
UNIVERSIDADE DE LISBOA 

FACULDADE DE CIÊNCIAS 

DEPARTAMENTO DE ENGENHARIA GEOGRÁFICA, GEOFÍSICA E ENERGIA 

 

 

 

 

3D NUMERICAL MODELLING OF SUBDUCTION 
INITIATION AT A PASSIVE MARGIN 

 

 

Frederico Manuel Raposo Cabral 

 

 

 

Mestrado em Ciências Geofísicas  

(Geofísica Interna) 

 

 

 

 

2012 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

UNIVERSIDADE DE LISBOA 

FACULDADE DE CIÊNCIAS 

DEPARTAMENTO DE ENGENHARIA GEOGRÁFICA, GEOFÍSICA E ENERGIA 

 

 

3D NUMERICAL MODELLING OF SUBDUCTION 
INITIATION AT A PASSIVE MARGIN 

 

 

Frederico Manuel Raposo Cabral 

 

 

Mestrado em Ciências Geofísicas  

(Geofísica Interna) 

 

 

 

Tese orientada pelo Professor Doutor Fernando Manuel Ornelas Guerreiro Marques 

 

2012



 

 

II 

 

 

Resumo  

A subducção é um processo chave na teoria da tectónica de placas. Todavia, apesar de todos 

os esforços realizados nas últimas décadas no estudo deste processo, o início da subducção 

ainda não é totalmente compreendido. Actualmente, não existem claras evidências da 

passagem de margens passivas para margens activas, muito embora as margens passivas 

representem os locais mais prováveis para a ocorrência de subducção. É actualmente aceite 

que a litosfera oceânica apresenta um valor negativo de impulsão que favorece o início da 

subducção, contudo o balanço entre as forças de atrito e elásticas (como forças resistivas) e as 

forças de abertura oceânica e gravitacionais (como forçadoras) previne o início de subducção. 

Desta forma, outros parâmetros devem ser tidos em conta para explicar o início da subducção, 

tais como a espessura da crosta continental e da litosfera continental e ainda os contrastes 

laterais de densidade entre as litosferas oceânica e continental. Os estudos mais recentes 

tentam perceber o problema através de modelos analíticos, analógicos e numéricos, todavia, 

todos os estudos consideram as zonas de subducção como um problema 2D, embora estas 

zonas tenham formas 3D na natureza. Tendo em conta as formas mais complexas das margens 

passivas tentamos neste trabalho, através de modelação numérica 3D, investigar os efeitos de 

diferentes geometrias da fronteira entre o oceano e o continente no início da subducção e 

testar se existem assim geometrias mais favoráveis ao início da subducção. 

Os resultados dos nossos testes indicam que a geometria sem variação entre as placas 

litosféricas é mais provável para o início da subducção, visto que nos testes com geometrias 

da fronteira oceano-continente a variar na terceira dimensão aumentarem o tempo para a 

ocorrência de subducção ou até impossibilitarem o início de subducção.  

Palavras Chave: Subducção, modelos numéricos, geometria fronteira oceano-continente.  
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Abstract  

Subduction is one of the key processes in the plate tectonics theory. However, despite 

all efforts in the last decades studying this problem, subduction initiation at passive margins is 

not yet fully understood. Present-day transition from passive to active margin is not obvious, 

although passive margins look like the most probable places for subduction initiation to occur. 

Despite the favourable negative buoyancy of oceanic lithosphere, the force balance between 

elastic and frictional forces (as resisting forces) and ridge push and gravitational forces (as 

driving forces) seems to inhibit the initiation of subduction. Therefore, other parameters must 

be taken into account in subduction initiation, like thickness of continental crust and 

lithosphere, and lateral density contrasts between continental and oceanic lithospheres. The 

recent studies that tried to solve this enigma vary from analytical, analogue and numerical 

approaches; however all of them treat the subduction zone as a 2D problem, despite these 

zones have a 3D shape. Given the complex shape of most passive margins, we use numerical 

modelling in 3D to investigate the effects of different geometries of continental-oceanic 

boundaries on subduction initiation, and to test if one of these geometries is more prone to 

initiate subduction. 

 Our results show that the most prone geometry to initiate subduction at a passive 

margin is the usual third dimension invariant, common of the 2D models (without any angle 

in the the oceanic-continental boundary respecting to third dimension). More, our results 

indicate that with the increasing angle in the oceanic-continental lithospheres (e.g. 20, 40 or 

60 degrees) the subduction tend to be retard, and for the highest angels the subduction can be 

even prevented.   

 

 

 

Key Words: Subduction initiation; numerical modelling; geometry of oceanic-continental 

boundary; 
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1. Introduction 

1.1 The problem 

Subduction zones are one of the most important features in the plate tectonic theory. In the last 

decades many studies have been done to understand the dynamics involved in the subduction 

initiation, and these approaches used analytical, analogue and numerical models trying to understand 

all the forces and dynamics involved in the subduction initiation. However, most of the conclusions 

resulting from these works are simply in a 2D view. Although is known that subduction is a 3D 

problem and this way we try to investigate, using numerical modelling, the best geometry of the 

continental and oceanic plates in the third dimension that promote the subduction initiation. 

1.2 Methodology 

A 3D approach to subduction zones is very complex because of the large number of features 

necessary to study this subject. This way to best understand the subduction initiation we used 

numerical modelling that can give us a new knowledge on this process. The numerical approach were 

performed using the I3ELVIS code, that is based on finite differences schemes and based-in-cell 

techniques combined with multigrid approach, a additional feature to the previous I2ELVIS code in 2-

D (Gerya and Yuen, 2007). The models include a free surface as well as phase transformation and 

water transport. 

1.3 Outline 

The current work is divided in four main parts. In the first chapter, the Introduction, contents 

the basics to understand the subject and gives an overview of the past work done in this field. In the 

second chapter we present our model and the initial and boundary conditions. In the third section are 

present and discuss the first results of the numerical simulation that confirms the similarities of our 

model with previous studies, and the results from simulations testing different geometries between the 

oceanic-continental boundary. The chapter four we discuss our results and in the chapter five, last 

chapter our main conclusions.  

1.4 Theoretical Introduction 

Since the beginning of the plate tectonics theory, different types of studies have been carried 

out trying to understand the dynamics involved in the process of subduction initiation; however, many 

aspects are still not entirely understood. 

 It is reasonably well established that due to oceanic lithosphere aging and cooling its density 

increases (Oxburgh and Parmentier 1977); therefore, an instability arises and the plate should, in 

principle, sink spontaneously into the mantle under its own weight (Turcotte et al. 1977).  
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 However, Mckenzie (1977) calculated the force balance present at passive margins assuming 

an elastic rheology and concluded that spontaneous subduction is not possible under common 

gravitational forces. In his calculations he considered the balance between the elastic resistance (due to 

bending resistance of the oceanic lithosphere) and frictional resistance (friction at the thrust contact 

between underthrusting and overriding plates), as resistance forces, and ridge-push and gravitational 

instability as driving forces. He calculated the balance between these forces to initiate subduction at a 

passive margin, and concluded that an additional stress of 80MPa, resulting from the force integration 

over common elastic thickness of the lithosphere (80km), is required for subduction initiation and 

subsequent self sustained subduction driven by slab-pull. Moreover, in order for slab-pull to act in 

efficiently, the density contrast between the sinking slab and the surrounding mantle must be 

preserved; therefore, if the consumption rate is not high enough (> 1.8cm/yr) the density contrast can 

be reduced due to warming of the sinking slab thus preventing subduction initiation.      

 Different studies were performed after Mckenzie (1977), trying to find a mechanism that 

enables subduction initiation. The possibility of a fracture zone, representing a weakness in the 

oceanic-continental boundary, was one of the most reasonable approaches to solve the problem of 

extra forces, because frictional resistance should be reduced with a fracture zone. 

Cloetingh (1982) estimated the stress produced by a sedimentary load at a passive margin with ductile 

lithosphere. However, he concluded that a plastic failure due to sedimentary load is just possible in 

oceanic lithosphere younger than 20 My. This way the stress resulting from sedimentary load is not 

able to reach the strength of the lithosphere due to its increase with increasing age and cooling.   

 Another study to explain subduction initiation was performed by Mueller and Phillips (1991) 

through analytical models, which tried to estimate the shear resistance forces at passive margins, 

fracture zones, transform faults and extinct ridge assuming a brittle-ductile rheology. The study 

concluded that, for passive margins, the magnitude of the shear resistance forces are one order of 

magnitude higher than ridge-push. Although they suggest that subduction can be initiated due to the 

slab pull forces from other mature subduction zones in the proximities, this does not explain the 

initiation of the first subduction zone.  

 Regenauer-Lieb et al. (2001) estimated that the addition of water changes the rheology of the 

upper and middle lithosphere and the shear resistance forces can be reduced leading to the 

development of an instability explaining the subduction initiation; however their estimations were 

applied to oceanic lithosphere instead of passive margins.    

 Toth and Gurnis (1998) used numerical modelling to estimate new values for the resistance 

forces in the case of a preexisting fault and even found a relation for the necessary driving force that 

exceed the resistance forces needed to initiate subduction. Despite the efforts to explain initiation of 

subduction by the presence of a fracture zone, many of these studies do not take into account other 
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parameters that can explain the process in passive margins, a likely place for subduction initiation to 

occur. 

 Another approach to the problem was made by Faccena et al. (1999), using analogue models 

where they investigate the influence of the negative buoyancy of the oceanic lithosphere, the 

horizontal body forces between continent and ocean that result from lateral density contrasts, and 

brittle and ductile strengths of the passive margin. Using the Argand number (representing the ratio 

between body force of continent and its integrated strength) and the buoyancy number (representing 

the ratio between the buoyancy force of the ocean and its ductile resistance) they predicted that with a 

higher body force together with a high buoyancy force on the oceanic plate presents the best 

similarities with passive margins like the Atlantic-type. 

 From the development made by Faccena et al. (1999), a new set of gravitational forces must 

be taken into account to explain subduction initiation. Mart et al. (2005) performed an analogue study 

just considering gravitational forces, without any lateral compression, and the results show thrusting of 

the continental lithosphere over the higher density oceanic slab, mainly controlled by the degree of 

friction and density contrast between the two plates.   

 Goren et al. (2008), trying to understand more about the influence of the gravitational forces, 

reported that the effects of lateral buoyancy differences can trigger a lateral pressure gradient from the 

oceanic to the continental lithospheres. The study performed by Goren et al. (2008), trough analytical 

and analogue models, predicted that these lateral forces reach the maximum value at the base of the 

lithosphere and can induce viscous deformation at the ductile portion of the lithosphere. This way, in 

the beginning the oceanic-continental boundary stays under a compression regime leading to elevation 

differences responsible for topographic features in the continental lithosphere. In response to this new 

unstable isostatic configuration, the continental lithosphere can initially overthrust the oceanic 

lithosphere, due to isostatic rearrangement, and a low angle subduction can occur. Development after 

this initial state can occur with the sinking of the oceanic slab, due to gravitational instability between 

the denser oceanic lithosphere and the lighter asthenospheric mantle. However their results do not 

show a proper subduction zone with a deep sinking oceanic slab into asthenospheric mantle, but rather 

showed different cases of overthrusting with the continental lithosphere creeping over the deflected 

oceanic lithosphere. 

 The lateral pressure gradient in passive margins emerges from lateral density contrasts. These 

lateral density differences result from compositional differences from continental and oceanic rocks, 

and these differences can be obtained by isostatic adjustments; however, temperature variations can 

lead to lithosphere density variations that may overlap the isostatic processes. In addition lateral 

density variations between lithospheric mantles can reinforce the lateral pressure gradient at passive 

margins, and these lateral differences are typically attributed to melting processes originated by 
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temperature effects. Therefore, with numerical modelling, the effects of temperature can be taken into 

account.  

 Nikolaeva et al. (2010) performed a serious of 2D numerical experiments with 

viscoelastoplastic rheology and investigated the effects of lithospheric thickness, chemical density 

contrast between the continental and oceanic lithospheric mantles, age of oceanic plate, and plastic 

strength and thickness of the continental crust. In this work they achieve three distinguish regimes at a 

passive margin: stable margin, overthrusting, and subduction. Thus they concluded that the transition 

from stable margin to overthrusting is mainly controlled by ductile strength of the continental crust. 

The transition from overthrust to subduction initiation is mainly controlled by ductile strength and 

density of the continental lithosphere. Another conclusion from their work was the small contribution 

of the age of the oceanic plate, which controls the thickness and strength of this plate, and a similar 

conclusion arise from the study of Goren et al. (2008) in their experiments with a buoyancy number 

equal to zero. 

 The 2-D numerical approaches have provided improvements in the knowledge of the 

dynamics of subduction initiation, but they only apply to situations where the third dimension is 

invariable (Fig.1 (a)). However, the real world is not so simple, and shows variations (at least 

geometric) of the third dimension (Fig.1 (b)). In fact, the natural passive margins are not straight, and 

even less perpendicular to the velocity vector. Therefore, in order to fully understand subduction 

initiation, the three spatial coordinates of the stress tensor must be considered.   

 In our study we follow the previous works, but because of the 3D shape of the real subduction 

zones and the 3D spatial distribution of stress we used a 3D numerical model with viscoelastoplastic 

rheology to perform different experiments to investigate the influence of different geometries of the 

ocean-continental boundary in the third dimension on subduction initiation at a passive margin. In our 

model we take into account as driving forces only the lateral density variations between the oceanic-

continental boundary. We did not consider any type of differences in the rock composition of the same 

plate along the third dimension. This way we ensure pressure gradients related to density contrast only 

between the oceanic and continental lithospheres.  
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Fig. 1- 3D scheme of an oceanic-continental boundary (a) invariant in the third dimension (equivalent 

to 2D), and (b) variant in the third dimension (3D). 

 

2. Model Description 

The numerical code used in this work is the I3ELVIS code, which is based on finite 

differences schemes and marker-in-cell techniques combined with multigrid approach, an additional 

feature to the previous I2ELVIS code in 2D (Gerya and Yuen 2007). 

The model can be seen as a mixed Lagrangian-Eulerian numerical scheme and is applicable to 

Cartesian geometry with prescribed vertical gravity field allowing to model regional tectonic processes 

in 3D, with viscoelastoplastic rheology. 

The model accounts for the dynamics of free surface, spontaneous slab bending, back-arc 

spreading and thermal-chemical plumes propagation; however, this last routine was not performed in 

order to reduce the computational time spent running the experiments. 

To ensure a realistic one sided (Gerya et al. 2008) subduction pattern, the model accounts for 

slab dehydration processes on the basis of the Gibbs free energy minimization combined with the 

moving fluid markers technique (Gerya et al. 2006; Nikolaeva et al. 2008). 

2.1 Initial and Boundary Conditions  

The present 3D model is a reference model of subduction initiation at passive margins. The 

model domain is 1000 km long orthogonal to the oceanic-continental boundary, 200 km deep and 200 

km wide. This domain is resolved by 501x101x101 grid points with approximately 43 million 

randomly distributed markers. The model has a prescribed gravity field oriented vertically with 9.8 ms
-

2
, and no velocities are imposed at the boundaries. In the experiments the composition of rocks follows 

a viscoelastoplastic rheology (e.g. Ranalli 1995). A total of 38 rock phases are defined in the model 

plus an air description to account for free surface conditions, however the most important composition 
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of the model can be described using just nine layers (air, water, upper continental crust, lower 

continental crust, continental mantle, oceanic crust, oceanic mantle, asthenosphere and sediments).  

  We built a reference model (f0i Table 2) that simulates subduction initiation at an oceanic-

continental boundary, invariable in the third dimension (Fig.2). Therefore, the results of this model 

were a reference to compare with all different experiments carried out in this work. However, in order 

to test only the geometry of the oceanic-continental boundary all the other parameters were kept 

unchanged.  

The models are composed of a top 12 km layer of air that acts as a dynamically internal free 

surface, and represents the atmosphere (density 1 kgm
-3

 and viscosity 10
18

 Pas). Below, on the left side 

of the model, is the continental lithosphere, and on the right side the oceanic lithosphere (Fig.2 (a)).  

The continental lithosphere is composed of upper and lower crust, above the continental 

mantle lithosphere. The continental upper crust has an average thickness of 33 km and is mainly 

composed of wet quartzite with a density of 2700 kgm
-3

 and a viscosity of 10
26

 Pas. The lower crust is 

12 km thick and made of wet quartzite with a density of 2900 kgm
-3

 and a viscosity of 10
18

 Pas, 

responsible for the ductile behaviour. The continental mantle lithosphere is 35 km thick and is mainly 

composed of wet olivine with a viscosity of 10
24

 Pas and a density of 3250 kgm
3
 (50 kgm

3
 less than 

the neighbouring oceanic mantle lithosphere). Above the oceanic lithosphere there is a 3 km thick 

layer of water. The oceanic crust is mainly composed of 8 km thick basalts (An75) with an average 

density of 3100 kgm
-3

 and a viscosity of 10
24

 Pas. Below the oceanic crust is the oceanic mantle 

lithosphere with 77 km thickness of wet olivine with a density of 3300 kgm
-3

 and a viscosity of 10
24

 

Pas. Beneath the two lithospheres is the asthenosphere to a total depth of 200km, and is mainly 

composed of wet olivine and has the same properties as the oceanic mantle lithosphere.  

The most important properties of the different layers are presented in Table I. Note that the 

density contrast between the continental mantle lithosphere and the oceanic mantle lithosphere (50 

kgm
-3

) is responsible for the gravitational instability at the margin and can drive subduction initiation 

(Nikolaeva et al. 2010). Furthermore, the viscosity of the lower continental crust is lower than the 

surrounding layers, and is thus responsible for the ductile behaviour of the continental lithosphere 

(Fig.2(c)).  

The oceanic-continental boundary dips 45° towards the continent in almost all experiments 

(Fig.3 (b)); however, for the purpose of this work, in the third dimension (Z coordinate) the boundary 

changes between different angles (Fig.3 (b) and Table 2). The model oceanic crust does not include 

sediments, but they spontaneously fill the trench after its arcward slope reaches a critical angle of 17 

degrees.  
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Fig. 2 - The (a) composition, (b) temperature and (c) viscosity  fields of the initial configuration of the 

reference model. Colours for the composition field are numbered as follows: 0, air; 1, water; 2, upper 

continental crust; 3, lower continental crust; 4, continental mantle; 5, oceanic crust; 6, oceanic mantle; 

7, asthenosphere. 

(a) 

(b) 

(c) 
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The thermal structure in the model is composed of a linear profile in the continental 

lithosphere, which assumes 273 K at the surface and grows with depth by a temperature gradient of 

0.5 Kkm
-1

. In the oceanic lithosphere the thermal profile is based on the imposed ages of the plate with 

an oceanic geotherm (Turcotte and Schubert 2002). The thermal structure in the oceanic-continental 

boundary is defined as an interpolation between the continental and oceanic profiles. The thermal 

conditions of our reference model can be seen in Fig.2 (b). 

Table 1 - Parameters used in the numerical experiments. 

Layer Composition Thickness (km) Density (kgm
-3

) Viscosity (Pas) 

Air  12 1 10
18

 

Upper Continental 

Crust Wet Quartzite 33 2700 10
24

 

Lower 

Continental Crust Wet Quartzite 12 2900 10
18

 

Continental 

Mantle Wet Olivine 35 3250 10
24

 

Water  3 1000 10
18

 

Oceanic Crust An75 8 3100 10
24

 

Oceanic Mantle Wet Olivine 77 3300 10
24

 

Asthenosphere Wet Olivine 

The remaining to 

200 km 3300 10
24

 

 

As mentioned above, the model has no applied boundary velocities, in order to test only the 

pressure gradient resulting from the density contrast at the oceanic-continental boundary. The velocity 

boundary conditions are free slip, except for the lower boundary, which is permeable in the vertical 

direction (Fig. 3 (a)). This boundary allows global conservation of mass in the computational domain. 

In order to help in the description of the results, it is important to distinguish some features of 

the computational domain and experiments. In the Fig. 3, the boundary names and their features are 

described, and two schemes are added to help to understand the different types of experiment. We 

defined three different types of experiment: the invariable in the third dimension, also defined as “f0” 

(Fig.3 (b) with θ = 0º); the oblique in the third dimension, defined as “f1” (Fig.3 (b)); the Z-shaped 

ocean-continent boundary, defined as “f2” (Fig.3 (c)). The difference between the three types of 

experiment is the geometry in the third dimension, while between the same types of experiment 
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different features are tested. For experiments f0, our reference model, the variables are the thickness of 

the continental crust and the thickness of the continental mantle. In the f1 experiments the main 

variable was the angle θ, with the geometry of the oceanic-continental boundary following a linear 

profile along the third dimension (Fig.3 (b)). The f2 experiments are characterised by a Z-shaped 

profile, and we study the changes with the angle θ, as showed in Fig.3 (c), keeping the thickness (50 

km each) of the invariant sections unchanged. Experiments f1 and f2 just show variations on the 

geometry of the oceanic-continental boundary in the third dimension and both keep all the other 

features of the reference model (f0i in Table 2).  

In our work the angle α represents the slope in depth of continental lithospheres, and is 

assumed as 45 degrees and constant trough almost all experiments. The angle θ is the main variable in 

our study, and besides it may represent different displacement in different types of experiments. θ 

varied between 20, 40 or 60 degrees. The highlighted experiments in Table 2 are the ones presented in 

the Results section.   

Notice that the compositional configuration in the front boundary remains the same in all 

experiments (the same values for the x coordinates), and this is important to relate different types of 

experiments and maintain coherency between then. 
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Fig. 3 - (a) Boundary names and conditions; (b) Scheme of the f1 experiments (e.g. θ=60° ); (c) Scheme 

of the f2 experiments (e.g. θ=60). In (c) the thickness of the straight sections is 50 km each and the 

oblique section has 100 km (z maximum 200 km). Colours for the composition field are numbered as 

in Fig.2 with the addition of sediments (number 8). 

 

(a) 

(b) 

(c) 
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Table 2 - List of experiments. The suffix “_f0g” and “_f0i” respects to the reference model. 
The suffix “a”,”b” or “c” after the experiment type 1 and 2 (e.g. f1a) respects to the θ angle, 

where a=20°, b=40°, c=60°. 

Experiments 
Density 
Contrast 
(kg/m3) 

Thickness 
Continental 
Crust (km) 

Thickness 
of 

Continental 
Mantle 

(km) 

Total 
Thickness 

Continental 
Lithosphere 

Total Depth 
Continental 
Lithosphere 

(km) 

Temperature 
at total 

depth of 
Continental 
Lithosphere 

(K) 

θ (°) α (°) Observations 

f0a 50 44 46 90 102 1624 0 45 
 

f0b 50 44 46 90 102 1624 0 45 
 

f0c 50 44 34 78 90 1618 0 45 
 

f0d 50 44 44 88 100 1623 0 45 
 

f0f 50 45 43 88 100 1623 0 45 
 

f0g 50 45 30 75 87 1616.5 0 45 
 

f0i 50 45 35 80 92 1619 0 45 
 

f0ia 50 45 35 80 92 1619 0 45 
Oceanic 

lithosphere 
with 430 km 

f0ib 50 45 35 80 92 1619 0 45 
Oceanic 

lithosphere 
with 230 km 

f0j 50 43 30 73 85 1615.5 0 45 
 

          
f1a_f0g 50 45 30 75 87 1616.5 20 45 

 
f1a_f0i 50 45 35 80 92 1619 20 45 

 
f1b_f0g 50 45 30 75 87 1616.5 40 45 

 
f1b_f0i 50 45 35 80 92 1619 40 45 

 
f1b 50 45 35 80 92 1619 40 0 

 
f1c_f0g 50 45 30 75 87 1616.5 60 45 

 
f1c_f0i 50 45 35 80 92 1619 60 45 

 

          
f2a_f0g 50 45 30 75 87 1616.5 20 45 

 
f2a_f0i 50 45 35 80 92 1619 20 45 

 
f2b_f0g 50 45 30 75 87 1616.5 40 45 

 
f2b_f0i 50 45 35 80 92 1619 40 45 

 
f2c_f0g 50 45 30 75 87 1616.5 60 45 

 
f2c_f0i 50 45 35 80 92 1619 60 45 
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3. Results and discussion 

In this section we present the results of our experiments for the reference model (f0i) and for 

tree other experiments from experiment type 1 (“f1...”) and 2 (“f2...”). 

3.1 Reference Model 

Our reference model, as mentioned above, is a simple model of subduction initiation at a 

passive margin, and the geometry of the ocean-continent boundary is invariant in the third dimension 

(Fig.4). All the properties of this experiment were described in the previous section. Just mention that 

we consider self-sustained subduction when the oceanic lithosphere reaches the lower bond of the 

model domain (200 km depth).  

 

Fig. 4 - Initial composition profiles from the reference model. Colours for the composition field are 

numbered as in Fig.2 with the addition of sediments (number 8). 

 

 The development on the reference model does not present any kind of variation along the third 

dimension. This way, we present in Fig.5 four compositional profiles of the front boundary at 0 My, 

0.38 My, 3.38 My (self-sustained subduction) and 7.28 My. 

In the firsts time step the development of the model is characterized by low longitudinal 

motion and bending of the slab motion with overthrusting of the continental crust. The trench, filled 

with sediments, moves from its initial position and some topographic features developed in the upper 

continental crust. Yet, some diapirism is observed above the sinking slab toward the surface. At 3.8 

My we consider that the model achieved self-sustained subduction with some roll-back movement of 

the sinking slab with respect to the previous time step. A well-developed subduction zone is observed 

at 7.28 My by the roll-back motion of the slab. Notice that the trench does not move significantly from 

3.8 My to 7.28 My implying more longitudinal motion of the sinking slab. Although not shown here, 

other experiments modelled with the same geometry but different continental lithosphere thickness the 
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evolution of the subduction zone for longer periods forces the trench to move more from its initial 

position.  

 

 

 

 

Fig. 5 - Temporal evolution of the composition field from the reference model. Time steps: (a) 0 My; (b) 

0.38 My; (c) 3.38 My (self sustained subduction); (d) 7.28 My. The horizontal scale represents the 

distance in kilometres from the left boundary. Colours for the composition field are numbered as in 

Fig.2 with the addition of sediments (number 8). 

(a)  

(b) 

(c) 

(d) 

t=0 My  

t=0.40 My  

t=3.43 My  

t=5.53 My  
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3.2 Experiments f1 

3.2.1 Experiment f1a_f0i 

The experiment f1a_f0i is described in Table 2, and presents a total of 72794 km (θ=20º) 

displacement in the third dimension, between the front and back boundary (Fig.6). 

 

 

Fig. 6 - Initial composition profiles from the f1a_f0i experiment (θ=20). Colours for the composition 

field are numbered as in Fig.2 with the addition of sediments (number 8). 

 

The development of this experiment changes from the front boundary to the back boundary, 

which implies a temporal analysis in the two boundaries (Fig.7). Thus, we present in Fig.7 the 

compositional profile in the front and back boundaries at 0 My, 0.40 My, 3.43 My (self-sustained 

subduction), 5.53 My and 10.48 My. 

This experiment shows on the front boundary a well-developed subduction zone at 3.43 My, 

however on the back boundary only at 10.48 My the subduction becomes almost self-sustained. In the 

front boundary the development is similar to the reference model, with overthrusting of the continental 

crust and longitudinal motion of the sinking slab in the beginning, followed by a roll-back motion of 

the sinking slab achieving this way a self-sustained subduction zone at 3.43 My, which is not a very 

significant difference from the reference model. In the back boundary, the development presents the 

same phases however distributed in a longer period of time and this is clear from the observation of 

the development at 10.48 My that shows a very well-developed subduction zone whereas in the back 

boundary the subduction starts to be self-sustained. One difference presented between the two opposite 

boundaries is the flexure of the sinking slab in the back boundary that is much more pronounced than 
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in the front. Moreover, the magnitude of longitudinal motion in the front boundary is higher than in 

the back. Still, in the front boundary a wide trench filled with sediments is very well observed while in 

the back the trench is almost nonexistent, which may imply that the detachment and hydration between 

the lithospheres must be higher in the front boundary that results in a lower friction resistive force in 

this side. In the back boundary at 5.53 My it is evident the initiation of small asthenospheric mantle 

convection implying that a new thermal equilibrium must be reached, preventing this way subduction 

by decrease of density contrast at the oceanic-continental boundary.   

  

  

  

  

  

Fig. 7 - Temporal evolution of the composition field from the f1a_f0i experiment in the front boundary 

(left side) and back boundary (right side). Time steps: (a) 0 My; (b) 0.40 My; (c) 3.43 My (self sustained 

subduction in the front boundary); (d) 5.53 My; (e) 10.48 My. The horizontal scale represents the 

(a) 

(b) 

(a) 

(c) 

(d) 

(e) 

t=0 My 

t=0.40 My 

t=3.43 My 

t=5.53 My 

t=10.48 My 
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distance in kilometres from the left boundary. Colours for the composition field are numbered as in 

Fig.2 with the addition of sediments (number 8). 

3.2.2 Experiment f1b_f0i 

In this experiment the oceanic-continental boundary presents a total of 83910 km (θ=40º) 

displacement in the third dimension (Fig.9) and is described in Table 2.  

The evolution changes from the front boundary to the back boundary in this experiment, 

similarly to the previous one. However the evolution in the front boundary is different from the 

previous experiments and here self sustained subduction is not achieved in any of the boundaries.  

 

Fig. 8 - Initial composition profiles from the f1b_f0i experiment (θ=40). Colours for the composition 

field are numbered as in Fig.2 with the addition of sediments (number 8). 

 

In Fig.9 we present the evolution of the compositional field on the front and back boundaries 

at 0 My, 0.56 My, 3.70 My and 5.30 My. At 0.56 My we can observe longitudinal slab motion and 

overthrust of the continental crust in both boundaries; however in the front boundary this evolution is 

much more pronounced and the trench filled with sediments appears wider than the almost inexistent 

in the back boundary. Also the motion of the trench is much higher in the front than the back 

boundary. Between 0.56 My and 5.30 My it is not evident great changes in the compositional profiles 

in the front or in the back boundaries. Thus, during this period there is not evident overthrusting from 

the continental crust and this can result from the existence of oceanic crust (yellow) between the 

continental crust and the trench filled with sediments, which favours the isostatic stability of the 

oceanic-continental margin. Moreover, due to absence of motion in the lithospheres and the beginning 

of small asthenospheric convection, the thermal evolution must be attempting to reach a new 

equilibrium that prevents subduction initiation. Fig.10 shows the thermal evolution for the same time 

steps as in the Fig.9, and these thermal assumptions made before are proved, especially by the smooth 

of the thermal gradient on the tip of sinking slab with increasing age. This thermal evolution implies, 
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as before, that the density of the sinking slab is reduced and thus the density contrast between the 

lithospheres is reduced too and even the pressure gradient between them, leading to prevent 

subduction. Also, this indicates that the sinking slab must be warmed, what lead to reduce its density 

and the density contrast with the surrounding mantle preventing this way subduction initiation 

(Mckenzie 1977). 

 

  

  

  

  

Fig. 9 - Temporal evolution of the composition field from the f1b_f0i experiment in the front boundary 

(left side) and back boundary (right side). Time steps: (a) 0 My; (b) 0.56 My; (c) 3.70 My; (d) 5.30 My. 

The horizontal scale represents the distance in kilometres from the left boundary. Colours for the 

composition field are numbered as in Fig.2 with the addition of sediments (number 8). 

 

(a) 

(b) 

(c) 

(d) 

t=0 My 

t=0.56 My 

t=3.70 My 

t=5.30 My 
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Fig. 10 - Temporal evolution of the temperature field from the f1b_f0i experiment in the front 

boundary. Time steps: (a) 0 My; (b) 0.56 My; (c) 3.70 My; (d) 5.30 My. The horizontal scale represents 

the distance in kilometres from the left boundary. Colours for the composition field are numbered as in 

Fig.2 with the addition of sediments (number 8). 

(d) 

(c) 

(b) 

(a) 
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3.2.3 Experiment f1c_f0i 

In this experiment the oceanic-continental boundary presents a total of 346410 km (θ=60º) 

displacement in the third dimension (Fig.11). This experiment does not achieve subduction initiation, 

as would be expected from the previous experiments. 

 

Fig. 11 - Initial composition profiles from the f1c_f0i experiment (θ=60). Colours for the composition 

field are numbered as in Fig.2 with the addition of sediments (number 8). 

 

The results of our modeling are shown in terms of compositional profile for the front and back 

boundaries at 0 My, 0.27 My, 3.75 My and 6.15 My (Fig.12). In this experiment the evolution of the 

oceanic-continental boundary is very distinct since a wide and deep trench filled with sediments lead 

to bending of the oceanic lithosphere, on the front boundary of the model domain. However, at the 

same time steps, on the back boundary there is no sign of depth displacements in the oceanic-

continental boundary (Fig.12 (b)). Between 0.27 My and 6.15 My the results show flexure of the 

oceanic lithosphere due to the high sedimentary load, which grows continually over time. In this 

experiment the continental overthrust is not significant and again the presence of oceanic crust on the 

surface between the continental crust and sediments may be the reason for this lack of overhtrusting. 

Yet, at 6.15 My the compositional profile in the front boundary shows some low asthenospheric 

mantle convection that reduced the chances to achieve self-sustained subduction.  The results show 

that in the back boundary there was very little displacement along time. If we compare the results of 

this experiment with the last two, it is obvious that the increasing angle lead to an increase of the 

trench, gets wider and deeper, in the front boundary, but in the back boundary the increasing angle 

lead to lower displacements of the oceanic-continental boundary. 
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Fig. 12 - Temporal evolution of the composition field from the f1c_f0i experiment in the front 

boundary (left side) and back boundary (right side). Time steps: (a) 0 My; (b) 0.27 My; (c) 3.75 My; (d) 

6.15 My. The horizontal scale represents the distance in kilometres from the left boundary. Colours for 

the composition field are numbered as in Fig.2 with the addition of sediments (number 8). 

  

The temporal evolution of the temperature profiles in the front boundary is shown in Fig.13, at 

0 My, 0.27 My, 3.75 My and 6.15 My. In this experiment the development of the temperature field 

shows the same pattern as the previous experiment. Thus, with time the tip of sinking slab gets 

warmer, reducing is density and the density contrast with the surrounding mantle and continental 

lithosphere. This leads to a reduction of the pressure gradient, the principal driving force considered in 

this work, and a consequent inhibition of subduction initiation.  

 

 

(a) 

(b) 

(c) 

(d) 

t=0 My 

t=0.27 My 

t=3.75 My 

t=6.15 My 
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Fig. 13 - Temporal evolution of the temperature field from the f1c_f0i experiment in the front 

boundary. Time steps: (a) 0 My; (b) 0.27 My; (c) 3.75 My; (d) 6.15 My. The horizontal scale represents 

the distance in kilometres from the left boundary. Colours for the composition field are numbered as in 

Fig.2 with the addition of sediments (number 8). 

 

(a) 

(b) 

(c) 

(d) 
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3.3 Experiments f2 

3.3.1 Experiment f2a_f0i 

The experiment presented in this section has a third dimension configuration with three 

sections, two of them with the same size (50 km each) and invariant in the third dimension and with 

36397 km (θ=20º) distant in the longitudinal direction, and the other section is oblique, at 20 degrees 

with the third dimension. The initial composition field is presented in Fig.14, and all the other features 

about this experiment were explained in the section Model Description. 

 

Fig. 14 - Initial composition profiles from the f2a_f0i experiment (θ=20). Colours for the composition 

field are numbered as in Fig.2 with the addition of sediments (number 8). 

In order to perform a consistent analysis, we present the temporal evolution of the 

compositional field in the front and back boundaries at 0 My, 0.39 My, 4.63 My and 6.14 My (Fig.15). 

The results show that the development of the oceanic-continental boundary is very similar in 

both model boundaries with a slight advance in depth for the front boundary, however all the other 

processes are quite similar in time. The model starts with some overthursting of the continental crust 

(Fig.15 (a)), followed by bending of the sinking slab (Fig.15 (b)) and in the end the start of a small 

asthenospheric mantle convection (Fig.15 (d)). Although this pattern was described in the experiment 

f1a_f0i, the temporal scale here is the highest achieved in all experiments presented so far. Our 

criterion to consider self-sustained subduction is the arrival of the oceanic mantle lithosphere to the 

bottom boundary, and the results of this experiment at 4.63 My achieve this position, however this is 

consequence of small asthenospheric mantle convection. Thus for experiment f2a_f0i, we consider 

that self-sustained subduction will start after 6.14 My, that is, until now, the latest initiation.  
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Fig. 15 - Temporal evolution of the composition field from the f2a_f0i experiment in the front 

boundary (left side) and back boundary (right side). Time steps: (a) 0 My; (b) 0.39 My; (c) 4.63 My; (d) 

6.14 My. The horizontal scale represents the distance in kilometres from the left boundary. Colours for 

the composition field are numbered as in Fig.2 with the addition of sediments (number 8). 

     

To finish, just refer that thermally the experiment shows to evolve to a new equilibrium 

causing the warm up of the sinking slab in both model boundaries (Fig.16). This, like before, reduced 

the density of the sinking slab, which is responsible for self-sustained subduction.  

 

 

 

(a) 

(b) 

(c) 

(d) 

t=0 My 

t=0.39 My 

t=4.63 My 

t=6.14 My 
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Fig. 16 - Evolution of the temperature field from the f2a_f0i experiment in the front boundary (left 

side) and back boundary (right side) at (a) 0.39 My and (b) 6.14 My. The horizontal scale represents the 

distance in kilometres from the left boundary. 

 

3.3.2 Experiment f2b_f0i 

The experiment presented in this section has a third dimension configuration with three 

sections, two of them with the same size (50 km each) and invariant in the third dimension and with 

83910 km (θ=40º) distant in the longitudinal direction, and the other section is oblique and perform 40 

degrees with the third dimension. The initial composition field is presented in Fig.17, and all the other 

features about this experiment were explained in the section Model Description. 

 

Fig. 17 - Initial composition profiles from the f2b_f0i experiment (θ=40). Colours for the composition 

field are numbered as in Fig.2 with the addition of sediments (number 8). 

(a) 

(b) 
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 The temporal evolution of the composition field is presented in Fig.18 for the front and back 

boundaries at 0 My, 0.41 My, 4.72 My, 7.11 My and 9.47 My. The presented profiles are very similar 

to the previous experiment. 

  

  

  

  

  

Fig. 18 - Temporal evolution of the composition field from the f2b_f0i experiment in the front 

boundary (left side) and back boundary (right side). Time steps: (a) 0 My; (b) 0.41 My; (c) 4.72 My; (d) 

7.11 My; (e) 9.47 My. The horizontal scale represents the distance in kilometres from the left 

boundary. Colours for the composition field are numbered as in Fig.2 with the addition of sediments 

(number 8). 

(a) 

(b) 

(c) 

(d) 

(e) 

t=0 My 

t=0.41 My 

t=4.72 My 
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t=9.47 My 



3D NUMERICAL MODELLING OF SUBDUCTION INITIATION AT A PASSIVE MARGIN 

Frederico Cabral      26 

 

    Initially the results show overthrust of the continental crust and sinking of the oceanic 

lithosphere. At 4.72 My, in the font boundary, the oceanic lithosphere reaches 200 km depth (little 

longer than the f2a_f0i experiment), which imply a self-sustained subduction. However, like in the 

previous experiment, this is a consequence of small asthenospheric mantle convection. Still, at 7.11 

My, the lower bound of the oceanic lithosphere had not reached the bottom boundary of the model, 

thus for this experiment we define that subduction became self-sustained, at the front boundary, for a 

time older than 9.47 My. One important aspect from the results of this experiment is the dynamics, in 

the back boundary, showing for the time interval between 7.11 My and 9.47 My the margins became 

stable, and this can be attributed to mature asthenospheric mantle convection below the oceanic 

lithosphere without having the presence of the lithosphere in their circulation. Note the possibility of 

occurrence, in the same experiment, of two types of margins, an active margin and a stable margin. 

This can be proved by the temperature profiles at 9.47 My, that shows the thermal equilibrium in the 

back boundary while in the front boundary still exist some temperature gradient along the sinking slab 

(Fig.19). 

  

Fig. 19- Temperature profiles from the f2b_f0i experiment in the front boundary (left side) and back 

boundary (right side) at 9.47 My. The horizontal scale represents the distance in kilometres from the 

left boundary. 

 

3.3.3 Experiment f2c_f0i 

    The experiment presented in this section has a third dimension configuration with three 

sections, two of them with the same size (50 km each) and invariant in the third dimension and with 

173205 km (θ=60º) distant in the longitudinal direction, and the other section is oblique and perform 

60 degrees with the third dimension. The initial composition field is presented in Fig.20, and all the 

other features about this experiment were explained in the section Model Description.  
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Fig. 20 - Initial composition profiles from the f2c_f0i experiment (θ=60). Colours for the composition 

field are numbered as in Fig.2 with the addition of sediments (number 8). 

 

The temporal evolution of the composition field is presented in Fig.21 for the front and back 

boundaries at 0 My, 0.50 My, 4.43 My, 7.62 My. The results show for the initial time the continental 

crust overthrusting a little over the oceanic lithosphere. In the front boundary a wide and deep trench is 

formed and filled with sediments. This is similar to the results of experiment f1c_f0i (θ=60), however, 

in the experiment f2c_f0i it occurred in a small scale and longer period of time. In the back boundary 

the oceanic-continental boundary stays similar to the initial configuration of the experiment. 

 

Between 0.50 My and 4.43 My in front and back boundaries it is not observed any motion in 

the shallower depths (<100km). The only change between the two time steps is the initiation of small 

asthenospheric mantle convection in the front boundary. In the previous experiment (f2b_f0i) it was 

suggested that when the asthenospheric mantle convection starts without the presence of oceanic 

lithosphere at deep depths, then the margin becomes stable. This is suggested again, but for the front 

boundary, from the compositional profile at 7.62 My.  
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Fig. 21- Temporal evolution of the composition field from the f2c_f0i experiment in the front boundary 

(left side) and back boundary (right side). Time steps: (a) 0 My; (b) 0.50 My; (c) 4.43 My; (d) 7.62 My. 

The horizontal scale represents the distance in kilometres from the left boundary. Colours for the 

composition field are numbered as in Fig.2 with the addition of sediments (number 8). 

 

The structure of our model (thickness of different layers and geometries) are not taken from 

any specific place on Earth, however our model features and the subduction initiation achieved in our 

experiments are in part in agreement with previous works (e.g. Nikolaeva et al. 2010). 

Our results suggest that, with the growth of θ, subduction initiation is more difficult to 

achieve. This is presented in both f1 and f2 experiments. Furtherm,ore, for experiments with θ=60º 

subduction appears to be inhibited, suggesting the existence of a limit angle to achieve subduction 

initiation. The results for experiments f1 and f2 suggested also that for more complex geometries more 

difficult is to initiate subduction. This occurs in all experiments with the same θ from f1 and f2 (Table 

3).    

(a) 

(b) 

(c) 

(d) 

t=0 My 

t=0.50 My 

t=4.43 My 

t=7.62 My 
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In the experiments in which the oceanic-continental geometry vary in the third dimension, the 

region close to the front boundary always experienced more deformation. At this stage of the 

experimental work, we do not have an answer to this question. A new set of experiments is now in 

progress trying to understand this problem.  

In this work we show that the variation of oceanic-continental geometry in the third dimension 

is one parameter important for subduction initiation at a passive margin. From our results the 

invariable geometry is the more prone case to achieve subduction initiation, and with the increasing 

angle θ the subduction initiation seems to be more difficult to accomplish. Although in real passive 

margins the special domain defined in our experiments is easy to find, not evident transition from 

passive to active margins are known. This way more experiments must be performed to investigate the 

importance of oceanic-continental geometry, like test different configurations, different special scales 

and even trying to simulate the features of real passive margins.   

 The results showed that another important parameter that must be taken into account when 

studying subduction initiation and this is the asthenospheric mantle convection, which appears to act, 

in some cases, in a way to prevent subduction initiation by thermal effects at the tip of the sinking 

slab.  

  

Table 3 - Summary of experiment results. 

Experiment θ Subduction initiation 
Time of Subduction 

Initiation (My) 

f0i  

(reference model) 
0 Yes 3.38 

f1a_f0i 20 Yes 3.43 

f1b_f0i 40 Possible  >5.30 

f1c_f0i 60 No __ 

f2a_f0i 20 Possible >6.14  

f2b_f0i 40 Possible >9.47 

f2c_f0i 60 No __ 
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4. Conclusion             

The more important conclusion produced by this work is that the variation on the oceanic-

continental boundary are an important factor in the subduction initiation at a passive margin. 

Moreover, our results showed that subduction initiation is inhibited for highest variations of oceanic-

continental boundary, and this way the geometry invariant in the third dimension is the more prone to 

initiate subduction. 

To summarize, more studies from subduction initiation with 3D numerical modelling are 

needed to better understand this process. 
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