev-
ery file to start at the site level, and contain a building with
at least one storey before a product element can be embed-
ded into it, which makes it less than ideal for describing a
simple thing like a window.

2.2 PSD
An additional Building Smart specification, Property Set
Definitions (PSD) [4], provides an XML Schema for defin-

ing appropriate property sets for different contexts, without
the need for the whole IFC Schema. Property sets may be
defined for different trades in the building and construction
industry, or different countries or other jurisdictions and in-
formation required by their building codes or other legisla-
tion. The PSD schema is relatively small, and allows for
named sets of named properties to be defined, along with
types for the values required and units of measurement. Ev-
erything is stored as strings, but with enough metadata to
be able to convert them into numeric or enumerated types
when used. Each property set definition specifies which IFC
class types they may be relevant to. For example, a property
set for use in thermal analysis in the Australian context may
indicate that it is to be used to describe IfcWall and IfcWin-
dow (and by implication all of their subtypes). In addition
to their role as requirements specifications for required val-
ues to be provided for certain IFC classes, there is also an
optional element in each property which allows for actual
values to be inserted. There may be multiple values, enu-
meration values, as well as value ranges. The mapping from
PSD to IFC’s property set classes is not formally defined,
and not fully isomorphic, but for most property types and
values used in CAD tools, it is sufficiently straightforward.

2.3 BIM workbench in Eclipse
The basis for our implementation of IFC in the Eclipse Mod-
elling Framework is a model-driven translation of the struc-
tural part of the IFC EXPRESS Schema into an Ecore meta-
model [11] using a higher-order Tefkat transformation. The
schema to metamodel translation is supported by a resource
implementation for EXPRESS Part 21 files [7]which are used
as the standard interchange format for IFC models by scores
of CAD and CAE tools.

2.4 Repository as a Service
Our Web service based repository generation tool Repository
as a Service (RaaS)[6, 5] takes an annotated Ecore meta-
model as input, and creates WSDL and REST interfaces to
an EMF Java model server. The web service interface allows
remote (and local) model users to create, access and update
medium-grained sub-graphs of an EMF model instance in a
single operation invocation. The annotations of particular
classes in the metamodel, chosen by the repository creator,
makes these the access points to objects of that type, and
all of the other objects linked to it by containment refer-
ences (or other references chosen by the creator to relevant
related model classes). The motivation for the development
of RaaS is to provide distributed access to models specified
by standard metamodels, such as UML, BPMN and IFC.
Most current repositories operate on a file-based granular-
ity, which has arbitrary contents at a very coarse grain, or
via exposing individual programming language objects on
a very fine-grained object or attribute per invocation ba-
sis. When a client of a model repository is also using EMF,
the model is re-created transparently at the client side, but
non-EMF clients can process models as XML documents
or JSON structures. RaaS does allow us to directly access
objects contained in an existing IFC file without needing to
see the site/building/storey structure, but for import/export
purposes, the well-formedness rules must be respected so
that the files can be read by other tools.

3. OBJECT LIBRARIES



In the language used by Building Information Modellers
(usually architects and engineers), the term object library
is used to refer to a collection or repository of designs of
building components, such as walls, air-conditioning units,
furniture or any other part of a building model that can be
packaged into units for re-use across different projects. Most
CAD applications define their own file formats for storing
these objects, such as Revit Families, or ArchiCAD GSM
files. However, most also support an export mechanism to
create IFC representations of these objects.

The new work in this paper is description of one of some of
the implementation choices made when building on Object
Library in partnership with the building agency of Queens-
land Government. All of the models and tools introduced
in Section 2 are used to create the implementation. This
Object Librray is aimed initially at describing the subset of
building objects that are sold by manufacturers to the con-
struction industry. Our rule of thumb is “Can you buy it
at the hardware store?” These products are currently mar-
keted to design agencies via printed catalogues (or internet-
accessible PDF files) containing images and specifications
of available products, sometimes including two dimensional
plans and three dimensional renderings, as well as measure-
ments and performance characteristics, in human-readable
form. Occasionally CAD-tool-specific format object files are
available to allow designers to incorporate a product into
their building model, but most design practices create their
own geometric model and properties, which they then store
in a file system or CAD tool repository for use in future
building designs. In large design practices, such as Project
Services, where multiple CAD tools are in use, the designers
often make separate objects for each tool representing the
same design component. This is obviously more work, and
also requires hand maintenance when objects are updated
to reflect new products or design choices.

Our library aims to allow manufacturers to use tool-independent
formats as the basis for properties and geometry of prod-
ucts, to be defined according to common national templates
so that these can be discovered by keyword and/or property-
based searching on the Web, and then transformed into the
tool-specific format required. We also wish to download ob-
jects directly into the CAD tool, so that designers do not
need to do file download management. In order to avoid the
commoditsation of building products which have unique fea-
tures, a standard set of properties will be used to describe
every product of a certain category. Manufacturers may
then add additional properties and information about their
products, while still allowing the common characteristics of
products of that category to be compared.

Ours is not the only tool-independent object library cur-
rently being developed. Other jurisdictions, including the
USA, Norway and the Netherlands, are presently develop-
ing similar libraries. DDS have developed an early prototype
illustrating the use of IFC as the basis for an object library
[1]. The most advanced national project at the time of writ-
ing is the operational UK National BIM Library built by
NBS [9], although it offers only CAD-tool-specific objects
with varying coverage of formats for each object type avail-
able.

4. THE TEMPLATE / OBJECT CONTINUUM
In some design practices and projects, the actual building
products to be used in construction of a building can be
specified and have all their properties fixed at an early stage
in the design. The architect may have experience with a
particular manufacturer’s product, and want to include it
in the digital model right from the beginning. From this
point of view, the product descriptions in the building prod-
uct library are far too general, as they embody all of the
options and variations of a product line, including finishes,
colours, dimension variations, and other variable or multi-
valued properties. The designer in this context will want to
fix all the variables to include the fully specified product in
the CAD design.

Normally in the design of most construction projects to be
put out to tender, however, the design process may begin
with very little detail about the objects in the digital de-
sign. Often the designer needs only to specify a few perfor-
mance characteristics and perhaps identify some standards
to which the products must conform, as required by local
building codes and other laws and statutes. However, as
the project moves towards the Request for Tender stage, a
number of variables may be eliminated, and in particular,
required dimensions will be known.

4.1 Level of Development
The concept of Level of Development (LOD), was adopted
by the American Institute of Architects (AIA) in 2008. It
was originally pioneered in the Vico software by the Web-
cor company, and known as Model Progression Specification
(MPS). It was refined by the technology subcommittee of the
AIA California Council’s IPD Task Force, and was adopted
by the AIA in late 2008. It is also known as the ‘AIA E202’.
Subsequently it has been widely adopted by the construction
industry internationally as a convenient shorthand to define
the steps through which objects used in BIM projects will
progress as the design of a building or facility is developed
and resolved.

P Acme Window
h
w
therm
stds
col
...

m
m

TRating
ASnum
string

1, 1.5, 2, 2.5
0.6, 0.75, 1
k..m
1234, 4567
blue, black

P Dyna Window
h
w
therm
stds
col
...

m
m
TRating
ASnum
string

1, 1.75, 2
0.6, 0.75, 1.1
j, n
1234
blue, brown

P Clarity Window
h
w
therm
stds
col
...

m
m
TRating
ASnum
string

1,1.75, 2, 2.5
0.6, 0.75, 1
k..m
1234, 4567
black

T Window
h
w
therm
stds
col
LOD

m
m
TRating
ASnum
string
int

? Window Master BR1
h
w
therm
stds
col
LOD

m
m

TRating
ASnum
string

~1.6
~0.75
k..n

int 200

? Window Master BR1
h
w
therm
stds
col
LOD

m
m

TRating
ASnum
string

1.75
0.75
k..n

int 300

1234

? Window Master BR1
h
w
therm
stds
col
LOD

m
m

TRating
ASnum
string

1.75
0.75
n

int 400

1234
brown

time

Product Library

T Window
h
w
therm
stds
col
LOD

m
m
TRating
ASnum
string
int

Matches
Is Derived From
Copy

Figure 1: Relationships between Templates, Prod-
uct Descriptions and Matching Design Require-
ments



From this point of view, the design starts out with an empty
product template, in which the kind of object is known
(door, window, beam, etc) and as the design evolves some
properties of an object can be required to have values pro-
vided for them. Often LOD numbers are used to describe
the stage at which the design is shared with other stake-
holders in a project. The top row of “objects” in Figure 1
shows this accumulation of detail in the performance char-
acteristics of an object over time. However, the choice of
actual products to meet these criteria in some cases must
be left to the contractor for legal or policy reasons, such as
anti-corruption legislation, or cheapest supplier policy.

The way this issue is resolved in the building product library
is that product templates and fully-specified CAD objects
are two ends of a continuum, in which the product descrip-
tions in the library occur part way. Templates will include
property sets with the possibility to state that properties are
of certain types (length, temperature, pressure) specified in
particular units (milimetres, degrees celcius, bar) and must
fall into particular ranges (200mm - 500mm) or have certain
discrete values (200mm, 300mm, 400mm, 500mm). Each
property will be either mandatory or optional when instan-
tiated as a product description at a particular LOD.

Figure 1 shows a simplified view of the product library in the
lower part of the diagram, with a set of windows conforming
to the Window template (associated IFC geometry would
also be available to preview and transform into tool-specific
formats). Multiple values for properties indicate a product
line with variations. The upper part of the diagram is an
illustration of the use of more property values in a design
object (usually inside a CAD tool) as the design matures
over time.

4.2 Search using templates
Templates can be the basis for searches of the product de-
scriptions in the building product library, in which case
mandatory or optional characteristics for a property are
replaced by an exact or approximate match, or are disre-
garded. For example, if a designer wishes to find all window
systems that have a certain fire rating and which come in the
approximate dimensions required for the design, she can se-
lect just three properties from a window template: Height,
Width and Fire Rating, setting the others as “disregard”.
The first two would be set to “approximate match” with the
height and width dimensions given, and the third to “exact
match” with the fire rating required. Based on browsing of
the matching windows the designer may choose some addi-
tional properties to be set in future searches to narrow down
the range of matches. However, if no matches are found,
then the dimensions may need to be re-examined.

The Matches arrows in Figure 1 show that the designer can
use a partially populated set of properties to check that
products are available to meet their increasingly detailed de-
sign requirements. Note that the “LOD” property increases
over time, along with the number of properties containing
values. Also, as properties become more specific, the set of
matching products decreases. Designers may become aware
that their requirements do not match any off-the-shelf prod-
ucts, and choose to commission bespoke building compo-
nents, with the cost tradeoff that this implies.

The actual user interface to specify searches over templates
in our demonstrator for an Australian National Object Li-
brary concept is much more fully featured than the diagram
indicates, but space restrictions prevent its functionality be-
ing fully described here. In summary: properties can be
uploaded to the library from existing design objects in CAD
tools, and also downloaded back to the CAD tool to be
attached to an existing CAD object from a selected prod-
uct description (with or without geometry). Designers can
choose which properties to match against, and how precisely,
and the user is offered suggestions for search values based
on the properties of products available. A product’s defini-
tion may also be used as a search template to find similar
products by choosing which properties to match, or adding
additional values or ranges to the search.

5. PROPERTY SETS AS THE FUNDAMEN-
TAL UNIT OF PRODUCT DESCRIPTION

As the previous section indicates, not all designs need to con-
tain fully detailed product specifications, and in some cases
this actually pre-empts the decisions that should properly
be taken by others later in the design and construction pro-
cess. It is commonly pointed out by evangelists for BIM
in the construction sector that the difference between CAD
and BIM is the ‘I’ in BIM, which stands for Information. In
the context of the product description library, the informa-
tion about a product is captured primarily in the property
sets that are attached to the object, and the geometry is
something that is useful to be able to preview, but could
just as well come from a generic tool in a CAD product.
The use of IFC as a metamodel and file format for products
provides many benefits, including the ability to classify the
kind of product according to its IFC classifier (IfcWall, Ifc-
Door, IfcFurniture, etc), and the set of standard attributes
that is defined in order to describe an IFC object of that
kind. Also, most CAD tools, although they may use dif-
ferent terminology to one another for describing building
components, usually state which IFC class their own design
elements correspond to, providing a level of correspondence,
even without actually exporting a design element as an IFC
file.

However, the number and scope of the inherent attributes
of IFC objects are very limited. Often they include only
bounding dimensions, and a reference to some material type
from which a component is made. Most of the information
in the IFC version of BIM lies in the property sets associated
with an IFC object. These are usually populated by a CAD
tool, or chosen on a jurisdiction, agency or even project-by-
project basis, and vary widely between tools, countries and
practices. Although the IFC metamodel contains a set of
classes which describe properties and their types and units,
and allow them to be grouped into property sets, the PSD
XML schema represents much the same information, and it
focuses only on representing the concepts relevant to prop-
erty sets. Furthermore, IFC is known to most designers only
as a file interchange format between tools, and they are not
familiar with the attributes that are represented. Therefore,
the graphical display of properties and their values that we
wish to show a user of the product library must show both
the ‘inherent’ IFC attributes, and the information available
from the associated property sets in the same way (resem-
bling the manner in which CAD tools reveal the properties



of a highlighted design object). In fact the only aspects of
a specific product description that are specific to the IFC
metamodel are: the name of classifier, which indicates the
kind of product (IfcWindow, IfcFlowController, IfcColumn,
etc) and its geometric shape description.

6. IMPLEMENTATION DETAIL
There are a number of emerging sources for the definition
of object properties, based upon the IFC open standard.
These are buildingSMART standard Property Set Defini-
tions (PSDs), in the PSD XML format described earlier.
Construction Operations Building information exchange (CO-
BIE), and Specifiers’ Properties Information Exchange (Spie)
are US standards that are based on Excel spreadsheets.
They have been developed to address differing industry re-
quirements in a number of countries. They also address
information requirements at different stages of the building
lifecycle, and by a range of project participants. We chose
the published COBIE spreadsheets as the basis for our ini-
tial object template imports, although we also experimented
with available Spie and PSD definitions. However, inside the
RaaS repository all these are stored in models based on the
PSD XML Schema.

6.1 Implementation of Property Sets
In order to use the PSD XML Schema as an EMF model, we
used the standard EMF Wizard to generate an Ecore Model
from the Schema, which has the convenient side effect of
also generating a resource implementation allowing the read-
ing and writing of PSD-conformant XML documents to and
from EMF model form. We defined a small model trans-
formation to collect the attributes of each IFC metamodel
class and creates an equivalent property set as a PSD model
named <IfcClassName>Inherent. However, in the user in-
terface we usually display this as “BaseQuantities”, as the
only properties usually contained are bounding dimensions.

The IFC metamodel is then used in the repository for storing
only geometry descriptions. Property sets (including those
derived from the IFC attributes) are stored as instances of
the PSD metamodel. The values of properties can then be
manipulated in one of two ways: firstly, through the re-
trieval via the Web service interface of RaaS as XML or
JSON structures, or secondly through the resource imple-
mentation of PSD models as COBIE spreadsheets in the
XLSX format. Via the web interface the product manufac-
turer can initiate an export of a COBIE spreadsheet file from
a product description for download to their computer. The
spreadsheet can then be populated with appropriate values,
and re-uploaded via the user interface. The COBIE resource
load implementation is in turn processed by a small jQVT
transformation which maps each row in the spreadsheet to
an object, and copies the contents of cells in the spreadsheet
containing the values to its Value attribute. The transfor-
mation is declarative and easy to read, with the caveat that
the class and attribute names in the Ecore generated from
the PSD.xsd are somewhat obscure. However, jQVT gen-
erates Java code that performs these mappings inside the
resource implementation in linear time.

6.2 Combining files
A product description is a folder containing a COBIE spread-
sheet file describing the property sets, and optionally, an IFC

file describing the geometry. But as we have observed, this
geometry needs be be embedded into a structure describing
a complete functional building, and always contains the nest-
ing structure IfcProject/IfcSite/IfcBuilding/IfcBuildingStorey.
In addition other elements need additional containing struc-
ture, for example a door (IfcDoor) needs to be hosted in
a wall (IfcWall) which is located in a storey (IfcBuilding-
Storey). This approach facilitates the easy definition (for
a CAD user) of the geometry for a product description in
any CAD tool that supports IFC Export functionality - but
resulting model contains a whole skeleton building design,
which is not useful from a product definition point of view.

On the other hand property definitions are relatively min-
imal when expressed as COBIE spreadsheets, and one can
edit them in Microsoft Excel or open source tools that under-
stand the XSLX format. In addition the library’s web inter-
face also supports editing of the property sets by converting
the spreadsheet to an EMF representation conforming to the
PSD metamodel, and displaying the values as editable fields
in the Web browser. From a technical point of view, this
is done by providing an EMF resource implementation for
the .xls file extension within the Eclipse framework. While
using COBIE spreadsheets is the recommended way to get
to product descriptions, we also allow for the import of the
properties in existing IFC elements modelled in CAD tools,
and ignore the extra containing structure. For most of the
transformations, we use jQVT which supports the invoca-
tion of any method as well as evaluation of predicates. We
use an open-source Java API to access and read a COBIE
file, and jQVT then uses method calls as assertions in the
target domain of a transformation relation.

6.3 A Summary of transformations used in the
library implementation

There are several model transformation used in NOL: CO-
BIE to PSD (xls2psd.jqvt): Used in the resource imple-
mentation of COBIE files; PSD to COBIE (psd2xls.jqvt):
Used to propagate changes back from the PSD model to the
spreadsheet; IFC to PSD (ifc2psd.jqvt): Used to derive
“inherent” property sets from IFC metamodel classes; IFC
to GDL (ifc2gdl.jqvt): Converts IFC geometry to GDL (the
scripting language of ArchiCAD); and psd powerset.jqvt:
Originally used to group all PSD models provided by build-
ingSMART according to their IFC class types.

6.4 Limitations of Transformation
The transformation of geometry to Revit cannot be done
by a conventional model transformation due to the propri-
etary nature of Revit file formats. Revit provides an API
which has been used to develop a plugin which queries the
object library using RaaS Web services calls. To facilitate
this a .NET library of hand-written IFC classes has been de-
veloped, and IFC geometry object graphs are transfered to
Revit using RaaS calls which transfer JSON messages and
converted to Revit geometry in the plugin.

7. FUTURE WORK
There remain a number of unresolved issues which are the
subject of future developments in the national object library.
Chief among these is in clarifying the organisational and pro-
cess requirements for the operation of the library, in terms



of defining who can and should be permitted/required to
access or modify the product descriptions in the library, at
the different stages of their lifecycles [3].

A second consideration is the need for large organisations,
such as Project Services, to maintain separate object li-
braries for their own use, which refer back to national li-
braries and potentially add or refine properties of the prod-
uct descriptions. In this stage many of the designs that will
be stored in an object library will be systems composed of
many different products and materials and will not be avail-
able “off the shelf” from any single manufacturer.This leads
to a federation of libraries, and issues in terms of propaga-
tion/synchronisation of changes, and composition of systems
of component objects from various sources.

This work uses the IFC classes as a primary classification
into product categories. However, there are many national
and international initiatives to classify building components
and materials into categories by trade, by purpose, by stage
of design and/or construction, and for many other purposes.
The correct multiple classification of product descriptions
according to several of these schemes is planned, and these
are be likely to be supported in a semi-automated way through
an ontology-based framework such as the Building Smart
Data Dictionary [2].

Related projects based at QUT, with diverse partner organ-
isations include: treating design specification documents as
aspects of a BIM, and managing the synchronisation and
consistency between them; cost planning using BIM with
embedded objects from libraries; the transition of BIMs into
Facilities Management platforms, including long-lived refer-
ences to product information from object libraries as the
basis of building maintenance, refurbishment and eventual
destruction.

8. CONCLUSION
As an existing metamodel capable of capturing a great amount
of detail about the geometry, structure and additional prop-
erties of buildings and their constituent objects, IFC, seems
at first glance to be ideal for representing reusable design
objects representing manufacturers’ products in all their de-
tail. However, upon closer inspection, even though we can
apply a rich set of software tools to the creation and ma-
nipulation of such models, the incremental nature of the
design process and the need to leave some parts of a design
to other stakeholders means that completeness and detail
are not always the primary considerations. Although we use
a variety of models and serialisations, including IFC, which
are not always elegant in their design or combination, an
MDE approach allows us to use a combination of tools to
reliably generate code and coordinate existing frameworks.
The result is a more maintainable and adaptable object li-
brary with less hand-written code. The construction of the
system in this way has also required us to explore ideas with
wider applicability, such as the technological space integra-
tion, and the graduated approach to templates and objects,
which could be usefully applied to other related physical
modelling domains.

9. ACKNOWLEDGMENTS

This research was carried out at QUT as part of the activities
of, and funded by, the Smart Services Cooperative Research
Centre (CRC) through the Australian Government’s CRC
Programme (Department of Industry, Innovation, Science,
Research & Tertiary Education). The Smart Services work
is the technical part of the Object Libraries programme of
the Sustainable Built Environment National Research Cen-
tre, which is a participant in and sponsor of the Smart Ser-
vices CRC. We thank the Queensland Government’s Project
Services agency for its funding, engagement and leadership.

10. REFERENCES
[1] Bjorn K. Stangeland.

http://www.dds-cad.net/files/net.dds-
cad.com/downloads/Presseberichte/2011 IFC for Object Libraries.PDF.
Accessed 26/7/2012.

[2] buildingSMART. http://www.ifd-library.org/.
Accessed 26/7/2012.

[3] buildingSMART. Industry Foundation Classes,
Edition 3, Technical Corrigendum 1.
http://www.buildingsmart.com, July 2007.

[4] buildingSMART. IFC Property Set Definition XSD
2x3. http://www.buildingsmart-
tech.org/psd/IFC2x3/final/index.htm, 2008. Accessed:
25/07/2012.

[5] K. Duddy. Building a USDL Repository as a Service.
In A. Barros and D. Oberle, editors, Handbook of
Service Description – USDL and its methods, pages
387–393. Springer, 2011.

[6] K. Duddy, M. Henderson, A. Metke-Jimenez, and
J. Steel. Design of a model-generated repository as a
service for USDL. In Proceedings of the 12th
International Conference on Information Integration
and Web-based Applications & Services, iiWAS ’10,
pages 707–713, New York, NY, USA, 2010. ACM.

[7] International Standards Organisation (ISO).
Industrial automation systems and integration –
product data representation and exchange – part 21:
Implementation methods: Clear text encoding of the
exchange structure. ISO Standard 10303-21:2002,
2002.

[8] M. Lawley and J. Steel. Practical Declarative Model
Transformation with Tefkat. In J.-M. Bruel, editor,
Satellite Events at the MoDELS 2005 Conference,
Revised Selected Papers, volume 3844 of LNCS, pages
139–150, Berlin, Germany, 2005. Springer Verlag.

[9] NBS. http://www.nationalbimlibrary.com. Accessed
26/7/2012.

[10] Object Management Group. MOF 2.0
Query/View/Transformation, version 1.1. OMG
Document No. formal-2011-01-01, January 2011.

[11] J. Steel, K. Duddy, and R. Drogemuller. A
Transformation Workbench for Building Information
Models. In Proceedings of the International Conference
on Model Transformation, 2011.

[12] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework, 2nd
Edition. Addison-Wesley Professional, 2nd edition,
December 2008.


