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Resumo

O objectivo central da andlise de logs é adquirir novos conhecimentos que ajudem os
administradores de sistemas a compreender melhor o modo como os seus sistemas estdo sendo
usados. As redes de telecomunicagdes constituem uma das dreas onde a quantidade de dados de log
registados é enorme e onde, na maioria das vezes, apenas uma infima parte desses dados é
analisada. Isso coloca importantes perguntas a um gestor de rede: Devem continuam a registar esses
dados? Existe alguma informacdo relevante que possa ser extraida a partir desses dados? Os
métodos para a extrair ja existem? Poderemos melhorar a operagdo e a gestdo, se essa informagao
estivesse disponivel? Sé apds responder a estas perguntas é que um gestor pode decidir o que fazer
com um Jog de dados que consuma imensos recursos.

A finalidade principal do nosso trabalho é analisar o tipo de informac¢Ges adicionais que
possam ser extraidas dos arquivos de log dos servidores de uma plataforma de IPTV. O nosso foco
especifico é tentar compreender se é possivel determinar quais as sequéncias de eventos que sdo
despoletadas na plataforma quando um cliente executa uma determinada ac¢do. Essas sequéncias
sdo desconhecidas para ndés e ndo sdo documentadas pelo fornecedor de software. Para este
trabalho escolhemos a sequéncia de “arranque" que o utilizador despoleta quando inicializa a sua
set-top-box (STB).

Caracterizamos totalmente essa sequéncia de pedidos web services que uma STB realiza
durante a fase de arranque e autenticacdo na plataforma IPTV. De seguida, desenvolvemos um
método que pode ser aplicado automaticamente para isolar essas sequéncias nos logs de dados em
bruto. Esse método comeca por definir o evento de inicio e depois tenta identificar o evento final da
sequéncia aplicando um conjunto de regras empiricas definidas por nds. Todos os eventos entre
aqueles dois constituem a sequéncia e, embora a maioria deles sejam mandatdrios, existem alguns
eventos que ocorrem apenas em certos casos, devido as caracteristicas particulares de cada STB.
Finalmente, e depois de isolar as sequéncias, realizamos uma analise estatistica a fim de validar a
exactiddo do nosso método de identificagdo/isolamento.

A metodologia é desenvolvida e avaliada utilizando um conjunto de dados reais de uma
plataforma de IPTV pertencente a uma empresa de telecomunicac¢ées. Os resultados confirmam que
0 método escolhido pode produzir um resultado com um alto nivel de precisdo, tendo em conta as
caracteristicas especificas dos dados de entrada. Com o conhecimento adicional que este método
pode extrair dos logs de dados, os gestores e os engenheiros de rede podem caracterizar melhor os
varios utilizadores que estdo usando a plataforma, estabelecendo perfis tipicos para as sequéncias
de eventos e isolando as sequéncias anormais para que as mesmas possam ser alvo de analise
adicional em termos técnicos ou de seguranca.

Palavras-chave: Anadlise de logs IPTV, correlagdo de logs de servidores, sequenciagdo de eventos,
eventos periédicos e Unicos, sequéncia de arranque de STB



Abstract

The central goal of log analysis is to acquire new knowledge which will help systems
administrators to better understand how their systems are being used. Telecommunications
networks are one of those areas where the amount of logged data is huge and, most of the times,
only parts of it are analyzed. That presents big questions to a network manager: Should they
continue to log the data? Is there any relevant information that can be extracted from that data?
The methods to extract it already exist? Could operations and management be improved if that
information was available? Only by answering these questions can a manager decide what to do
with the logging of data that consumes lots of resources.

The main objective of our work is to analyze what type of additional information can be
extracted from the server log files of an IPTV platform. Our specific focus is in trying to understand if
it is possible to determine what sequences of events are triggered at the platform when a client
executes a certain action. These sequences are unknown to us and are not documented by the
software provider. For this work, we choose the “boot-up action” that the user performs when he
powers-on his set-top-box (STB).

We fully characterize that sequence of web service requests that an STB performs while
booting up and logging into the IPTV platform. Then, we develop a method that can be automatically
applied to isolate those sequences in the logs raw data. This method starts by defining the start
event and then tries to identify the sequence’s end event by applying a set of empirical rules defined
by us. The events in between constitute the sequence and while most of them are mandatory there
are some events that only occur in certain cases due to the characteristics of a particular STB. Finally,
after isolating the sequences, we perform a statistical analysis in order to validate the accuracy of
our identification/isolation method.

The methodology is developed and evaluated using a real dataset from a telecommunications
company’s IPTV platform. The results confirm that the chosen method can produce an output with a
high level of accuracy, taking into account the specific characteristics of the input logs data. With the
additional knowledge that this method can extract from the logs data, network managers and
engineers can better characterize the many users that are using the platform, establishing the typical
sequence of events profiles and isolating the anomalous ones for further inspection focused both on
technical and security concerns.

Keywords: IPTV logs analysis, server logs correlation, events sequencing, periodic and one-time
events, STB boot-up sequence
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1 Introduction
1.1 Motivation

The operations and management of telecommunications networks are based on the data that their
network elements continuously provide. This data is usually very diverse due to the complexity of
multivendor systems involved in large networks. A small part of this data is presented in online
operations monitoring systems, where it provides an overall image of the performance and quality
of the service of the various network components, but most of it is compressed and archived in
offline storages. Whenever there is an unusual event that requires an immediate and detailed
analysis, the recent history data has to be fetched from the storage system and decompressed
before it can be analyzed. This kind of online decision-making analysis presents big challenges for
data mining methods and knowledge discovery processes.

Also, the complexity of the telecommunications networks has been rapidly growing due to the new
services that operators are deploying worldwide like richer Internet capabilities, new mobile phone
technologies, wireless connectivity and converging old-technologies into the IP realm. All these new
systems together with an increasing number of customers are boosting the amount of data collected.
Continuing to extract valid information from these large amounts of data in order to perform or help
the decision-making process of network management is, consequently, becoming an increased
challenge for the existing analysis tools and methods. Another factor that must be taken into
account is that network managers know much more about network protocols and their tools than
about statistics or data mining. So, new approaches may be required besides increasing the
processing and storage capacities to allow them to timely extract and analyze all this data.

The IPTV networks are one example of these new networks that produce their own new set of data.
This type of networks is strongly supported in information systems and, consequently, allows for the
generation of a very diverse set of log data.

Since this is usually supported in a new network solution and its delivery platform is also a new
technology for the IPTV deploying operator, its operation managers have much less experience in
understanding the inner works of all the involved hardware and all the possible problems that can
occur in its operation than with other network architectures. The new architecture can also present,
for example, new security vulnerabilities that they are unable to diagnose due to the fact that, being
a new technology, all the data-mining and other detecting processes they are currently using are still
ill-adjusted to this new set of possibilities, requiring additional long term analyses to fine tune them.
Combining the increasing amount of generated data with the uncertainty of us knowing all the
events that should be looked upon to know what is happening in the platform/network introduces a
great challenge in our quest to decide what is the unessential data that we can offline store or
delete and the essential data that we must process and present to the network managers in the
most online way possible.

1.2 Contributions

In this thesis we study the types of data present in the output log files generated by an IPTV media
delivery platform, in order to identify which sequences of events the platform servers execute in
responding to a client request (action). The objective is to characterize those sequences and develop
a method that allows their automatic identification inside the log files. The challenge is to determine
those sequences among large sets of events, possibly unordered, and including uncertain or
unrelated events.



After identifying all these logged sequences, further information can be extracted by performing all
type of statistical analyses.

The contribution of this thesis is threefold:
e Identifying the server log file types that have the most useful data for the type of
analysis we intend to perform

Several file types were analyzed and we established correlations between them but, the
common data was very little due to the big differences of logged information in each
type of file. Nonetheless, the Client Gateway (CGW) IIS log file was chosen as the most
complete log file listing all the web services requested to the platform by a client STB.
We must notice that the subscriber (client) activity log is not considered in this analysis
since its contents might not reflect what was really executed by the platform servers.

e Characterization of the boot-up sequence of web services requests made by a client STB

One of the most important sequences of events that can only be observed in the
servers’ logs is the boot-up sequence. We characterize all the mandatory and optional
events that are included in this sequence and provide some statistics of its presence in
our dataset. Other sequences may be identified using a similar process, in a future work.

e A method for automatically identifying the boot-up sequence of events

Given the features of the logged data the automatic recognition of these sequences is
not a straightforward process, as we will see later. As such, we establish the criteria that
should be used in order to obtain a high level of accuracy in the automatic identification
of the boot-up sequences. Similar criteria may be found to enable the identification of
other sequences.

1.3 Report structure

This work is organized as follows:

Chapter 2 details the relevant background information. The environment section contains
information about the IPTV service platform related with this thesis.

Chapter 3 contains some of the ideas present on related work and describes how they differ from
our own approach.

Chapter 4 describes the real dataset that was used to implement and evaluate this work.

Chapter 5 describes all the data preparation phase that was necessary to execute in order to prepare
the raw data for processing.

In Chapter 6 we present the results from our characterization of the boot-up sequence of web
service requests and detail the method to automatically identify those sequences in the raw log data

file.

Chapter 7 analyses the results of our method applied to the whole available log file and performs
some validation of their accuracy by comparison with other platform logs.

This work concludes with future work and evolution on Chapter 8 and the conclusions on Chapter 9.



2 Background

This thesis is based on data provided by an IPTV service provider that currently has approximately 1
million subscribers. The following section describes the major software components and server
functions of the IPTV platform solution adopted by this provider.

2.1 IPTV platform

In order to deliver its IPTV service this provider chose the Microsoft Mediaroom IPTV solution.
Microsoft Mediaroom is a robust platform that allows for the delivery of high-quality live TV and
video on demand (VOD) over diverse IP network infrastructures. It also enables service providers to
offer compelling interactive TV services such as Remote Desktop Protocol (RDP) applications, an
Electronic Program Guide (EPG), and a digital video recorder (DVR).

In June 2010, this IPTV delivery solution was being used by 26 providers worldwide, including some
of the leading TV and video service providers.

2.1.1 High-Level Architecture

The Microsoft Mediaroom system is constituted by a set of software components that are executed
over several platform servers. These servers are usually grouped in “functional modules” (for
example: the Head-End, Local, Regional and Branch modules). The servers that are responsible for
the interaction with the STB client belong to the Branch Module while the servers that deliver the
video streams to the STB are located in the Local Module. In some implementations there can be
some interaction between the Microsoft Mediaroom platform and an IPTV provider’s External Login
Server (ELS) to help with identity management (login authentication), profile management (profile
storage and profile integration) and service discovery of the platform client STB’s. These high-level
interactions are represented in Figure 1.
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Figure 1 - Functional high-level diagram



2.1.2 Servers

The servers that support Microsoft Mediaroom architecture are grouped in the major functions
shown in Table 1. Most of these functions are executed by groups of servers in order to provide
redundancy and load balancing (as such, a subscriber can invoke an “action” and his STB client will
trigger a sequence of web services requests where each of them can be routed to different CGW
servers and, every time one of those CGW servers receives a request, it can forward it to a different

CFA server, while within the same “action” sequence, etc.)

Server

Description

Head-End

Receive the TV signals from the various satellites and encodes the
streams.

Acquisition Server (ASVR)

Responsible for multicast streaming of Live TV.

Distribution Server (DSVR)

Provides Instant Channel Change (ICC) functionality and Reliable UDP
(rUDP) for Live TV.

Video Server (VSVR)

Supports the Video-On-Demand (VOD) functionality. Store VOD content
and stream it to the clients.

Client Facing Application
(CFA)

Provides all the public Web Services of the IPTV platform. Responsible for
client authentication, notifications, STBs software upgrades and
distributing Live TV service maps.

Server Facing Application
(SFA)

Provides all the internal Web Services of the IPTV platform. Manages T-
Servers and interacts with the OSS/BSS layer.

Client Gateways (CGW)

Routes traffic requests/answers and notifications between the IPTV
platform clients and its servers.

Terminal Server (TSVR)

Works as a RDP gateway for the applications that the clients can access.

Sync Server (SYNDIS)

Responsible for updating the client's software image if it cannot reach the
Bootstrap Web Service.

Service Group Database
(SGRxDB)

Contains all the databases associated with the client's data and access
rights.

Server Facing Branch
(SFB)

Manages all D-Server and V-Server activities.

Branch Management
(BMGMT)

Delivers all the tools for the IPTV platform branch's management.

Acquisition Controller
(ACQ CONTR)

Manages all A-Server activities.

VOD Backend Manage-
ment (VOD MGMT)

Provides the web pages and API for VOD management.

VOD Importer (VODIMP)

Used to import VOD contents into the IPTV platform.

2.1.3 Service Groups

Another entity worth mentioning in this architecture is the Service group (SG). Service groups are a
subset of branch servers that divide the subscriber management tasks to distribute the processing
load and provide a way to perform software upgrades with minimal service interruptions. Service

Table 1 - Server functions

groups enable operators to:

¢ Scale up Microsoft Mediaroom systems to accommodate new subscribers.

* Prevent service interruptions while performing system upgrades and other regular system

maintenance.




So, all subscribers are divided into several Service groups and each one of those Service groups
comprises its own group of servers (CFA, SFA, CGW, TSRV and SGRxDB) fully independent from
similar servers of other Service groups.

2.1.4 Definitions

In the next sections, we assume the following definitions:

e Event — A single web service request, which represents one entry in the IIS log. The type of
event was defined as a concatenation between the URI Stem and the URI Query fields of the
log entry.

e Sequence of events — A group of time-sequential Events, requested by the same client,
which should answer his Action request.

e Action —The client’s subscriber activity that triggered a Sequence of events.

2.2 Summary

From the previous architecture and server distribution we can see that, in order to study the
consequences of subscriber actions taken using the client set-top-box (STB), the best server
candidates are the ones to which the STB sends the web service requests and, also, the ones that
make those web services available. In this case, the Client Gateways (CGW) servers receive all
requests of the STBs, besides the terminal server applications requests, and route them to the Client
Facing Application (CFA) servers, the ones that make the web services available to the client. In this
thesis the focus of the logs analysis is on both of those servers but other servers’ logs are also
analyzed in order to see if they could complement the data or it they could make it easier for the
interpretation of each other’s data.






3 Related work
3.1 Transactional log analysis

The 1IS log files used in this thesis fall into the category of transactional logs, files that basically
record the interactions that have occurred during a certain period between the system (a group of
IPTV platform servers, in this case) and its users (STBs making certain request). The interactions are
the communications exchanges that occur between the users and the system and they are collected
and analyzed in order to obtain further beneficial information.

Jansen [7] calls this process Transaction Log Analysis (TLA). According to the author, the main
objective of TLA is to obtain a clearer understanding of the interactions among the elements of the
system on whatever research questions drive the study. TLA method basically involves the following
three major stages:

e Collection - collecting the data in a given period

e Preparation - cleaning and preparing the data for analysis

e Analysis - analyzing the data in accordance with our goals

All the phases are dependent on each other, on the data that is being analyzed and on the research
questions. For this thesis, since the collection process is already being done in the platform servers,
we can only change the preparation and analysis phases.

TLA is a broad categorization of methods that covers several sub-categorizations, including Web log
analysis (i.e., analysis of Web system logs), blog analysis, and search log analysis (analysis of search
engine logs). [8]

Transaction log analysis enables macro-analysis of aggregate user data and patterns and
microanalysis of individual search patterns. The results from the analyzed data help develop
improved systems and services based on user behavior or system performance.

From the user behavior side, transaction log analysis can be classified as an unobtrusive method.
Unobtrusive methods allow data collection without directly interfacing with participants. This type of
data is usually a very valuable research source since it was collected without interfering with the
natural flow of behavior and events in the given context. In our study all the data was recorded
from a real world platform with no intervention from us.

However one must interpret trace data from transactional logs carefully and with a fair amount of
caution, as trace data can also be misleading. For example, with the data in transaction logs, we can
see that an STB performed a boot-up sequence. However, using trace data alone, we cannot
conclude whether the STB executed the boot-up sequence because the user pressed the power
button or because the STB had a software error and executed a reboot.

3.2 Other researched techniques

Lou et al. [1] propose an approach to mine inter-component dependencies from unstructured logs.
The technique, requiring neither additional system instrumentation nor any application specific
knowledge, analyses co-occurrence of events (within a certain time interval) and their
correspondence through a least one identical parameter. The authors show how false positive and
false negative rates are influenced by the co-occurrence time intervals considered. Initially, some



time interval interdependence conditions were included in our methods but due to the high
variation of the time offsets of our events they were removed and replaced by another condition
based on other parameters.

Zhu et al. [2] describes an algorithm for inferring system log formats in an automatic way. In the
start of this thesis some thoughts were put into this because some of the log files that we had to
process had no off-the-shelf tools that enable their quick processing. But, after focusing just on the
IS log files this method was deemed unnecessary.

Pauw [3] presents a visual and analytic tool that supports performance analyses and debugging,
using large event traces to understand complex systems. Their goal is to reduce the cognitive and
computational load on the analyst while providing answers to the most natural questions in a
problem determination session. Although we do not use nor developed a similar tool, some of the
visual methodology employed in defining the event sequences is similar, in principle, with this
technique.

In the case of heavy load servers (like in our case), transactional logs flat files sometime become too
much of burden to review only due to their size and that is why they are usually ignored. So
techniques to facilitate the review of these files should also be employed. Microsoft [5] shows how
one can use Microsoft SQL Server to facilitate the review of these IS log files. In our study we use a
very similar technique but employing a MySQL open-source database.

The most common methods of transactional log data analysis are focused on search engine query
logs [6] and are used to explore the characteristics of the searchers’ behaviors, enabling, for example,
the prediction of future behaviors. Although the data is similar to our log data, these techniques
tend to be much focused on just determining user profiles.

Hatonen [4] suggests two methods to handle the huge amount of data that is continuously collected
from the elements and devices of telecommunications networks and to improve the quality of
decision-making information available to their managers. The methods are based on log data
summarization and semantic compression of log data, respectively, and they basically discard all the
entries not considered relevant. But, these methods can only be applied after we have a complete
knowledge of the data being compressed which is not the case in our study. After having identified
all relevant event sequences in our data, these methods can be used, in a future work, to reduce the
information displayed to a network manager.

3.3 Our approach

As described previously, we researched several methods to get ideas of what could be used in our
work but, in the amount of time that we had available, we did not find a method that could be
employed “as is” to handle all our problem conditions. Main hurdles were:

e The sequences that we must identify are not previously defined.

e Data logs’ entries do not have a timestamp with sufficient precision to allow their
correct ordering. As such, the events belonging to a specific sequence can be out of
order or intertwined with events from other sequences, if ordered using the timestamp
field.

e Some sub-sequences (smaller groups of events) may be part of several different
sequences or, simultaneously, may constitute a periodic event that is not part of any
sequence.



e The sequences may include, in certain cases, optional events - these events are not
present on every occasion.

We could have used a probabilistic approach to define the groups of events with the most number
of occurrences but since this process can be further obfuscated by of the fact that the sequences
may have optional (but valid) events that only occur in certain occasions, we decided to not follow a
probabilistic approach and, instead, develop a new method that would be able to identify the
precise start and end points of the sequences in question. If correctly defined this should ensure the
most accurate results.
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4 Dataset

The dataset we use in this project was obtained from the IPTV Microsoft Mediaroom platform used
by an IPTV provider. It consists of several days of logs (tracesink logs, IIS logs and ELS boot logs)
activity taken from the platform’s servers, and several hours of activity logs recorded from real
subscribers’ set-top-boxes (STB).

This chapter describes the characteristics of the data contained in those server logs and the analyses
that were done in order to see if that data could be used to implement this thesis.

4.1 Dataset characteristics

The tracesink logs consist on text logs, listing all the system events that occur on each server.
System events flag errors, warn of potential problems, or provide notification of processes that have
taken place. Service providers can use system event information to tune system maintenance and to
troubleshoot problems. Each log entry contains the following fields:

Field Name Field Description
date-time-utc Date and time that the event occurred (UTC time)
date-time-pt Date and time that the event occurred (PT time)
event-id Unique number that identifies the event
event-severity Event severity (Critical error, Error, Warning, Information or Debug)
event-name Class name and class namespace that generated the event
app-domain .NET application domain of the component that generated the event
computer Computer on which the event occurred
proc-id ID of the process that generated the event
thread-id ID of the thread that generated the event
Exception type, exception message, stack trace, and other low level
message .
details about the event.

Table 2 - Tracesink log entry fields

Typical sizes for these daily files are: 20 MBytes/server for CFA servers, 6 MBytes/server for SFA
servers and 380 kBytes/server for CGW servers.

The IS logs consist on text logs, listing all the Web Services (WS) requests made to each of the
servers that provide web services to internal and external platform clients (internal servers and STB
clients, respectively). Each log entry contains the following fields:

Field Name Field Description
date Date of the conclusion of the WS request (UTC time)
time Time of the conclusion of the WS request (UTC time)
s-sitename Name of the website (usually W3SVC1, meaning “website 1”)

s-computername Name of the server that answered to the request
IP of the server(s) to which the request was sent (usually the

>p Service Group IP)

cs-method Operation requested (usually “POST” or “GET”)
cs-uri-stem URI stem (usually the filename on the server)
cs-uri-query URI query (the query requested)

s-port Port of the server (usually “80”)
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cs-username

Name of the client (usually “-“)

c-ip IP of the client
cs-version Client’s web service version (usually “HTTP/1.1")
cs(User-Agent) Client’s software version and globally unique identifier (GUID)
cs(Cookie) Cookie used (usually “-“)
cs(Referer) Client’s web service referrer (usually “-“)

Address of the server that hosted the requested web service
cs-host .

(usually the Service Group address)
sc-status HTTP Status Code

sc-substatus

Associated Sub Status Code

sc-win32-status

Associated Win32 Status Code

sc-bytes Bytes sent from the server to the client
cs-bytes Bytes sent from the client to the server
time-taken Time taken to service the request

Table 3 - IIS log entry fields

Typical sizes for these daily files are: 230 MBytes/server for CFA servers, 75 MBytes/server for SFA
servers and 230 MBytes/server for CGW servers.

Subscriber activity logs are created at every Mediaroom client (STB), every time a subscriber:

* Tunes the set-top box to a new channel

¢ Turns the set-top box on or off

¢ Selects an item from any menu

® Purchases a VOD asset

¢ Purchases an RDP application

¢ Purchases a PPV event

e Launches or closes the browse panel

¢ Launches an RDP application

¢ Disconnects from a launched RDP application

¢ Navigates away from a launched RDP application

¢ Transitions to a new trick state, such as fast-forward, play, or rewind
* Runs a client-resident application, such as the menu or the program guide

Subscriber activity events enable service providers to gain a better understanding of the services and
features that subscribers are using on the Microsoft Mediaroom client. Service providers can use this
information to improve customer marketing campaigns, advertising sales, and relationships with
networks.

Typical sizes for these files are: 800 MBytes/Service Group corresponding to a period of 4 hours.

Due to the huge daily volume of activity data generated by all the STBs of a service group, these logs
are loaded onto a database divided in periods of 4 hours of log reporting (every 4 hours they load
into the database all the activity logs received from the STBs that reported logs in the last 4 hours).
This means that the data is only available for a period of 4 hours. After that, it is overwritten by
newer data.

ELS boot logs are created in the provider’s ELS platform and contain every STB authorization request

to log in to the platform, whenever a STB is powered on or connected to the network, that is passed
from the Mediaroom platform to the provider’s external login server.
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The ELS web service triggers the provisioning of the STB if necessary, verifies that the STB is entitled
to connect to the service provider, and returns information signaling the result of the authentication
request.

Each log entry contains the following fields:

Field Name Field Description
CreationDate Date / Time of the request
AccountExternallD | Customer account
DeviceGUID STB GUID
DevicelP STB IP
Action Type of Request (“DevicelLogin” or “DeviceProvision”)
ErrorCode Error code (if successful ErrorCode=0)

Table 4 - ELS Boot log entry fields

Typical size for this daily file is: 30 MBytes (containing the boot authorization requests made by all
STB that tried to login to the platform).

4.1.1 Limitations

All of the data included in the dataset was generated during normal daily usage performed by a
subgroup of IPTV subscribers (that subgroup corresponds to one Service Group that currently
includes approximately 60.000 subscribers).
There was no data generated by request or using specific laboratory STB’s. Since we had already
plenty of logged data this requirement was not considered initially. As such, during this project we
had no access to the provider’s IPTV service.

4.1.2 Pre-processing

Since a Service Group is constituted by a physical group of different servers working in parallel and
performing load balancing between them, any sequence of requests (action) made by a particular
STB can result in several requests to different servers (of that group) that have the same function
(for example, the CGW). Because of this, no individual server’s log has any meaning by itself. To
solve this, one must group the logs of all the same-type servers, in a Service Group, and concatenate
them. Then, we must reorder those sequences of events by date and time.

This will provide a unique log for the CGW server function, a unique log for the CFA server, etc. for
the whole Service Group

This type of preprocessing was done for every tracesink log and IIS log files before starting the
analysis phase.

4.2 Data analysis

In order to check for the information contained in each type of server log and the possible
relationships between the different types, a detailed inspection must be made of the contents of
each type of log files.

The goal is to see if all types of logs can provide enough information, per se, to characterize different
actions (constituted by certain sequence of events), or if, only when joined together, they can add
up the information needed to establish those different actions.
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4.2.1 Data

Tracesink Logs

The tracesink logs consist on a complete list of all the system events that occur on each server. We
could see that the IPTV platform has the “Debug” detail mode enabled, in most of the server groups,
which results in the logging of a great amount of events (this mode usually should only be activated
when there is a need to help in debugging application code, according to Microsoft documentation).
Due to this fact, these logs list mostly events that are internal to applications running on those
servers and cannot be directly correlated with end-users STB requests or other servers’ requests.
The Error/Warning types of events are also displayed on real-time platform administration displays
to allow operators to take action if warranted. It is possible to independently configure the level of
debugging in each server but most of them remain configured with the default value.

In Table 5 we can see an example of the predominance of “Debug” events over all other types, for
various server group types:

CFA cGW SFA SYNDIS TSVR VSVR
Critical Error 48 0 0 0 1 0
Debug 192.419 8.019 77.637 0 136.615 85.747
Error 7.225 0 5 14 8 500
Information 52.141 10 450 35.230 211 4.336
Success Audit 2.181 0 0 0 0 0
Warning 12.085 672 39 835 0 0
Total 266.099 8.701 78.131 36.079 136.835 90.583

Table 5 - System events in tracesink logs (for one SG - June 28th, 2010)

In these logs, the events are registered with a timestamp granularity of 1/100" of a second. Since all
the servers are synchronized with the same time reference this allows for a good merging of the log
files, keeping most of the real event order.

Our first data analyses were done with this type of files. It was possible to group Event Names in the
same App Domains and observing that different servers (within a Service Group) have App Domains
names that differ in a numeric suffix corresponding to each of the servers of that service group.
Other results included:

e There is little diversity on the type of events being logged. For example, in a 2-hour CFA
tracesink log with 25,295 entries we can identify just 11 distinct App Domains and 44
distinct Event Name/App Domain combinations. The corresponding CGW log has only 2
distinct App Domains and 2 Event Name/App Domain.

e The number of logging entries is very much dependent on the action being logged.

e The severity of the events logged also depends on the App Domain. Not every App
Domain has the same level of logging embedded.

e In the CFA logs, some of the entries do not have any STB GUID associated because they
are mostly events associated with internal caches (EPG, Timeshift, etc.) refreshes. These
types of events have no correlation with a STB request. In the same CFA 2-hour example,
20% of the events were of this kind.

14



1S Logs

The IS logs consist on text logs, listing all the Web Services (WS) requests made to the respective
servers. All the servers that do not host web services do not produce log files of this type (for
example, VSVR, TSVR, etc).

In the specific case of the CGW (client gateways) servers, they include in their IIS logs all the requests
made by the STBs to CFA servers, although those requests are only distributed (forwarded) to those
CFA servers. So, basically, a CGW IIS log is similar to the CFA IIS log but also includes extra requests
that are not visible in the CFA logs like:

e GET Channel Packages (/ListingsClientDataDelivery/PackedListingsForClient/...)
e Other request with an ill-formed query

The GET channel packages are routed to other servers (besides the CFA) and the ill-formed query are
not forwarded.

By looking at the IIS web service names some of the actions being requested become immediately
recognizable but most of them are not. And, when trying to correlate this type of log information
with the tracesink log we see that there is little correspondence between both logs.

Since all the web service requests served at the CFA servers, which should have been requested
through the CGW gateways, are logged in the CFA IIS logs one can try and correlate those entries
with the ones in the CFA tracesink log. But, if we exclude the “Debug” system events from the CFA
tracesink log, the number of remaining events is very small when compared with the 1IS log entries
(for example, in the previous case shown in Table 5, for a total of 73,680 events (excluding “Debug”)
there were a total of 4,766,492 CGW IIS log entries.

Also, for a boot-up sequence that is usually characterized by 32 distinct web service requests, as we
will see later, the tracesink log only logs two entries corresponding to the “Bootstrap” web service.

In this type of logs, the events are registered with a timestamp precision of one second.
Unfortunately, this allows for poor merging of the log files since many events can occur per second
in all the servers, and can mix (obfuscate) the real time order of some of those events. This makes it
harder for studying/finding event sequences as we will see later.

Activity Logs

User activity logs contain all the actions that were performed by the IPTV service subscribers and
logged in their STB on a local activity logging cache. When that cache accumulates 500 events, or
reaches a certain time limit of 24-hours since last upload, it uploads the content to the logging
framework on the Microsoft Mediaroom servers.

As we can imagine this type of arrangement and the fact that, as previously described, the logging
information is only available in periods of 4 hours introduces a great obstacle in attempting to
correlate this type of information with other logs, namely the IIS logs.

Because of the huge volume of information included in these activity logs it was not feasible to
download and accumulate 24 hours of data. Also, there was no guarantee that all the requests
logged in a corresponding IS log would have been included in those 24 hours of accumulated activity
logs, for all the STBs, which would makes us have to process subsequent 24-hour periods.
Nevertheless, the available activity information was briefly analyzed and it was confirmed that it
appears to be of great use for user profiling, TV audience measurements, user menu navigation skills
analysis, etc.
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We tried to correlate boot-up sequences, observed in CGW IIS logs, with the STB activity logs but did
not found any visible pattern of events immediately before or after the IIS log’s reported timestamps
of each STB sequence first boot event. For other types of events, the use of the STB activity logs
might be more valuable to identify the relevant sequences.

Boot logs

Boot logs are created in the IPTV provider’s external login server (ELS) and contain every STB
authorization request to login to the IPTV platform.

This type of log can be easily correlated with the boot-up sequences logged in the CGW IIS logs and a
match could be seen for practically all the sequences identified, as we will see later.

This correlation can be very useful in providing additional information about why some unsuccessful
boot-up attempts occurred, since, in the current architecture, the external service will always
answer with an OK (status code 200) to the Mediaroom platform requests even if some required
authorization is not granted. Since CGW IS logs do not include this kind of semantic information,
their relevance in describing the login results becomes somewhat reduced.

4.3 Summary

From the analysis of all the types of log files available, we conclude that:

e There is no practical advantage in trying to correlate tracesink logs with IIS log files. The
process consumes too much time of manual analysis, with little probability of success due to
the fact that only on rare occasions the tracesink log adds relevant information to what is
already available in the IIS log, regarding the assembly of a sequence of events that might
correspond to a unique “user request”.

e Even correlation between different tracesink files from different types of servers does not
add up much information since most of them have no visible common information that
allows for their match.

e The activity log seems to be very interesting in order to correlate with CGW IIS logs since it
includes the user activities recorded in the user side (STB). But, the activity logs include no
information regarding the STB boot-up process although user activity can be seen in the
activity logs while the STB was still booting. Only power-on and power-off, from/to standby
mode, actions are logged in the activity log file.

e The boot log is very useful in correlating with the CGW Il logs, in order to determine boot-up
sequences and contains additional information why most of the unsuccessful boot-up
sequences occur, not visible in those IIS logs.

Based on these conclusions we decided to focus our analysis efforts on the CGW IS logs and try to
identify event sequences that constituted “visible” STB actions. That is shown in the next chapters.
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5 Data preparation

In this chapter, we explain how the initial analysis of the IIS log of a CGW server is done and how the
log entries are parsed in order to help us define usable sequence of events that might be assigned to
“actions”. Then, we see how the “boot-up” sequence is chosen and what others sequences might be
visible in the data.

We should bear in mind that the available documentation about the workings and events generated
by the platform provides little or no specific information about the characteristics of periodic
STB/platform behaviors.

The log files used in this analysis are the IIS log files collected from one Service Group’s CGW servers,
in July 2010. These combined logs total 5,510,355 events in a 24-hour period, requested by 59,293
distinct STB clients.

5.1 First analyses

After concatenating and ordering by date/time the log files, we start by looking at the different types
of events that are present in the CGW logs.

We can identify 728 distinct pairs of URI Stem + URI Query (distinct events), shown on Figure 2. Most
of those 728 distinct events can be grouped in 3 groups of (partial upgrade related) events intended
to upgrade the STB client’s software - the differences between the 3 are related with the different
software versions that the STBs had already in their flash memories once the upgrade was requested.
Since we are not interested in differentiating the different part requests of the upgrade process, we
group these types of events together.

m5
99
o6
o6
o 306

| 306
O /upgrade/upgrade-files/1.6.25310.38 B /upgrade/upgrade-files
O /ClientUpgrades/ O /PackedListingsForClient/channel-cmapPT

B /PackedListingsForClient/MinorSlab-channel-cmapPT @ All others

Figure 2 - Major groups of distinct URI Stem + URI Query

Another 2 groups of pairs are possible because of the daily upload of Channel Maps
(PackedListingsForClient) to the STB caches having different versions, which we also do not want to
differentiate.

In the end, it results in 104 (99 + 5 groups) distinct events grouped in 24 distinct URI Stems:
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URI Stem Method Distinct. URI Total
Queries events
/bootstrap/bootstrap.asmx POST 4 21.961
/certificateproxyws/certificateproxyws.asmx POST 2 56
/clientsms/clientrights.asmx POST 11 445,788
/clientsms/getgroupgrantedkeys.ashx POST 1 1.836.211
/clientsms/getrights.ashx POST 1 325.001
/clientsms/purchase.asmx POST 8 280.322
/clienttsmonitor/monitor.asmx POST 2 1.071
/clientuserstore/userstore.asmx POST 4 150.973
/dvrv2/dvrscheduler.asmx POST 22 300.616
/edgecontrollerfromclientws/edgecontrollerfromclientws.asmx | POST 3 551.277
/log/clientlogger.asmx POST 7 79.073
/mdws/mediadiscovery.asmx POST 8 740.522
/notification/clientnotification.asmx POST 3 184.839
/searchws/search.asmx POST 5 9.118
/upgrade/upgrade.asmx POST 1 18
/vodcatalogws/catalog.asmx POST 12 341.075
/vodmapserverws/vodmapserver.asmx POST 3 7.739
/ GET 1 6
/itassistant/ui/omabaseframe.htm GET 1 5
/ClientUpgrades/ GET 1 325
/PackedListingsForClient/channel-cmapPT GET 1 114.878
/PackedListingsForClient/MinorSlab-channel-cmapPT GET 1 114.306
/upgrade/upgrade-files GET 1 307
/upgrade/upgrade-files/1.6.25310.38 GET 1 4.868

Table 6 - All the distinct URI Stems in the IIS log

In Table 6, we can see that just the URI Stem getgroupgrantedkeys.ashx alone is responsible for
33.3% of all CGW log events. And, dividing this number of events per the number of distinct STBs,
that made requests in this log, results in a getgroupgrantedkeys.ashx event per STB every 46.5
minutes approximately.

Another first processing was to try to characterize for each STB/event pair which was the next event
in the log. If this yielded valid results it could be a good starting point in establishing event
sequences. But, this had very poor results. After many processing runs we could not find any event
that had a noticeable next-event pair. This was strange given the amount of events that were
present in our data.

The fact that there are no evident next-event pairs, and that some event types have a huge number
of occurrences, leads us to believe that there must be some automatic events that all STBs perform
in a predetermined way, and that those requests may even follow a periodic pattern. If this is the
case, that would explain why no discernable event/next-event pairs were promptly discovered
because the periodic events would obfuscate any possible pairing. So, the next step logical will be to
search for the periodicity of the logged events.
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5.2 Periodic events

To analyze the periodicity of the events, we execute a query that lists, for each distinct event, how
many occurrences happened per minute of the day. A second query shows the times when each STB
had the first occurrence of each type of events.

Graphical examples of those results are shown in Figures 3 and 4 for the four major periodic events
(responsible for 50% of all events in the log file):

= GetGroupGrantedKeys.ashx

= GetEdgeMap

= RefreshAVTicket

= PresentTicket

1.600
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0 T T T T T T T T T T T
0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Hour of the day

—— /clientsms/GetGroupGrantedKeys.ashx —— http://tempuri.org/GetEdgeMap
http://www.microsoft.com/tv2/server/sms/RefreshAVTicket Microsoft.IPTV.ClientNotification/PresentTicket

Figure 3 - Periodic events

As we can see, the four events show a constant behavior (distribution) throughout the day that has
no apparent relation with the clients’ activity.

Assuming that those events could be periodic, we will try to obtain the approximate periods

between each event request by looking at the following graph which shows the first occurrence of
each STB’s request for these web services:
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Figure 4 - Periods where the first daily event occur

In Figure 4 we can see the result of the uniform distributions that these events have and conclude
that the events are indeed periodic. Their time periods between consecutive requests are roughly:

Event Time period
GetGroupGrantedKeys.ashx 45 minutes
GetEdgeMap From 2 hours to 3 hours
RefreshAVTicket From 7 hours to 8 hours
PresentTicket From 7 hours to 8 hours

Table 7 - Period duration of the periodic events (graphics)

The interval variance of the last 3 events probably aims at randomly distributing the STB refresh
requests, in order to decrease the processing loads on the platform servers, by assigning a period
value which is not always the same (but is bounded between minimum and maximum values).

Since this study pretends to profile the different sequence of events that constitute the response to
the subscribers’ actions, periodic events have no interest for our analysis. So just by removing these
four events from the log we can cut the size of the data in half. Later, after establishing the start and
endpoints for our sequences, the events should be reinserted in order to check if they could also be
part of those sequences (for example, GetGroupGrantedKeys.ashx must also be used in a sequence
associated with other events because of its different behavior in the 14:00-17:00 timeframe, as can
be seen in Figure 3).

Detailed analysis of the intervals between successive calls, per STB, to these web services confirms
the results already displayed. The exact intervals found using this method are the following:
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Event Time period (hh:mm)
GetGroupGrantedKeys.ashx 00:45
GetEdgeMap From 2:00 to 3:00
RefreshAVTicket * From 6:55 to 7:55
PresentTicket From 6:55 to 7:55

Note *: This event also displayed a period of 10 min for a group of 700 events.

Table 8 - Period duration of the periodic events (analytical)

These types of graphical representation, like the ones in Figure 3, show us interesting details about
those events and, as such, we will use similar representations to show the workings of the STB’s
cache refreshment events, in the next section.

5.3 Cache refreshment events

Looking at the event distribution charts reveals interesting details about the workings of the
platform not clear in the documentation. It shows that there are some events which occur more
often in “refresh windows” throughout the day (one during the night and another during the
afternoon — periods that usually have less traffic load).

It seems that the platform updates the information present in the caches of the STBs during these
time windows in order for it to be readily updated and available to the subscriber once he needs it.

Figure 5 shows a group of events that seems to update the map of channels or EPG available to each
STB. And these updates are periodically made during the time windows of 0:00-4:00, 13:00-17:00
and/or 13:00-19:00. The different steps visible in the charts seem to show that these events might
be related with other refresh events shown in Figure 6 (which has a time window 14:00-19:00)
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Figure 5 - Some of daily cache refresh events

The total number of these events in the 00:00-04:00 window is 254,364. In the 13:00-19:00, the total
is 322,499.

21



Although these events are not classified as periodic, the fact is that, detailed analysis of the intervals
between successive calls, per STB, to these web services shows that these events also follow a
periodic pattern. The exact intervals found using this latest method are the following:

Event

Time period

GetHeaderXML(Versioned)

12h (84%) and 16h (16%)

QueryMediaDescriptionsStringUser

12h (84%) and 16h (16%)

GetlListingsInBackground

12h (84%) and 16h (16%)

channel-cmapPT

12h (84%) and 16h (16%)

MinorSlab-channel-cmapPT

12h (84%) and 16h (16%)

Table 9 - Periods of these refresh events

The events show 2 distinct periods with 12h and 16h durations and with a distribution of 84% and
16%, respectively. From our analysis we did not find any explanation for such fact.

In Figure 6 all events occur mainly in the 14:00-19:00 timeframe (5-hour period). A specific detail
that is visible in the figure is that GetMediaDescriptionsType, GetPurchases- BySubSystem and
GetRights.ashx seem to have multiple times the number of occurrences of the other events shown (4,
3 and 3, respectively) while maintaining the same variation pattern. This indicates that for each one
of the other event requests, the STBs must make several of these requests. So, an important
conclusion from this is that, we should expect that a sequence of events might have more that one
occurrence of the same type of event (e.g., a sequence that includes the GetBouquetDefinition
event must include four GetMediaDescriptionsType events since their occurrences show an almost
exact 1:4 ratio).

Also, a refresh rate of approximately 200 requests/min shows that in a 5-hour period we can refresh
60,000 STBs. That is totally consistent with the number of STBs present in this log (59,293) and
serves to show that in these “refresh windows” all working STBs get refreshed. If rates are higher
that 200 then it has to be due to multiple requests by the same STBs.

Regarding the event GetScheduleDelta, it has 2 specific “refresh windows”, the first is 1:00-6:00 and
the second is 13:45-19:00. In both of these windows the event rate never exceeds 140 requests/min.
This shows that the event must be associated with STBs that have the DVR functionality because (as
will see in the next chapter) the number of DVR-enabled STBs, in this log file, represents about 70%
of the total STBs.
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Figure 6 - Other daily cache refresh events
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Note that the GetRights.ashx event has several occurrences (several high peaks) between 23:45 and
5:00 that should be treated as exceptions and are not taken into account in the considerations of
this section. These occurrences are due to a few dozen STBs that have failed to receive a valid
GetRights.ashx response or have been de-authenticated from the platform and begin to issue
consecutive requests (some hundreds in a period of a few seconds) until they finally timeout and
reboot. This fact may indicate a problem with those STBs or with the platform at those times and
should be investigated by the operations team.

The total number of these events in the 01:00-06:00 (excluding the mentioned GetRights.ashx
exceptions) and 13:30-19:00 time windows is 1,009,332. Detailed analysis of the intervals between
successive calls, per STB, of these latest web services does not show any periodic patterns.

Another event that appears to have a refresh behavior since its 24-hour profile is unique and not
related to subscriber activity is RefreshAccountSessionKeys. Almost all STBs (91%) have just one of
these events per day and the majority of exceptions (98%) are associated with STBs that also have a
LoginEx event (STBs that perform a boot-up sequence). This is an indication that this event must be
included in the boot-up sequence.

The next graph shows the 24-hour profile of all the occurrences and the profile of the first
occurrence per STB, for the RefreshAccountSessionKeys event:
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Figure 7 - RefreshAccountSessionKeys refresh event

5.4 Subscriber related events

Next, we present some of the charts that show potential groups of events that could be sequence
related. These charts show examples of events that should be subscriber activity related, without
any periodic patterns.
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Figure 8 - Two of the subscriber related events

In Figure 8 we can see two events that are probably related with a Live TV recording sequence.
GetRecordingDefinition is related with the STB getting the recording settings, from the servers, to
initiate the recording and NotifyRecordingsStartedAndStopped should be called in the start and end
of the recording (so it counts as two occurrences per recording session). This last event is a typical
example of an event which is hard to sequence because while the first occurrence is directly related
to the GetRecordingDefinition request, the second one only happens after the recording has ended
which depends on the duration of what was recorded.

The next chart shows two highly correlated events (GetVServerConnectioninformationEx and
GetVODKeyRing_WithAVTicket) that must be associated with VOD watching sessions. The profile of
events PurchaseOffer and GetAssetsEx (not shown) are very similar to this one but have different
scales (PurchaseOffer seems to have 10 times the number of GetVServerConnectioninformationEx
and GetAssetsEx is 8 times) thus indicating that they must occur several times within the same
sequence.
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Figure 9 - Two correlated events (probably associated with VOD sessions)

In Figure 10, we present a typical profile of boot-up actions (as we will see in the next chapter, this
shows exclusive events that exist only within the boot-up sequence). The LoginEx is the starting
event and it happens twice (that is the reason why it has the double of occurrences), and the two
events VerifyKnownRecordings and UpdateStreamCount occur only on DVR-enabled STBs (that’s

why their values are somewhat lower than the rest of events displayed).
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Figure 10 - Some of the events exclusively related with the LoginEx event

Although it would be possible to show similar charts for other event types, with their own daily
profiles, almost half of the 104 distinct event types have less than 1,000 sparse occurrences in our
daily log. That makes it practically impossible to graphically represent that data in a meaningful way.



5.5 Summary

In this chapter we saw that although the CGW IIS logs are the best data source to search for the
sequences of events triggered by a subscriber action, most of their entries are related to periodic or
other automatic events. Not considering that a small number of these periodic and cache
refreshment events might also be associated with subscriber actions, an approximate distribution of
the CGW IIS log events’ types is:

Other subscriber
related events
31%

Periodic events
51%

Cache refresh
events
18%

Figure 11 - Distribution of event types

As such, the universe of available information is much smaller than initially thought and that could
indicate smaller sequences (with very few events) that could be much harder to characterize and
identify. Also, the fact that half of the event types have very little occurrences (less than 1,000 in the
daily log analyzed) should probably make it difficult to decisively associate them with different event
sequences.

In the case of the boot-up sequence there is a total of 9 highly correlated events that are easily
detectable in the charts data. This is the biggest number of events that is readily recognizable as
potentially belonging to a same sequence. As such, this is the best choice to continue our work in
trying to establish a method to isolate and characterize full event sequences. This will be the focus of
the next chapter.
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6 Identifying the boot-up sequence

The identification of the boot-up sequence of events that the STB performs when it is powered on
was always a major goal of this study. This would make it possible to recognize those sequences in
the CGW server logs and, by analyzing their end results, it could allow us to detect a specific
problem/discrepancy or extract statistical data in order to know how the STBs are executing their
booting sequences. This type of data cannot be derived from any other log because the STB does not
register any of its booting events in its Activity Log and the ELS Boot logs only store the login
authentication results (only one entry per booting sequence).

As we saw in the previous chapter the boot-up sequence includes an easily identifiable group of
exclusive events that constitutes a good starting point in our sequence establishment.

6.1 Sequence isolation

From the log data we can conclude that the LoginEx must be the first event in the boot-up sequence
for two main reasons: its name seems to indicate the initial attempt to login into the platform
servers and, for many STBs this is the first event that is present in our 24-hour period log (and for
others that reboot during that 24-hour period this event is usually very far - several hours - from the
previous entry).

6.1.1 Filtering the events

In order to look only for the events that may be part of the boot-up sequence we decided to filter
the log data and only keep the entries of the STBs that have a LoginEx event entry. This results in a
total of 7,056 distinct STBs having requested a total of 834,806 events of all types. Figure 12 shows
the percentage of those 7,056 STBs that have at least one occurrence for each distinct event (it only
shows events that appear in at least 20% of the STBs)
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Figure 12 - Percentage of events in STBs with the LoginEx event

As we can see in the graph, almost all events have previously been identified as exclusive to the
boot-up sequence or belonging to the periodic/refresh category. Usually almost all of these events
have occurrences within 1 minute after the LoginEx event so that is the timeframe where we will
focus in order to try to obtain a sequence order.

6.1.2 The starting event

LoginEx is the starting event of the boot-up sequence. But, from previous graphs and by looking at
the log data, we can see that there should always be 2 consecutive occurrences of the LoginEx in the
same sequence The only exceptions to this rule are when the STB needs to perform a software
upgrade (which occurs between both LoginEx events) or when one of the events is missing. So, in
order to define the starting point of the boot-up sequence we need to differentiate both LoginEx
events.

Usually the two LoginEx occur within seconds of each other (3 seconds average) so we can decide
that, if a (second) LoginEx distances itself from another by more than a certain amount of time, it is
because it belongs to a subsequent sequence. But, choosing a threshold value (for the interval
between both events) has two main problems: if the threshold is too small, then a subsequent event
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will always be the starting point of a next event sequence; if it’s two large then there can be two
LoginEx events that are considered in the same sequence but that, in reality, belong to consecutive
seguences.

Several interval values were tested but none provided optimal results because although the average
interval is 3 seconds, the data showed that it usually varies between 1-9 seconds with some extreme
cases reaching the 30 seconds mark.

Other methods to distinguish both events were investigated, based on the other fields of the web
service request, but the final choice was to use the ‘cs-bytes’ field to try to differentiate the events.
This option provides the best results since it appears that, in every sequence, the ‘cs-bytes’ of the
second LoginEx is always smaller than in the first event.

So, filtering all the occurrences of these events that happened within 1 minute after the first LoginEx

event and displaying them in relation to their time distance to the first LoginEx results in the
following chart:
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Figure 13 - Distribution of each type of events (in relation to the 1st LoginEx event)

The axis with the event names is not represented due to clarity reasons but it corresponds to the
following table:
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Event Time offset (peak) Event Time offset (peak)
LoginEx (2nd event) 00:03 GetMediaDescriptionsType 00:26
bootstrap/Upgrade 00:04 QueryMediaDescriptionsString 00:27
GetAllDeviceValues 00:05 QueryRDPMediaDescriptionsString 00:27
GetClientTraceLogSinkStatus 00:06 GetHeaderXML(Versioned) 00:28
GetClientTraceLogFilter 00:06 GetBouquetDefinition 00:29
RaiseEvents 00:08 getrights.ashx 00:30
RefreshAVTicket 00:11 GetlListingsinBackground 00:30
GetNotificationDeliveryServices 00:12 GetRecordingDeviceld 00:33
GetSubSystemMap(Versioned) 00:13 GetPurchasesBySubSystem 00:39
GetChannelMap 00:13 RefreshAccountSessionKeys 00:39
getgroupgrantedkeys.ashx 00:16 ...Client/channel-cmapPT 00:42
GetEdgeMap 00:16 VerifyKnownRecordings 00:44
GetAccountSessionKey 00:17 GetScheduleFast 00:44
GetEventldMapping 00:19 UpdateStreamCount 00:47

Table 10 - Boot-up sequence timeline

The number of events in the graph is not relevant, since some events may appear more than once in
the boot-up sequence. Our focus is the distribution of the events, particularly the peaks, since it
provides us a (statistical) order for the events in the boot-up sequence.

6.1.3 Did we find the last event?

From this analysis we can conclude that the UpdateStreamCount event is a good candidate to be the
last event in the boot-up sequence. But, although the number of occurrences of the
VerifyKnownRecordings and UpdateStreamCount are very similar, they correspond to just about
70% of the number of occurrences of GetScheduleFast. So, although the UpdateStreamCount /
VerifyKnownRecordings pair belongs to the boot-up sequence not every sequence has that pair of
events. A hypothesis was raised that (due to the name “VerifyKnownRecordings”) these 2 events
would only appear in DVR-enabled STBs. And, by crosschecking the data with a list of the types of
STBs involved, that hypothesis turned out to be true.

In conclusion, regarding the boot-up sequence, UpdateStreamCount is the last event of DVR enabled
STBs and GetScheduleFast is the last event for the STBs that do not have DVR capabilities.

By having identified the first (LoginEx) and last (UpdateStreamCount or GetScheduleFast) events of
the boot-up sequence, we could reprocess the whole log data in order to establish the complete set
of events that may occur in that sequence, between those two frontiers.

But, although the LoginEx is the first event and no other event appears in the log before it, the last
events are not so easy to delimit because of their logged temporal resolution (seconds) and the
amount of time it takes for the servers to answer to the request (remember that the timestamp of
the logged events is the end-time of the event processing). So, if the processing of the last events in
the sequence takes longer than usual, those last events can appear after the UpdateStreamCount or
GetScheduleFast (or if they have the same timestamp, the log ordering may place them after the
“correct” last event although they could have occurred milliseconds before). This presents a problem
since the “last event” frontier becomes very fuzzy.

After some research, no suitable method was found to deal with this particular case. The solution
was a trial-and-error technique in which several combinations of the last group of events were tried.
The final combination (that provides the best end results, as we will see later) was chosen after
several tries.
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So, we decided that a boot-up sequence has finished:

IF ‘GetRecordingDeviceld’ + ‘GetScheduleFast ‘ have occurred
AND ((‘VerifyKnownRecordings + UpdateStreamCount’ have occurred)
OR (‘VerifyKnownRecordings + UpdateStreamCount’ have not occurred))
AND ‘GetPurchasesBySubSystem’ has occurred at least 3 times
AND ‘GetBouquetDefinition’ has occurred at least 1 time
AND last_event <> ‘VerifyKnownRecordings’
AND last_event <> ‘UpdateStreamCount’

An additional condition was later added in order to terminate sequences with long durations (that
should have finished earlier):

IF ((‘GetRecordingDeviceld’ + ‘GetScheduleFast ‘ have occurred)

OR (‘VerifyKnownRecordings + UpdateStreamCount’ have occurred))
AND ((GetSubSystemMap(Versioned) has occurred at least 2 times)

OR (getgroupgrantedkeys.ashx has occurred at least 2 times))

6.2 Sequence characterization

Using the previous techniques and filtering some sporadic events that may appear in the final part of
the sequence due to the problem of ordering the events (described before) it is possible to get the
“optimal” sequence of events that constituted the boot-up sequence. Some of the optional events
resulted from the manual analysis of all exceptional events that still existed after the reprocessing
(described before) has been done and are included only after dismissing all possibilities of them
being out of order (of course, many of them occur in very small quantities which make it almost
impossible to see a pattern). This sequence can be seen in Figure 14.

An analysis of the sequence reveals that:

e 9 of the events are unique to the boot-up sequence (designated “only boot”)
e Practically all 11 “refresh event” types are present in the sequence
e Only 3 of the 4 “periodic event” types are present (the one missing is PresentTicket)
e 4 types of mandatory events (colored differently) have multiple occurrences in the
sequence:
= LoginEx (2 events)
=  GetMediaDescriptionsType (4 events)
= GetRights.ashx (3 events)
=  GetPurchasesBySubSystem (3 events)
A hint of these multiple occurrences had already been observed in the graphs of the
previous chapter.
e There are 13 optional event types (with multiple occurrences possible).
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Figure 14 - Boot-up sequence of events
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6.3 Summary

In this chapter we were able to establish the starting and ending events of the boot-up sequence,
allowing us to fully characterize its normal “group of events” plus its optional events and to isolate
all these events from the whole log data in order to do the statistical analysis.

Recalculating the distribution of the CGW IIS log events’ types after considering all the events
associated with the boot-up sequences results in:

Other subscriber
related events

29%
Periodic events
"Boot-up 51%
sequence" events
5%
Cache refresh
events
15%

Figure 15 - Distribution of event types (after isolating the boot-up events)

By isolating all the events associated with the boot-up sequences, we may proceed with a technical
and statistical analysis. That will be the focus of the next chapter.
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7 Results and their validation

7.1 Results

Applying the previous methods to our CGW IIS log data gives the following results:

Total Distinct STBs
| Total of boot-up sequences 10,877 7,056

Table 11 - Total of boot-up sequences

7.1.1 Mandatory events

In order to present the results of the mandatory events analysis lets consider the following
definitions:
e Correct sequence — A sequence that includes just the correct number of mandatory
events (no restrictions on the number of optional events) up to that specific event type.
e Incorrect sequence — A sequence that includes all the mandatory events’ types, up to
that specific event type, but whose totals are not the correct ones.
e Incomplete sequence — A sequence that does not include all the mandatory events’
types up to that specific event type.

Incomplete
1%

Incorrect
3%

Correct
96%

Figure 16 - Boot-up sequences classification

35



The details of this distribution are the following:

Mandatory event Correct Incorrect Incomplete
LoginEx 1702 200 0
GetAllDeviceValues 12 16 0
GetClientTracelLogSinkStatus 2 2 0
GetClientTracelLogFilter 28 0 0
RefreshAVTicket 1 0 8
GetNotificationDeliveryServices 2 0 0
GetSubSystemMap_Versioned 0 1 0
GetChannelMap 1 0 7
getgroupgrantedkeys.ashx 0 0 6
GetEdgeMap 2 0 9
GetEventldMapping 3 0 1
GetMediaDescriptionsType 3 11 4
QueryMediaDescriptionsString 1 1 0
QueryRDPMediaDescriptionsString 0 0 0
getrights.ashx 0 0 2
GetBouquetDefinition 0 0 1
GetHeaderXML_Versioned 6 7 0
GetPurchasesBySubSystem 10 2 0
RefreshAccountSessionKeys 2 0 34
GetRecordingDeviceld 21 5 3
VerifyKnownRecordings 1 1 0
GetScheduleFast * 2471 14 37
UpdateStreamCount 6144 85 8

Note * - Since VerifyKnowRecordings only exists in DVR-enable STBs, the GetScheduleFast complete &
correct sequences did not include that event.

Table 12 - Boot-up sequences classification details

Correct sequences

As we can see, in Table 12, there are a total of 8,615 (2,471 for non-DVR STBs plus 6,144 for DVR
STBs) correct and complete sequences (which represent 79.2% of all sequences). The other 1,797
correct sequences are most probably incomplete booting sequences that terminated in that specific
event and from which we highlight the 1,714 (15,8%) correct sequences that perform just the
LoginEx events (STBs that fail/are not authorized to login in the platform or just hung after the 2nd
LoginEx event).

Incorrect sequences

The 99 (14 non-DVR plus 85 DVR) complete but incorrect sequences are most probably sequences
whose end event was not correctly identified. As a result, they include more events than they should,
specially the periodic ones. The other 246 sequences are probably incomplete booting sequences
with retries in some of the web services requests. But 199, of those 246, are login attempts that only
have 1 LoginEx event (the STB hung after the first event or missed the first and only sent the second
LoginEx request).
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Incomplete sequences

There are 45 (37 non-DVR plus 8 DVR) incomplete sequences that probably succeeded although
some of the mandatory events are missing (not logged or they are completely out-of-time order).
The other 75 incomplete sequences probably represent STBs that hung very early in the event
timeline but whose termination was wrongly defined.

An interesting side note is that 17.5% of the total sequences are sequences that have only LoginEx
events in the mandatory type:

Total Distinct STBs
| Boot-up sequences with only LoginEx events 1,902 672

Table 13 - Boot-up sequences that have only LoginEx events

Although this can happen due to several types of reasons, the most common ones are:
e STBis not provisioned
e STBis not authorized to login into the platform

Although just two STBs are responsible for 162 and 93, respectively, of these 1,902 sequences, the
rest of the distribution ranges from 1 to 20 sequences per distinct STB:
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100 -

) \\‘\—\A

0 +—e ——tr—o—s + +
0 2 4 6 8 10 12 14 16 18 20 22
Number of boot-up sequences (with only the LoginEx event)

Table 14 - Number of STBs that have LoginEx-only boot-up sequences

7.1.2 Optional events

The totals of the sequences that include optional events are shown in Table 15. Since these events
are not mandatory, their analysis is separated from the mandatory events.
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Optional events l::qn::ﬁ;:: (%) Distinct STBs
GetUpgradeFilesUrlsForDevice 17 0,16% 17
/upgrade/upgrade-files 15 0,14% 15
Upgrade 398 3,66% 210
/ClientUpgrades/ 323 2,97% 201
RaiseEvents 674 6,20% 609
SetDeviceValue 34 0,31% 34
GetAccountSessionKey 63 0,58% 51
GetlListingsinBackground 544 5,00% 532
/PackedListingsForClient/channel-cmapPT 396 3,64% 392
/PackedListingsForClient/MinorSlab-channel-cmapPT 3 0,03% 3
SetRecordingDeviceld 13 0,12% 13
GetDevicePins 7 0,06% 6
UploadNewRecordinginfo 246 2,26% 233

Table 15 - Optional events

7.1.3 Sequence duration

The durations of the boot-up sequences can be seen in the following graph:
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Figure 17 - Boot-up sequences duration
For clarity reasons, the graph only shows durations lower than 3:00 minutes (which represent of
97.5% of the all cases without LoginEx-only sequences). The peak corresponds to the 45 seconds

mark.

These durations cannot be directly correlated with the individual processing times of each web
service request (event) since, although requested sequentially, some requests might be processed in

parallel.
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7.2 Validation of the results

In order to measure if our method for determining the start and end events of the boot-up
sequences are correct we can perform some validity checks.

Start event

To validate the start event we can use the ELS Boot Logs. From the 7,059 distinct STBs that had
executed boot-up sequences we get the following:

73

1%

280
4%

6706
95%

‘El Match @ Don't match (but with Error 301) O Don't match (no error) ‘

Table 16 - Correspondence between our results and the ELS Boot Log

In this chart we can see that 95% of the boot-up sequences identified with our technique correspond
(match) with an entry in the ELS Boot Log. 4% do not match (the STBs have more or less than the
sequences identified by us) but contain LoginEx web services Status-Code 301 (“Moved
permanently”), in at least one boot-up sequence, which means that the requested resource has
been assigned a new permanent URI (and any future references to this resource should use one of
the returned URIs). As such, we should not consider them because these STBs may have attempted
other ELS login retries via other Service Groups (remember that we are just analyzing one of them)
and that would explain the no match condition. So, in the end, we can see that the error margin in
identifying boot-up sequence starting points is only 1%.

End event

The end event is more difficult to validate but a graphical representation of the previous results
helps us visualize that the incomplete sequences ending events are more concentrated in the
“periodic” and “refresh” events. This shows that these sequences probably had already terminated
but due to the difficulty in deciding the end event (because none of our conditions were met) the
sequence was not terminated in the correct points. Nonetheless, the total of incomplete sequences
represents just 0.9% of all boot-up sequences.
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GetRecordingDeviceld
VerifyknownRecordings
GetScheduleFast *
UpdateStreamCount

QueryRDPMediaDescriptionsString

B Correct O Incorrect @ Incomplete

Figure 18 - Sequences classification per end event (events >50 not shown)

But, even if more terminating conditions were added to our method, there are sequences that miss
some of the mandatory last events. As such, it would be practically impossible to catch all those
cases. Also, in some sequences these last events appear out-of-time and after more “periodic” and
“refresh” events have already occurred. This was the reason why we think that the terminating
conditions that we defined were optimal but not perfect.

In order to measure the accuracy of our technique, in identifying the ending event of the sequence,
we propose that we should sum all the cases where we detected the GetScheduleFast (non-DVR) or
the UpdateStreamCount (DVR) events but whose the sequences were not “Correct”, because all
other non-Correct sequences most probably terminated early. Using these criteria the error total is
144 sequences which correspond to 1.3% of all sequences.

Start event End event
Accuracy of the method * 99.0% 98.7%

Note *: Based on the dataset used for this analysis

Table 17 - Accuracy of our method in identifying the limit events (boot-up sequence)
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8 Future work

In a future work we would like to examine more data logs corresponding to a longer period (i.e.,
more than one day) containing cyclical trends instead of just having one day or one cycle of the data.
We would also like to evaluate data from other Service Groups to further expand the universe of
data subscribers being analyzed. This would help in establishing sequence average parameters and
statistical behavior boundaries. If possible, a detailed study of the causes for the observed 1% error
sequences could also provide interesting results.

After characterizing the boot-up sequence of events and having developed a successful method to
detect it in the IIS log files, the next logical step would be to apply the same method in the detection
of other types of relevant sequences of events.

In a first phase, since these other sequences will most probably have fewer events than the boot-up
sequence it may become necessary to trigger our sequences, using a testbed STB, in order to fully
characterize the isolated sequences. Because, due to the quantity of periodic events and the fact
that some of them are also part of valid sequences, when a user-triggered sequence is very short it
may be very hard to distinguish from a periodic sequence.

Also, using this method to identify other sequences might contribute to the tune up of the rule that
is used to identify the sequence’s last event.

The framework developed within this thesis can also be up-rated to an operational application that
can process and provide statistical behavior of all major types of sequences in a daily basis,
triggering focused analyses of particular events that stand out from the norm.

Since the boot-up sequences have no common data visible in the subscriber’s activity logs no

correlation was possible between the IIS log and the activity logs but, other types of sequences
should be possible to correlate and that is another subject for future research.
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9 Conclusion

The goal of this project was to search for additional information that could be derived from an IPTV
platform servers log data by seeing if the sequences of events triggered by user (client) actions could
be detected in those logs and characterized. By doing so, we could develop a new method of
measuring the performance of the platform in responding to those sequences and create statistics of
their behavior.

The main conclusions are that the CGW IS log files are the most important files to look for the
information regarding the requests made by the users (clients). In those logs, all the web services
requested by the clients can be observed and sequences of events can be established.

To develop and test our method we picked the STB boot-up sequence of requests. This sequence is
one of the most important and longest sequences, since it is the first sequence that each STB
executes when it is powered up. Due to the number of events and their type it is also one of the
sequences more prone to errors or hangs. As such, it was the ideal candidate to analyze. In the end,
we fully characterized the events (mandatory and optional) that can occur within a boot-up
seguence.

Then we developed a methodology to automatically identify and filter this type of sequences in the
raw log data. As an output we can isolate all those boot-up sequences, (like time and duration of all
events involved) and, later, perform statistical analyses over the data.

Ultimately, the methods used to characterize and isolate the boot-up sequence can be adapted to
the other types of sequences present in the log data and, thus, allow us to quickly group and
characterize all other web services requests present in the logs.

Our work is a first step into better understanding and characterizing IPTV servers log data. We
believe that our model is sound, and that it can effectively capture and characterize almost all of the
boot-up sequences present in the log data, both the correct and the anomalous.

It could be used to extract additional information from the log data that currently is not being

analyzed and add to the tools that managers have currently available, allowing for a better
understanding of how the IPTV solution is working.
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